1
|
Carandina A, Fanti G, Carminati A, Baroni M, Salafia G, Arosio B, Macchi C, Ruscica M, Vicenzi M, Carugo S, Borghi F, Spinazzè A, Cavallo DM, Tobaldini E, Montano N, Bonzini M. Indoor air pollution impacts cardiovascular autonomic control during sleep and the inflammatory profile. ENVIRONMENTAL RESEARCH 2024; 260:119783. [PMID: 39142457 DOI: 10.1016/j.envres.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The present study explores the modifications of cardiovascular autonomic control (CAC) during wake and sleep time and the systemic inflammatory profile associated with exposure to indoor air pollution (IAP) in a cohort of healthy subjects. Twenty healthy volunteers were enrolled. Indoor levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and volatile organic compounds (VOCs) were monitored using a portable detector for 7 days. Together, a 7-day monitoring was performed through a wireless patch that continuously recorded electrocardiogram, respiratory activity and actigraphy. Indexes of CAC during wake and sleep time were derived from the biosignals: heart rate and low-frequency to high-frequency ratio (LF/HF), index of sympathovagal balance with higher values corresponding to a predominance of the sympathetic branch. Cyclic variation of heart rate index (CVHRI events/hour) during sleep, a proxy for the evaluation of sleep apnea, was assessed for each night. After the monitoring, blood samples were collected to assess the inflammatory profile. Regression and correlation analyses were performed. A positive association between VOC exposure and the CVHRI (Δ% = +0.2% for 1 μg/m3 VOCs, p = 0.008) was found. The CVHRI was also positively associated with LF/HF during sleep, thus higher CVHRI values corresponded to a shift of the sympathovagal balance towards a sympathetic predominance (r = 0.52; p = 0.018). NO2 exposure was positively associated with both the pro-inflammatory biomarker TREM-1 and the anti-inflammatory biomarker IL-10 (Δ% = +1.2% and Δ% = +2.4%, for 1 μg/m3 NO2; p = 0.005 and p = 0.022, respectively). The study highlights a possible causal relationship between IAP exposure and higher risk of sleep apnea events, associated with impaired CAC during sleep, and a pro-inflammatory state counterbalanced by an increased anti-inflammatory response in healthy subjects. This process may be disrupted in vulnerable populations, leading to a harmful chronic pro-inflammatory profile. Thus, IAP may emerge as a critical and often neglected risk factor for the public health that can be addressed through targeted preventive interventions.
Collapse
Affiliation(s)
- Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Fanti
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Alessio Carminati
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Michele Baroni
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Vicenzi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, Como, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Zhang Y, Ma R, Ban J, Lu F, Guo M, Jiang N, Chen C, Li T. Higher risk of patients after stent(s) insertion with vessel bifurcation treated in the association between PM 2.5 and cardiovascular hospital readmission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117147. [PMID: 39383819 DOI: 10.1016/j.ecoenv.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Stent(s) insertion is a common form of surgery for patients with cardiovascular diseases, and is associated with a high rate of hospital readmission. This study aims to investigate the acute association between PM2.5 exposure and hospital readmission for patients with cardiovascular disease and a history of stent(s) insertion. The records of hospital admission were collected from the Beijing Municipal Commission of Health and Family Planning Information Center between 1st January 2013 and 31st December 2017. Subsequent hospital readmission records for patients with a history of stent(s) insertion or without any surgery were extracted. The conditional logistic regression model was applied to investigate the association between PM2.5 concentration and cardiovascular disease readmission in patients who had undergone stent(s) insertion or without any surgery. A total of 81,468 patients who had a history of stent(s) insertion were included in this study. Of these, 17,224 patients (21.1 % of the total number of patients) were readmitted 27,749 times due to cardiovascular disease. The median daily PM2.5 concentration was 62.8 μg/m3 with an interquartile range (IQR) of 71.5 μg/m3. The excess risk (ER) associated 10 μg/m3 increase in PM2.5 concentration for readmission due to cardiovascular disease was 0.48 % (95 % CI: 0.09 %, 0.87 %) in patients with a history of stent(s) insertion. Patients who had stent(s) insertion at the vessel bifurcation site showed the highest risk of readmission for cardiovascular disease when exposed to PM2.5; the ER was 4.12 % (95 % CI: 1.60 %, 6.70 %). PM2.5 was significantly associated with angina pectoris and readmission for chronic ischemic heart disease in patients with a history of stent(s) insertion. PM2.5 had a significant association with cardiovascular readmission among patients with a history of insertion of stent(s). Patients who had vessel bifurcation treated showed the highest risk of readmission.
Collapse
Affiliation(s)
- Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Lu
- Beijing Municipal Health Big Data and Policy Research Center, Beijing 100034, China
| | - Moning Guo
- Beijing Municipal Health Big Data and Policy Research Center, Beijing 100034, China
| | - Ning Jiang
- Yantai Economic & Technological Development Area Center for Disease Control and Prevention Center, Shandong 264006, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
3
|
Zhou J, Huebner G, Liu KY, Ucci M. Heart rate variability, electrodermal activity and cognition in adults: Association with short-term indoor PM2.5 exposure in a real-world intervention study. ENVIRONMENTAL RESEARCH 2024; 263:120245. [PMID: 39490569 DOI: 10.1016/j.envres.2024.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Long-term effects of ambient fine particulate matter (PM2.5) exposure on mortality and morbidity are well established. The study aims to evaluate how short-term indoor PM2.5 exposure affects physiological responses and understand potential mechanisms mediating the cognitive outcomes in working-age adults. METHODS This real-world randomized single-blind crossover intervention study was conducted in an urban office setting, with desk-based air purifiers used as the intervention. Participants (N=40) were exposed to average PM2.5 levels of 18.0 μg/m3 in control and 3.7 μg/m3 in intervention conditions. Cognitive tests, heart rate variability (HRV), and electrodermal activity (EDA) measures were conducted after 5 hours of exposure. Self-reported mental effort, exhaustion, and task difficulty were collected after the cognitive tests. RESULTS Participants in the intervention condition had significantly higher HRV during cognitive testing, particularly in the standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), and high-frequency power (HF) indices. Mediation analysis revealed that elevated PM2.5 exposure reduced HRV indices, which mediated the effect on two executive function-related cognitive skills out of 16 assessed skills. No significant differences were found in EDA, self-reported task difficulty, or exhaustion, but self-reported mental effort was higher in the control condition. CONCLUSIONS Lower indoor PM2.5 level was associated with reduced mental effort and higher HRV during cognitive testing. Furthermore, the association between indoor PM2.5 exposure and executive function might be mediated through cardiovagal responses. These findings provide insights on the mechanisms through which fine particle exposure adversely affects the autonomic nervous system and how this in turn affects cognition. The potential cardiovascular and cognitive health benefits of PM2.5 reduction warrants further research.
Collapse
Affiliation(s)
- Jiaxu Zhou
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK.
| | - Gesche Huebner
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London (UCL), 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Marcella Ucci
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| |
Collapse
|
4
|
Zeng Q, Bai Y, Zhang M, Ni Y. The construction and validity assessment of the respiratory air quality health index (AQHI) based on the analytic hierarchy process in Tianjin, China. BMC Public Health 2024; 24:2895. [PMID: 39434079 PMCID: PMC11492774 DOI: 10.1186/s12889-024-20399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Air quality health index (AQHI), as a developed air quality risk communication tool, has been proved to be more accurate in predicting air quality related health risks than air quality index (AQI) by previous studies. However, the standard method to construct AQHI is summing the excess risks of single-pollutant models directly, which may ignore the joint effect of air pollutant mixtures. METHODS In this study, a new method which could solve the aforementioned problem, Analytic hierarchy process (AHP), was introduced. Based on this method, we constructed the respiratory health related AQHI using years of life lost (YLL) as indicator of health outcome and compared its validity with AQI. RESULTS There was a correlation between daily AQI and AQHI in 2019 (R2 = 0.830, P < 0.01), and the chi-square test between the two excellent rates showed a statistically significant difference (χ2 = 4.156, P < 0.05). Both AQI and AQHI were correlated with the daily respiratory YLL (P < 0.01), however, the coefficient of AQHI was larger than those of AQI. CONCLUSIONS This study indicated that compared with AQI, the constructed AQHI based on AHP may predict the health risk of air pollution more effectively. AHP may become a new method to construct AQHI which needs to be proved by taking into consideration by more studies.
Collapse
Affiliation(s)
- Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, No. 6 Huayue Road, Hedong District, Tianjin, 300011, China
| | - Yu Bai
- Tianjin Centers for Disease Control and Prevention, No. 6 Huayue Road, Hedong District, Tianjin, 300011, China
| | - Mengnan Zhang
- Tianjin Centers for Disease Control and Prevention, No. 6 Huayue Road, Hedong District, Tianjin, 300011, China
| | - Yang Ni
- Tianjin Centers for Disease Control and Prevention, No. 6 Huayue Road, Hedong District, Tianjin, 300011, China.
| |
Collapse
|
5
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
6
|
Nho KJ, Shin JH, Baek JE, Choi SW. Transcriptome and RNA sequencing analysis of H9C2 cells exposed to diesel particulate matter. Heliyon 2024; 10:e38082. [PMID: 39386855 PMCID: PMC11462235 DOI: 10.1016/j.heliyon.2024.e38082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Although air pollution has been classified as a risk factor for heart disease, the underlying mechanisms remain nebulous. Therefore, this study investigated the effect of diesel particulate matter (DPM) exposure on cardiomyocytes and identified differentially expressed genes (DEGs) induced by DPM. DPM treatment decreased H9C2 cell viability and increased cytotoxicity. Ten genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 3 h. A total of 273 genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 24 h. Signaling pathway analysis revealed that the DEGs were related to the 'reactive oxygens species,' 'IL-17,' and 'fluid shear stress and atherosclerosis' signaling pathways. Hmox1, Fos, and Fosb genes were significantly upregulated among the selected DEGs. This study identified DPM-induced DEGs and verified the selected genes using qRT-PCR and western blotting. The findings provide insights into the molecular events in cardiomyocytes following exposure to DPM.
