1
|
Geloso MC, Zupo L, Corvino V. Crosstalk between peripheral inflammation and brain: Focus on the responses of microglia and astrocytes to peripheral challenge. Neurochem Int 2024; 180:105872. [PMID: 39362496 DOI: 10.1016/j.neuint.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
A growing body of evidence supports the link between peripheral inflammation and impairment of neurologic functions, including mood and cognitive abilities. The pathogenic event connecting peripheral inflammation and brain dysfunction is represented by neuroinflammation, a pathogenic phenomenon that provides an important contribution to neurodegeneration and cognitive decline also in Alzheimer's, Parkinson's, Huntington's diseases, as well as in Multiple Sclerosis. It is driven by resident brain immune cells, microglia and astrocytes, that acquire an activated phenotype in response to proinflammatory molecules moving from the periphery to the brain parenchyma. Although a huge progress has been made in clarifying cellular and molecular mechanisms bridging peripheral and central inflammation, a clear picture has not been achieved so far. Therefore, experimental models are of crucial relevance to clarify knowledge gaps in this regard. Many findings demonstrate that systemic inflammation induced by pathogen-associated molecular patterns, such as lipopolysaccharide (LPS), is able to trigger neuroinflammation. Therefore, LPS-administration is widely considered a useful tool to study this phenomenon. On this basis, the present review will focus on in vivo studies based on acute and subacute effects of systemic administration of LPS, with special attention on the state of art of microglia and astrocyte response to peripheral challenge.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Zupo
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
2
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
Affiliation(s)
- Ezgi Kar
- Training and Research Center, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Art and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
3
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Jin Y, Liu J, Wang M, Jiang Y. Thioketal-Based Electrochemical Sensor Reveals Biphasic Effects of l-DOPA on Neuroinflammation. ACS Sens 2024; 9:2364-2371. [PMID: 38642367 DOI: 10.1021/acssensors.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.
Collapse
Affiliation(s)
- Ying Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Lee Y, Ju X, Cui J, Zhang T, Hong B, Kim YH, Ko Y, Park J, Choi CH, Heo JY, Chung W. Mitochondrial dysfunction precedes hippocampal IL-1β transcription and cognitive impairments after low-dose lipopolysaccharide injection in aged mice. Heliyon 2024; 10:e28974. [PMID: 38596096 PMCID: PMC11002287 DOI: 10.1016/j.heliyon.2024.e28974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Acute cognitive impairments termed delirium often occur after inflammatory insults in elderly patients. While previous preclinical studies suggest mitochondria as a target for reducing neuroinflammation and cognitive impairments after LPS injection, fewer studies have evaluated the effects of a low-grade systemic inflammation in the aged brain. Thus, to identify the significance of mitochondrial dysfunction after a clinically relevant systemic inflammatory stimulus, we injected old-aged mice (18-20 months) with low-dose lipopolysaccharide (LPS, 0.04 mg/kg). LPS injection reduced mitochondrial respiration in the hippocampus 24 h after injection (respiratory control ratio [RCR], state3u/state4o; control = 2.82 ± 0.19, LPS = 2.57 ± 0.08). However, gene expression of the pro-inflammatory cytokine IL-1β was increased (RT-PCR, control = 1.00 ± 0.30; LPS = 2.01 ± 0.67) at a more delayed time point, 48 h after LPS injection. Such changes were associated with cognitive impairments in the Barnes maze and fear chamber tests. Notably, young mice were unaffected by low-dose LPS, suggesting that mitochondrial dysfunction precedes neuroinflammation and cognitive decline in elderly patients following a low-grade systemic insult. Our findings highlight mitochondria as a potential therapeutic target for reducing delirium in elderly patients.
Collapse
Affiliation(s)
- Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Department of Anesthesiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Zhang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yoon Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Youngkwon Ko
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jiho Park
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Sejong, South Korea
| | - Chul Hee Choi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
6
|
Zhang N, Gao X, Li D, Xu L, Zhou G, Xu M, Peng L, Sun G, Pan F, Li Y, Ren R, Huang R, Yang Y, Wang Z. Sleep deprivation-induced anxiety-like behaviors are associated with alterations in the gut microbiota and metabolites. Microbiol Spectr 2024; 12:e0143723. [PMID: 38421192 PMCID: PMC10986621 DOI: 10.1128/spectrum.01437-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The present study aimed to characterize the gut microbiota and serum metabolome changes associated with sleep deprivation (SD) as well as to explore the potential benefits of multi-probiotic supplementation in alleviating SD-related mental health disorders. Rats were subjected to 7 days of SD, followed by 14 days of multi-probiotics or saline administration. Open-field tests were conducted at baseline, end of SD (day 7), and after 14 days of saline or multi-probiotic gavage (day 21). Metagenomic sequencing was conducted on fecal samples, and serum metabolites were measured by untargeted liquid chromatography tandem-mass spectrometry. At day 7, anxiety-like behaviors, including significant decreases in total movement distance (P = 0.0002) and staying time in the central zone (P = 0.021), were observed. In addition, increased levels of lipopolysaccharide (LPS; P = 0.028) and decreased levels of uridine (P = 0.018) and tryptophan (P = 0.01) were detected in rats after 7 days of SD. After SD, the richness of the gut bacterial community increased, and the levels of Akkermansia muciniphila, Muribaculum intestinale, and Bacteroides caecimuris decreased. The changes in the host metabolism and gut microbiota composition were strongly associated with the anxiety-like behaviors caused by SD. In addition, multi-probiotic supplementation for 14 days modestly improved the anxiety-like behaviors in SD rats but significantly reduced the serum level of LPS (P = 0.045). In conclusion, SD induces changes in the gut microbiota and serum metabolites, which may contribute to the development of chronic inflammatory responses and affect the gut-brain axis, causing anxiety-like behaviors. Probiotic supplementation significantly reduces serum LPS, which may alleviate the influence of chronic inflammation. IMPORTANCE The disturbance in the gut microbiome and serum metabolome induced by SD may be involved in anxiety-like behaviors. Probiotic supplementation decreases serum levels of LPS, but this reduction may be insufficient for alleviating SD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Nana Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Integrative Microecology Clinical Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Donghao Li
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Xu
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Yunsheng Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Zikai Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Li W, Ali T, He K, Zheng C, Li N, Yu Z, Li S. ApoE4 dysregulation incites depressive symptoms and mitochondrial impairments in mice. J Cell Mol Med 2024; 28:e18160. [PMID: 38506067 PMCID: PMC10951871 DOI: 10.1111/jcmm.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research CentreThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhi‐Jian Yu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
- Campbell Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
8
|
da Silva AAF, Fiadeiro MB, Bernardino LI, Fonseca CSP, Baltazar GMF, Cristóvão ACB. "Lipopolysaccharide-induced animal models for neuroinflammation - An overview.". J Neuroimmunol 2024; 387:578273. [PMID: 38183948 DOI: 10.1016/j.jneuroim.2023.578273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
Neuroinflammation is a pathological mechanism contributing to neurodegenerative diseases. For in-depth studies of neuroinflammation, several animal models reported reproducing behavioral dysfunctions and cellular pathological mechanisms induced by brain inflammation. One of the most popular models of neuroinflammation is the one generated by lipopolysaccharide exposure. Despite its importance, the reported results using this model show high heterogeneity, making it difficult to analyze and compare the outcomes between studies. Therefore, the current review aims to summarize the different experimental paradigms used to reproduce neuroinflammation by lipopolysaccharide exposure and its respective outcomes, helping to choose the model that better suits each specific research aim.
