1
|
Mayorga-Martino V, Mansurova M, Calla-Quispe E, Ibáñez AJ. Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39679754 DOI: 10.1002/mas.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Chemical signaling is crucial during the insect lifespan, significantly affecting their survival, reproduction, and ecological interactions. Unfortunately, most chemical signals insects use are impossible for humans to perceive directly. Hence, mass spectrometry has become a vital tool by offering vital insight into the underlying chemical and biochemical processes in various variety of insect activities, such as communication, mate recognition, mating behavior, and adaptation (defense/attack mechanisms), among others. Here, we review different mass spectrometry-based strategies used to gain a deeper understanding of the chemicals involved in shaping the complex behaviors among insects and mass spectrometry-based research in insects that have direct impact in global economic activities.
Collapse
Affiliation(s)
- Vanessa Mayorga-Martino
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Madina Mansurova
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Erika Calla-Quispe
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| |
Collapse
|
2
|
Pei XJ, Schal C, Fan YL. Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives. J Chem Ecol 2024; 50:955-968. [PMID: 38727793 DOI: 10.1007/s10886-024-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 01/11/2025]
Abstract
Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.
Collapse
Affiliation(s)
- Xiao-Jin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of the Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
3
|
de la Hera O, Alonso RM. Differentiation of Vespa velutina nigrithorax Colonies Using Volatile Organic Compound Profiles of Hornets and Nests. INSECTS 2024; 15:811. [PMID: 39452386 PMCID: PMC11508544 DOI: 10.3390/insects15100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Vespa velutina (Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the individuals that make up the colony. Chemical signals (pheromones) are the most common means of communication used by these insects to alarm and differentiate between individuals belonging or not to the colony. In this work, profiles of volatile organic compounds were obtained from the hornets and the external cover of four secondary nests located in the Basque Country. The obtained profiles were treated using chemometric tools. The grouping of hornets and nests according to the different colonies and geographical location was observed. In total, 37 compounds were found in common in hornets and nests. Most of them have been reported in the literature as belonging to different insects and plant species. This would corroborate the transfer of chemical compounds between the nest and the hornets' nest and vice versa. This information could be applied to the development of more efficient control methods for this invasive species, such as attractive traps or baits containing the relevant compounds.
Collapse
Affiliation(s)
| | - Rosa María Alonso
- FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain;
| |
Collapse
|
4
|
Vrkoslav V, Horká P, Jindřich J, Buděšínský M, Cvačka J. Silver Ion High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons. Molecules 2023; 28:molecules28093794. [PMID: 37175204 PMCID: PMC10179885 DOI: 10.3390/molecules28093794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Aliphatic hydrocarbons (HCs) are usually analyzed by gas chromatography (GC) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. However, analyzing long-chain HCs by GC is difficult because of their low volatility and the risk of decomposition at high temperatures. MALDI cannot distinguish between isomeric HCs. An alternative approach based on silver ion high-performance liquid chromatography (Ag-HPLC) is shown here. The separation of HC standards and cuticular HCs was accomplished using two ChromSpher Lipids columns connected in series. A gradient elution of the analytes was optimized using mobile phases prepared from hexane (or isooctane) and acetonitrile, 2-propanol, or toluene. HCs were detected by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Good separation of the analytes according to the number of double bonds, cis/trans geometry, and position of double bonds was achieved. The retention times increased with the number of double bonds, and trans isomers eluted ahead of cis isomers. The mobile phase significantly affected the mass spectra of HCs. Depending on the mobile phase composition, deprotonated molecules, molecular ions, protonated molecules, and various solvent-related adducts of HCs were observed. The optimized Ag-HPLC/APCI-MS was applied for characterizing cuticular HCs from a flesh fly, Neobellieria bullata, and cockroach, Periplaneta americana. The method made it possible to detect a significantly higher number of HCs than previously reported for GC or MALDI-MS. Unsaturated HCs were frequently detected as isomers differing by double-bond position(s). Minor HCs with trans double bonds were found beside the prevailing cis isomers. Ag-HPLC/APCI-MS has great potential to become a new tool in chemical ecology for studying cuticular HCs.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
| | - Petra Horká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| | - Jindřich Jindřich
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
