1
|
Wang H, Chen Y. Protecting plants from pathogens through arbuscular mycorrhiza: Role of fungal diversity. Microbiol Res 2024; 289:127919. [PMID: 39342745 DOI: 10.1016/j.micres.2024.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in protecting host plants from pathogens. AM fungal taxa show varying abilities to hinder the development of plant pathogens with various underlying mechanisms of action, and plant defense through mycorrhization should be viewed to have a continuum of several possible mechanisms. However, an additive or synergistic effect is not always achieved. This review examines the potential mechanisms by which AM fungi enhance plant tolerance and defense against pathogens, as well as the possible interactive mechanisms among AM fungal traits that may lead to facilitative and antagonistic effect on plant defense outcomes. It also provides evidence demonstrating the benefits of AM fungal consortia used so far to protect crop plants from various pathogens. It concludes by proposing some biotechnological applications aimed at unraveling the connections between AM fungal diversity and their function to enhance efficacy of plant pathogen protection.
Collapse
Affiliation(s)
- Hao Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
2
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024; 34:4934-4950.e8. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
3
|
Radić T, Vuković R, Gaši E, Kujundžić D, Čarija M, Balestrini R, Sillo F, Gambino G, Hančević K. Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154372. [PMID: 39423687 DOI: 10.1016/j.jplph.2024.154372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.
Collapse
Affiliation(s)
- Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Rosemary Vuković
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Daniel Kujundžić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National research Council (IBBR-CNR), via Amendola 165/A, 70126, Bari, Italy.
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| |
Collapse
|
4
|
Davidson-Lowe E, Zainuddin N, Trase O, McCarthy N, Ali JG. Arbuscular mycorrhizal fungi influence belowground interactions between a specialist root-feeder and its natural enemy. J Invertebr Pathol 2024; 207:108200. [PMID: 39374864 DOI: 10.1016/j.jip.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tri-trophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.
Collapse
Affiliation(s)
- Elizabeth Davidson-Lowe
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nursyafiqi Zainuddin
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant Protection, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Olivia Trase
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel McCarthy
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jared Gregory Ali
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Sun PF, Lu MR, Liu YC, Shaw BJP, Lin CP, Chen HW, Lin YF, Hoh DZ, Ke HM, Wang IF, Lu MYJ, Young EB, Millett J, Kirschner R, Lin YCJ, Chen YL, Tsai IJ. An acidophilic fungus promotes prey digestion in a carnivorous plant. Nat Microbiol 2024; 9:2522-2537. [PMID: 39090391 PMCID: PMC11445062 DOI: 10.1038/s41564-024-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Leaves of the carnivorous sundew plants (Drosera spp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungus Acrodontium crateriforme as the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process. A. crateriforme has a reduced genome similar to other symbiotic fungi. During A. crateriforme-Drosera spatulata coexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brandon J P Shaw
- Geography and Environment, Loughborough University, Loughborough, UK
- NERC Environmental Omics Facility (NEOF), NEOF Visitor Facility, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Chieh-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Wei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - I-Fan Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Erica B Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, UK
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
6
|
Vats M, Cillero-Pastor B, Cuypers E, Heeren RMA. Mass spectrometry imaging in plants, microbes, and food: a review. Analyst 2024; 149:4553-4582. [PMID: 39196541 DOI: 10.1039/d4an00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Plant health, which affects the nutritional quality and safety of derivative food products, is influenced by symbiotic interactions with microorganisms. These interactions influence the local molecular profile at the tissue level. Therefore, studying the distribution of molecules within plants, microbes, and plant-based food is crucial to assess plant health, ensure the safety and quality of the agricultural products that become part of our food supply, and plan agricultural management practices. Within this framework, the molecular distribution within plant-based samples can be visualized with mass spectrometry imaging (MSI). This review describes key MSI methodologies, highlighting the role they play in unraveling the localization of metabolites, lipids, proteins, pigments, and elemental components across plants, microbes, and food products. Furthermore, investigations that involve multimodal molecular imaging approaches combining MSI with other imaging techniques are described. The advantages and limitations of the different MSI techniques that influence their applicability in diverse agro-food studies are described to enable informed choices for tailored analyses. For example, some MSI technologies involve meticulous sample preparation while others compromise spatial resolution to gain throughput. Key parameters such as sensitivity, ionization bias and fragmentation, reference database and compound class specificity are described and discussed in this review. With the ongoing refinements in instrumentation, data analysis, and integration of complementary techniques, MSI deepens our insight into the molecular biology of the agricultural ecosystem. This in turn empowers the quest for sustainable and productive agricultural practices.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Ku Y, Liao Y, Chiou S, Lam H, Chan C. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2461-2471. [PMID: 38735054 PMCID: PMC11331785 DOI: 10.1111/pbi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Collapse