Collapse
Affiliation(s)
- Ana Alexandra Flores da Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Mariana Bernardo Fiadeiro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | | - Ana Clara Braz Cristóvão
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Choi JH, Choi HK, Lee KB. In Situ Detection of Neuroinflammation using Multi-cellular 3D Neurovascular Unit-on-a-Chip. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2304382. [PMID: 39308874 PMCID: PMC11412436 DOI: 10.1002/adfm.202304382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 09/25/2024]
Abstract
The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. In recent years, researchers have become increasingly interested in the role of this system in developing drugs to treat neuroinflammation. This process is believed to contribute to the development of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While much remains to be learned about the precise mechanisms by which the neurovascular system interacts with the brain and how it can be targeted for therapeutic purposes, this area of research holds great promise for the future of neurology and medicine. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of neurovascular systems and the issues with animal models, we have developed a one-of-a-kind in vitro neurovascular unit-on-a-chip to accurately replicate the in vivo human neurovascular microenvironment. This neuroinflammation-on-a-chip platform has the potential to enhance the current methods of drug development and testing to treat neurodegenerative diseases. By replicating the human neurovascular unit in vitro, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect pro-inflammatory cytokines in situ and monitor physiological changes, such as barrier function, in real-time can provide an invaluable tool for evaluating the efficacy and safety of drugs. Moreover, using nano-sized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, our developed neuroinflammation-on-a-chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
- School of Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Korea
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Li X, Yin X, Pang J, Chen Z, Wen J. Hydrogen sulfide inhibits lipopolysaccharide-based neuroinflammation-induced astrocyte polarization after cerebral ischemia/reperfusion injury. Eur J Pharmacol 2023; 949:175743. [PMID: 37084816 DOI: 10.1016/j.ejphar.2023.175743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
The effect of lipopolysaccharide (LPS)-based neuroinflammation following cerebral ischemia/reperfusion (I/R) on the genotypic transformation of reactive astrocytes and its relationship with endogenous hydrogen sulfide (H2S) were investigated in present study. We found that LPS promoted the cerebral I/R-induced A1 astrocytes proliferation in mouse hippocampal tissues and deteriorated the reduction of hydrogen sulfide (H2S) content in mouse sera, H2S donor NaHS could inhibitA1 astrocytes proliferation. Similarly, knockout of cystathionine γ-lyase (CSE), one of endogenous H2S synthases, likewise up-regulated the cerebral I/R-induced A1 astrocytes proliferation, which could also be blocked by NaHS. Besides, supplement with H2S promoted the A2 astrocytes proliferation in hippocampal tissues of CSE knockout (CSE KO) mice or LPS-treated mice following cerebral I/R. In the oxygen glucose deprivation/reoxygenation (OGD/R) model of astrocytes, H2S also promoted the transformation of astrocytes into A2 subtype. Moreover, we found that H2S could up-regulate the expression of α-subunit of large-conductance Ca2+-activated K+ (BKCa) channels in astrocytes, and the channel opener BMS-191011 likewise promoted the transformation of astrocyte into A2 subtype. In conclusion, H2S inhibits the proliferation of A1 astrocytes induced by LPS-based neuroinflammation following cerebral I/R and promotes the transformation of astrocytes into A2 subtype, which may be related to up-regulation of BKCa channels.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaojiao Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiazhuang Pang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Hu J, Tang J, Zhang X, Yang K, Zhong A, Yang Q, Liu Y, Li Y, Zhang T. Landscape in the gallbladder mycobiome and bacteriome of patients undergoing cholelithiasis with chronic cholecystitis. Front Microbiol 2023; 14:1131694. [PMID: 37032855 PMCID: PMC10073429 DOI: 10.3389/fmicb.2023.1131694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Gallstone disease (GSD) is associated with changes in the gut and gallbladder bacterial composition, but there is limited information on the role of the fungal community (mycobiome) in disease development. This study aimed to characterize the gallbladder mycobiome profiles and their interactions with bacteriome in GSD. A total of 136 bile and gallstone samples (34 paired for bacteriome, and 33 paired and extra 2 bile samples for mycobiome) were obtained from calculi patients with chronic cholecystitis. Bile and gallstone bacteriome and mycobiome were profiled by 16S and internal transcribed spacer (ITS) rRNA gene sequencing, respectively. Gallbladder bacteriome, mycobiome, and interkingdom and intrakingdom interactions were compared between bile and gallstone. In general, microbial diversity was higher in bile than in gallstone, and distinct microbial community structures were observed among them. Deep Sea Euryarchaeotic Group, Rhodobacteraceae, and Rhodobacterales were microbial biomarkers of bile, while Clostridiales and Eubacterium coprostanoligenes were biomarkers of gallstone. Five fungal taxa, including Colletotrichum, Colletotrichum sublineola, and Epicoccum, were enriched in gallstone. Further ecologic analyses revealed that intensive transkingdom correlations between fungi and bacteria and intrakingdom correlations within them observed in gallstone were significantly decreased in bile. Large and complex fungal communities inhabit the gallbladder of patients with GSD. Gallstone, compared with bile, is characterized by significantly altered bacterial taxonomic composition and strengthened bacterial-bacterial, fungal-fungal, and bacterial-fungal correlations in the gallbladder of patients with GSD.
Collapse
Affiliation(s)
- Junqing Hu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jichao Tang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Xinpeng Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Kaijin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ayan Zhong
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Qin Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Section for Hepato-Pancreato-Biliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yi Li
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- The Center for Obesity and Metabolic Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
12
|
Lopes PC, Faber-Hammond JJ, Siemonsma C, Patel S, Renn SCP. The social environment alters neural responses to a lipopolysaccharide challenge. Brain Behav Immun 2023; 110:162-174. [PMID: 36878331 DOI: 10.1016/j.bbi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sick animals display drastic changes in their behavioral patterns, including decreased activity, decreased food and water intake, and decreased interest in social interactions. These behaviors, collectively called "sickness behaviors", can be socially modulated. For example, when provided with mating opportunities, males of several species show reduced sickness behaviors. While the behavior is known to change, how the social environment affects neural molecular responses to sickness is not known. Here, we used a species, the zebra finch, Taeniopygia guttata, where males have been shown to decrease sickness behaviors when presented with novel females. Using this paradigm, we obtained samples from three brain regions (the hypothalamus, the bed nucleus of the stria terminalis, and the nucleus taeniae) from lipopolysaccharide (LPS) or control treated males housed under four different social environments. Manipulation of the social environment rapidly changed the strength and co-expression patterns of the neural molecular responses to the immune challenge in all brain regions tested, therefore suggesting that the social environment plays a significant role in determining the neural responses to an infection. In particular, brains of males paired with a novel female showed muted immune responses to LPS, as well as altered synaptic signaling. Neural metabolic activity in response to the LPS challenge was also affected by the social environment. Our results provide new insights into the effects of the social environment on brain responses to an infection, thereby improving our understanding of how the social environment can affect health.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | | | - Chandler Siemonsma
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Sachin Patel
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA
| |
Collapse
|
13
|
Yahfoufi N, Kadamani AK, Aly S, Al Sharani S, Liang J, Butcher J, Stintzi A, Matar C, Ismail N. Pubertal consumption of R. badensis subspecies acadiensis modulates LPS-induced immune responses and gut microbiome dysbiosis in a sex-specific manner. Brain Behav Immun 2023; 107:62-75. [PMID: 36174885 DOI: 10.1016/j.bbi.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/09/2023] Open
Abstract
Puberty is a critical period of development characterized by significant brain remodeling and increased vulnerability to immune challenges. Exposure to an immune challenge such as LPS during puberty can result in inflammation and gut dysbiosis which may lead to altered brain functioning and psychiatric illnesses later in life. However, treatment with probiotics during puberty has been found to mitigate LPS-induced peripheral and central inflammation, prevent LPS-induced changes to the gut microbiota and protect against enduring behavioural disorders in a sex-specific manner. Recent findings from our laboratory revealed that pubertal R. badensis subspecies acadiensis (R. badensis subsp. acadiensis) treatment prevents LPS-induced depression-like behavior and alterations in 5HT1A receptor expression in a sex-specific manner. However, the underlying mechanism remains unclear. Thus, the aim of this study was to gain mechanistic insights and to investigate the ability of R. badensis subsp. acadiensis consumption during puberty to mitigate the effects of LPS treatment on the immune system and the gut microbiome. Our results revealed that pubertal treatment with R. badensis subsp. acadiensis reduced sickness behaviors in females more than males in a time-specific manner. It also mitigated LPS-induced increases in pro-inflammatory cytokines in the blood and in TNFα mRNA expression in the prefrontal cortex and the hippocampus of female mice. There were sex-dependent differences in microbiome composition that persisted after LPS injection or R. badensis subsp. acadiensis consumption. R. badensis subsp. acadiensis had greater impact on the microbiota of male mice but female microbiota's were more responsive to LPS treatment. This suggested that female mice microbiota's may be more prone to modulation by this probiotic. These findings emphasize the sex-specific effects of probiotic use during puberty on the structure of the gut microbiome and the immune system and highlight the critical role of gut colonization with probiotics during adolescence on immunomodulation and prevention of the enduring effects of infections.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Anthony K Kadamani
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Sarah Aly
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Sara Al Sharani
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Zou P, Yang F, Ding Y, Zhang D, Liu Y, Zhang J, Wu D, Wang Y. Lipopolysaccharide downregulates the expression of ZO-1 protein through the Akt pathway. BMC Infect Dis 2022; 22:774. [PMID: 36199030 PMCID: PMC9533599 DOI: 10.1186/s12879-022-07752-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background Neonatal bacterial meningitis is a common neonatal disease with high morbidity, and can cause serious sequelae when left untreated. Escherichia coli is the common pathogen, and its endotoxin, lipopolysaccharide (LPS) can damage the endothelial cells, increasing the permeability of the blood-brain barrier (BBB), leading to intracranial inflammation. However, the specific mechanism of bacterial meningitis induced by LPS damaging BBB remains unclear. In this study, the mouse brain microvascular endothelial (bEND.3) cells were used as a research object to investigate whether LPS damage BBB through the PI3K/Akt pathway. Methods The bEND.3 cells were stimulated with different concentrations of LPS for 12 h, and the expression of tight junction proteins (ZO-1, claudin-5, occludin) was detected using western blotting. The cells were challenged with the same concentration of LPS (1ug/ml) across different timepoints (0, 2 h, 4 h, 6 h, 12 h, 24 h). Expression of TJ proteins and signal pathway molecules (PI3K, p-PI3K, Akt, p-Akt) were detected. The distribution of ZO-1 in bEND.3 cells were detected by immunofluorescence staining. Results A negative correlation is observed between ZO-1 and LPS concentration. Moreover, a reduced expression of ZO-1 was most significant under 1 ug/ml of LPS, and the difference was statistically significant (P < 0.05). Additionally, there is a negative correlation between ZO-1 and LPS stimulation time. Meanwhile, the expression of claudin-5 and occludin did not change significantly with the stimulation of LPS concentration and time. The immunofluorescence assay showed that the amount of ZO-1 on the surface of bEND.3 cells stimulated with LPS was significantly lower than that of the control group. After LPS stimulation, p-Akt protein increased at 2 h and peaked at 4 h. The titer of p-PI3K did not change significantly with time. Conclusion LPS can downregulate the expression of ZO-1; however, its effect on claudin-5 and occludin is minimal. Akt signal pathway may be involved in the regulation of ZO-1 expression induced by LPS in bEND.3 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07752-1.