Hasnaoui B, Diarra AZ, Berenger JM, Medkour H, Benakhla A, Mediannikov O, Parola P. Use of the proteomic tool MALDI-TOF MS in termite identification. Sci Rep 2022; 12:718. [PMID: 35031655 PMCID: PMC8760289 DOI: 10.1038/s41598-021-04574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has proved effective for the identification of many arthropods. A total of 432 termite specimens were collected in Mali, Cote d’Ivoire, Togo, Senegal, Switzerland and France. Morphologically, 22 species were identified, including Ancistrotermes cavithorax, Amitermes evuncifer, Cryptotermes brevis, Cubitermes orthognathus, Kalotermes flavicollis, Macrotermes bellicosus, Macrotermes herus, Macrotermes ivorensis, Macrotermes subhyalinus, Microcerotermes parvus, Microtermes sp., Odontotermes latericius, Procubitermes sjostedti, Promirotermes holmgreni, Reticulitermes grassei, Reticulitermes lucifugus, Reticulitermes santonensis, Trinervitermes geminatus, Trinervitermes occidentalis, Trinervitermes togoensis, Trinervitermes sp., Trinervitermes trinervoides and Trinervitermes trinervius. Analysis of MALDI-TOF MS spectra profiles from termites revealed that all were of high quality, with intra-species reproducibility and inter-species specificity. Blind testing of the spectra of 389 termites against our updated database with the spectra of 43 specimens of different termite species revealed that all were correctly identified with log score values (LSVs) ranging from 1.65 to 2.851, mean 2.290 ± 0.225, median 2.299, and 98.4% (383) had LSVs > 1.8. This study is the first on the use of MALDI-TOF for termite identification and shows its importance as a tool for arthropod taxonomy and reinforces the idea that MALDI-TOF MS is a promising tool in the field of entomology.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hacène Medkour
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Ahmed Benakhla
- Département des Sciences Vétérinaire, Université Chadli Bendjdid, 36000, El Tarf, Algeria
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
6
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
7
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
8
|
Scolari F, Valerio F, Benelli G, Papadopoulos NT, Vaníčková L. Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives. INSECTS 2021; 12:insects12050408. [PMID: 33946603 PMCID: PMC8147262 DOI: 10.3390/insects12050408] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
The Dipteran family Tephritidae (true fruit flies) comprises more than 5000 species classified in 500 genera distributed worldwide. Tephritidae include devastating agricultural pests and highly invasive species whose spread is currently facilitated by globalization, international trade and human mobility. The ability to identify and exploit a wide range of host plants for oviposition, as well as effective and diversified reproductive strategies, are among the key features supporting tephritid biological success. Intraspecific communication involves the exchange of a complex set of sensory cues that are species- and sex-specific. Chemical signals, which are standing out in tephritid communication, comprise long-distance pheromones emitted by one or both sexes, cuticular hydrocarbons with limited volatility deposited on the surrounding substrate or on the insect body regulating medium- to short-distance communication, and host-marking compounds deposited on the fruit after oviposition. In this review, the current knowledge on tephritid chemical communication was analysed with a special emphasis on fruit fly pest species belonging to the Anastrepha, Bactrocera, Ceratitis, and Rhagoletis genera. The multidisciplinary approaches adopted for characterising tephritid semiochemicals, and the real-world applications and challenges for Integrated Pest Management (IPM) and biological control strategies are critically discussed. Future perspectives for targeted research on fruit fly chemical communication are highlighted.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy;
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Nikos T. Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece;
| | - Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| |
Collapse
|
9
|
Moore HE, Hall MJR, Drijfhout FP, Cody RB, Whitmore D. Cuticular hydrocarbons for identifying Sarcophagidae (Diptera). Sci Rep 2021; 11:7732. [PMID: 33833323 PMCID: PMC8032779 DOI: 10.1038/s41598-021-87221-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
The composition and quantity of insect cuticular hydrocarbons (CHCs) can be species-specific as well as sexually dimorphic within species. CHC analysis has been previously used for identification and ageing purposes for several insect orders including true flies (Diptera). Here, we analysed the CHC chemical profiles of adult males and females of eleven species of flesh flies belonging to the genus Sarcophaga Meigen (Sarcophagidae), namely Sarcophaga africa (Wiedemann), S. agnata Rondani, S. argyrostoma Robineau-Desvoidy, S. carnaria (Linnaeus), S. crassipalpis Macquart, S. melanura Meigen, S. pumila Meigen, S. teretirostris Pandellé, S. subvicina Rohdendorf, S. vagans Meigen and S. variegata (Scopoli). Cuticular hydrocarbons extracted from pinned specimens from the collections of the Natural History Museum, London using a customised extraction technique were analysed using Gas Chromatography-Mass Spectrometry. Time of preservation prior to extraction ranged between a few weeks to over one hundred years. CHC profiles (1) allowed reliable identification of a large majority of specimens, (2) differed between males and females of the same species, (3) reliably associated males and females of the same species, provided sufficient replicates (up to 10) of each sex were analysed, and (4) identified specimens preserved for up to over one hundred years prior to extraction.
Collapse
Affiliation(s)
- Hannah E Moore
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Wiltshire, SN6 8LA, UK.
| | - Martin J R Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Falko P Drijfhout
- Chemical Ecology Group, School of Chemical and Physical Science, Keele University, Keele, ST5 5BG, England, UK
| | - Robert B Cody
- JEOL USA, Inc. 11 Dearborn Rd., Peabody, MA, 01969, USA
| | - Daniel Whitmore
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany
| |
Collapse
|
10
|
Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:52-59. [PMID: 31051237 DOI: 10.1016/j.ibmb.2019.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.