Affiliation(s)
- Yee‐Shan Ku
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| | - Yi‐Jun Liao
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shian‐Peng Chiou
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hon‐Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
- Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong
| | - Ching Chan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
8
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
9
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
10
|
Baker NR, Zhalnina K, Yuan M, Herman D, Ceja-Navarro JA, Sasse J, Jordan JS, Bowen BP, Wu L, Fossum C, Chew A, Fu Y, Saha M, Zhou J, Pett-Ridge J, Northen TR, Firestone MK. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2303439121. [PMID: 39093948 PMCID: PMC11317588 DOI: 10.1073/pnas.2303439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.
Collapse
Affiliation(s)
- Nameer R. Baker
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Kateryna Zhalnina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mengting Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Don Herman
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Javier A. Ceja-Navarro
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ86011
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Joelle Sasse
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Institute for Plant and Microbial Biology, University of Zurich, CH-8008Zurich, Switzerland
| | - Jacob S. Jordan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Christina Fossum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Aaron Chew
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Ying Fu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Malay Saha
- Noble Research Institute, Ardmore, OK73401
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
- Life and Environmental Sciences Department, University of California Merced, Merced, CA95343
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| |
Collapse
|
11
|
Ansari MM, Bisht N, Singh T, Chauhan PS. Symphony of survival: Insights into cross-talk mechanisms in plants, bacteria, and fungi for strengthening plant immune responses. Microbiol Res 2024; 285:127762. [PMID: 38763015 DOI: 10.1016/j.micres.2024.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium. Numerous studies have contributed to unraveling the complex process of plant-microbe interactions in recent decades. In light of the increasing global challenges such as population growth, climate change, and resource scarcity, it has become imperative to explore the potential of plant-bacteria-fungi crosstalk in promoting sustainability. This review aims to bridge existing knowledge gaps, providing a roadmap for future research in this dynamic field by synthesizing current knowledge and identifying emerging trends.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Yoshida R, Taguchi S, Wakita C, Serikawa S, Miyaji H. Companion basil plants prime the tomato wound response through volatile signaling in a mixed planting system. PLANT CELL REPORTS 2024; 43:200. [PMID: 39039312 PMCID: PMC11263239 DOI: 10.1007/s00299-024-03285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
KEY MESSAGE Volatile compounds released from basil prime the tomato wound response by promoting jasmonic acid, mitogen-activated protein kinase, and reactive oxygen species signaling. Within mixed planting systems, companion plants can promote growth or enhance stress responses in target plants. However, the mechanisms underlying these effects remain poorly understood. To gain insight into the molecular nature of the effects of companion plants, we investigated the effects of basil plants (Ocimum basilicum var. minimum) on the wound response in tomato plants (Solanum lycopersicum cv. 'Micro-Tom') within a mixed planting system under environmentally controlled chamber. The results showed that the expression of Pin2, which specifically responds to mechanical wounding, was induced more rapidly and more strongly in the leaves of tomato plants cultivated with companion basil plants. This wound response priming effect was replicated through the exposure of tomato plants to an essential oil (EO) prepared from basil leaves. Tomato leaves pre-exposed to basil EO showed enhanced expression of genes related to jasmonic acid, mitogen-activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling after wounding stress. Basil EO also enhanced ROS accumulation in wounded tomato leaves. The wound response priming effect of basil EO was confirmed in wounded Arabidopsis plants. Loss-of-function analysis of target genes revealed that MAPK genes play pivotal roles in controlling the observed priming effects. Spodoptera litura larvae-fed tomato leaves pre-exposed to basil EO showed reduced growth compared with larvae-fed control leaves. Thus, mixed planting with basil may enhance defense priming in both tomato and Arabidopsis plants through the activation of volatile signaling.