Collapse
Affiliation(s)
- Kyoung Jin Nho
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jae Hoon Shin
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jin Ee Baek
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Sung Won Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| |
Collapse
|
7
|
Woeckel M, Rospleszcz S, Wolf K, Breitner-Busch S, Ingrisch M, Bamberg F, Ricke J, Schlett CL, Storz C, Schneider A, Stoecklein S, Peters A. Association between Long-Term Exposure to Traffic-Related Air Pollution and Cardio-Metabolic Phenotypes: An MRI Data-Based Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18064-18075. [PMID: 39365792 PMCID: PMC11483729 DOI: 10.1021/acs.est.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Long-term exposure to traffic-related air pollution (TRAP) is associated with cardiometabolic disease; however, its role in subclinical stages of disease development is unclear. Thus, we aimed to explore this association in a cross-sectional analysis, with cardiometabolic phenotypes derived from magnetic resonance imaging (MRI). Phenotypes of the left (LV) and right cardiac ventricle, whole-body adipose tissue (AT), and organ-specific AT were obtained by MRI in 400 participants of the KORA cohort. Land-use regression models were used to estimate residential long-term exposures to TRAP, e.g., nitrogen dioxides (NO2) or particle number concentration (PNC). Associations between TRAP and MRI phenotypes were modeled using linear regression. Participants' mean age was 56 ± 9 years, and 42% were female. Long-term exposure to TRAP was associated with decreased LV wall thickness; a 6.0 μg/m3 increase in NO2 was associated with a -1.9% [95% confidence interval: -3.7%; -0.1%] decrease in mean global LV wall thickness. Furthermore, we found associations between TRAP and increased cardiac AT. A 2,242 n/cm3 increase in PNC was associated with a 4.3% [-1.7%; 10.4%] increase in mean total cardiac AT. Associations were more pronounced in women and in participants with diabetes. Our exploratory study indicates that long-term exposure to TRAP is associated with subclinical cardiometabolic disease states, particularly in metabolically vulnerable subgroups.
Collapse
Affiliation(s)
- Margarethe Woeckel
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Susanne Rospleszcz
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne Breitner-Busch
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Michael Ingrisch
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Fabian Bamberg
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jens Ricke
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Christopher L Schlett
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Corinna Storz
- Department
of Neuroradiology, Medical Center, University
of Freiburg, Freiburg 79106, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Sophia Stoecklein
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Annette Peters
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- German Center
for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
8
|
Somayajulu M, Wright R, Muhammed F, McClellan SA, Ibrahim A, Hazlett LD. PM 10 dysregulates epithelial barrier function in human corneal epithelial cells that is restored by antioxidant SKQ1. Toxicol Appl Pharmacol 2024; 492:117122. [PMID: 39393465 DOI: 10.1016/j.taap.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Exposure to airborne particulate <10 μm (PM10) adversely affects the ocular surface. This study tested PM10 on epithelial barrier integrity in immortalized human corneal epithelial cells (HCE-2) and mouse cornea, and whether antioxidant SKQ1 is restorative. HCE-2 were exposed to 100 μg/ml PM10 ± SKQ1 for 24 h. An Electric Cell-Substrate Impedance Sensing (ECIS) system monitored the impact of PM10. RT-PCR, western blotting and immunofluorescence measured levels of barrier and associated proteins, stanniocalcin 2 (STC2), and a kit measured total calcium. In vivo, female C57BL/6 mice were exposed to either control air or PM10 (±SKQ1) in a whole-body exposure chamber, and barrier associated proteins tested. Tight junction and mucins proteins in the cornea were tested. In HCE-2, PM0 vs control significantly reduced mRNA and protein levels of tight junction and adherence proteins, and mucins. ECIS data demonstrated that PM10 vs control cells exhibited a significant decrease in epithelial barrier strength at 4000 Hz indicated by reduced impedance and resistance. PM10 also upregulated STC2 protein and total calcium levels. In vivo, PM10 vs control reduced zonula occludens 1 and mucins. SKQ1 pre-treatment reversed PM10 effects both in vitro and in vivo. In conclusion, PM10 exposure reduced tight junction and mucin proteins, and compromised the seal between cells in the corneal epithelium leading to decreased epithelial barrier strength. This effect was reversed by SKQ1. Since the corneal epithelium forms the first line of defense against air pollutants, including PM10, preserving its integrity using antioxidants such as SKQ1 is crucial in reducing the occurrence of ocular surface disorders.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Farooq Muhammed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Ahmed Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Chen D, Yan J, Sun N, Sun W, Zhang W, Long Y, Yin S. Selective capture of PM 2.5 by urban trees: The role of leaf wax composition and physiological traits in air quality enhancement. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135428. [PMID: 39137544 DOI: 10.1016/j.jhazmat.2024.135428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Human health risks from particles with a diameter of less than 2.5 µm (PM2.5) highlight the role of urban trees as bio-filters in air pollution control. However, whether the size and composition of particles captured by various tree species differ or not remain unclear. This study investigates how leaf attributes affect the capture of PM2.5, which can penetrate deep into the lungs and pose significant health risks. Using a self-developed particulate matter (PM) resuspension chamber and single-particle aerosol mass spectrometer, we measured the size distribution and mass spectra of particles captured by ten tree species. Notably, Cinnamomum camphora (L.) J.Presl and Osmanthus fragrans Lour. are more effective at capturing particles under 1 µm, which are most harmful because they can reach the alveoli, whereas Ginkgo biloba L. and Platanus × acerifolia (Aiton) Willd. tend to capture larger particles, up to 1.6 µm, which are prone to being trapped in the upper respiratory tract. Leaf physiological traits such as stomatal conductance and water potential significantly enhance the capture of larger particles. The Adaptive Resonance Theory neural network (ART-2a) algorithm classified a large number of single particles to determine their composition. Results indicate distinct inter-species variations in chemical composition of particles captured by leaves. Moreover, we identified how specific leaf wax compositions-beyond the known sticky nature of hydrophobic waxes-contribute to particle adhesion, particularly highlighting the roles of fatty acids and alkanes in adhering particles rich in organic carbon and heavy metals, respectively. This research advances our understanding by linking leaf physiological and wax characteristics to the selective capture of PM2.5, providing actionable insights for urban forestry management. The detailed exploration of particle size and composition, tied to specific tree species, enriches the current literature by quantifying how and why different species contribute variably to air quality improvement. This adds a crucial layer of specificity to the general knowledge that trees serve as bio-filters, offering a refined strategy for planting urban trees based on their particulate capture profiles.
Collapse
Affiliation(s)
- Dele Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Wen Sun
- Shanghai Forestry Station, 1053 Hutai Rd., Shanghai 200072, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Weikang Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuchong Long
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
10
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
11
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Caciora T, Ilieş A, Berdenov Z, Al-Hyari HS, Ilieş DC, Safarov B, Hassan TH, Herman GV, Hodor N, Bilalov B, Peres AC. Comprehensive analysis of classroom microclimate in context to health-related national and international indoor air quality standards. Front Public Health 2024; 12:1440376. [PMID: 39188796 PMCID: PMC11345184 DOI: 10.3389/fpubh.2024.1440376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Indoor air quality (IAQ) and indoor air pollution are critical issues impacting urban environments, significantly affecting the quality of life. Nowadays, poor IAQ is linked to respiratory and cardiovascular diseases, allergic reactions, and cognitive impairments, particularly in settings like classrooms. Thus, this study investigates the impact of indoor environmental quality on student health in a university classroom over a year, using various sensors to measure 19 environmental parameters, including temperature, relative humidity, CO2, CO, volatile organic compounds (VOCs), particulate matter (PM), and other pollutants. Thus, the aim of the study is to analyze the implications of the indoor microclimate for the health of individuals working in the classroom, as well as its implications for educational outcomes. The data revealed frequent exceedances of international standards for formaldehyde (HCHO), VOC, PM2.5, NO, and NO2. HCHO and VOCs levels, often originating from building materials and classroom activities, were notably high. PM2.5 levels exceeded both annual and daily standards, while NO and NO2 levels, possibly influenced by inadequate ventilation, also surpassed recommended limits. Even though there were numerous exceedances of current international standards, the indoor microclimate quality index (IMQI) score indicated a generally good indoor environment, remaining mostly between 0 and 50 for this indicator. Additionally, analyses indicate a high probability that some indicators will exceed the current standards, and their values are expected to trend upwards in the future. The study highlighted the need for better ventilation and pollutant control in classrooms to ensure a healthy learning environment. Frequent exceedances of pollutant standards can suggest a significant impact on student health and academic performance. Thus, the present study underscored the importance of continuous monitoring and proactive measures to maintain optimal indoor air quality.