Collapse
Affiliation(s)
- Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Biology, University of Crete, VassilikaVouton, 71409, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
11
|
Bien T, Gadau J, Schnapp A, Yew JY, Sievert C, Dreisewerd K. Detection of very long-chain hydrocarbons by laser mass spectrometry reveals novel species-, sex-, and age-dependent differences in the cuticular profiles of three Nasonia species. Anal Bioanal Chem 2019; 411:2981-2993. [PMID: 30957203 DOI: 10.1007/s00216-019-01736-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
Long-chain cuticular hydrocarbons (CHC) are key components of chemical communication in many insects. The parasitoid jewel wasps from the genus Nasonia use their CHC profile as sex pheromone and for species recognition. The standard analytical tool to analyze CHC is gas chromatography coupled with mass spectrometric detection (GC/MS). This method reliably identifies short- to long-chain alkanes and alkenes, but CHC with more than 40 carbon atoms are usually not detected. Here, we applied two laser mass spectrometry (MS) techniques, namely direct laser desorption/ionization (d)LDI and silver-assisted (Ag-)LDI MS, respectively, to analyze CHC profiles of N. vitripennis, N. giraulti, and N. longicornis directly from the cuticle or extracts. Furthermore, we applied direct analysis in real-time (DART) MS as another orthogonal technique for extracts. The three methods corroborated previous results based on GC/MS, i.e., the production of CHC with carbon numbers between C25 and C40. However, we discovered a novel series of long-chain CHC ranging from C41 to C51/C52. Additionally, several previously unreported singly and doubly unsaturated alkenes in the C31-C39 range were found. Use of principal component analysis (PCA) revealed that the composition of the newly discovered CHC varies significantly between species, sex, and age of the animals. Our study adds to the growing literature on the presence of very long-chain CHC in insects and hints at putative roles in insect communication. Graphical abstract.
Collapse
Affiliation(s)
- Tanja Bien
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Andreas Schnapp
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Christian Sievert
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany. .,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
12
|
Bichang'a GB, Lage JLD, Sambai K, Mule S, Ru BL, Kaiser L, Juma G, Maina EN, Calatayud PA. Salivary α-Amylase of Stem Borer Hosts Determines Host Recognition and Acceptance for Oviposition by Cotesia spp. (Hymenoptera, Braconidae). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Menzel F, Blaimer BB, Schmitt T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc Biol Sci 2018; 284:rspb.2016.1727. [PMID: 28298343 DOI: 10.1098/rspb.2016.1727] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/08/2016] [Indexed: 11/12/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures. Molecule length constrained CHC composition: long-chain profiles contained fewer linear alkanes, but more hydrocarbons with disruptive features in the molecule. This is probably owing to selection on the physiology to build a semi-fluid cuticular layer, which is necessary for waterproofing and communication. CHC composition also depended on the precipitation in the ants' habitats. Species from wet climates had more alkenes and fewer dimethyl alkanes than those from drier habitats, which can be explained by different waterproofing capacities of these compounds. By contrast, temperature did not affect CHC composition. Mutualistically associated (parabiotic) species possessed profiles highly distinct from non-associated species. Our study is, to our knowledge, the first to show systematic impacts of physiological, climatic and biotic factors on quantitative CHC composition across a global, multi-species dataset. We demonstrate how they jointly shape CHC profiles, and advance our understanding of the evolution of this complex functional trait in insects.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Zoology, Faculty of Biology, University of Mainz, Johannes-von-Müller-Weg 6, 55099 Mainz, Germany
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Kulkarni P, Dost M, Bulut ÖD, Welle A, Böcker S, Boland W, Svatoš A. Secondary ion mass spectrometry imaging and multivariate data analysis reveal co-aggregation patterns of Populus trichocarpa leaf surface compounds on a micrometer scale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:193-206. [PMID: 29117637 DOI: 10.1111/tpj.13763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 05/23/2023]
Abstract
Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M+● and M-● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C21 -C30 ), hydrocarbons (C25 -C33 ) and wax esters (WEs; C44 -C48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C23 or C29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface.
Collapse
Affiliation(s)
- Purva Kulkarni
- Lehrstuhl für Bioinformatik, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Mina Dost
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Özgül Demir Bulut
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Böcker
- Lehrstuhl für Bioinformatik, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| |
Collapse
|
15
|
Smith AA, Millar JG, Suarez AV. Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of Odontomachus trap-jaw ants. ACTA ACUST UNITED AC 2016; 219:419-30. [PMID: 26847561 DOI: 10.1242/jeb.128850] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lipid mixture that coats the insect cuticle contains a number of chemical signals. Mate choice in solitary insects is mediated by sexually dimorphic cuticular chemistry, whereas in eusocial insects, these profiles provide information through which colony members are identified and the fertility status of individuals is assessed. Profiles of queens and workers have been described for a number of eusocial species, but there have been few comparisons of fertility signals among closely related species. Additionally, sexual dimorphism in cuticular lipid profiles has only been reported in two species of ants. This study describes the cuticular chemical profiles of queens, workers and males of three species of Odontomachus trap-jaw ants: O. ruginodis, O. relictus and O. haematodus. These are compared with fertility signals and sexually dimorphic profiles already described from O. brunneus. We report that fertility signals are not conserved within this genus: chemical compounds that distinguish queens from workers vary in number and type among the species. Furthermore, the compounds that were most abundant in cuticular extracts of O. ruginodis queens relative to workers were novel 2,5-dialkyltetrahydrofurans. Bioassays of extracts of O. ruginodis queens indicate that the dialkyltetrahydrofuran and hydrocarbon fractions of the profile are likely to work synergistically in eliciting behavioral responses from workers. In contrast, cuticular lipids that distinguish males from females are more conserved across species, with isomeric and relative abundance variations comprising the main differences among species. Our results provide new insights into how these contact chemical signals may have arisen and evolved within eusocial insects.