Collapse
Affiliation(s)
- Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
| | - Shoma Taguchi
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Wakita
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Shinichiro Serikawa
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Hiroyuki Miyaji
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
13
|
Durney C, Boussageon R, El-Mjiyad N, Wipf D, Courty PE. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees. MYCORRHIZA 2024; 34:341-350. [PMID: 38801470 DOI: 10.1007/s00572-024-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Walnut trees are cultivated and exploited worldwide for commercial timber and nut production. They are heterografted plants, with the rootstock selected to grow in different soil types and conditions and to provide the best anchorage, vigor, and resistance or tolerance to soil borne pests and diseases. However, no individual rootstock is tolerant of all factors that impact walnut production. In Europe, Juglans regia is mainly used as a rootstock. Like most terrestrial plants, walnut trees form arbuscular mycorrhizal symbioses, improving water and nutrient uptake and providing additional ecosystem services. Effects of arbuscular mycorrhizal symbiosis on root gene regulation, however, has never been assessed. We analyzed the response of one rootstock of J. regia to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198. Plant growth as well as the nitrogen and phosphorus concentrations in roots and shoots were significantly increased in mycorrhizal plants versus non-colonized plants. In addition, we have shown that 1,549 genes were differentially expressed, with 832 and 717 genes up- and down-regulated, respectively. The analysis also revealed that some rootstock genes involved in plant nutrition through the mycorrhizal pathway, are regulated similarly as in other mycorrhizal woody species: Vitis vinifera and Populus trichocarpa. In addition, an enrichment analysis performed on GO and KEGG pathways revealed some regulation specific to J. regia (i.e., the juglone pathway). This analysis reinforces the role of arbuscular mycorrhizal symbiosis on root gene regulation and on the need to finely study the effects of diverse arbuscular mycorrhizal fungi on root gene regulation, but also of the scion on the functioning of an arbuscular mycorrhizal fungus in heterografted plants such as walnut tree.
Collapse
Affiliation(s)
- Célien Durney
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Raphael Boussageon
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Noureddine El-Mjiyad
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Daniel Wipf
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
14
|
Manresa-Grao M, Pastor V, Sánchez-Bel P, Cruz A, Cerezo M, Jaques JA, Flors V. Mycorrhiza-induced resistance in citrus against Tetranychus urticae is plant species dependent and inversely correlated to basal immunity. PEST MANAGEMENT SCIENCE 2024; 80:3553-3566. [PMID: 38446401 DOI: 10.1002/ps.8059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae. Although both mycorrhizal species are protected in locally infested leaves, they show very distinct responses to MIR. RESULTS Previous studies have indicated that C. aurantium is insensitive to MIR in systemic tissues and MIR-triggered antixenosis. Conversely, C. reshni is highly responsive to MIR which triggers local, systemic and indirect defense, and antixenosis against the pest. Transcriptional, hormonal and inhibition assays in C. reshni indicated the regulation of jasmonic acid (JA)- and abscisic acid-dependent responses in MIR. The phytohormone jasmonic acid isoleucine (JA-Ile) and the JA biosynthesis gene LOX2 are primed at early timepoints. Evidence indicates a metabolic flux from phenylpropanoids to specific flavones that are primed at 24 h post infestation (hpi). MIR also triggers the priming of naringenin in mycorrhizal C. reshni, which shows a strong correlation with several flavones and JA-Ile that over-accumulate in mycorrhizal plants. Treatment with an inhibitor of phenylpropanoid biosynthesis C4H enzyme impaired resistance and reduced the symbiosis, demonstrating that phenylpropanoids and derivatives mediate MIR in C. reshni. CONCLUSION MIR's effectiveness is inversely correlated to basal immunity in different citrus species, and provides multifaceted protection against T. urticae in susceptible C. reshni, activating rapid local and systemic defenses that are mainly regulated by the accumulation of specific flavones and priming of JA-dependent responses. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Victoria Pastor