Collapse
Affiliation(s)
- Tudor Caciora
- Department of Geography, Tourism and Territorial Planning, Faculty of Geography, Tourism and Sport, University of Oradea, Oradea, Romania
| | - Alexandru Ilieş
- Department of Geography, Tourism and Territorial Planning, Faculty of Geography, Tourism and Sport, University of Oradea, Oradea, Romania
| | - Zharas Berdenov
- Faculty of Science, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | | | - Dorina Camelia Ilieş
- Department of Geography, Tourism and Territorial Planning, Faculty of Geography, Tourism and Sport, University of Oradea, Oradea, Romania
| | - Bahodirhon Safarov
- Department of Digital Economy, Samarkand State University, Samarkand, Uzbekistan
| | - Thowayeb H. Hassan
- Social Studies Department, College of Arts, King Faisal University, Al Ahsa, Saudi Arabia
- Tourism Studies Department, Faculty of Tourism and Hotel Management, Helwan University, Cairo, Egypt
| | - Grigore Vasile Herman
- Department of Geography, Tourism and Territorial Planning, Faculty of Geography, Tourism and Sport, University of Oradea, Oradea, Romania
| | - Nicolaie Hodor
- Faculty of Geography, “Babes-Bolyai” University, Cluj-Napoca, Romania
| | - Bahadur Bilalov
- Department of Tourism Business, Azerbaijan University of Tourism and Management, Baku, Azerbaijan
| | - Ana Cornelia Peres
- Faculty of Environmental Protection, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
14
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
15
|
Liu J, Wang P, Shang L, Ye F, Liu L, He Z. Adverse Associations of Long-Term Exposure to PM 2.5 and Its Components with Platelet Traits among Subway Shift-Workers without Air Purifier Use. TOXICS 2024; 12:529. [PMID: 39195631 PMCID: PMC11359941 DOI: 10.3390/toxics12080529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
Air purifier use, shift work, and long-term exposure to fine particulate matter (PM2.5) are linked to platelet abnormality. However, the role of air purifier use and shift work in the individual or joint associations of PM2.5 and its components with platelet indices are largely unknown. A total of 8772 participants were recruited from a population of subway workers in China. PM2.5 and its component data were obtained from the Tracking Air Pollution in China dataset. The role of air purifier use and shift work in the association between PM2.5 and its components and platelet indices were analyzed. Among shift workers without air purifier use, positive associations of PM2.5 and each component in PM2.5 with the mean platelet volume (MPV) or platelet counts (PLT) were observed, whereas negative associations of PM2.5 and each component in PM2.5 with the platelet distribution width (PDW) were observed. Furthermore, estimated changes (95%CIs) in PLT, MPV, and PDW in response to each 10th percentile increment in the mixture of PM2.5 and its components were 0.8657 (0.2496, 1.4819), 0.0192 (0.0054, 0.0329), and -0.0648 (-0.0945, -0.0351), respectively, and sulfate in PM2.5 was the major contributor to those associations. Long-term exposure to PM2.5 and its components was related to increased platelet disorders among shift workers without air purifier use, and those associations were mainly attributed to sulfate in PM2.5.
Collapse
Affiliation(s)
- Junling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Pei Wang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Lv Shang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Fang Ye
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Li Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Zhenyu He
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| |
Collapse
|
16
|
Mayntz SP, Mohamed RA, Mejldal A, Møller JJK, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Statistical Analysis Plan for the AIRCARD Study: Individual Long-Term Air and Noise Pollution Exposure and Cardiovascular Disease Incidence and Mortality - A Prospective Cohort Study Utilizing DANCAVAS and VIVA Screening Trials. Cardiology 2024:1-7. [PMID: 38952116 DOI: 10.1159/000539459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION The AIRCARD study is designed to investigate the relationship between long-term exposure to air and noise pollution and cardiovascular disease incidence and mortality. We aim to conduct a robust prospective cohort analysis assessing the cumulative and differential impacts of air and noise pollution exposure on cardiovascular disease and mortality. This study will adjust for relevant confounders, including traditional cardiovascular risk factors, socioeconomic indicators, and lipid-lowering agents. METHODS This prospective cohort study will include 27,022 male participants aged 65-74, recruited from the two large Danish DANCAVAS and VIVA trials, both population-based randomized, multicentered, clinically controlled studies. We will assess long-term exposure to air pollutants using the state-of-the-art DEHM/UBM/AirGIS modeling system and noise pollution through the Nord2000 and SoundPLAN models, covering data from 1979 to 2019. This statistical analysis plan is strictly formulated to predefine the analytical approach for all outcomes and key study variables before data access. The primary analysis will utilize Cox proportional hazards models, adjusted for confounders identified in our cohort (age, body mass index, hypertension, diabetes, smoking status, family history of heart disease, socioeconomic factors, and lipid-lowering agents). This statistical analysis plan further includes Spearman rank correlation to explore inter-pollutant associations. CONCLUSION The AIRCARD study addresses global concerns about the impact of air and noise pollution on cardiovascular disease. This research is important for understanding how the pollutants contribute to cardiovascular disease. We aim to provide insights into this area, emphasizing the need for public health measures to mitigate pollution exposure. Our goal is to provide policymakers and healthcare professionals with information on the role of environmental factors in cardiovascular health that could influence global strategies to reduce the cardiovascular disease burden associated with pollution. The design of this SAP ensures transparency and verifiability, considering the complexities of evaluating environmental health impacts over an extended period.
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| | - Roda Abdulkadir Mohamed
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| | - Anna Mejldal
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
| | - Jens-Jakob Kjer Møller
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
| | - Jes Sanddal Lindholt
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmos Pyndt Diederichsen
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| |
Collapse
|
17
|
Peng S, Li Z, Ji JS, Chen B, Yin X, Zhang W, Liu F, Shen H, Xiang H. Interaction between Extreme Temperature Events and Fine Particulate Matter on Cardiometabolic Multimorbidity: Evidence from Four National Cohort Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12379-12389. [PMID: 38961056 PMCID: PMC11256764 DOI: 10.1021/acs.est.4c02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Accumulating evidence linked extreme temperature events (ETEs) and fine particulate matter (PM2.5) to cardiometabolic multimorbidity (CMM); however, it remained unknown if and how ETEs and PM2.5 interact to trigger CMM occurrence. Merging four Chinese national cohorts with 64,140 free-CMM adults, we provided strong evidence among ETEs, PM2.5 exposure, and CMM occurrence. Performing Cox hazards regression models along with additive interaction analyses, we found that the hazards ratio (HRs) of CMM occurrence associated with heatwave and cold spell were 1.006-1.019 and 1.063-1.091, respectively. Each 10 μg/m3 increment of PM2.5 concentration was associated with 17.9% (95% confidence interval: 13.9-22.0%) increased risk of CMM. Similar adverse effects were also found among PM2.5 constituents of nitrate, organic matter, sulfate, ammonium, and black carbon. We observed a synergetic interaction of heatwave and PM2.5 pollution on CMM occurrence with relative excess risk due to the interaction of 0.999 (0.663-1.334). Our study provides novel evidence that both ETEs and PM2.5 exposure were positively associated with CMM occurrence, and the heatwave interacts synergistically with PM2.5 to trigger CMM.
Collapse
Affiliation(s)
- Shouxin Peng
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - Zhaoyuan Li
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - John S. Ji
- Vanke
School of Public Health, Tsinghua University, Beijing 100084, China
| | - Bingbing Chen
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaoyi Yin
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Feifei Liu
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| | - Huanfeng Shen
- School
of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Xiang
- Global
Health Department, School of Public Health, Wuhan University, Wuhan 430071, China
- Global
Health Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Zhang T, Yan B, Henneman L, Kinney P, Hopke PK. Regulation-driven changes in PM 2.5 sources in China from 2013 to 2019, a critical review and trend analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173091. [PMID: 38729379 DOI: 10.1016/j.scitotenv.2024.173091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Identifying changes in source-specific fine particles (PM2.5) over time is essential for evaluating the effectiveness of regulatory measures and informing future policy decisions. After the extreme haze events in China during 2013-14, more comprehensive and stringent policies were implemented to combat PM2.5 pollution. To determine the effectiveness of these policies, it is necessary to assess the changes in the specific source types to which the regulations pertain. Multiple studies have been conducted over the past decade to apportion PM2.5. The purpose of this study was to explore the available literature and conduct a critical review of the reliable results. In total, 5008 articles were screened, but only 48 studies were included for further analysis given our inclusion criteria including covering a monitoring period of ≥1 year and having enough speciation data to provide mass closure. Using these studies, we analyzed temporal and spatial trends across China from 2013 to 2019. We observed the overall decrease in the concentration contributions from all main source categories. The reductions from industry, coal and heavy oil combustion, and the related secondary sulfate were more notable, especially from 2013 to 2016-17. The contributions from biomass burning initially decreased but then increased slightly after 2016 in some locations despite new constraints on agricultural and household burning practices. Although the contributions from vehicle emissions and related secondary nitrate decreased, they gradually became the primary contributors to PM2.5 by ∼2017. Despite the substantial improvements achieved by the air pollution regulation implementations, further improvements in air quality will require additional aggressive actions, especially those targeting vehicular emissions. Ultimately, source apportionment studies based on extended duration, fixed-site sampling are recommended to provide a more thorough understanding of the sources impacting areas and transformations in PM2.5 sources prompted by regulatory actions.
Collapse
Affiliation(s)
- Ting Zhang
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, USA.
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Lucas Henneman
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, USA
| | - Patrick Kinney
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
19
|
Chang H, Zhang X, Lu Z, Gao B, Shen H. Metabolite correlation permutation after mice acute exposure to PM 2.5: Holistic exploration of toxicometabolomics by network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124128. [PMID: 38729510 DOI: 10.1016/j.envpol.2024.124128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Many environmental toxicants can cause systemic effects, such as fine particulate matter (PM2.5), which can penetrate the respiratory barrier and induce effects in multiple tissues. Although metabolomics has been used to identify biomarkers for PM2.5, its multi-tissue toxicology has not yet been explored holistically. Our objective is to explore PM2.5 induced metabolic alterations and unveil the intra-tissue responses along with inter-tissue communicational effects. In this study, following a single intratracheal instillation of multiple doses (0, 25, and 150 μg as the control, low, and high dose), non-targeted metabolomics was employed to evaluate the metabolic impact of PM2.5 across multiple tissues. PM2.5 induced tissue-specific and dose-dependent disturbances of metabolites and their pathways. The remarkable increase of both intra- and inter-tissue correlations was observed, with emphasis on the metabolism connectivity among lung, spleen, and heart; the tissues' functional specificity has marked their toxic modes. Beyond the inter-status comparison of the metabolite fold-changes, the current correlation network built on intra-status can offer additional insights into how the multiple tissues and their metabolites coordinately change in response to external stimuli such as PM2.5 exposure.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Biling Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China; Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
20
|
Yatera K, Nishida C. Contemporary Concise Review 2023: Environmental and occupational lung diseases. Respirology 2024; 29:574-587. [PMID: 38826078 DOI: 10.1111/resp.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Air pollutants have various effects on human health in environmental and occupational settings. Air pollutants can be a risk factor for incidence, exacerbation/aggravation and death due to various lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), hypersensitivity pneumonitis or pneumonia (HP), pulmonary fibrosis such as pneumoconiosis and malignant respiratory diseases such as lung cancer and malignant pleural mesothelioma. Environmental and occupational respiratory diseases are crucial clinical and social issues worldwide, although the burden of respiratory disease due to environmental and occupational causes varies depending on country/region, demographic variables, geographical location, industrial structure and socioeconomic situation. The correct recognition of environmental and occupational lung diseases and taking appropriate measures are essential to their effective prevention.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
21
|
Al-Saidi HM, Khan S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit Rev Anal Chem 2024; 54:93-109. [PMID: 35417281 DOI: 10.1080/10408347.2022.2063017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioureas and their derivatives are organosulfur compounds having excellent biological and non-biological applications. These compounds contain S- and N-, which are nucleophilic and allow for establishing inter-and intramolecular hydrogen bonding. These characteristics make thiourea moiety a very important chemosensor to detect various environmental pollutants. This article covers a broad range of thioureas and their derivatives that are used for highly sensitive, selective, and simple fluorimetric (turn-off and turn-on), and colorimetric chemosensors for the detection and determination of different types of anions, such as CN-, AcO-, F-, ClO- and citrate ions, etc., and neutral analytes such as ATP, DCP, and Amlodipine, etc., in biological, environmental, and agriculture samples. Further, the sensing performances of thioureas-based chemosensors have been compared and discussed, which could help the readers for the future design of organic fluorescent and colorimetric sensors to detect anions and neutral analytes. We hope this study will support the new thoughts to design highly efficient, selective, and sensitive chemosensors to detect different analytes in biological, environmental, and agricultural samples.