Collapse
Affiliation(s)
- Adrian A Smith
- Research and Collections, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Andrew V Suarez
- Departments of Animal Biology and Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Schnapp A, Niehoff AC, Koch A, Dreisewerd K. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods 2016; 104:194-203. [DOI: 10.1016/j.ymeth.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022] Open
|
17
|
Gołębiowski M, Cerkowniak M, Ostachowska A, Boguś MI, Stepnowski P. Determination of cuticular and internal fatty acids ofChorthippus brunneusmales and females using HPLC-LLSD and GC-MS. Biomed Chromatogr 2016; 30:1318-23. [DOI: 10.1002/bmc.3688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; ul. Wita Stwosza 63 80-308 Gdańsk Poland
| | - Magdalena Cerkowniak
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; ul. Wita Stwosza 63 80-308 Gdańsk Poland
| | - Aleksandra Ostachowska
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; ul. Wita Stwosza 63 80-308 Gdańsk Poland
| | - Mieczysława I. Boguś
- Institute of Parasitology, Polish Academy of Sciences; Twarda 51/55 00-818 Warszawa Poland
| | - Piotr Stepnowski
- Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of Chemistry; University of Gdańsk; ul. Wita Stwosza 63 80-308 Gdańsk Poland
| |
Collapse
|
18
|
The application of “-omics” technologies for the classification and identification of animals. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0234-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
20
|
Kühbandner S, Ruther J. Solid Phase Micro-extraction (SPME) with In Situ Transesterification: An Easy Method for the Detection of Non-volatile Fatty Acid Derivatives on the Insect Cuticle. J Chem Ecol 2015; 41:584-92. [DOI: 10.1007/s10886-015-0592-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/27/2022]
|
21
|
Various chemical strategies to deceive ants in three Arhopala species (lepidoptera: Lycaenidae) exploiting Macaranga myrmecophytes. PLoS One 2015; 10:e0120652. [PMID: 25853675 PMCID: PMC4390302 DOI: 10.1371/journal.pone.0120652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/20/2015] [Indexed: 12/02/2022] Open
Abstract
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.
Collapse
|
22
|
Gerhardt H, Schmitt C, Betz O, Albert K, Lämmerhofer M. Contact solid-phase microextraction with uncoated glass and polydimethylsiloxane-coated fibers versus solvent sampling for the determination of hydrocarbons in adhesion secretions of Madagascar hissing cockroaches Gromphadorrhina portentosa (Blattodea) by gas chromatography-mass spectrometry. J Chromatogr A 2015; 1388:24-35. [PMID: 25728659 DOI: 10.1016/j.chroma.2015.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
Molecular profiles of adhesion secretions of Gromphadorrhina portentosa (Madagascar hissing cockroach, Blattodea) were investigated by gas chromatography mass spectrometry with particular focus on a comprehensive analysis of linear and branched hydrocarbons. For this purpose, secretions from the tarsi (feet), possibly contributing to adhesion on smooth surfaces, and control samples taken from the tibiae (lower legs), which contain general cuticular hydrocarbons that are supposed to be not involved in the biological adhesion function, were analyzed and their molecular fingerprints compared. A major analytical difficulty in such a study constitutes the representative, spatially controlled, precise and reproducible sampling from a living insect as well as the minute quantities of insect secretions on both tarsi and tibiae. Thus, three different in vivo sampling methods were compared in terms of sampling reproducibility and extraction efficiency by replicate measurement of samples from tarsi and tibiae. While contact solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS) fiber showed higher peak intensities, a self-made uncoated glass fiber had the best repeatability in contact-SPME sampling. Chromatographic profiles of these two contact-SPME sampling methods were statistically not significantly different. Inter-individual variances were larger than potentially existing minor differences in molecular patterns of distinct sampling methods. Sampling by solvent extraction was time consuming, showed lower sensitivities and was less reproducible. In general, sampling by contact-SPME with a cheap glass fiber turned out to be a viable alternative to PDMS-SPME sampling. Hydrocarbon patterns of the tarsal adhesion secretions were qualitatively similar to those of epicuticular hydrocarbon profiles of the tibiae. However, hydrocarbons were in general less abundant in tarsal secretions than secretions from tibiae.
Collapse
Affiliation(s)
- Heike Gerhardt
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Christian Schmitt
- Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Oliver Betz
- Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Klaus Albert
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Nunes TM, Mateus S, Favaris AP, Amaral MFZJ, von Zuben LG, Clososki GC, Bento JMS, Oldroyd BP, Silva R, Zucchi R, Silva DB, Lopes NP. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds. Sci Rep 2014; 4:7449. [PMID: 25502598 PMCID: PMC4264003 DOI: 10.1038/srep07449] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones.