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Ana Cruz
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Josep A Jaques
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Víctor Flors
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
15
|
Corazon-Guivin MA, Rengifo del Aguila S, Corrêa RX, Cordova-Sinarahua D, Costa Maia L, Alves da Silva DK, Alves da Silva G, López-García Á, Coyne D, Oehl F. Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. J Fungi (Basel) 2024; 10:451. [PMID: 39057336 PMCID: PMC11277566 DOI: 10.3390/jof10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose of this research was to investigate the potential effects of two recently described species of AMF (Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru. The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second examined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the results showed that AMF inoculation of P. volubilis seedlings positively improved their development, particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf contents. The findings provide strong justification for the development of products based on AMF as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases, especially those that are locally adapted to local crops and cropping conditions.
Collapse
Affiliation(s)
- Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Sofía Rengifo del Aguila
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
| | - Ronan Xavier Corrêa
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Deyvis Cordova-Sinarahua
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Leonor Costa Maia
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Danielle Karla Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Gladstone Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Álvaro López-García
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), Ibadan 200113, Nigeria;
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Plant Protection Products-Impact and Assessment, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland;
| |
Collapse
|
16
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
17
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
18
|
Xia M, McCormack ML, Suseela V, Kennedy PG, Tharayil N. Formations of mycorrhizal symbiosis alter the phenolic heteropolymers in roots and leaves of four temperate woody species. THE NEW PHYTOLOGIST 2024; 242:1476-1485. [PMID: 38659127 DOI: 10.1111/nph.19731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/05/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Mengxue Xia
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60523, USA
| | - Vidya Suseela
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
19
|
Lekberg Y, Jansa J, McLeod M, DuPre ME, Holben WE, Johnson D, Koide RT, Shaw A, Zabinski C, Aldrich-Wolfe L. Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. THE NEW PHYTOLOGIST 2024; 242:1576-1588. [PMID: 38173184 DOI: 10.1111/nph.19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.
Collapse
Affiliation(s)
- Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Jan Jansa
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | | | | | - William E Holben
- Cellular, Molecular and Microbial Biology, University of Montana, Missoula, MT, 59812, USA
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alanna Shaw
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Catherine Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
20
|
Fotovvat M, Najafi F, Khavari-Nejad RA, Talei D, Rejali F. Investigating the simultaneous effect of chitosan and arbuscular mycorrhizal fungi on growth, phenolic compounds, PAL enzyme activity and lipid peroxidation in Salvia nemorosa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108617. [PMID: 38608504 DOI: 10.1016/j.plaphy.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.