Collapse
Affiliation(s)
- Peicen Zou
- Capital Institute of Pediatrics, Beijing, China
| | - Fan Yang
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yijun Ding
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Di Zhang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Ying Liu
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinjing Zhang
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dan Wu
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yajuan Wang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
15
|
Autophagy:a new mechanism for esketamine as a depression therapeutic. Neuroscience 2022; 498:214-223. [PMID: 35597333 DOI: 10.1016/j.neuroscience.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Depression is a serious physical and mental disease, with major depressive disorder (MDD) being a hard-to-treat, life-threatening form of the condition. Currently, esketamine (ESK) is used in the clinical treatment of MDD, but the drug mechanisms continue to be unclear. In this study, we explored the therapeutic efficacy of ESK against lipopolysaccharide (LPS)-induced neuroinflammatory, autophagic, and depressive symptoms and the possible mechanisms behind them. Our study demonstrated that LPS increased cytokine levels (TNF-α, IL-1β, IL-6), induced neuroinflammation, led to increased levels of autophagy markers, and enhanced autophagy activation, which ultimately caused depressive symptoms in mouse models. ESK inhibited autophagy via the mTOR-BDNF signaling pathway and significantly alleviated the adverse effects induced by LPS, mainly in the form of reduced levels of cytokines, apoptotic factors, and autophagic markers; elevated BDNF levels; and improved depression-like behavior. Furthermore, we were interested to know if ESK in combination with other autophagy inhibitors would have a better antidepressant effect, and we chose the autophagy inhibitor 3-MA for this attempt. Interestingly, the use of 3-MA did not attenuate or even enhance the therapeutic effect of ESK. The results suggest that, in the LPS-induced depression models, ESK conveyed an antidepressant effect via the inhibition of autophagy through the mTOR-BDNF pathway.
Collapse
|
16
|
Tian Y, Chen X, Wang Y, He Y, Chen C, Yu H, Chen Z, Ren Y, Cheng K, Xie P. Neuroinflammatory transcriptional signatures in the entorhinal cortex based on lipopolysaccharide-induced depression model in mice. Biochem Biophys Res Commun 2022; 590:109-116. [PMID: 34974298 DOI: 10.1016/j.bbrc.2021.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
The inflammation and immune hypothesis of major depressive disorder (MDD) explains the mechanism of neuroinflammatory response to promote depression-like behaviors and provides targets for immunotherapy. Previous studies revealed that the neuronal function of the entorhinal cortex (EC) was relative to the depression symptoms in MDD. However, it remains largely unknown what role of neuroinflammation plays in the EC. Hence, we used immunofluorescence to determine c-Fos expression in the EC of lipopolysaccharide (LPS)-treated mice. Mice model was constructed of 10-day LPS treatment, and depression-related behaviors were assessed. We used gene expression microarray to determine differentially expressed genes (DEGs) in the EC of LPS group comparing to control group, and molecular verification was performed by quantitative real-time PCR and Western blot. We found that c-Fos expression was significant reduced in the two layers (Lateral 3.25 mm and 3.00 mm) of the EC in LPS-treated mice compared to saline-treated mice. Mice in LPS group exhibited depression- and anxiety-like behaviors in chronic model. Gene expression analyses identified 339 DEGs in the EC between LPS and control group. The molecular verification showed activation of IL-1R1/NF-κB/CCL5 signaling and upregulation of markers of astrocyte (GFAP) and microglia (AIF1 and CD86) in the EC. Our results suggested that LPS-induced neuroinflammation inhibited neuronal activity in the EC of mice, and that activation of IL-1R1/NF-κB/CCL5 signaling could be involved in the neuroinflammation in the EC of LPS-treated depression model.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Chong Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Shangguan Y, Chen Y, Ma Y, Zhao Y, He Y, Li W. Salubrinal protects against inflammatory response in macrophage and attenuates psoriasiform skin inflammation by antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2021; 589:63-70. [PMID: 34891043 DOI: 10.1016/j.bbrc.2021.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Psoriasiform skin inflammation is the common chronic skin inflammatory disease with no effective clinical therapy. Salubrinal is a multifunctional molecule playing a protective role in several conditions. Recently, studies have reported that Salubrinal is a potential therapeutic agent for inflammatory diseases. However, the protective role of Salubrinal in psoriasis-like skin inflammation remains unknown. In this article, imiquimod (IMQ)-induced psoriasis models were established in wild-type mice to explore the role of Salubrinal in the development of psoriasis. As a result, the IMQ-induced mouse models exhibited typical skin inflammation, which was alleviated by the administration of Salubrinal. Furthermore, RAW264.7 macrophage was stimulated with Lipopolysaccharide(LPS) in the presence or absence of Salubrinal. LPS stimulation elevated the expression of various inflammatory biomarkers, while the administration of Salubrinal abolished the function of LPS in RAW264.7 macrophages. In addition, the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in both the LPS-stimulated RAW264.7 macrophage and psoriasis mouse models was antagonized by the administration of Salubrinal. Collectively, Salubrinal might be considered as a promising therapeutic agent for psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Yangtao Shangguan
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongkun Chen
- Department of Ultrasound, The Fourth People's Hospital of Jinan, Jinan, Shandong Province, 250031, PR China
| | - Yihui Ma
- Department of Pathology, Heze Mudan People's Hospital (Heze Central Hospital), Heze, Shandong, 274000, PR China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yeteng He
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, PR China.
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
18
|
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging 2021; 49:77-109. [PMID: 34245328 PMCID: PMC8712305 DOI: 10.1007/s00259-021-05379-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Over the last 30 years, the 18-kDa TSPO protein has been considered as the PET imaging biomarker of reference to measure increased neuroinflammation. Generally assumed to image activated microglia, TSPO has also been detected in endothelial cells and activated astrocytes. Here, we provide an exhaustive overview of the recent literature on the TSPO-PET imaging (i) in the search and development of new TSPO tracers and (ii) in the understanding of acute and chronic neuroinflammation in animal models of neurological disorders. Generally, studies testing new TSPO radiotracers against the prototypic [11C]-R-PK11195 or more recent competitors use models of acute focal neuroinflammation (e.g. stroke or lipopolysaccharide injection). These studies have led to the development of over 60 new tracers during the last 15 years. These studies highlighted that interpretation of TSPO-PET is easier in acute models of focal lesions, whereas in chronic models with lower or diffuse microglial activation, such as models of Alzheimer's disease or Parkinson's disease, TSPO quantification for detection of neuroinflammation is more challenging, mirroring what is observed in clinic. Moreover, technical limitations of preclinical scanners provide a drawback when studying modest neuroinflammation in small brains (e.g. in mice). Overall, this review underlines the value of TSPO imaging to study the time course or response to treatment of neuroinflammation in acute or chronic models of diseases. As such, TSPO remains the gold standard biomarker reference for neuroinflammation, waiting for new radioligands for other, more specific targets for neuroinflammatory processes and/or immune cells to emerge.