Collapse
Affiliation(s)
- Túlio M Nunes
- 1] NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil [2] Departamento de Biologia, FFCLRP, Universidade de São Paulo, Brazil
| | - Sidnei Mateus
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Brazil
| | - Arodi P Favaris
- Departamento de Entomologia e Acarologia, ESALQ, Universidade de São Paulo, Brazil
| | - Mônica F Z J Amaral
- NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil
| | | | - Giuliano C Clososki
- NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil
| | - José M S Bento
- Departamento de Entomologia e Acarologia, ESALQ, Universidade de São Paulo, Brazil
| | - Benjamin P Oldroyd
- School of Biological Sciences A12, University of Sydney, NSW 2006, Australia
| | - Ricardo Silva
- NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil
| | - Ronaldo Zucchi
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Brazil
| | - Denise B Silva
- NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil
| | - Norberto P Lopes
- NPPNS, Departamento de Física e Química, FCFRP, Universidade de São Paulo, Brazil
| |
Collapse
|
24
|
Horká P, Vrkoslav V, Hanus R, Pecková K, Cvačka J. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:628-638. [PMID: 25044848 DOI: 10.1002/jms.3384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Lithium salts of organic aromatic acids (lithium benzoate, lithium salicylate, lithium vanillate, lithium 2,5-dimethoxybenzoate, lithium 2,5-dihydroxyterephthalate, lithium α-cyano-4-hydroxycinnamate and lithium sinapate) were synthesized and tested as potential matrices for the matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry analysis of hydrocarbons and wax esters. The analytes were desorbed using nitrogen laser (337.1 nm) and ionized via the attachment of a lithium cation, yielding [M + Li](+) adducts. The sample preparation and the experimental conditions were optimized for each matrix using stearyl behenate and n-triacontane standards. The performance of the new matrices in terms of signal intensity and reproducibility, the mass range occupied by matrix ions and the laser power threshold were studied and compared with a previously recommended lithium 2,5-dihydroxybenzoate matrix (LiDHB) (Cvačka and Svatoš, Rapid Commun. Mass Spectrom. 2003, 17, 2203). Several of the new matrices performed better than LiDHB. Lithium vanillate offered a 2-3 times and 7-9 times higher signal for wax esters and hydrocarbons, respectively. Also, the signal reproducibility improved substantially, making this matrix a suitable candidate for imaging applications. In addition, the diffuse reflectance spectra and solubility of the synthesized compounds were investigated and discussed with respect to the compound's ability to serve as MALDI matrices. The applicability of selected matrices was tested on natural samples of wax esters and hydrocarbons.
Collapse
Affiliation(s)
- Petra Horká
- Department of Analytical Chemistry, University Centre of Excellence 'Supramolecular Chemistry', Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Kaftan F, Vrkoslav V, Kynast P, Kulkarni P, Böcker S, Cvačka J, Knaden M, Svatoš A. Mass spectrometry imaging of surface lipids on intact Drosophila melanogaster flies. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:223-232. [PMID: 24619548 DOI: 10.1002/jms.3331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
The spatial distribution of neutral lipids and semiochemicals on the surface of six-day-old separately reared naive Drosophila melanogaster flies has been visualized and studied using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and laser-assisted desorption/ionization (LDI)-TOF imaging (MSI). Metal targets were designed for two-dimensional MSI of the surface of 3-D biological objects. Targets with either simple grooves or profiled holes designed to accurately accommodate the male and female bodies were fabricated. These grooves and especially holes ensured correct height fixation and spatial orientation of the flies on the targets after matrix application and sample drying. For LDI-TOF to be used, the flies were arranged into holes and fixed to a plane of the target using fast-setting glue. In MALDI-TOF mode, the flies were fixed as above and sprayed with a lithium 2,5-dihydroxybenzoate matrix using up to 100 airbrush spray cycles. The scanning electron microscopy images revealed that the deposits of matrix were homogenous and the matrix formed mostly into the clusters of crystals (40-80 µm) that were separated from each other by an uncovered cuticle surface (30-40 µm). The MSI using target with profiled holes provided superior results to the targets with simple grooves, eliminating the ion suppression/mass deviation due to the 3-D shape of the flies. Attention was paid to neutral lipids and other compounds including the male anti-attractant 11-cis-vaccenyl acetate for which the expected distribution with high concentration on the tip of the male abdomen was confirmed. The red and blue mass shift (PlusMinus1 colour scale) was observed associated with mass deviation predominantly between ±0.2 and 0.3 Da. We use in-house developed software for mass recalibration, to eliminate the mass deviation effects and help with the detection of low-intensity mass signals.
Collapse
Affiliation(s)
- Filip Kaftan
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, v. v. i., Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic; Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sutton PA, Wilde MJ, Martin SJ, Cvačka J, Vrkoslav V, Rowland SJ. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography–mass spectrometry. J Chromatogr A 2013; 1297:236-40. [DOI: 10.1016/j.chroma.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022]
|
27
|
Lenoir A, Cuvillier-Hot V, Devers S, Christidès JP, Montigny F. Ant cuticles: a trap for atmospheric phthalate contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:209-212. [PMID: 23137986 DOI: 10.1016/j.scitotenv.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
Phthalates are universal contaminants. We show that they are trapped by the ant cuticles and maintained permanently at a low level, generally less than 1% of cuticular components. They are found throughout the interior of the insect, predominately in the fat body, which suggests that they are adsorbed by the cuticle. In open plastic boxes free of phthalates the ants became more contaminated with phthalates over a period of time, whereas in closed glass jars they did not. This finding suggests that the main source of pollutants is the atmosphere. Different ant species collected from multiple places showed similar levels of contamination. It appeared that in some pristine places the contamination was lower, but this needs to be confirmed. Ants can be considered as bio-indicators of phthalate pollution.