Collapse
Affiliation(s)
- Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
22
|
McKenzie LM, Allshouse WB, Abrahams B, Tompkins C. Oil and gas development exposure and atrial fibrillation exacerbation: a retrospective study of atrial fibrillation exacerbation using Colorado's all payer claims dataset. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1379271. [PMID: 38962693 PMCID: PMC11220195 DOI: 10.3389/fepid.2024.1379271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Introduction Emerging risk factors for atrial fibrillation (AF) incidence and episodes (exacerbation), the most common and clinically significant cardiac arrhythmia, include air and noise pollution, both of which are emitted during oil and natural gas (O&G) well site development. Methods We evaluated AF exacerbation risk and proximity to O&G well site development by employing a novel data source and interrupted time-series design. We retrospectively followed 1,197 AF patients living within 1-mile of an O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any O&G well site (unexposed) for AF claims in Colorado's All Payer Claims Dataset before, during, and after O&G well site development. We calculated AF exacerbation risk with multi-failure survival analysis. Results The analysis of the total study population does not provide strong evidence of an association between AF exacerbation and proximity to O&G wells sites during (HR = 1.07, 95% CI: 0.94, 1.22) or after (HR = 1.01, 95% CI: 0.88, 1.16) development. However, AF exacerbation risk differed by patient age and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well site development, AF exacerbation risk increased by 83% (HR = 1.83, 95% CI: 1.25, 2.66) and emergency room visits for an AF event doubled (HR = 2.55, 95% CI: 1.50, 4.36) during development, with risk increasing with proximity. In female patients living within 0.39 miles of O&G well site development, AF exacerbation risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF exacerbation risk did not persist past the well development period. We did not observe increased AF exacerbation risk in younger or male patients. Discussion The prospect that proximity to O&G well site development, a significant noise and air pollution source, may increase AF exacerbation risk in older and female AF patients requires attention. These findings support appropriate patient education to help mitigate risk and development of mitigation strategies and regulations to protect the health of populations in O&G development regions.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Barbara Abrahams
- Department of Cardiology, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Christine Tompkins
- Division of Electrophysiology, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Shi K, Liu C, Zhong X. Scaling features in high-concentrations PM 2.5 evolution: the Ignored factor affecting scarlet fever incidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:217. [PMID: 38849621 DOI: 10.1007/s10653-024-01989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 06/09/2024]
Abstract
As an acute respiratory disease, scarlet fever has great harm to public health. Some evidence indicates that the time distribution pattern of heavy PM2.5 pollution occurrence may have an impact on health risks. This study aims to reveal the relation between scaling features in high-concentrations PM2.5 (HC-PM2.5) evolution and scarlet fever incidence (SFI). Based on the data of Hong Kong from 2012 to 2019, fractal box-counting dimension (D) is introduced to capture the scaling features of HC-PM2.5. It has been found that index D can quantify the time distribution of HC-PM2.5, and lower D values indicate more cluster distribution of HC-PM2.5. Moreover, scale-invariance in HC-PM2.5 at different time scales has been discovered, which indicates that HC-PM2.5 occurrence is not random but follows a typical power-law distribution. Next, the exposure-response relationship between SFI and scale-invariance in HC-PM2.5 is explored by Distributed lag non-linear model, in conjunction with meteorological factors. It has been discovered that scale-invariance in HC-PM2.5 has a nonlinear effect on SFI. Low and moderate D values of HC-PM2.5 are identified as risk factors for SFI at small time-scale. Moreover, relative risk shows a decreasing trend with the increase of exposure time. These results suggest that exposure to short-term clustered HC-PM2.5 makes individual more prone to SFI than exposure to long-term uniform HC-PM2.5. This means that individuals in slightly-polluted regions may face a greater risk of SFI, once the PM2.5 concentration keeps rising. In the future, it is expected that the relative risk of scarlet fever for a specific region can be estimated based on the quantitative analysis of scaling features in high-concentrations PM2.5 evolution.
Collapse
Affiliation(s)
- Kai Shi
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong, China
| | - Chunqiong Liu
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong, Sichuan, China.
- Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong, China.
| | - Xinyu Zhong
- College of Mathematics and Statistics, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
24
|
Kilbo Edlund K, Andersson EM, Andersson M, Barregard L, Christensson A, Johannesson S, Harari F, Murgia N, Torén K, Stockfelt L. Occupational particle exposure and chronic kidney disease: a cohort study in Swedish construction workers. Occup Environ Med 2024; 81:238-243. [PMID: 38811167 PMCID: PMC11187372 DOI: 10.1136/oemed-2023-109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Increasing epidemiological and experimental evidence suggests that particle exposure is an environmental risk factor for chronic kidney disease (CKD). However, only a few case-control studies have investigated this association in an occupational setting. Hence, our objective was to investigate associations between particle exposure and CKD in a large cohort of Swedish construction workers. METHODS We performed a retrospective cohort study in the Swedish Construction Workers' Cohort, recruited 1971-1993 (n=286 089). A job-exposure matrix was used to identify workers exposed to nine different particulate exposures, which were combined into three main categories (inorganic dust and fumes, wood dust and fibres). Incident CKD and start of renal replacement therapy (RRT) were obtained from validated national registries until 2021 and analysed using adjusted Cox proportional hazards models. RESULTS Exposure to inorganic dust and fumes was associated with an increased risk of CKD and RRT during working age (adjusted HR for CKD at age <65 years 1.15, 95% CI 1.05 to 1.26). The elevated risk did not persist after retirement age. Exposure to cement dust, concrete dust and diesel exhaust was associated with CKD. Elevated HRs were also found for quartz dust and welding fumes. CONCLUSIONS Workers exposed to inorganic particles seem to be at elevated risk of CKD and RRT. Our results are in line with previous evidence of renal effects of ambient air pollution and warrant further efforts to reduce occupational and ambient particle exposure.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Martin Andersson
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Lars Barregard
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Anders Christensson
- Department of Nephrology, Lund University, Lund, Sweden
- Department of Nephrology, Skåne University Hospital Nephrology, Malmö, Sweden
| | - Sandra Johannesson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Kjell Torén
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Leo Stockfelt
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| |
Collapse
|
25
|
Iqbal J, Khan MJ, Hafeez M, Siddiqui JA, Fahad M, Ali B, Imran M, Ahmad A, Fahad S. Impact of cement waste on soil fertility and crop productivity: a serious concern for food security. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41775-41790. [PMID: 38856853 DOI: 10.1007/s11356-024-33696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
The rapid expansion of urbanization and construction activities has led to a significant increase in cement production worldwide, resulting in a surge in cement waste generation. This study aims to provide a comprehensive analysis of the repercussions of cement waste on soil fertility and crop productivity, emphasizing its critical implications for global food security. Through a multidisciplinary approach, encompassing field surveys, laboratory experiments, and statistical modeling, we assess the physicochemical alterations induced by cement waste in agricultural soils. Our findings reveal substantial declines in crucial soil parameters, including pH levels, organic matter content, and nutrient availability, which directly translate into diminished crop yields. Furthermore, the study identifies key mechanisms underlying these detrimental effects, including altered microbial communities and disrupted nutrient cycling processes. In addition, the findings underscore the severity of the issue, revealing substantial declines in soil fertility and crop yields in areas affected by cement waste contamination. Additionally, we discuss potential mitigation strategies and policy interventions aimed at mitigating the adverse effects of cement waste on agricultural systems. By quantifying the extent of soil degradation and crop yield reduction attributed to cement waste, this research underscores the urgency for sustainable waste management practices and highlights the need for policy interventions to safeguard agricultural productivity and ensure global food security in the face of escalating urbanization and construction activities.
Collapse
Affiliation(s)
- Junaid Iqbal
- Department of Civil, NFC Institute of Engineering & Technology Khanewal Road, Engineering, Multan, 6000, Punjab, Pakistan
| | - Muhammad Jamal Khan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Muhammad Hafeez
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
- USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR, 97330, USA
| | | | - Muhammad Fahad
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bahar Ali
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Aqeel Ahmad
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
26
|
Vicente ED, Figueiredo D, Alves C. Toxicity of particulate emissions from residential biomass combustion: An overview of in vitro studies using cell models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171999. [PMID: 38554951 DOI: 10.1016/j.scitotenv.2024.171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.