Collapse
Affiliation(s)
- Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, M20 3LJ, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
Dong X, Li L, Zhang D, Su Y, Yang L, Li X, Han Y, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+–CN–NFAT1 signaling in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Zhou C, Peng B, Qin Z, Zhu W, Guo C. Metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway. BMC Neurosci 2021; 22:73. [PMID: 34836498 PMCID: PMC8626880 DOI: 10.1186/s12868-021-00678-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroinflammatory response is considered to be a high-risk factor for cognitive impairments in the brain. Lipopolysaccharides (LPS) is an endotoxin that induces acute inflammatory responses in injected bodies. However, the molecular mechanisms underlying LPS-associated cognitive impairments still remain unclear. METHODS Here, primary hippocampal neurons were treated with LPS, and western blotting and immunofluorescence were used to investigate whether LPS induces neurons damage. At the same time, SD rats were injected with LPS (830 μg/Kg) intraperitoneally, and Open field test, Novel Objective Recognition test, Fear condition test were used to detect cognitive function. LTP was used to assess synaptic plasticity, and molecular biology technology was used to assess the NF-κB pathway, while ELISA was used to detect inflammatory factors. In addition, metformin was used to treat primary hippocampal neurons, and intraventricularly administered to SD rats. The same molecular technics, behavioral and electrophysiological tests were used to examine whether metformin could alleviate the LPS-associated neuronal damage, as well as synaptic plasticity, and behavioral alterations in SD rats. RESULTS Altogether, neuronal damage were observed in primary hippocampal neurons after LPS intervention, which were alleviated by metformin treatment. At the same time, LPS injection in rat triggers cognitive impairment through activation of NF-κB signaling pathway, and metformin administration alleviates the LPS-induced memory dysfunction and improves synaptic plasticity. CONCLUSION These findings highlight a novel pathogenic mechanism of LPS-related cognitive impairments through activation of NF-κB signaling pathway, and accumulation of inflammatory mediators, which induces neuronal pathologic changes and cognitive impairments. However, metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway.
Collapse
Affiliation(s)
- Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenghui Qin
- Department of Critical Care Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Critical Care Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Cuiping Guo
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Kong Y, He G, Zhang X, Li J. The Role of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Depression-like Behaviors in Mice. Brain Sci 2021; 11:brainsci11111514. [PMID: 34827513 PMCID: PMC8615738 DOI: 10.3390/brainsci11111514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral inflammation plays a key role in the development of depression-like behaviors. However, the mechanisms underlying these effects remain largely unknown. Here, we found that the level of citrullinated histone H3 (cit-H3) significantly increased in the plasma of wildtype mice treated with lipopolysaccharide (LPS), which indicated that neutrophil extracellular traps (NETs) were formed. Moreover, the LPS-induced depression-like and asocial behaviors were significantly alleviated in the mice deficient of NETs. Mechanistically, NETs formation aggravated peripheral inflammation by increasing the concentrations of TNF-α, IL-1β and IL-6 in plasma, which are major proinflammatory cytokines that can enter the brain, resulting in microglia activation and reduced astrocytes. Following this, increased TNF-α and IL-1β were released into brain, inducing neuroinflammation and finally depression-like behaviors. Prohibiting NETs by PAD4 ablation significantly prevented LPS-induced microglia activation and the loss of astrocytes. Our results propose the role for peripheral NETs in LPS-induced depression-like behavior, and that NETs might be a potential target to prevent inflammation-induced major depressive disorder.
Collapse
Affiliation(s)
- Yue Kong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Correspondence: (Y.K.); (J.L.)
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
- Correspondence: (Y.K.); (J.L.)
| |
Collapse
|
22
|
Luo D, Han L, Gao S, Xiao Z, Zhou Q, Cheng X, Zhang Y, Zhou W. LINCS Dataset-Based Repositioning of Dutasteride as an Anti-Neuroinflammation Agent. Brain Sci 2021; 11:1411. [PMID: 34827410 PMCID: PMC8615696 DOI: 10.3390/brainsci11111411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is often accompanied by central nervous system (CNS) injury seen in various CNS diseases, with no specific treatment. Drug repurposing is a strategy of finding new uses for approved or investigational drugs, and can be enabled by the Library of Integrated Network-based Cellular Signatures (LINCS), a large drug perturbation database. In this study, the signatures of Lipopolysaccharide (LPS) were compared with the signatures of compounds contained in the LINCS dataset. To the top 100 compounds obtained, the Quantitative Structure-Activity Relationship (QSAR)-based tool admetSAR was used to identify the top 10 candidate compounds with relatively high blood-brain barrier (BBB) penetration. Furthermore, the seventh-ranked compound, dutasteride, a 5-α-reductase inhibitor, was selected for in vitro and in vivo validation of its anti-neuroinflammation activity. The results showed that dutasteride significantly reduced the levels of IL-6 and TNF-α in the supernatants of LPS-stimulated BV2 cells, and decreased the levels of IL-6 in the hippocampus and plasma, and the number of activated microglia in the brain of LPS administration mice. Furthermore, dutasteride also attenuated the cognitive impairment caused by LPS stimulation in mice. Taken together, this study demonstrates that the LINCS dataset-based drug repurposing strategy is an effective approach, and the predicted candidate, dutasteride, has the potential to ameliorate LPS-induced neuroinflammation and cognitive impairment.
Collapse
Affiliation(s)
- Dan Luo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Shengqiao Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Qingru Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (D.L.); (L.H.); (S.G.); (Z.X.); (Q.Z.); (X.C.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
23
|
Xu X, Du L, Jiang J, Yang M, Wang Z, Wang Y, Tang T, Fu X, Hao J. Microglial TREM2 Mitigates Inflammatory Responses and Neuronal Apoptosis in Angiotensin II-Induced Hypertension in Middle-Aged Mice. Front Aging Neurosci 2021; 13:716917. [PMID: 34489683 PMCID: PMC8417947 DOI: 10.3389/fnagi.2021.716917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Growing evidence suggests that hypertension and aging are prominent risk factors for the development of late-onset Alzheimer's disease (LOAD) by inducement of neuroinflammation. Recent study showed that neuroinflammation via activated microglia induces reactive astrocytes, termed A1 astrocytes, that highly upregulate numerous classical complement cascade genes that are destructive to neurons in neurodegeneration diseases. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) is considered as one of the strongest single-allele genetic risk factors and plays important roles in neuroinflammation for LOAD. However, the mechanisms of microglia in the regulation of A1 astrocytic activation are still not clear. We introduced angiotensin II-induced hypertension in middle-aged mice and found that hypertension-upregulated TREM2 expression and A1 astrocytic activation were involved in neuroinflammation in the animal models used in this study. The in vitro results revealed that overexpression of microglial TREM2 not only mitigated microglial inflammatory response but also had salutary effects on reverse A1 astrocytic activation and neuronal toxicity.
Collapse
Affiliation(s)
- Xiaotian Xu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Lin Du
- Department of Cardiology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Yang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Zhaoxia Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Tieyu Tang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Xuetao Fu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jiukuan Hao
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
24
|
Peng SY, Wu X, Lu T, Cui G, Chen G. Research progress of hydrogen sulfide in Alzheimer's disease from laboratory to hospital: a narrative review. Med Gas Res 2021; 10:125-129. [PMID: 33004710 PMCID: PMC8086622 DOI: 10.4103/2045-9912.296043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disease that mainly occurs in old age and early stages. Its main manifestations are memory impairment, aphasia, apraxia, loss of identity, abstract thinking and impairment of computing power, personality and behavior changes, etc. At present, the treatment of Alzheimer's disease only stays on reducing the disease and delaying the development, which is also a difficult problem to overcome in clinical practice. Hydrogen sulfide, as a third gaseous signal molecule after carbon monoxide and nitrogen monoxide, has become very popular in recent years. It shows very promising prospects in the Alzheimer's disease model. It can protect the nerve function and prevent the progress of the disease by affecting the amyloid precursor protein metabolism, anti-apoptosis, anti-inflammatory, and antioxidant pathways. Therefore, this article summarizes the relevant basic and clinical research of hydrogen sulfide in Alzheimer's disease, and discusses its progress and findings and mechanism characteristics.
Collapse
Affiliation(s)
- Song-Yang Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
25
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
26
|
Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, Dong X, Fang Z, Li W. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med 2021; 22:782. [PMID: 34055081 PMCID: PMC8145787 DOI: 10.3892/etm.2021.10214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a toxic component of cell walls of Gram-negative bacteria that are widely present in gastrointestinal tracts. Increasing evidence showed that LPS plays important roles in the pathogeneses of neurodegenerative disorders, such as Alzheimer's disease (AD). NADPH oxidase s2 (NOX2) is a complex membrane protein that contributes to the production of reactive oxygen species (ROS) in several neurological diseases. The NLRP1 inflammasome can be activated in response to an accumulation of ROS in neurons. However, it is still unknown whether LPS exposure can deteriorate neuronal damage by activating NOX2-NLRP1 inflammasomes. Ginsenoside Rg1 (Rg1) has protective effects on neurons, although whether Rg1 alleviates LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes remains unclear. In the present study, the effect of concentration gradients and different times of LPS exposure on neuronal damage was investigated in HT22 cells, and further observed the effect of Rg1 treatment on NOX2-NLPR1 inflammasome activation, ROS production and neuronal damage in LPS-treated HT22 cells. The results demonstrated that LPS exposure significantly induced NOX2-NLRP1 inflammasome activation, excessive production of ROS, and neuronal damage in HT22 cells. It was also shown that Rg1 treatment significantly decreased NOX2-NLRP1 inflammasome activation and ROS production and alleviated neuronal damage in LPS-induced HT22 cells. The present data suggested that Rg1 has protective effects on LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes in HT22 cells, and Rg1 may be a potential therapeutic approach for delaying neuronal damage in AD.