Collapse
Affiliation(s)
- Alain Lenoir
- IRBI, Institut de recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François Rabelais, Tours, France.
| | | | | | | | | |
Collapse
|
28
|
Kühbandner S, Sperling S, Mori K, Ruther J. Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J Exp Biol 2012; 215:2471-8. [DOI: 10.1242/jeb.071217] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The surface of insects is covered by a complex mixture of cuticular hydrocarbons (CHCs) to prevent desiccation. In many species these lipids also have communicative functions, but often it is unknown which components are crucial for the behavioural response. Furthermore, it is often ignored that polar lipids also occur on the insects' cuticle and might interact with CHCs. In the parasitic wasp Lariophagus distinguendus, CHCs function as a contact sex pheromone eliciting wing-fanning in males. Interestingly, not only females but also newly emerged males have the pheromone, resulting regularly in homosexual courtship. However, males deactivate the pheromone within the first two days after emergence. This deactivation is accompanied by the disappearance of 3-methylheptacosane (3-MeC27) and some minor components from the CHC profile of males. Here we show that 3-MeC27 is a key component of the contact sex pheromone which, however, triggers courtship behaviour only if an olfactory background of other cuticular lipids is present. Males responded to (S)-3-MeC27 enantioselectively when applied to filter paper but on three-dimensional dummies both enantiomers were behaviourally active, suggesting that physical stimuli also play a role in sexual communication of the wasps. Finally, we report that triacylglycerides (TAGs) are also essential components of the pheromone, and present evidence that TAGs actually occur on the cuticle of L. distinguendus. Our data provide novel insights into the semiochemical function of cuticular lipids by showing that the bioactivity of CHCs may be influenced by the stereochemistry and a synergetic interaction with long time ignored TAGs.
Collapse
Affiliation(s)
- Stephan Kühbandner
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergej Sperling
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co., 4-2-1 Wakahagi, Inzai-shi, Chiba 270-1609, Japan
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
29
|
Ayasse M, Stökl J, Francke W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. PHYTOCHEMISTRY 2011; 72:1667-1677. [PMID: 21497864 DOI: 10.1016/j.phytochem.2011.03.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation. During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.
Collapse
Affiliation(s)
- Manfred Ayasse
- Institute for Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
30
|
Suarez E, Nguyen HP, Ortiz IP, Lee KJ, Kim SB, Krzywinski J, Schug KA. Matrix-assisted laser desorption/ionization-mass spectrometry of cuticular lipid profiles can differentiate sex, age, and mating status of Anopheles gambiae mosquitoes. Anal Chim Acta 2011; 706:157-63. [PMID: 21995923 DOI: 10.1016/j.aca.2011.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
Abstract
Malaria is a devastating mosquito-borne disease, which affects hundreds of millions of people each year. It is transmitted predominantly by Anopheles gambiae, whose females must be >10 days old to become infective. In this study, cuticular lipids from a laboratory strain of this mosquito species were analyzed using a mass spectrometry method to evaluate their utility for age, sex and mating status differentiation. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), in conjunction with an acenaphthene/silver nitrate matrix preparation, was shown to be 100% effective in classifying A. gambiae females into 1, 7-10, and 14 days of age. MALDI-MS analysis, supported by multivariate statistical methods, was also effective in detecting cuticular lipid differences between the sexes and between virgin and mated females. The technique requires further testing, but the obtained results suggest that MALDI-MS cuticular lipid spectra could be used for age grading of A. gambiae females with precision greater than with other available methods.
Collapse
Affiliation(s)
- Estrella Suarez
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Yew JY, Soltwisch J, Pirkl A, Dreisewerd K. Direct laser desorption ionization of endogenous and exogenous compounds from insect cuticles: practical and methodologic aspects. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1273-1284. [PMID: 21953110 DOI: 10.1007/s13361-011-0110-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/26/2011] [Accepted: 02/26/2011] [Indexed: 05/31/2023]
Abstract
We recently demonstrated that ultraviolet laser desorption ionization orthogonal time-of-flight mass spectrometry (UV-LDI o-TOF MS) could be used for the matrix-free analysis of cuticular lipids (unsaturated aliphatic and oxygen-containing hydrocarbons and triacylglycerides) directly from individual Drosophila melanogaster fruit flies (Yew, J. Y.; Dreisewerd, K.; Luftmann, H.; Pohlentz, G.; Kravitz, E. A., Curr. Biol. 2009, 19, 1245-1254). In this report, we show that the cuticular hydrocarbon, fatty acid, and triglyceride profiles of other insects and spiders can also be directly analyzed from intact body parts. Mandibular pheromones from the jaw of a queen honey bee are provided as one example. In addition, we describe analytical features and examine mechanisms underlying the methodology. Molecular ions of lipids can be generated by direct UV-LDI when non-endogenous compounds are applied to insect wings or other body parts. Current sensitivity limits are in the 10 pmol range. We show also the dependence of ion signal intensity on collisional cooling gas pressure in the ion source, laser wavelength (varied between 280-380 nm and set to 2.94 μm for infrared LDI), and laser pulse energy.