Collapse
Affiliation(s)
- E D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - D Figueiredo
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
28
|
Zhang S, Chen L, Qian ZM, Li D, Cai M, Wang C, Zhang Z, Vaughn MG, Keith AE, Li H, Lin H. Associations between air pollution and the risk of first admission and multiple readmissions for cardiovascular diseases. Heart 2024; 110:337-345. [PMID: 37673655 DOI: 10.1136/heartjnl-2023-322682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVES We aimed to investigate the associations between air pollutants and the risk of admission and multiple readmission events for cardiovascular disease (CVD). METHODS A total of 285 009 participants free of CVD at baseline from the UK Biobank were included in this analysis. Four major cardiovascular admission events were identified during the follow-up: chronic ischaemic heart disease (CIHD), cerebrovascular disease, atrial fibrillation and heart failure. We used Prentice, Williams and Peterson-Total Time model to examine the association between ambient air pollution and first admission, as well as multiple readmissions for these CVDs. RESULTS During a median follow-up of 12 years, 17 176 (6.03%) participants were hospitalised with CVDs, and 6203 (36.11%) patients with CVD had subsequent readmission events for CVDs. We observed significant associations between air pollution and both first admission and readmission for CVDs, with generally stronger associations on readmission for cardiovascular events. For example, the adjusted HRs for the first admission and subsequent readmission for cerebrovascular disease were 1.130 (95% CI 1.070 to 1.194) and 1.270 (95% CI 1.137 to 1.418) for each IQR increase of particulate matter with a diameter ≤2.5 µm. The corresponding HRs for CIHD were 1.060 (95% CI 1.008 to 1.114) and 1.120 (95% CI 1.070 to 1.171). Sex stratified analyses showed that the associations were generally more pronounced among females than males. CONCLUSION This study provides evidence that ambient air pollutants might play an important role in both first admission and readmission for cardiovascular events. In addition, patients with pre-existing CVDs may be more vulnerable to air pollution compared with healthy population.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, Saint Louis University College for Public Health and Social Justice, Saint Louis, Missouri, USA
| | - Dan Li
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Amy E Keith
- Department of Epidemiology and Biostatistics, Saint Louis University College for Public Health and Social Justice, Saint Louis, Missouri, USA
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Lai Z, Zhang J, Ran S, Zheng D, Feng J, Wu G, Cai M, Lin H. Ambient fine particulate matter chemical composition associated with in-hospital case fatality, hospital expenses, and length of hospital stay among patients with heart failure in China. J Glob Health 2024; 14:04032. [PMID: 38299774 PMCID: PMC10832573 DOI: 10.7189/jogh.14.04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
*Joint senior authorship. BACKGROUND Previous studies have observed the adverse effects of ambient fine particulate matter pollution (PM2.5) on heart failure (HF). However, evidence regarding the impacts of specific PM2.5 components remains scarce. METHODS We included 58 129 patients hospitalised for HF between 2013 and 2017 in 11 cities of Shanxi, China from inpatient discharge database. We evaluated exposure to PM2.5 and its components ((sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), organic matter (OM) and black carbon (BC)), along with meteorological factors using bilinear interpolation at each patients' residential address. We used multivariable logistic and linear regression models to assess the associations of these components with in-hospital case fatality, hospital expenses, and length of hospital stay. RESULTS Increase equivalents to the interquartile range (IQR) in OM (odds ratio (OR) = 1.13; 95% confidence interval (CI) = 1.02, 1.26) and BC (OR = 1.14; 95% CI = 1.02, 1.26) were linked to in-hospital case fatality. Per IQR increments in PM2.5, SO42-, NO3-, OM, and BC were associated with cost increases of 420.62 (95% CI = 285.75, 555.49), 221.83 (95% CI = 96.95, 346.71), 214.93 (95% CI = 68.66, 361.21), 300.06 (95% CI = 176.96, 423.16), and 303.09 (95% CI = 180.76, 425.42) CNY. Increases of 1 IQR in PM2.5, SO42-, OM, and BC were associated with increases in length of hospital stay of 0.10 (95% CI = 0.02, 0.19), 0.09 (95% CI = 0.02, 0.17), 0.10 (95% CI = 0.03, 0.17), and 0.16 (95% CI = 0.08, 0.23) days. CONCLUSIONS Our findings suggest that ambient SO42-, OM, and BC might be significant risk factors for HF, emphasising the importance of formulating customised guidelines for the chemical constituents of PM and controlling the emissions of the most dangerous components.
Collapse
|
30
|
Humphrey JL, Kinnee EJ, Robinson LF, Clougherty JE. Disentangling impacts of multiple pollutants on acute cardiovascular events in New York city: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 242:117758. [PMID: 38029813 PMCID: PMC11378578 DOI: 10.1016/j.envres.2023.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Ambient air pollution contributes to an estimated 6.67 million deaths annually, and has been linked to cardiovascular disease (CVD), the leading cause of death. Short-term increases in air pollution have been associated with increased risk of CVD event, though relatively few studies have directly compared effects of multiple pollutants using fine-scale spatio-temporal data, thoroughly adjusting for co-pollutants and temperature, in an exhaustive citywide hospitals dataset, towards identifying key pollution sources within the urban environment to most reduce, and reduce disparities in, the leading cause of death worldwide. OBJECTIVES We aimed to examine multiple pollutants against multiple CVD diagnoses, across lag days, in models adjusted for co-pollutants and meteorology, and inherently adjusted by design for non-time-varying individual and aggregate-level covariates, using fine-scale space-time exposure estimates, in an exhaustive dataset of emergency department visits and hospitalizations across an entire city, thereby capturing the full population-at-risk. METHODS We used conditional logistic regression in a case-crossover design - inherently controlling for all confounders not varying within case month - to examine associations between spatio-temporal nitrogen dioxide (NO2), fine particulate matter (PM2.5), sulfur dioxide (SO2), and ozone (O3) in New York City, 2005-2011, on individual risk of acute CVD event (n = 837,523), by sub-diagnosis [ischemic heart disease (IHD), heart failure (HF), stroke, ischemic stroke, acute myocardial infarction]. RESULTS We found significant same-day associations between NO2 and risk of overall CVD, IHD, and HF - and between PM2.5 and overall CVD or HF event risk - robust to all adjustments and multiple comparisons. Results were comparable by sex and race - though median age at CVD was 10 years younger for Black New Yorkers than White New Yorkers. Associations for NO2 were comparable for adults younger or older than 69 years, though PM2.5 associations were stronger among older adults. DISCUSSION Our results indicate immediate, robust effects of combustion-related pollution on CVD risk, by sub-diagnosis. Though acute impacts differed minimally by age, sex, or race, the much younger age-at-event for Black New Yorkers calls attention to cumulative social susceptibility.
Collapse
Affiliation(s)
- Jamie L Humphrey
- Center Public Health Methods; RTI International, Research Triangle Park, NC, 27709, USA
| | - Ellen J Kinnee
- University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lucy F Robinson
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Chen L, Zhang J, Li J, Huang X, Xiang Y, Chen J, Pan T, Zhang W. Real-time, single-particle chemical composition, volatility and mixing state measurements of urban aerosol particles in southwest China. J Environ Sci (China) 2024; 136:361-371. [PMID: 37923446 DOI: 10.1016/j.jes.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 11/07/2023]
Abstract
To investigate the volatility of atmospheric particulates and the evolution of other particulate properties (chemical composition, particle size distribution and mixing state) with temperature, a thermodenuder coupled with a single particle aerosol mass spectrometer was used to conduct continuous observations of atmospheric fine particles in Chengdu, southwest China. Because of their complex sources and secondary reaction processes, the average mass spectra of single particles contained a variety of chemical components (including organic, inorganic and metal species). When the temperature rose from room temperature to 280°C, the relative areas of volatile and semi-volatile components decreased, while the relative areas of less or non-volatile components increased. Most (> 80%) nitrate and sulfate existed in the form of NH4NO3 and (NH4)2SO4, and their volatilization temperatures were 50-100°C and 150-280°C, respectively. The contribution of biomass burning (BB) and vehicle emission (VE) particles increased significantly at 280°C, which emphasized the important role of regional biomass burning and local motor vehicle emissions to the core of particles. With the increase in temperature, the particle size of the particles coated with volatile or semi-volatile components was reduced, and their mixing with secondary inorganic components was significantly weakened. The formation of K-nitrate (KNO3) and K-sulfate (KSO4) particles was dominated by liquid-phase processes and photochemical reactions, respectively. Reducing KNO3 and BB particles is the key to improving visibility. These new results are helpful towards better understanding the initial sources, pollution formation mechanisms and climatic effects of fine particulate matter in this megacity in southwest China.
Collapse
Affiliation(s)
- Luyao Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Jiaqi Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaojuan Huang
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuzheng Xiang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jing Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Tingru Pan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Wei Zhang
- Sichuan Environmental Monitoring Center, Chengdu 610074, China
| |
Collapse
|
32
|
Li H, Zhao Y, Wang L, Liu H, Shi Y, Liu J, Chen H, Yang B, Shan H, Yuan S, Gao W, Wang G, Han C. Association between PM 2.5 and hypertension among the floating population in China: a cross-sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:943-955. [PMID: 36919640 DOI: 10.1080/09603123.2023.2190959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Few studies have investigated the association between PM2.5 and hypertension among floating populations. We therefore examined the relationship using binary logistic regression. Each grade of increment in the annual average PM2.5 (grade one: ≤15 µg/m3; grade two: 15-25 µg/m3; grade three: 25-35 µg/m3 [Excluding 25]; grade four: ≥35 µg/m3) was associated with an increased risk of hypertension (odds ratio [OR] = 1.081, 95% confidence interval (CI): 1.034-1.129). Among the female floating population (OR = 1.114, 95% CI: 1.030-1.204), those with education level of primary school and below (OR = 1.140, 95% CI: 1.058-1.229), construction workers (OR = 1.228, 95% CI: 1.058-1.426), and those living in the eastern region of China (OR = 1.241, 95% CI: 1.145-1.346) were more vulnerable to PM2.5. These results indicate that PM2.5 is positively associated with hypertension in floating populations. Floating populations who are female, less educated, construction workers, and living in the eastern region of China are more vulnerable to the adverse impacts of PM2.5.