Collapse
Affiliation(s)
- Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yali Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junyan Zhang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhirui Fang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
27
|
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol 2021; 12:674739. [PMID: 34054862 PMCID: PMC8149902 DOI: 10.3389/fimmu.2021.674739] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.
Collapse
Affiliation(s)
- Marina Saade
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Giovanna Araujo de Souza
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
29
|
Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS, Zhu G. Ginsenoside Rg1 Prevents PTSD-Like Behaviors in Mice Through Promoting Synaptic Proteins, Reducing Kir4.1 and TNF-α in the Hippocampus. Mol Neurobiol 2021; 58:1550-1563. [PMID: 33215390 PMCID: PMC7676862 DOI: 10.1007/s12035-020-02213-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Ginsenoside Rg1 is efficient to prevent or treat mental disorders. However, the mechanisms underlying the effects of ginsenoside Rg1 on post-traumatic stress disorder (PTSD) are still not known. In this study, single-prolonged stress (SPS) regime, as well as injection of lipopolysaccharide (LPS), was used to produce PTSD-like behaviors in C57 mice, and the effects of ginsenoside Rg1 (10, 20, 40 mg/kg/d, ip, for 14 days) on PTSD-like behaviors were evaluated. Our results showed that ginsenoside Rg1 promoted fear extinction and prevented depression-like behaviors in both LPS and SPS models. Importantly, ginsenoside Rg1 alleviated LPS- or SPS-stimulated expression of pro-inflammatory cytokines (IL-1β and TNF-α), activation of astrocytes and microglia, and reduction of hippocampal synaptic proteins (PSD95, Arc, and GluA1). Ginsenoside Rg1 also reduced the increase of hippocampal Kir4.1 and GluN2A induced by PTSD regime. Importantly, reducing hippocampal astroglial Kir4.1 expression promoted fear extinction and improved depression-like behaviors in LPS-treated mice. Additionally, intracerebroventricular injection of TNF-α caused an impairment of fear extinction and promoted Kir4.1 expression in the hippocampus. Together, our study reveals novel protective effects of ginsenoside Rg1 against PTSD-like behaviors in mice, likely via promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Zhujin Song
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fengming Shen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Pan Xie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China
| | - Ai-Song Zhu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038, China.
| |
Collapse
|
30
|
Wiȩckowska-Gacek A, Mietelska-Porowska A, Chutorański D, Wydrych M, Długosz J, Wojda U. Western Diet Induces Impairment of Liver-Brain Axis Accelerating Neuroinflammation and Amyloid Pathology in Alzheimer's Disease. Front Aging Neurosci 2021; 13:654509. [PMID: 33867971 PMCID: PMC8046915 DOI: 10.3389/fnagi.2021.654509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an aging-dependent, irreversible neurodegenerative disorder and the most common cause of dementia. The prevailing AD hypothesis points to the central role of altered cleavage of amyloid precursor protein (APP) and formation of toxic amyloid-β (Aβ) deposits in the brain. The lack of efficient AD treatments stems from incomplete knowledge on AD causes and environmental risk factors. The role of lifestyle factors, including diet, in neurological diseases is now beginning to attract considerable attention. One of them is western diet (WD), which can lead to many serious diseases that develop with age. The aim of the study was to investigate whether WD-derived systemic disturbances may accelerate the brain neuroinflammation and amyloidogenesis at the early stages of AD development. To verify this hypothesis, transgenic mice expressing human APP with AD-causing mutations (APPswe) were fed with WD from the 3rd month of age. These mice were compared to APPswe mice, in which short-term high-grade inflammation was induced by injection of lipopolysaccharide (LPS) and to untreated APPswe mice. All experimental subgroups of animals were subsequently analyzed at 4-, 8-, and 12-months of age. APPswe mice at 4- and 8-months-old represent earlier pre-plaque stages of AD, while 12-month-old animals represent later stages of AD, with visible amyloid pathology. Already short time of WD feeding induced in 4-month-old animals such brain neuroinflammation events as enhanced astrogliosis, to a level comparable to that induced by the administration of pro-inflammatory LPS, and microglia activation in 8-month-old mice. Also, WD feeding accelerated increased Aβ production, observed already in 8-month-old animals. These brain changes corresponded to diet-induced metabolic disorders, including increased cholesterol level in 4-months of age, and advanced hypercholesterolemia and fatty liver disease in 8-month-old mice. These results indicate that the westernized pattern of nourishment is an important modifiable risk factor of AD development, and that a healthy, balanced, diet may be one of the most efficient AD prevention methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Mao MJ, Gao YZ, Yang JJ, Zhou ZQ, Ji MH. Abnormal theta oscillation aggravated by chronic stress in the CA1 may mediate the deterioration of fear memory impairment induced by lipopolysaccharide. Brain Res Bull 2021; 171:172-182. [PMID: 33753210 DOI: 10.1016/j.brainresbull.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
Both environmental stress and immune challenge can induce abnormal neurobehavior. However, the impact of chronic stress on immune challenge-related neurobehavioral abnormalities is still controversial. Hence, we aimed to investigate the effects of chronic stress on immune challenge-related neurobehavioral abnormalities and explore the possible underlying mechanisms. During the first set of experiments, mice were reared under normal condition (NC) or chronic stress (CS) for 4 consecutive weeks. They were allocated to the following four groups: NC + normal saline (NS) group, CS + NS group, NC + lipopolysaccharide (LPS) group, and CS + LPS group. Open field, elevated plus maze, fear conditioning, novel object recognition, and forced swimming tests were performed, and their tissues were harvested. During the second set of experiments, after rearing the mice under the above conditions for 3 weeks, microelectrodes were implanted into the CA1 of the hippocampus. After recovery for 1 week under the respective environmental conditions, the mice were allocated to four groups, as in the first experiments. The basal (home cage) and task (fear conditioning)-related local field potential (LFP) were recorded. In the present study, LPS significantly induced a decrease in the freezing to context and discrimination ratio. However, only the freezing to context was further reduced by prior chronic stress. This suggested that chronic stress worsened fear memory impairment induced by acute LPS challenge. Consistent with the change in fear memory, LPS significantly decreased the expression of PV in the CA1, which was further downregulated by prior chronic stress. On the other hand, LPS inhibited the power of both basal and task-related θ oscillations in the CA1. Only the task-related θ power was further decreased by chronic stress. In conclusion, our study showed that the phenotypic loss of PV interneurons and the decrease in the power of the θ oscillation in the CA1 aggravated by chronic stress may mediate, at least in part, the deterioration of fear memory impairment induced by LPS.
Collapse
Affiliation(s)
- Ming-Jie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Pentoxifylline Can Reduce the Inflammation Caused by LPS after Inhibiting Autophagy in RAW264.7 Macrophage Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6698366. [PMID: 33816630 PMCID: PMC7987419 DOI: 10.1155/2021/6698366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Pentoxifylline (PTX), as a methylxanthine derivative and nonspecific phosphodiesterase inhibitor, has the characteristics of anti-inflammatory and partial inflammatory process inhibition. However, the regulatory effect of PTX on inflammatory cytokines is unclear. Autophagy can regulate the activation of inflammasomes and then inhibit inflammation as previously described. Our study attempts to explore the relationship between autophagy and PTX-mediated regulation of inflammasome suppression. Macrophage-like RAW264.7 cells were studied as the in vitro macrophage model. We investigated the anti-inflammatory effect caused by PTX with time and dose response against the LPS-induced inflammatory factors (TNF-α, IL-1β). Western blot detected the levels of autophagy-related proteins Beclin-1 and LC3, as well as the signal pathways of AMPK and p-AMPK. Fluorescence microscope and transmission electron microscope were used to observe the autophagy bodies in cells influenced by PTX. The autophagy in cells inhibited by PTX exhibited dose- and time-dependent effects, and PTX alleviated LPS-induced inflammation caused by retarded autophagy. Furthermore, in RAW264.7 macrophage cells, our data indicated that AMPK signaling perhaps functioned importantly in repressed autophagy. In addition, in RAW264.7 macrophages, our data suggested that AMPK signaling might play an important role in inhibiting autophagy during the process of PTX ameliorating LPS-mediated inflammation.