Collapse
Affiliation(s)
- Joanne Y Yew
- Institute of Medical Physics and Biophysics, Robert-Koch-Str. 31, 48149, Münster, Germany
| | | | | | | |
Collapse
|
32
|
Kroiss J, Svatoš A, Kaltenpoth M. Rapid identification of insect cuticular hydrocarbons using gas chromatography-ion-trap mass spectrometry. J Chem Ecol 2011; 37:420-7. [PMID: 21431866 DOI: 10.1007/s10886-011-9933-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/31/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Insect cuticular hydrocarbons (CHCs) are not only essential for desiccation resistance, they also play an important role as chemical signals and cues in social as well as solitary insects. The identification of CHCs is, therefore, crucial to an understanding of the chemical communication within and between insect species. We describe a method for rapid, simple, and unambiguous identification of CHCs using gas chromatography-ion-trap mass spectrometry. External ionization configuration in combination with a low ion-trap temperature resulted in dramatically increased intensities of molecular ions for alkanes, alkenes and alkadienes, and in high-mass fragmentation patterns with intense ions characteristic for methyl-branched hydrocarbons comparable to those obtained with quadrupole instruments. Additionally, we present an external chemical ionization-tandem mass-spectrometric method that allows for the determination of double-bond positions in alkenes and alkadienes without the need for derivatization prior to analysis.
Collapse
Affiliation(s)
- Johannes Kroiss
- Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | | | | |
Collapse
|
33
|
Yew JY, Dreisewerd K, de Oliveira CC, Etges WJ. Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. PLoS One 2011; 6:e16898. [PMID: 21369358 PMCID: PMC3038915 DOI: 10.1371/journal.pone.0016898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species.
Collapse
Affiliation(s)
- Joanne Y. Yew
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Cássia Cardoso de Oliveira
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - William J. Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010; 49:450-75. [PMID: 20643161 DOI: 10.1016/j.plipres.2010.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Although matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS)--often but not exclusively coupled with a time-of-flight (TOF) mass analyzer--is primarily established in the protein field, there is increasing evidence that MALDI MS is also very useful in lipid research: MALDI MS is fast, sensitive, tolerates sample impurities to a relatively high extent and provides very simple mass spectra without major fragmentation of the analyte. Additionally, MALDI MS devices originally purchased for "proteomics" can be used also for lipids without the need of major system alterations. After a short introduction into the method and the related ion-forming process, the MALDI mass spectrometric characteristics of the individual lipid (ranging from completely apolar hydrocarbons to complex glycolipids with the focus on glycerophospholipids) classes will be discussed and the progress achieved in the last years emphasized. Special attention will be paid to quantitative aspects of MALDI MS because this is normally considered to be the "weak" point of the method, particularly if complex lipid mixtures are to be analyzed. Although the detailed role of the matrix is not yet completely clear, it will be also explicitly shown that the careful choice of the matrix is crucial in order to be able to detect all compounds of interest. Two rather recent developments will be highlighted: "Imaging" MS is nowadays widely established and significant interest is paid in this context to the analysis of lipids because lipids ionize particularly well and are, thus, more sensitively detectable in tissue slices than other biomolecules such as proteins. It will also be shown that MALDI MS can be very easily combined with thin-layer chromatography (TLC) allowing the spatially-resolved screening of the entire TLC plate and the detection of lipids with a higher sensitivity than common staining protocols.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Medical Department, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, Germany
| | | | | |
Collapse
|
35
|
Vrkoslav V, Muck A, Cvacka J, Svatos A. MALDI imaging of neutral cuticular lipids in insects and plants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:220-31. [PMID: 19910210 DOI: 10.1016/j.jasms.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 05/24/2023]
Abstract
The spatial distribution of neutral lipids and hydrocarbons has been imaged using MALDI-TOF mass spectrometry on intact plant and insect surfaces, namely wings and legs of the gray flesh fly (Neobellieria bullata), wings of common fruit fly (Drosophila melanogaster), leaves of thale cress (Arabidopsis thaliana), and leaves of date palm tree (Phoenix sp.). The distribution of wax esters (WEs) and saturated and unsaturated hydrocarbons (HCs) was visualized. The samples were attached on a target and multiply sprayed with lithium or sodium 2,5-dihydroxybenzoate. The deposits were homogenous, consisting of small islands (50-150 microm) of matrix crystals separated by small areas (10 microm) of uncovered cuticle. Samples of N. bullata wings were found to contain HCs and WEs distributed close to their basal parts. The distribution of sodium and potassium ions was visualized on samples prepared by sublimation of 2,5-dihydroxybenzoic acid. Pheromonal dienes were detected on D. melanogaster female wings. A homogenous distribution of saturated WEs was observed on A. thaliana and Phoenix sp. leaf samples. The optimum number of laser shots per pixel was found to be higher than for polar compounds imaging.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
36
|
Abstract
A study using laser desorption/ionization mass spectrometry has identified new oxygenated compounds in cuticular lipids of the fruit fly Drosophila melanogaster; one such compound, when transferred to females during mating, renders the females unattractive to males for days.