Collapse
Affiliation(s)
- Marzieh Fotovvat
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ramazan Ali Khavari-Nejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, 3319118651, Tehran, Iran
| | - Farhad Rejali
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), 3177993545, Karaj, Iran
| |
Collapse
|
21
|
Xiang X, Yao T, Man B, Lin D, Li C. Global hotspots and trends in microbial-mediated grassland carbon cycling: a bibliometric analysis. Front Microbiol 2024; 15:1377338. [PMID: 38741733 PMCID: PMC11090204 DOI: 10.3389/fmicb.2024.1377338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Grasslands are among the most widespread environments on Earth, yet we still have poor knowledge of their microbial-mediated carbon cycling in the context of human activity and climate change. We conducted a systematic bibliometric analysis of 1,660 literature focusing on microbial-mediated grassland carbon cycling in the Scopus database from 1990 to 2022. We observed a steep increase in the number of multidisciplinary and interdisciplinary studies since the 2000s, with focus areas on the top 10 subject categories, especially in Agricultural and Biological Sciences. Additionally, the USA, Australia, Germany, the United Kingdom, China, and Austria exhibited high levels of productivity. We revealed that the eight papers have been pivotal in shaping future research in this field, and the main research topics concentrate on microbial respiration, interaction relationships, microbial biomass carbon, methane oxidation, and high-throughput sequencing. We further highlight that the new research hotspots in microbial-mediated grassland carbon cycling are mainly focused on the keywords "carbon use efficiency," "enzyme activity," "microbial community," and "high throughput sequencing." Our bibliometric analysis in the past three decades has provided insights into a multidisciplinary and evolving field of microbial-mediated grassland carbon cycling, not merely summarizing the literature but also critically identifying research hotspots and trends, the intellectual base, and interconnections within the existing body of collective knowledge and signposting the path for future research directions.
Collapse
Affiliation(s)
- Xing Xiang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Dong Lin
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Hou J, McCormack ML, Reich PB, Sun T, Phillips RP, Lambers H, Chen HYH, Ding Y, Comas LH, Valverde-Barrantes OJ, Solly EF, Freschet GT. Linking fine root lifespan to root chemical and morphological traits-A global analysis. Proc Natl Acad Sci U S A 2024; 121:e2320623121. [PMID: 38607930 PMCID: PMC11032481 DOI: 10.1073/pnas.2320623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.
Collapse
Affiliation(s)
- Jiawen Hou
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | | | - Peter B. Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN55108
- Institute for Global Change Biology, University of Michigan, Ann Arbor, MI48109
- Hawkesbury Institute Environment, Western Sydney University, Penrith, NSW2753, Australia
| | - Tao Sun
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
| | | | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA6009, Australia
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ONP7B 5E1, Canada
| | - Yiyang Ding
- Department of Forest Sciences/Institute for Atmospheric and Earth System Research, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Louise H. Comas
- Department of Soil & Crop Science, Colorado State University, Ft. Collins, CO80523
- United States Department of Agriculture, Agricultural Research Service, Water Management Research Unit, Ft. Collins, CO80526
| | | | - Emily F. Solly
- Helmholtz Centre for Environmental Research–Umwelt Forschungs Zentrum, Leipzig04318, Germany
| | - Gregoire T. Freschet
- Station d’écologie théorique et expérimentale, Centre National de la Recherche Scientifique, Moulis09200, France
| |
Collapse
|
23
|
Shafiei F, Shahidi-Noghabi S, Sedaghati E, Smagghe G. Arbuscular Mycorrhizal Fungi Inducing Tomato Plant Resistance and Its Role in Control of Bemisia tabaci Under Greenhouse Conditions. NEOTROPICAL ENTOMOLOGY 2024; 53:424-438. [PMID: 38356097 DOI: 10.1007/s13744-024-01135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are one of the environment-friendly organisms that enhance plant performance. AMF affect the herbivorous insect community by indirectly modifying host plant nutrient uptake, growth, and defense, also known as priming. In the current study, under greenhouse conditions, the effects of inoculating tomato seedlings with four species of AMF, i.e., Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis, and Glomus iranicus, were studied in relation to tomato plant growth parameters, plant defense enzymes, and total phenol content, and additionally, the life table of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) feeding on these plants was determined. The results demonstrated that the growth parameters of tomato plants, including plant height, stem diameter, number of leaves, root volume, leaf surface area, weight of the root, and aerial organs (containing the leaves and stem), were greater and larger in the AMF-inoculated plants compared to the non-inoculated plants. Furthermore, there were higher defense enzyme activities, including peroxidase, phenylalanine ammonia lyase and polyphenol oxidase, and also higher total phenol contents in the AMF-inoculated plants. The whitefly life table characteristics were decreased in the group feeding on the AMF-inoculated plants. All together, the AMF colonization made the tomato plants more resistant against B. tabaci by improving plant growth and increasing defense enzymes. The degree of priming observed here suggests the potential of AMF to have expansive applications, including their implementation in sustainable agriculture.