Collapse
|
33
|
Luo OD, Kwiecien-Delaney B, Martin P, Foster JA, Sidor MM. The effect of early life immune challenge on adult forced swim test performance and hippocampal neurogenesis. J Neuroimmunol 2021; 354:577530. [PMID: 33744708 DOI: 10.1016/j.jneuroim.2021.577530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Many psychiatric diseases can be considered neurodevelopmental in nature and accumulating evidence links immune system dysfunction to disease etiology. Yet, it is currently unknown how the immune system alters brain function through development to increase susceptibility to psychiatric illness. Neonatal immune challenge in rodents is a neurodevelopmental model that has been associated with long-term molecular and behavioural changes in stress-reactivity. As enhanced stress-reactivity is associated with the emergence of depressive-like behaviours concurrent with hippocampal pathology, we measured depressive-like behaviour in the forced swim test and hippocampal neurogenesis in adult mice neonatally exposed to lipopolysaccharide LPS; 0.05 mg/kg, i.p. on postnatal days 3 and 5. As there are important functional differences along the ventral-dorsal hippocampus axis, ventral and dorsal hippocampal neurogenesis were measured separately. Our findings reveal a sexually-dimorphic response to early-life LPS challenge. Male LPS-mice spent less time immobile in the forced swim test, suggesting altered reactivity to swim stress. This was accompanied by an increase in doublecortin-positive cells in the dorsal hippocampus of female mice. These findings demonstrate that exposure to an immune challenge during critical developmental time periods leads to long-term sexually-dimorphic alterations in stress-reactivity that are accompanied by changes to adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Owen D Luo
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | | | - Patrick Martin
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jane A Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Michelle M Sidor
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Monterrosas-Brisson N, Zagal-Guzmán M, Zamilpa A, Jiménez-Ferrer E, Avilés-Flores M, Fuentes-Mata M, Herrera-Ruiz M. Effect of Argemone mexicana on Local Edema and LPS-Induced Neuroinflammation. Chem Biodivers 2021; 18:e2000790. [PMID: 33527713 DOI: 10.1002/cbdv.202000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
Abstract
Argemone mexicana L. is a widely used plant in Mexican traditional medicine to treat inflammatory and nervous medical conditions. It has been subjected to several pharmacological and chemical studies in which acute anti-inflammatory activity is indicated. This work aimed at finding an extract and fraction with anti-inflammatory activity by means of 2-O-tetradecanoylphorbol-13-acetate (TPA)-induced auricular edema. Afterward, the extract and the fraction were tested on neuroinflammation caused by lipopolysaccharides (LPS). Treatments obtained from A. mexicana included the methanolic extract (AmMeOH), a fraction extracted with ethyl acetate (AmAcOEt), and four sub-fractions (AmF-1 to AmF-4), which were evaluated in auricular edema with the TPA assay. Both treatments with the most significant inhibitory effect were employed to test these in the LPS neuroinflammation model. AmAcOEt and AmF-3 induced a higher inhibition of edema (%), and both diminished ear inflammation when viewed under a microscope. These treatments also raised an increase in spleen, but not in brain of mice with neuroinflammation. They were able to decrease the concentration of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in both organs. Furthermore, the accumulation of amyloid-β (Aβ) in hippocampus was not visible. AmF-3 contains the flavonoids isoquercetin, luteolin, and rutin, the former being the most concentrated.
Collapse
Affiliation(s)
- Nayeli Monterrosas-Brisson
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Mayra Zagal-Guzmán
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México.,Pharmacology Laboratory, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Colonia Centro, Xochitepec, Morelos, 62790, México
| | - Alejandro Zamilpa
- Pharmacology Laboratory, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Colonia Centro, Xochitepec, Morelos, 62790, México
| | - Enrique Jiménez-Ferrer
- Pharmacology Laboratory, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Colonia Centro, Xochitepec, Morelos, 62790, México
| | | | | | - Maribel Herrera-Ruiz
- Pharmacology Laboratory, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Colonia Centro, Xochitepec, Morelos, 62790, México
| |
Collapse
|
35
|
Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92:10-24. [PMID: 33181270 DOI: 10.1016/j.bbi.2020.11.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 01/24/2023] Open
Abstract
Previous studies have demonstrated a close association between an altered immune system and major depressive disorders, and inhibition of neuroinflammation may represent an alternative mechanism to treat depression. Recently, the anti-inflammatory activity of ibrutinib has been reported. However, the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied. Therefore, we aimed to elucidate the potential anti-depressive role and mechanism of ibrutinib against neuroinflammation-induced depression and synaptic defects. Our results showed that ibrutinib treatment significantly reduced lipopolysaccharide (LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-kB activation, decreasing proinflammatory cytokine levels, and normalizing redox signaling and its downstream components, including Nrf2, HO-1, and SOD2, as well as glial cell activation markers, such as Iba-1 and GFAP. Further, ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/Caspase-1 signaling. Interestingly, LPS reduced the number of dendritic spines and expression of BDNF, and synaptic-related markers, including PSD95, snap25, and synaptophysin, were improved by ibrutinib treatment in the hippocampal area of the mouse brain. In conclusion, our findings suggest that ibrutinib can alleviate neuroinflammation and synaptic defects, suggesting it has antidepressant potential against LPS-induced neuroinflammation and depression.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Yan Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China.
| | - Anlong Jiang
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Shishkina GT, Bannova AV, Komysheva NP, Dygalo NN. Anxiogenic-like effect of chronic lipopolysaccharide is associated with increased expression of matrix metalloproteinase 9 in the rat amygdala. Stress 2020; 23:708-714. [PMID: 32748675 DOI: 10.1080/10253890.2020.1793943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathways by which inflammatory stimuli influence behaviors can involve changes in neuronal plasticity, however, the evidence for this is still insufficient. This study aimed to evaluate the effects of chronic lipopolysaccharide (LPS) injected alone or together with tetracycline antibiotic doxycycline (Dox) on the levels of Iba-1, BDNF, Bcl-xL and MMP-9 in brain regions in relation to stress-induced behaviors in the elevated plus-maze (EPM). LPS injected to adult rats every 2 days for a total of 7 injections reduced body weight gain, increased spleen and adrenal weights, decreased locomotor activity, and increased anxiety-like behavior. These effects were associated with increased expression of Iba-1, a well-known marker for activated microglia, in most brain regions investigated. Co-treatment of LPS with Dox attenuated LPS-induced microglial activation and behavioral changes, supporting their relation to the neuroinflammation. LPS administration also produced pro-apoptotic changes in the brain. In the hypothalamus and striatum, the levels of anti-apoptotic protein Bcl-xL were decreased, whereas in the amygdala, a significant increase in MMP-9 protein levels was observed. The levels of Iba-1 as well as MMP-9 in the amygdala positively correlated with the numbers of defecation. The data suggest that mechanisms of anxiety associated with neuroinflammation may involve the increase in MMP-9 levels in the amygdala.
Collapse
Affiliation(s)
- Galina T Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Anita V Bannova
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Natalya P Komysheva
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Nikolay N Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
37
|
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, Murtaza I, Zhang Z, Yang X, Liu G, Li S. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69:e12667. [PMID: 32375205 DOI: 10.1111/jpi.12667] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening illness characterized by mood changes and high rates of suicide. Although the role of neuroinflammation in MMD has been studied, the mechanistic interplay between antidepressants, neuroinflammation, and autophagy is yet to be investigated. The present study investigated the effect of melatonin on LPS-induced neuroinflammation, depression, and autophagy impairment. Our results showed that in mice, lipopolysaccharide (LPS) treatment induced depressive-like behaviors and caused autophagy impairment by dysregulating ATG genes. Moreover, LPS treatment significantly increased the levels of cytokines (TNFα, IL-1β, IL-6), enhanced NF-ᴋB phosphorylation, caused glial (astrocytes and microglia) cell activation, dysregulated FOXO3a expression, increased the levels of redox signaling molecules such as ROS/TBARs, and altered expression of Nrf2, SOD2, and HO-1. Melatonin treatment significantly abolished the effects of LPS, as demonstrated by improved depressive-like behaviors, normalized autophagy-related gene expression, and reduced levels of cytokines. Further, we investigated the role of autophagy in LPS-induced depressive-like behavior and neuroinflammation using autophagy inhibitors 3-MA and Ly294002. Interestingly, inhibitor treatment significantly abolished and reversed the anti-depressive, pro-autophagy, and anti-inflammatory effects of melatonin. The present study concludes that the anti-depressive effects of melatonin in LPS-induced depression might be mediated via autophagy modulation through FOXO3a signaling.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir, Pakistan
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad., Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zaijun Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Ma H, Zhang Y, Wang J, Guo W, Hu G, Xie S, Yang Z, Liu J, Fu S. Palmatine attenuates LPS-induced inflammatory response in mouse mammary epithelial cells through inhibiting ERK1/2, P38 and Akt/NF-кB signalling pathways. J Anim Physiol Anim Nutr (Berl) 2020; 105:183-190. [PMID: 32865324 DOI: 10.1111/jpn.13440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
Palmatine has a wide range of pharmacological effects and anti-inflammatory function. However, the effect of palmatine on LPS-induced inflammatory response of mammary epithelial cells has not been reported. In this research, we studied the anti-inflammatory mechanism of palmatine in EpH4-Ev (mouse mammary epithelial cells). EpH4-Ev cells were pre-treated with palmatine and then incubated with LPS. Cells were collected for examining production of pro-inflammatory mediators by qRT-PCR, and the related inflammatory signalling pathway was detected through immunofluorescence and Western blot. The results found that palmatine could significantly reduce the expression of IL-6, TNF-α, IL-1β and COX-2 in EpH4-Ev cells. Research on mechanisms found that palmatine could significantly inhibit the protein levels of p-Akt, p-P65, p-ERK1/2 and p-P38 in EpH4-Ev cells. In conclusion, these data suggested that palmatine inhibits inflammatory response in LPS-induced EpH4-Ev cells via down-regulating Akt/ NF-кB, ERK1/2 and P38 signalling pathways.