Collapse
|
37
|
A review of ant cuticular hydrocarbons. J Chem Ecol 2009; 35:1151-61. [PMID: 19866237 DOI: 10.1007/s10886-009-9695-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/04/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
We compared the published cuticular hydrocarbon (CHC) profiles of 78 ant species across 5 subfamilies. Almost 1,000 CHCs have been described for these species, composing 187 distinct homologous series and ten hydrocarbon groups. In descending order of occurrence were: n-alkanes > monomethylalkanes > dimethylalkanes > alkenes > dienes>> trimethylalkanes>> methylalkenes > methylalkadienes > trienes > tetramethylalkanes. Odd chain lengths and positions of methyl or double bonds at odd carbon numbers were far more numerous than even chain-length compounds or bond positions. Although each species possess its own unique pattern of CHCs, we found no association between CHC profile and phylogeny. The production of the biosynthetically complex compounds (e.g., methyl branched dienes) by the most primitive living ant suggests that the basic genetic architecture required to produce the rich diversity of CHCs was already present prior to their adaptive radiation. Unlike the ubiquitous n-alkanes and monomethylalkanes, there is a huge diversity of species-specific dimethylalkanes that makes them likely candidates for species and nest-mate discrimination signals.
Collapse
|
38
|
|
39
|
Vrkoslav V, Míková R, Cvacka J. Characterization of natural wax esters by MALDI-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:101-110. [PMID: 18821728 DOI: 10.1002/jms.1476] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The applicability of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to the analysis of wax esters (WEs) was investigated. A series of metal salts of 2,5-dihydroxybenzoic acid (DHB) was synthesized and tested as possible matrices. Alkali metal (Li, Na, K, Rb, Cs) and transition metal (Cu, Ag) salts were studied. The matrix properties were evaluated, including solubility in organic solvents, threshold laser power that should be applied for successful desorption/ionization of WEs, the nature of the matrix ions and the mass range occupied by them, and the complexity of the isotope clusters for individual metals. Lithium salt of dihydroxybenzoic acid (LiDHB) performed the best and matrices with purified lithium isotopes ((6)LiDHB or (7)LiDHB) were recommended for WEs. Three sample preparation procedures were compared: (1) mixing the sample and matrix in a glass vial and deposition of the mixture on a MALDI plate (Mix), (2) deposition of sample followed by deposition of matrix (Sa/Ma), and (3) deposition of matrix followed by deposition of sample (Ma/Sa). Morphology of the samples was studied by scanning electron microscopy. The best sample preparation technique was Ma/Sa with the optimum sample to matrix molar ratio 1 : 100. Detection limit was in the low picomolar range. The relative response of WEs decreased with their molecular weight, and minor differences between signals of saturated and monounsaturated WEs were observed. MALDI spectra of WEs showed molecular adducts with lithium [M + Li](+). Fragments observed in postsource decay (PSD) spectra were related to the acidic part of WEs [RCOOH + Li](+) and they were used for structure assignment. MALDI with LiDHB was used for several samples of natural origin, including insect and plant WEs. A good agreement with GC/MS data was achieved. Moreover, MALDI allowed higher WEs to be analyzed, up to 64 carbon atoms in Ginkgo biloba leaves extract.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
40
|
South A, LeVan K, Leombruni L, Orians CM, Lewis SM. Examining the Role of Cuticular Hydrocarbons in Firefly Species Recognition. Ethology 2008. [DOI: 10.1111/j.1439-0310.2008.01535.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Nguyen HP, Ortiz IP, Temiyasathit C, Kim SB, Schug KA. Laser desorption/ionization mass spectrometry fingerprinting of complex hydrocarbon mixtures: application to crude oils using data mining techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2220-2226. [PMID: 18546088 DOI: 10.1002/rcm.3606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Crude oil fingerprints were obtained from four crude oils by laser desorption/ionization mass spectrometry (LDI-MS) using a silver nitrate cationization reagent. Replicate analyses produced spectral data with a large number of features for each sample (>11,000 m/z values) which were statistically analyzed to extract useful information for their differentiation. Individual characteristic features from the data set were identified by a false discovery rate based feature selection procedure based on the analysis of variance models. The selected features were, in turn, evaluated using classification models. A substantially reduced set of 23 features was obtained through this procedure. One oil sample containing a high ratio of saturated/aromatic hydrocarbon content was easily distinguished from the others using this reduced set. The other three samples were more difficult to distinguish by LDI-MS using a silver cationization reagent; however, a minimal number of significant features were still identified for this purpose. Focus is placed on presenting this multivariate statistical method as a rapid and simple analytical procedure for classifying and distinguishing complex mixtures.
Collapse
Affiliation(s)
- Hien P Nguyen
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | | | | |
Collapse
|
42
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:266-277. [PMID: 17262881 DOI: 10.1002/jms.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|