Collapse
Affiliation(s)
- Fateme Shafiei
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Shahnaz Shahidi-Noghabi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Jiang X, Chen D, Zhang Y, Naz M, Dai Z, Qi S, Du D. Impacts of Arbuscular Mycorrhizal Fungi on Metabolites of an Invasive Weed Wedelia trilobata. Microorganisms 2024; 12:701. [PMID: 38674645 PMCID: PMC11052372 DOI: 10.3390/microorganisms12040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The invasive plant Wedelia trilobata benefits in various aspects, such as nutrient absorption and environmental adaptability, by establishing a close symbiotic relationship with arbuscular mycorrhizal fungi (AMF). However, our understanding of whether AMF can benefit W. trilobata by influencing its metabolic profile remains limited. In this study, Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to analyze the metabolites of W. trilobata under AMF inoculation. Metabolomic analysis identified 119 differentially expressed metabolites (DEMs) between the groups inoculated with AMF and those not inoculated with AMF. Compared to plants with no AMF inoculation, plants inoculated with AMF showed upregulation in the relative expression of 69 metabolites and downregulation in the relative expression of 50 metabolites. AMF significantly increased levels of various primary and secondary metabolites in plants, including amino acids, organic acids, plant hormones, flavonoids, and others, with amino acids being the most abundant among the identified substances. The identified DEMs mapped 53 metabolic pathways, with 7 pathways strongly influenced by AMF, particularly the phenylalanine metabolism pathway. Moreover, we also observed a high colonization level of AMF in the roots of W. trilobata, significantly promoting the shoot growth of this plant. These changes in metabolites and metabolic pathways significantly affect multiple physiological and biochemical processes in plants, such as free radical scavenging, osmotic regulation, cell structure stability, and material synthesis. In summary, AMF reprogrammed the metabolic pathways of W. trilobata, leading to changes in both primary and secondary metabolomes, thereby benefiting the growth of W. trilobata and enhancing its ability to respond to various biotic and abiotic stressors. These findings elucidate the molecular regulatory role of AMF in the invasive plant W. trilobata and provide new insights into the study of its competitive and stress resistance mechanisms.
Collapse
Affiliation(s)
- Xinqi Jiang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (X.J.); (D.C.); (Y.Z.)
| | - Daiyi Chen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (X.J.); (D.C.); (Y.Z.)
| | - Yu Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (X.J.); (D.C.); (Y.Z.)
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (Z.D.)
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (Z.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shanshan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (X.J.); (D.C.); (Y.Z.)
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (Z.D.)
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
26
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
27
|
Şimşek Ö, Isak MA, Dönmez D, Dalda Şekerci A, İzgü T, Kaçar YA. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:717. [PMID: 38475564 DOI: 10.3390/plants13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. The study also emphasizes the significant advancements in genetic engineering techniques, particularly CRISPR-Cas9 genome editing, which have revolutionized the creation of drought-resistant crop varieties. Furthermore, the article explores microbial biotechnology's pivotal role, such as plant growth-promoting rhizobacteria (PGPR) and mycorrhizae, in enhancing plant resilience against drought conditions. The integration of these cutting-edge biotechnological interventions with traditional breeding methods is presented as a holistic approach for fortifying crops against drought stress. This integration addresses immediate agricultural needs and contributes significantly to sustainable agriculture, ensuring food security in the face of escalating climate change challenges.