Collapse
Affiliation(s)
- Hongyu Li
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Digital Health and Stroke Program, The George Institute for Global Health, Beijing, China
| | - Luyang Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haiyun Liu
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yukun Shi
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Junyan Liu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haotian Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Baoshun Yang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haifeng Shan
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Science and Education Department, Zibo Mental Health Center, Zibo, Shandong, China
| | - Shijia Yuan
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Wenhui Gao
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Guangcheng Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
33
|
Abdul-Rahman T, Roy P, Bliss ZSB, Mohammad A, Corriero AC, Patel NT, Wireko AA, Shaikh R, Faith OE, Arevalo-Rios ECE, Dupuis L, Ulusan S, Erbay MI, Cedeño MV, Sood A, Gupta R. The impact of air quality on cardiovascular health: A state of the art review. Curr Probl Cardiol 2024; 49:102174. [PMID: 37913932 DOI: 10.1016/j.cpcardiol.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Air pollution is a global health challenge, increasing the risk of cardiovascular diseases such as heart disease, stroke, and arrhythmias. Particulate matter (PM), particularly PM2.5 and ultrafine particles (UFP), is a key contributor to the adverse effects of air pollution on cardiovascular health. PM exposure can lead to oxidative stress, inflammation, atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial injury. Reactive oxygen species (ROS) play a key role in mediating these effects. PM exposure can also lead to hypertension, a significant risk factor for cardiovascular disease. The COVID-19 pandemic resulted in a significant reduction of air pollutants, leading to a decline in the incidence of heart attacks and premature deaths caused by cardiovascular diseases. This review highlights the relationship between environmental air quality and cardiovascular health, elucidating the pathways through which air pollutants affect the cardiovascular system. It also emphasizes the need for increased awareness, collective efforts to mitigate the adverse effects of air pollution, and strategic policies for long-term air quality improvement to prevent the devastating effects of air pollution on global cardiovascular health.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Poulami Roy
- Department of Research, Toufik's World Medical Association, Sumy, Ukraine; Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | | | - Neal T Patel
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Raheel Shaikh
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | | | | | - Léonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebahat Ulusan
- Medical School, Suleyman Demirel University, Isparta, Turkey
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA.
| |
Collapse
|
34
|
Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. TOXICS 2024; 12:76. [PMID: 38251031 PMCID: PMC10819696 DOI: 10.3390/toxics12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. OBJECTIVES To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. METHODS A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. RESULTS A total of 18 studies were included in this meta-analysis. A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: -4.94%, 5.65%) and E-selectin (3.21%, 95% CI: -0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. CONCLUSION Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China;
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China;
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
35
|
Soares AG, Teixeira SA, Thakore P, Santos LG, Filho WDRP, Antunes VR, Muscará MN, Brain SD, Costa SKP. Disruption of Atrial Rhythmicity by the Air Pollutant 1,2-Naphthoquinone: Role of Beta-Adrenergic and Sensory Receptors. Biomolecules 2023; 14:57. [PMID: 38254656 PMCID: PMC10813334 DOI: 10.3390/biom14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected β1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a β1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age.
Collapse
Affiliation(s)
- Antonio G. Soares
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Simone A. Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Pratish Thakore
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| | - Larissa G. Santos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Walter dos R. P. Filho
- Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, Ministério do Trabalho e Previdência Social, Rua Capote Valente, nº 710, São Paulo 05409-002, SP, Brazil;
| | - Vagner R. Antunes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil;
| | - Marcelo N. Muscará
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
| | - Susan D. Brain
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| | - Soraia K. P. Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo 05508-000, SP, Brazil; (A.G.S.); (S.A.T.); (L.G.S.); (M.N.M.)
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Research Excellence, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK;
| |
Collapse
|
36
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
37
|
Kim HJ, Yang J, Herath KHINM, Jeon YJ, Son YO, Kwon D, Kim HJ, Jee Y. Oral Administration of Sargassum horneri Suppresses Particulate Matter-Induced Oxidative DNA Damage in Alveolar Macrophages of Allergic Airway Inflammation: Relevance to PM-Mediated M1/M2 AM Polarization. Mol Nutr Food Res 2023; 67:e2300462. [PMID: 37986167 DOI: 10.1002/mnfr.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 11/22/2023]
Abstract
SCOPE Particulate matter (PM) can cause cellular oxidative damage and promote respiratory diseases. It has recently shown that Sargassum horneri ethanol extract (SHE) containing sterols and gallic acid reduces PM-induced oxidative stress in mice lung cells through ROS scavenging and metal chelating. In this study, the role of alveolar macrophages (AMs) is identified that are particularly susceptible to DNA damage due to PM-triggered oxidative stress in lungs of OVA-sensitized mice exposed to PM. METHODS AND RESULTS The study scrutinizes if PM exposure causes oxidative DNA damage to AMs differentially depending on their type of polarization. Further, SHE's potential is investigated in reducing oxidative DNA damage in polarized AMs and restoring AM polarization in PM-induced allergic airway inflammation. The study discovers that PM triggers prolonged oxidative stress to AMs, leading to lipid peroxidation in them and alveolar epithelial cells. Particularly, AMs are polarized to M2 phenotype (F4/80+ CD206+ ) with enhanced oxidative DNA damage when subject to PM-induced oxidative stress. However, SHE repairs oxidative DNA damage in M1- and M2-polarized AMs and reduces AMs polarization imbalance due to PM exposure. CONCLUSION These results suggest the possibility of SHE as beneficial foods against PM-induced allergic airway inflammation via suppression of AM dysfunction.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | | | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
38
|
Nazzal Y, Bărbulescu A, Sharma M, Howari F, Naseem M. Evaluating the Contamination by Indoor Dust in Dubai. TOXICS 2023; 11:933. [PMID: 37999585 PMCID: PMC10674184 DOI: 10.3390/toxics11110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Nowadays, people spend most of their time indoors. Despite constantly cleaning these spaces, dust apparition cannot be avoided. Since dust can contain chemical elements that negatively impact people's health, we propose the analysis of the metals from the indoor dust component collected in different locations in Dubai, UAE. Multivariate statistics (correlation matrix, clustering) and quality indicators (QI)-Igeo, PI, EF, PLI, Nemerow-were used to assess the contamination level with different metals in the dust. We proposed two new QIs (CPI and AQI) and compared the results with those provided by the most used indices-PLI and Nemerow. It is shown that high concentrations of some elements (Ca in this case) can significantly increase the values of the Nemerow index, CPI, and AQI. In contrast, the existence of low concentrations leads to the decrement of the PLI.
Collapse
Affiliation(s)
- Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| | - Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania
| | - Manish Sharma
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| | - Fares Howari
- College of Arts and Sciences, Fort Valley State University, Fort Valley, GA 31030, USA;
| | - Muhammad Naseem
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| |
Collapse
|
39
|
Palacio LC, Durango-Giraldo G, Zapata-Hernandez C, Santa-González GA, Uribe D, Saiz J, Buitrago-Sierra R, Tobón C. Characterization of airborne particulate matter and its toxic and proarrhythmic effects: A case study in Aburrá Valley, Colombia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122475. [PMID: 37652229 DOI: 10.1016/j.envpol.2023.122475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Particle matter (PM) is a complex mixture of particles suspended in the air, mainly caused by fuel combustion from vehicles and industry, and has been related to pulmonary and cardiovascular diseases. The Metropolitan Area of Aburrá Valley in Colombia is the second most populous urban agglomeration in the country and the third densest in the world, composed of ten municipalities. Examining the physicochemical properties of PM is crucial in comprehending its composition and its effects on human health, as it varies based on the socioeconomic dynamics specific to each city. This study characterized the PM collected from the north, south, and central zones to evaluate its chemical composition and morphology. Different elements such as silicon, carbon, aluminum, potassium, calcium, sodium, iron, magnesium, and copper and the presence of unburned fuel, motor oil, and silicon fibers were identified. In vitro and in silico studies were conducted to evaluate the toxicity of the PM, and it was found that the PM collected from the central zone had the greatest impact on cell viability and caused DNA damage. The in silico study demonstrated that PM has concentration-dependent proarrhythmic effects, reflected in an action potential duration shortening and an increased number of reentries, which may contribute to the development of cardiac arrhythmias. Overall, the results suggest that the size and chemical composition of ambient PM can induce toxicity and play an important role in the generation of arrhythmias.
Collapse
Affiliation(s)
- Laura C Palacio
- MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
| | - Geraldine Durango-Giraldo
- MATyER, Facultad de Ingeniería, Institución Universitaria ITM, Medellín, Colombia; Departament of Textile and Paper Engineering, Polytechnical University of Catalonia, Barcelona, Spain
| | - Camilo Zapata-Hernandez
- MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; MATyER, Facultad de Ingeniería, Institución Universitaria ITM, Medellín, Colombia
| | - Gloria A Santa-González
- GI(2)B, Facultad de Ciencias Exactas y Aplicadas, Institución Universitaria ITM, Medellín, Colombia
| | - Diego Uribe
- GI(2)B, Facultad de Ciencias Exactas y Aplicadas, Institución Universitaria ITM, Medellín, Colombia
| | - Javier Saiz
- CI(2)B, Universitat Politècnica de València, Valencia, Spain
| | | | - Catalina Tobón
- MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia.
| |
Collapse
|
40
|
Shi H, Zhou Q, Zhang H, Sun S, Zhao J, Wang Y, Huang J, Jin Y, Zheng Z, Wu R, Zhang Z. The Combined Effects of Hourly Multi-Pollutant on the Risk of Ambulance Emergency Calls: A Seven-Year Time Series Study. TOXICS 2023; 11:895. [PMID: 37999547 PMCID: PMC10675017 DOI: 10.3390/toxics11110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Ambulance emergency calls (AECs) are seen as a more suitable metric for syndromic surveillance due to their heightened sensitivity in reflecting the health impacts of air pollutants. Limited evidence has emphasized the combined effect of hourly air pollutants on AECs. This study aims to investigate the combined effects of multipollutants (i.e., PM2.5, PM10, Ozone, NO2, and SO2) on all-cause and cause-specific AECs by using the quantile g-computation method. METHODS We used ambulance emergency dispatch data, air pollutant data, and meteorological data from between 1 January 2013 and 31 December 2019 in Shenzhen, China, to estimate the associations of hourly multipollutants with AECs. We followed a two-stage analytic protocol, including the distributed lag nonlinear model, to examine the predominant lag for each air pollutant, as well as the quantile g-computation model to determine the associations of air pollutant mixtures with all-cause and cause-specific AECs. RESULTS A total of 3,022,164 patients were identified during the study period in Shenzhen. We found that each interquartile range increment in the concentrations of PM2.5, PM10, Ozone, NO2, and SO2 in 0-8 h, 0-8 h, 0-48 h, 0-28 h, and 0-24 h was associated with the highest risk of AECs. Each interquartile range increase in the mixture of air pollutants was significantly associated with a 1.67% (95% CI, 0.12-3.12%) increase in the risk of all-cause AECs, a 1.81% (95% CI, 0.25-3.39%) increase in the risk of vascular AECs, a 1.77% (95% CI, 0.44-3.11%) increase in reproductive AECs, and a 2.12% (95% CI, 0.56-3.71%) increase in AECs due to injuries. CONCLUSIONS We found combined effects of pollutant mixtures associated with an increased risk of AECs across various causes. These findings highlight the importance of targeted policies and interventions to reduce air pollution, particularly for PM, Ozone, and NO2 emissions.