Collapse
Affiliation(s)
- He Ma
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yufei Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shengnan Xie
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
39
|
Li SM, Li B, Zhang L, Zhang GF, Sun J, Ji MH, Yang JJ. A complement-microglial axis driving inhibitory synapse related protein loss might contribute to systemic inflammation-induced cognitive impairment. Int Immunopharmacol 2020; 87:106814. [PMID: 32707491 DOI: 10.1016/j.intimp.2020.106814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Systemic inflammation induces cognitive impairments via unclear mechanisms. Increasing evidence has suggested complement C3/C3a receptor signaling, a key component of innate immune pathogen defense, plays an important role in cognition and neurodegeneration, whereas its dysfunction is implicated in many neurological disorders. However, it remains unclear whether complement C3/C3a receptor signaling was involved in systemic inflammation-induced cognitive impairments. In the present study, we showed that hippocampal complement C3 levels in astrocytes and C3a receptor expressions in microglia were specifically up-regulated after lipopolysaccharide (LPS) injection. Interestingly, LPS selectively induced inhibitory but not excitatory synapse related protein loss. Notably, C3a receptor antagonist SB290157 trifluoroacetate attenuated LPS-induced hippocampal neuroinflammation and inhibitory synapse related protein loss, contributing to improved cognitive function. In conclusion, our study suggests that complement C3/C3a receptor signaling plays a key role in LPS-induced cognitive impairments, which may serve a therapeutic target for systemic inflammation related cognitive disorders.
Collapse
Affiliation(s)
- Shu-Ming Li
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Bin Li
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ling Zhang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
Zhang RR, Hu RD, Lu XY, Ding XY, Huang GY, Duan LX, Zhang SJ. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomed Pharmacother 2020; 130:110517. [PMID: 32688141 DOI: 10.1016/j.biopha.2020.110517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
The flower of Hibiscus syriacus Linn is a well-known traditional Chinese medicine (TCM) and health food in China, which has been used to treat dysentery, vaginal discharge, and hemorrhoids. In this study, five polyphenols (compounds 1-5) and five fatty acids (compounds 6-10) were isolated from the ethanol extract of the flower of H. syriacus. The isolated compounds were characterized by spectroscopic techniques. Polyphenols, an important type of natural product, have variety of biological activities. Here, we employed LPS or H2O2-treated SH-SY5Y cell models to test the neuroprotective effect of compounds 1-10. Results found compounds 1-5 (concentration range was around 20 μM on LPS model, concentration range was around 13 μM on H2O2 model), not compounds 6-10, exhibited neuroprotective effect in LPS or H2O2-treated SH-SY5Y cell. PCR analysis showed that compounds 1-5 can effectively improve the mRNA expression of synapse-related gene and neurotrophic factors (Syp, NGF and BDNF) in LPS-treated SH-SY5Y cell. In addition, compounds 1-5 decreased the levels of ROS and MDA and increased the activities of SOD, GSH-Px and CAT in LPS-treated SH-SY5Y cell. Furthermore, compounds 1-5 inhibited neuroinflammation (TNF-α, IL-1β and IL-6) in LPS-treated SH-SY5Y cell. In conclusion, the polyphenols in the flower of H. syriacus could be a promising candidate for preventive effect of neuroinflammation.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Dan Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ying Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Yong Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Xin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
41
|
Ulivieri M, Wierońska JM, Lionetto L, Martinello K, Cieslik P, Chocyk A, Curto M, Di Menna L, Iacovelli L, Traficante A, Liberatore F, Mascio G, Antenucci N, Giannino G, Vergassola M, Pittaluga A, Bruno V, Battaglia G, Fucile S, Simmaco M, Nicoletti F, Pilc A, Fazio F. The Trace Kynurenine, Cinnabarinic Acid, Displays Potent Antipsychotic-Like Activity in Mice and Its Levels Are Reduced in the Prefrontal Cortex of Individuals Affected by Schizophrenia. Schizophr Bull 2020; 46:1471-1481. [PMID: 32506121 PMCID: PMC7846105 DOI: 10.1093/schbul/sbaa074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | | | - Luana Lionetto
- Department of Medical-Surgical Sciences and Translational Medicine, DiMA (Advanced Molecular Diagnosis), Sant’Andrea Hospital—Sapienza University, Rome, Italy
| | | | - Paulina Cieslik
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Chocyk
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Martina Curto
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy,Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy,Bipolar & Psychotic Disorders Program, McLean Hospital, Belmont, MA
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | | | - Nico Antenucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Giannino
- School of Medicine and Psychology NESMOS Department, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, DiFAR, University of Genoa, Genoa, Italy,I.R.C.C.S. San Martino Hospital, Genoa, Italy
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sergio Fucile
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Maurizio Simmaco
- Department of Medical-Surgical Sciences and Translational Medicine, DiMA (Advanced Molecular Diagnosis), Sant’Andrea Hospital—Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Francesco Fazio
- I.R.C.C.S. Neuromed, Pozzilli, Italy,To whom correspondence should be addressed; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, room 610, New York City, NY, USA; tel: +1-718-430-2160, fax: +1-718-430-8932, e-mail:
| |
Collapse
|
42
|
Pires JM, Foresti ML, Silva CS, Rêgo DB, Calió ML, Mosini AC, Nakamura TKE, Leslie ATF, Mello LE. Lipopolysaccharide-Induced Systemic Inflammation in the Neonatal Period Increases Microglial Density and Oxidative Stress in the Cerebellum of Adult Rats. Front Cell Neurosci 2020; 14:142. [PMID: 32581717 PMCID: PMC7283979 DOI: 10.3389/fncel.2020.00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory processes occurring in the perinatal period may affect different brain regions, resulting in neurologic sequelae. Injection of lipopolysaccharide (LPS) at different neurodevelopmental stages produces long-term consequences in several brain structures, but there is scarce evidence regarding alterations in the cerebellum. The aim of this study was to evaluate the long-term consequences on the cerebellum of a systemic inflammatory process induced by neonatal LPS injection. For this, neonatal rats were randomly assigned to three different groups: naïve, sham, and LPS. Saline (sham group) or LPS solution (1 mg/kg) was intraperitoneally injected on alternate postnatal days (PN) PN1, PN3, PN5, and PN7. Spontaneous activity was evaluated with the open field test in adulthood. The cerebellum was evaluated for different parameters: microglial and Purkinje cell densities, oxidative stress levels, and tumor necrosis factor alpha (TNF-α) mRNA expression. Our results show that administration of LPS did not result in altered spontaneous activity in adult animals. Our data also indicate increased oxidative stress in the cerebellum, as evidenced by an increase in superoxide fluorescence by dihydroethidium (DHE) indicator. Stereological analyses indicated increased microglial density in the cerebellum that was not accompanied by Purkinje cell loss or altered TNF-α expression in adult animals. Interestingly, Purkinje cells ectopically positioned in the granular and molecular layers of the cerebellum were observed in animals of the LPS group. Our data suggest that neonatal LPS exposure causes persistent cellular and molecular changes to the cerebellum, indicating the susceptibility of this region to systemic inflammatory insults in infancy. Further investigation of the consequences of these changes and the development of strategies to avoid those should be subject of future studies.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | | | | | | | - Amanda Cristina Mosini
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Associação Brasileira de Epilepsia, São Paulo, Brazil
| | | | | | - Luiz Eugênio Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Zhang C, Yu P, Ma J, Zhu L, Xu A, Zhang J. Damage and Phenotype Change in PC12 Cells Induced by Lipopolysaccharide Can Be Inhibited by Antioxidants Through Reduced Cytoskeleton Protein Synthesis. Inflammation 2020; 42:2246-2256. [PMID: 31493038 DOI: 10.1007/s10753-019-01089-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study investigated changes in cellular phenotype and oxidative stress during the inflammatory response in PC12 cells stimulated by lipopolysaccharide (LPS) and assessed the effects of minocycline, astragalus (AST), and baicalin on inflammation. PC12 cells were exposed to LPS with or without minocycline, AST, or baicalin. Cell viability was measured by a thiazolyl blue tetrazolium bromide (MTT) assay. Contrast and laser confocal microscopy were used to analyze changes in cellular phenotype and cytoskeleton synthesis. Western blotting tested the expression of α7nAChR and vimentin. Inhibitory ratio of superoxide dismutase (SOD) activity and leakage of lactate dehydrogenase (LDH) were detected to evaluate cellular oxidative stress. Results showed that LPS could attenuate PC12 cell viability in a time- and dose-dependent manner, which could be rescued by minocycline. In addition, minocycline could reverse PC12 cell phenotypic change and the synthesis of the mesenchymal cytoskeleton protein vimentin, both induced by LPS. During LPS-initiated inflammation, α7nAChR and vimentin expression were obviously inhibited by minocycline, AST, or baicalin. The inhibitory rate of SOD activity and LDH leakage in PC12 cells were increased by LPS and attenuated significantly when exposed to minocycline, AST, or baicalin. These findings suggest phenotype change, altered cytoskeleton protein synthesis, and oxidative stress are all involved in the inflammatory response in PC12 cells during which α7 nicotinic acetylcholine receptor (α7nAChR) is induced by LPS stimulation. Minocycline, AST, and baicalin have a protective effect against PC12 cell injury, acting as antioxidants and inhibitors of mesenchymal proteins.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Pharmacy, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Ping Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