Collapse
Affiliation(s)
- Özhan Şimşek
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Musab A Isak
- Agricultural Sciences and Technology Department, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri 38030, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana 01330, Türkiye
| | - Akife Dalda Şekerci
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Tolga İzgü
- National Research Council of Italy (CNR), Institute of BioEconomy, 50019 Florence, Italy
| | - Yıldız Aka Kaçar
- Horticulture Department, Agriculture Faculty, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
28
|
Duell EB, Baum KA, Wilson GWT. Drought reduces productivity and anti-herbivore defences, but not mycorrhizal associations, of perennial prairie forbs. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:204-213. [PMID: 38168486 DOI: 10.1111/plb.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
During drought, plants allocate resources to aboveground biomass production and belowground carbohydrate reserves, often at the expense of production of defence traits. Additionally, drought has been shown to alter floral resources, with potential implications for plant-pollinator interactions. Although soil symbionts, such as arbuscular mycorrhizal (AM) fungi, can alleviate drought stress in plants, certain levels of drought may negatively impact this relationship, with potential cascading effects. Because of their importance to plant and animal community diversity, we examined effects of drought on biomass production, physical defence properties, nectar production, and associated AM fungal abundance of five common prairie forb species in a greenhouse study. Reduced soil moisture decreased vegetative biomass production. Production of trichomes and latex decreased under drought, relative to well-watered conditions. Ruellia humilis flowers produced less nectar under drought, relative to well-watered conditions. Intra-radical AM fungal colonization was not significantly affected by drought, although extra-radical AM fungal biomass associated with S. azurea decreased following drought. Overall, grassland forb productivity, defence, and nectar production were negatively impacted by moderate drought, with possible negative implications for biotic interactions. Reduced flower and nectar production may lead to fewer pollinator visitors, which may contribute to seed limitation in forb species. Reduced physical defences increase the likelihood of herbivory, further decreasing the ability to store energy for essential functions, such as reproduction. Together, these results suggest drought can potentially impact biotic interactions between plants and herbivores, pollinators, and soil symbionts, and highlights the need for direct assessments of these relationships under climate change scenarios.
Collapse
Affiliation(s)
- E B Duell
- Kansas Biological Survey & Center for Ecological Research, Lawrence, KS, USA
| | - K A Baum
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - G W T Wilson
- Department of Natural Resource Ecology & Management, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
29
|
Liu M, Wang H, Lin Z, Ke J, Zhang P, Zhang F, Ru D, Zhang L, Xiao Y, Liu X. Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: a meta-analysis and experimental study. THE NEW PHYTOLOGIST 2024; 241:1308-1320. [PMID: 37964601 DOI: 10.1111/nph.19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Microbial mutualists can profoundly modify host species ecology and evolution, by extension altering interactions with other microbial species, including pathogens. Arbuscular mycorrhizal fungi (AMF) may moderate infections by pathogens, but the direction and strength of these effects can be idiosyncratic. To assess how the introduction of AMF impacts the incidence and severity of aboveground plant diseases (i.e. 'disease impact'), we conducted a meta-analysis of 130 comparisons derived from 69 published studies. To elucidate the potential mechanisms underlying the influence of AMF on pathogens, we conducted three glasshouse experiments involving six non-woody plant species, yielded crucial data on leaf nutrient composition, plant defense compounds, and transcriptomes. Our meta-analysis revealed that the inoculation of AMF lead to a reduction in disease impact. More precisely, AMF inoculation was associated with a decrease in necrotrophic diseases, while no significant impact on biotrophic diseases. Chemical and transcriptome analyses suggested that these effects may be driven by AMF regulation of jasmonic acid and salicylic acid signaling pathways in glasshouse experiments. However, changes in plant nutritional status and secondary chemicals may also regulate disease impact. These results emphasize the importance of incorporating pathogen life history when predicting how microbial mutualisms affect disease impact.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongqian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
31
|
de Freitas Pereira M, Cohen D, Auer L, Aubry N, Bogeat-Triboulot MB, Buré C, Engle NL, Jolivet Y, Kohler A, Novák O, Pavlović I, Priault P, Tschaplinski TJ, Hummel I, Vaultier MN, Veneault-Fourrey C. Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1784-1803. [PMID: 37715981 DOI: 10.1111/tpj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.