Collapse
Affiliation(s)
- Hanxu Shi
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China; (H.S.); (Y.J.); (Z.Z.)
| | - Qiang Zhou
- Shenzhen Center for Prehospital Care, Shenzhen 518025, China; (Q.Z.); (H.Z.)
| | - Hongjuan Zhang
- Shenzhen Center for Prehospital Care, Shenzhen 518025, China; (Q.Z.); (H.Z.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100054, China;
| | - Junfeng Zhao
- School of Computer Science, Peking University, Beijing 100871, China;
| | - Yasha Wang
- National Engineering Research Center of Software Engineering, Peking University, Beijing 100871, China;
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yinzi Jin
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China; (H.S.); (Y.J.); (Z.Z.)
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| | - Zhijie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China; (H.S.); (Y.J.); (Z.Z.)
| | - Rengyu Wu
- Shenzhen Center for Prehospital Care, Shenzhen 518025, China; (Q.Z.); (H.Z.)
| | - Zhenyu Zhang
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China; (H.S.); (Y.J.); (Z.Z.)
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Xu X, Zhang W, Shi X, Su Z, Cheng W, Wei Y, Ma H, Li T, Wang Z. China's air quality improvement strategy may already be having a positive effect: evidence based on health risk assessment. Front Public Health 2023; 11:1250572. [PMID: 37927881 PMCID: PMC10624126 DOI: 10.3389/fpubh.2023.1250572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Aiming to investigate the health risk impact of PM2.5 pollution on a heavily populated province of China. The exposure response function was used to assess the health risk of PM2.5 pollution. Results shows that the total number of premature deaths and diseases related to PM2.5 pollution in Shandong might reach 159.8 thousand people based on the new WHO (2021) standards. The health effects of PM2.5 pollution were more severe in men than in women. Five of the 16 cities in Shandong had higher health risks caused by PM2.5 pollution, including LinYi, HeZe, JiNing, JiNan, and WeiFang. PM2.5 pollution resulted in nearly 7.4 billions dollars in healthy economic cost, which accounted for 0.57% of GDP in Shandong in 2021. HeZe, LiaoCheng, ZaoZhuang, and LinYi were the cities where the health economic loss was more than 1% of the local GDP, accounted for 1.30, 1.26, 1.08, and 1.04%. Although the more rigorous assessment criteria, the baseline concentration was lowered by 30 μg/m3 compared to our previous study, there was no significant increase in health risks and economic losses. China's air quality improvement strategy may already be having a positive effect.
Collapse
Affiliation(s)
- Xianmang Xu
- Heze Branch, Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Clinical Medicine, Heze Medical College, Heze, China
| | - Xiaofeng Shi
- Department of Clinical Medicine, Heze Medical College, Heze, China
| | - Zhi Su
- Heze Ecological Environment Monitoring Center of Shandong Province, Heze, China
| | - Wei Cheng
- Heze Branch, Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Yinuo Wei
- Heze Branch, Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - He Ma
- Heze Branch, Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Tinglong Li
- Heze Branch, Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
42
|
Nashihah AK, Muhammad Firdaus FI, Fauzi MB, Mobarak NN, Lokanathan Y. Role of Biomaterials in the Development of Epithelial Support in 3D In Vitro Airway Epithelium Development: A Systematic Review. Int J Mol Sci 2023; 24:14935. [PMID: 37834382 PMCID: PMC10573735 DOI: 10.3390/ijms241914935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Respiratory diseases have a major impact on global health. The airway epithelium, which acts as a frontline defence, is one of the most common targets for inhaled allergens, irritants, or micro-organisms to enter the respiratory system. In the tissue engineering field, biomaterials play a crucial role. Due to the continuing high impact of respiratory diseases on society and the emergence of new respiratory viruses, in vitro airway epithelial models with high microphysiological similarities that are also easily adjustable to replicate disease models are urgently needed to better understand those diseases. Thus, the development of biomaterial scaffolds for the airway epithelium is important due to their function as a cell-support device in which cells are seeded in vitro and then are encouraged to lay down a matrix to form the foundations of a tissue for transplantation. Studies conducted in in vitro models are necessary because they accelerate the development of new treatments. Moreover, in comparatively controlled conditions, in vitro models allow for the stimulation of complex interactions between cells, scaffolds, and growth factors. Based on recent studies, the biomaterial scaffolds that have been tested in in vitro models appear to be viable options for repairing the airway epithelium and avoiding any complications. This review discusses the role of biomaterial scaffolds in in vitro airway epithelium models. The effects of scaffold, physicochemical, and mechanical properties in recent studies were also discussed.
Collapse
Affiliation(s)
- Ab Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia (F.I.M.F.); (M.B.F.)
| | - Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia (F.I.M.F.); (M.B.F.)
| | - Mh. Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia (F.I.M.F.); (M.B.F.)
| | - Nadhratun Naiim Mobarak
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia (F.I.M.F.); (M.B.F.)
| |
Collapse
|
43
|
Ryu J, Lee SH, Kim S, Jeong JW, Kim KS, Nam S, Kim JE. Urban dust particles disrupt mitotic progression by dysregulating Aurora kinase B-related functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132238. [PMID: 37586242 DOI: 10.1016/j.jhazmat.2023.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Particulate matter (PM), a major component of outdoor air pollution, damages DNA and increases the risk of cancer. Although the harmful effects of PM at the genomic level are known, the detailed mechanism by which PM affects chromosomal stability remains unclear. In this study, we investigated the novel effects of PM on mitotic progression and identified the underlying mechanisms. Gene set enrichment analysis of lung cancer patients residing in countries with high PM concentrations revealed the downregulation of genes associated with mitosis and mitotic structures. We also showed that exposure of lung cancer cells in vitro to urban dust particles (UDPs) inhibits cell proliferation through a prolonged M phase. The mitotic spindles in UDP-treated cells were hyperstabilized, and the number of centrioles increased. The rate of ingression of the cleavage furrow and actin clearance from the polar cortex was reduced significantly. The defects in mitotic progression were attributed to inactivation of Aurora B at kinetochore during early mitosis, and spindle midzone and midbody during late mitosis. While previous studies demonstrated possible links between PM and mitosis, they did not specifically identify the dysregulation of spatiotemporal dynamics of mitotic proteins and structures (e.g., microtubules, centrosomes, cleavage furrow, and equatorial and polar cortex), which results in the accumulation of chromosomal instability, ultimately contributing to carcinogenicity. The data highlight the novel scientific problem of PM-induced mitotic disruption. Additionally, we introduce a practical visual method for assessing the genotoxic outcomes of airborne pollutants, which has implications for future environmental and public health research.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, the Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
44
|
Wilmott S, Pasdeki-Clewer E, Duane B. Responsible waste management: using resources efficiently (Part 2). Br Dent J 2023; 235:577-582. [PMID: 37891287 DOI: 10.1038/s41415-023-6322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
This chapter aims to describe the types of waste produced in dental practice, the costs associated with disposal of this waste, and the impact that the disposal method has on the environment and on human health. It discusses the waste hierarchy and explores how dental surgeries can reduce their waste generation through simple changes in practice. The chapter continues by highlighting the benefits of performing a waste audit, with examples of how correct segregation of the waste produced in practice is both cost-effective and reduces the environmental impact of its disposal. Finally, we discuss some of the barriers and enablers of changing waste disposal behaviours in the dental practice and identify how the environmentally minded practitioner can encourage pro-environmental behaviour in their dental team.