44
|
Bowyer JF, Sarkar S, Burks SM, Hess JN, Tolani S, O'Callaghan JP, Hanig JP. Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 2020; 77:181-192. [PMID: 32014511 DOI: 10.1016/j.neuro.2020.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Bacterial cell wall endotoxins, i.e. lipopolysaccharides (LPS), are some of the original compounds shown to evoke the classic signs of systemic inflammation/innate immune response and neuroinflammation. The term neuroinflammation often is used to infer the elaboration of proinflammatory mediators by microglia elicited by neuronal targeted activity. However, it also is possible that the microglia are responding to vasculature through several signaling mechanisms. Microglial activation relative to the vasculature in the hippocampus and parietal cortex was determined after an acute exposure of a single subcutaneous injection of 2 mg/kg LPS. Antibodies to allograft inflammatory factor (Aif1, a.k.a. Iba1) were used to track and quantify morphological changes in microglia. Immunostaining of platelet/endothelial cell adhesion molecule 1 (Pecam1, a.k.a. Cd31) was used to visualize vasculature in the forebrain and glial acidic fibrillary protein (GFAP) to visualize astrocytes. Neuroinflammation and other aspects of neurotoxicity were evaluated histologically at 3 h, 6 h, 12 h, 24 h, 3 d and 14 d following LPS exposure. LPS did not cause neurodegeneration as determined by Fluoro Jade C labeling. Also, there were no signs of mouse IgG leakage from brain vasculature due to LPS. Some changes in microglia size occurred at 6 h, but by 12 h microglial activation had begun with the combined soma and proximal processes size increasing significantly (1.5-fold). At 24 h, almost all the microglia soma and proximal processes in the hippocampus, parietal cortex, and thalamus were closely associated with the vasculature and had increased almost 2.0-fold in size. In many areas where microglia were juxtaposed to vasculature, astrocytic endfeet appeared to be displaced. The microglial activation had subsided slightly by 3 d with microglial size 1.6-fold that of control. We hypothesize that acute LPS activation can result in vascular mediated microglial responses through several mechanisms: 1) binding to Cd14 and Tlr4 receptors on microglia processes residing on vasculature; 2) damaging vasculature and causing the release of cytokines; and 3) possibly astrocytic endfeet damage resulting in cytokine release. These acute responses may serve as an adaptive mechanism to exposure to circulating LPS where the microglia surround the vasculature. This could further prevent the pathogen(s) circulating in blood from entering the brain. However, diverting microglial interactions away from synaptic remodeling and other types of microglial interactions with neurons may have adverse effects on neuronal function.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA.
| | - Susan M Burks
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Jade N Hess
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Serena Tolani
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, WV 26505, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/ FDA Silver Spring, MD 20993, USA
| |
Collapse
|
45
|
Hui B, Yao X, Zhang L, Zhou Q. Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1761-1768. [PMID: 31915845 DOI: 10.1007/s00210-019-01775-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Abnormal neuroinflammation ignited by overproduction of chemokines and cytokines via microglial cells can induce the occurrence and development of neurodegenerative disorders. The aim of this study is to investigate the effects of dexamethasone sodium phosphate (Dex-SP) on chemokine and cytokine secretion in lipopolysaccharide (LPS)-activated microglial cells. LPS markedly enhanced the secretion of pro-inflammatory factors such as regulated on activation, normal T cell expressed and secreted (RANTES), transforming growth factor beta-β1 (TGF-β1) and nitric oxide (NO), but decreased the production of macrophage inflammatory protein-1α (MIP-1α) and interleukin 10 (IL-10) in BV-2 microglial cells. Furthermore, LPS increased BV-2 microglial cell migration. However, Dex-SP treatment had the opposite effect, dampening the secretion of RANTES, TGF-β1, and NO, while increasing the production of MIP-1α and IL-10 and blocking migration of LPS-stimulated BV-2 microglial cells. Furthermore, Dex-SP markedly suppressed the LPS-induced degradation of IRAK-1 and IRAK-4, and blocked the activation in TRAF6, p-TAK1, and p-JNK in BV-2 microglial cells. These results showed that Dex-SP inhibited the neuroinflammatory response and migration in LPS-activated BV-2 microglia by inhibiting the secretion of RANTES, TGF-β1, and NO and increasing the production of MIP-1α and IL-10. The molecular mechanism of Dex-SP may be associated with inhibition of TRAF6/TAK-1/JNK signaling pathways mediated by IRAK-1 and IRAK-4.
Collapse
Affiliation(s)
- Bin Hui
- College of Pharmacy, Shanghai University of Medical & Health Sciences, Shanghai, China
- Health School attached to Shanghai University of Medical & Health Sciences, Shanghai, China
| | - Xin Yao
- Jiyuan Shi People's Hospital, Jiyuan, Henan, China
| | - Liping Zhang
- Department of Emergency Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Qinhua Zhou
- College of Medicine, Jiaxing University, Jiaxing, China.
| |
Collapse
|
46
|
Romo-Araiza A, Ibarra A. Prebiotics and probiotics as potential therapy for cognitive impairment. Med Hypotheses 2019; 134:109410. [PMID: 31627123 DOI: 10.1016/j.mehy.2019.109410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Cognitive functions, such as learning and memory, may be impaired during aging. Age-related cognitive impairment is associated with selective neuronal loss, oxidative changes that lead to microglia activation and neuroinflammation. In addition, it is associated to alteration reduction in trophic factors affecting neurogenesis and synaptic plasticity. In recent years, attention has been paid to the relationship between gut microbiota and brain. In aging, there is an alteration in microbiota, gut microbiota diversity is perturbed with an increase in pathogenic bacteria at the expense of beneficial ones. Dysbiosis may lead to chronic inflammation, and a decrease in bacteria metabolites such as short-chain fatty acids which have been related to an upregulation of neurotrophic factors. Supplementation with prebiotics and probiotics can modulate gut microbiota, returning it to a more physiological state; thus, they may be considered as a possible treatment for age-related cognitive impairment.
Collapse
Affiliation(s)
- Alejandra Romo-Araiza
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México C.P. 52786, Mexico
| | - Antonio Ibarra
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México C.P. 52786, Mexico.
| |
Collapse
|
47
|
Paukszto L, Mikolajczyk A, Szeszko K, Smolinska N, Jastrzebski JP, Kaminski T. Transcription analysis of the response of the porcine adrenal cortex to a single subclinical dose of lipopolysaccharide from Salmonella Enteritidis. Int J Biol Macromol 2019; 141:1228-1245. [PMID: 31520703 DOI: 10.1016/j.ijbiomac.2019.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin which can participate in the induction of inflammatory responses. LPS may also play a significant role in some neurodegenerative, oncological and metabolic disorders. The aim of the current study was to determine the effect of a subclinical low single dose of LPS from Salmonella Enteritidis administrated in vivo on the transcriptome of porcine adrenal cortex cells, especially gene expression levels, long non-coding RNA (lncRNA) profiles, alternative splicing events and RNA editing sites using RNA-seq technology. The subclinical dose of LPS changed the expression of 354 genes, 27 lncRNA loci and other unclassified RNAs. An analysis of alternative splicing events revealed 104 genes with differentially expressed splice junction sites, and the single nucleotide variant calling approach supported the identification of 376 canonical RNA editing candidates and 7249 allele-specific expression variants. The obtained results suggest that the RIG-I-like receptor signaling pathway, may play a more important role than the Toll-like signaling pathway after the administration of a subclinical dose of LPS. Single subclinical dose of LPS can affect the expression profiles of genes coding peptide hormones, steroidogenic enzymes and transcriptional factors, and modulate the endocrine functions of the gland.
Collapse
Affiliation(s)
- Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Anita Mikolajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
48
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
49
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
50
|
Perez-Dominguez M, Ávila-Muñoz E, Domínguez-Rivas E, Zepeda A. The detrimental effects of lipopolysaccharide-induced neuroinflammation on adult hippocampal neurogenesis depend on the duration of the pro-inflammatory response. Neural Regen Res 2019; 14:817-825. [PMID: 30688267 PMCID: PMC6375041 DOI: 10.4103/1673-5374.249229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide (LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections (one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections (one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued long-term hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.
Collapse
Affiliation(s)
- Martha Perez-Dominguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Evangelina Ávila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Eduardo Domínguez-Rivas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|