Collapse
Affiliation(s)
| | | | - Brett Duane
- Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
45
|
Braithwaite J, Pichumani A, Crowley P. Tackling climate change: the pivotal role of clinicians. BMJ 2023; 382:e076963. [PMID: 37770093 DOI: 10.1136/bmj-2023-076963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
|
46
|
Wang S, Zhao G, Zhang C, Kang N, Liao W, Wang C, Xie F. Association of Fine Particulate Matter Constituents with the Predicted 10-Year Atherosclerotic Cardiovascular Disease Risk: Evidence from a Large-Scale Cross-Sectional Study. TOXICS 2023; 11:812. [PMID: 37888663 PMCID: PMC10611010 DOI: 10.3390/toxics11100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Little is known concerning the associations of fine particulate matter (PM2.5) and its constituents with atherosclerotic cardiovascular disease (ASCVD). A total of 31,162 participants enrolled from the Henan Rural Cohort were used to specify associations of PM2.5 and its constituents with ASCVD. Hybrid machine learning was utilized to estimate the 3-year average concentration of PM2.5 and its constituents (black carbon [BC], nitrate [NO3-], ammonium [NH4+], inorganic sulfate [SO42-], organic matter [OM], and soil particles [SOIL]). Constituent concentration, proportion, and residual models were utilized to examine the associations of PM2.5 constituents with 10-year ASCVD risk and to identify the most hazardous constituent. The isochronous substitution model (ISM) was employed to analyze the substitution effect between PM2.5 constituents. We found that each 1 μg/m3 increase in PM2.5, BC, NH4+, NO3-, OM, SO42-, and SOIL was associated with a 3.5%, 49.3%, 19.4%, 10.5%, 21.4%, 14%, and 28.5% higher 10-year ASCVD risk, respectively (all p < 0.05). Comparable results were observed in proportion and residual models. The ISM found that replacing BC with other constituents will generate the greatest health benefits. The results indicated that long-term exposure to PM2.5 and its constituents were associated with increased risks of ASCVD, with BC being the most attributable constituent.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| | - Ge Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| |
Collapse
|
47
|
Cho SY, Roh HT. Impact of Particulate Matter Exposure and Aerobic Exercise on Circulating Biomarkers of Oxidative Stress, Antioxidant Status, and Inflammation in Young and Aged Mice. Life (Basel) 2023; 13:1952. [PMID: 37895334 PMCID: PMC10608750 DOI: 10.3390/life13101952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to particulate matter (PM) and exercise training can have antagonistic effects on inflammatory responses and the balance between pro-oxidants and antioxidants in the body. However, the underlying mechanisms of these effects remain unclear. This study aimed to investigate the effects of PM exposure and aerobic exercise training on oxidative stress, antioxidant status, and inflammation in mice of different ages. Two groups of male C57BL/6 mice, comprising forty 1-month-old and forty 12-month-old mice, were exposed to either PM or exercise training or both for 8 weeks. PM exposure led to significantly higher 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) levels (p < 0.05) and significantly lower superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05) in both age groups exposed to PM compared to the control groups. Conversely, aerobic exercise training led to significantly lower 8-OHdG, MDA, IL-1β, IL-6, and TNF-α levels (p < 0.05) and significantly higher SOD and CAT activities (p < 0.05) in both age groups receiving exercise training, compared to those exposed to PM. Moreover, young mice in the exercise training and PM group showed significantly lower 8-OHdG, MDA, and IL-1β levels (p < 0.05) and significantly higher SOD and CAT activities (p < 0.05) than young mice in the PM exposure group. However, these levels did not vary significantly between the group of old mice that either received exercise training or exposure to PM. Our results suggest that while PM exposure could cause pro-oxidant/antioxidant imbalances and inflammatory responses, regular aerobic exercise could ameliorate these negative effects, although these vary with age. Nevertheless, the antioxidant and anti-inflammatory effects of exercise were countered by PM exposure, especially in older mice.
Collapse
Affiliation(s)
- Su-Youn Cho
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul 03722, Republic of Korea
| | - Hee-Tae Roh
- Division of Sports Science, College of Arts and Sports, Sun Moon University, 70 Sunmoon-ro 221 beon-gil, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| |
Collapse
|
48
|
Ward-Caviness CK, Cascio WE. A Narrative Review on the Impact of Air Pollution on Heart Failure Risk and Exacerbation. Can J Cardiol 2023; 39:1244-1252. [PMID: 37406802 DOI: 10.1016/j.cjca.2023.06.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Air pollution is a risk factor for many cardiovascular diseases, including heart failure (HF). Although the links between air pollution and HF have been explored, the results are scattered and difficult to piece together into a cohesive story. Therefore, we undertook a narrative review of all aspects of the relationship between HF and air pollution exposure, including risks of developing HF when exposed to air pollution, the exacerbation of HF symptoms by air pollution exposure, and the increased susceptibility that individuals with HF have for air pollution-related health risks. We also examined the literature on environmental justice as well as air pollution interventions for HF. We found substantial evidence linking air pollution exposure to HF incidence. There were a limited number of studies that examined air pollution exposure in clearly defined populations with HF to explore exacerbation of HF or the susceptibility of individuals with HF to air pollution health risks. However, there is substantial evidence that HF-related hospitalisations are increased under air pollution exposure and that the air pollution associated increase in HF-related hospitalisations is greater than hospitalisations for other chronic diseases, supporting links between air pollution and both exacerbation of HF and susceptibility of individuals with HF. There is emerging evidence for interventions that can decrease air pollution health risks for individuals with HF, and more studies are needed, particularly randomised controlled trials. Thus, although the air pollution-related health risks for HF incidence and hospitalisations are clear, further studies specifically targeted at identified data gaps will greatly improve our knowledge of the susceptibility of individuals with HF and interventions to reduce risks.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA.
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
49
|
Wang Q, Wang Z, Chen M, Mu W, Xu Z, Xue M. Causality of particulate matter on cardiovascular diseases and cardiovascular biomarkers. Front Public Health 2023; 11:1201479. [PMID: 37732088 PMCID: PMC10507646 DOI: 10.3389/fpubh.2023.1201479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Background Previous observational studies have shown that the prevalence of cardiovascular diseases (CVDs) is related to particulate matter (PM). However, given the methodological limitations of conventional observational research, it is difficult to identify causality conclusively. To explore the causality of PM on CVDs and cardiovascular biomarkers, we conducted a Mendelian randomization (MR) analysis. Method In this study, we obtained summary-level data for CVDs and cardiovascular biomarkers including atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), ischemic stroke (IS), stroke subtypes, body mass index (BMI), lipid traits, fasting glucose, fasting insulin, and blood pressure from several large genome-wide association studies (GWASs). Then we used two-sample MR to assess the causality of PM on CVDs and cardiovascular biomarkers, 16 single nucleotide polymorphisms (SNPs) for PM2.5 and 6 SNPs for PM10 were obtained from UK Biobank participants. Inverse variance weighting (IVW) analyses under the fixed effects model were used as the main analytical method to calculate MR Estimates, followed by multiple sensitivity analyses to confirm the robustness of the results. Results Our study revealed increases in PM2.5 concentration were significantly related to a higher risk of MI (odds ratio (OR), 2.578; 95% confidence interval (CI), 1.611-4.127; p = 7.920 × 10-5). Suggestive evidence was found between PM10 concentration and HF (OR, 2.015; 95% CI, 1.082-3.753; p = 0.027) and IS (OR, 2.279; 95% CI,1.099-4.723; p = 0.027). There was no evidence for an effect of PM concentration on other CVDs. Furthermore, PM2.5 concentration increases were significantly associated with increases in triglyceride (TG) (OR, 1.426; 95% CI, 1.133-1.795; p = 2.469 × 10-3) and decreases in high-density lipoprotein cholesterol (HDL-C) (OR, 0.779; 95% CI, 0.615-0.986; p = 0.038). The PM10 concentration increases were also closely related to the decreases in HDL-C (OR, 0.563; 95% CI, 0.366-0.865; p = 8.756 × 10-3). We observed no causal effect of PM on other cardiovascular biomarkers. Conclusion At the genetic level, our study suggested the causality of PM2.5 on MI, TG, as well HDL-C, and revealed the causality of PM10 on HF, IS, and HDL-C. Our findings indicated the need for continued improvements in air pollution abatement for CVDs prevention.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhimiao Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mingyou Chen
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Wei Mu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Zhenxing Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mei Xue
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| |
Collapse
|
50
|
Liu J, Liu R, Zhang Y, Lao X, Mandeville KL, Ma X, Di Q. Leisure-time physical activity mitigated the cognitive effect of PM 2.5 and PM 2.5 components exposure: Evidence from a nationwide longitudinal study. ENVIRONMENT INTERNATIONAL 2023; 179:108143. [PMID: 37598596 DOI: 10.1016/j.envint.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) impairs cognition, while physical activity (PA) improves cognitive function. However, whether taking PA with PM2.5 exposure is still beneficial to cognition remains unknown. METHODS We utilized national representative longitudinal data from the China Family Panel Study (CFPS), comprising a total sample of 108,099 from 2010 to 2018 in three waves. Cognitive performance and leisure-time PA were measured using the standard cognitive module and Godin-Shephard Leisure-Time Physical Activity Questionnaire. Gridded overall PM2.5 and major chemical components of PM2.5 were estimated using a two-stage machine learning model and matched to each participant based on their residential location. Mixed-effect models and difference-in-difference models were employed to investigate the individual and joint effects of total PM2.5, PM2.5 components, and leisure-time PA on cognition. RESULTS Every 1 μg/m3 increase in PM2.5 was associated with a -0.035 (95% confidence interval [CI] = -0.052, -0.018) point change in cognitive score. All PM2.5 components exhibited negative associations with cognitive change, with black carbon (BC) contributing the most significant cognitive decline (β = -1.025, 95% CI = -1.367, -0.683). Every one-time (or one-hour) increase in leisure-time PA frequency (or PA time) per week was associated with an increase in cognitive score by 0.576 (0.270) points (PA frequency: 95% CI = 0.544, 0.608, PA time: 95% CI = 0.248, 0.293). PA frequency (β = -0.005, 95% CI = -0.006, -0.003) and PA time (β = -0.002, 95% CI = -0.003, -0.001) exhibited interactive effects with PM2.5. Increased PA frequency and time were more beneficial to cognitive function in the low PM2.5 exposure group compared to those exposed to high PM2.5 levels. Moreover, relative to lower PM2.5 exposure, the cognitive benefits of physically active individuals with higher PM2.5 exposure were attenuated but still improved cognition when compared to those with no PA. CONCLUSION Engaging in leisure-time PA provides cognitive benefits even under PM2.5 exposure, although PM2.5 exposure attenuates these benefits. Among all PM2.5 components, BC demonstrated the most significant cognitive hazard and interaction with leisure-time PA. Promoting PA as a preventive measure may offer a cost-effective and convenient strategy to mitigate the negative impact of PM2.5 exposure on cognition. There is no excuse to avoid PA under PM2.5 exposure, as its cognitive benefits persist even in polluted environments.
Collapse
Affiliation(s)
- Jianxiu Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China.
| | - Ruidong Liu
- China Athletics College, Beijing Sport University, 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China.
| | - Xiangqian Lao
- Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong, China.
| | - Kate L Mandeville
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|