Collapse
Affiliation(s)
| | - David Cohen
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Nathalie Aubry
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Cyril Buré
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Nancy L Engle
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Timothy J Tschaplinski
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| |
Collapse
|
32
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
33
|
Hennecke J, Bassi L, Mommer L, Albracht C, Bergmann J, Eisenhauer N, Guerra CA, Heintz-Buschart A, Kuyper TW, Lange M, Solbach MD, Weigelt A. Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. THE NEW PHYTOLOGIST 2023; 240:2035-2049. [PMID: 37691273 DOI: 10.1111/nph.19261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.
Collapse
Affiliation(s)
- Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Liesje Mommer
- Forest Ecology and Forest Management Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 14641, Paulinenaue, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
34
|
Gao Y, An T, Kuang Q, Wu Y, Liu S, Liang L, Yu M, Macrae A, Chen Y. The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166091. [PMID: 37553055 DOI: 10.1016/j.scitotenv.2023.166091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic relationships between crop species and arbuscular mycorrhizal fungi (AMF) are crucial for plant health, productivity, and environmental sustainability. The roles of AMF in reducing crop stress caused by cadmium (Cd) toxicity and in the remediation of Cd-contaminated soil are not fully understood. Here we report on a meta-analysis that sought to identify the functions of AMF in cereals under Cd stress. A total of 54 articles published between January 1992 and September 2022 were used to create the dataset, which provided 7216 data sets on mycorrhizal cereals under Cd stress examined. AMF effects on colonization rate, biomass, physiological level, nutritional level, and plant Cd level were measured using the logarithmic response ratio (Ln R). The results showed that AMF overall greatly reduced 5.14 - 33.6 % Cd stress on cereals in greenhouse experiments under controlled conditions. AMF colonization significantly stimulated crop biomass by 65.7 %, boosted the formation of photosynthetic pigments (23.2 %), and greatly increased plant nitrogen (24.8 %) and phosphorus (58.4 %) uptake. The dilution effect of mycorrhizal plants made the Cd concentration decline by 25.2 % in AMF plants compared to non-mycorrhizal ones. AMF also alleviated Cd stress by improving osmotic regulators (soluble protein, sugar, and total proline, from 14.8 to 36.0 %) and lowering the membrane lipid peroxidation product (MDA, 12.9 %). Importantly, the results from the random forest and model selection analysis demonstrated that crop type, soil characteristics, chemical form, and Cd levels were the main factors determining the function of AMF in alleviating Cd stress. Additionally, there was a significant interaction between AMF colonization rate and Cd addition, but their interactive effect was less than the colonization rate alone. This meta-analysis demonstrated that AMF inoculation could be considered as a promising strategy for mitigation of Cd stress in cereals.
Collapse
Affiliation(s)
- Yamin Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqiang Kuang
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Wu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Liu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liyan Liang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology, and Department of Horticulture, Foshan University, Foshan 528000, China; The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Andrew Macrae
- Universidade Federal do Rio de Janeiro, Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2 Andar-Sala 032, Rio de Janeiro 21941-902, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco I, 1 Andar-Sala 047, Rio de Janeiro 21941-902, Brazil
| | - Yinglong Chen
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
35
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
36
|
Terry V, Kokkoris V, Villeneuve-Laroche M, Turcu B, Chapman K, Cornell C, Zheng Z, Stefani F, Corradi N. Mycorrhizal response of Solanum tuberosum to homokaryotic versus dikaryotic arbuscular mycorrhizal fungi. MYCORRHIZA 2023; 33:333-344. [PMID: 37572110 DOI: 10.1007/s00572-023-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts of most land plants. In these organisms, thousands of nuclei that are either genetically similar (homokaryotic) or derived from two distinct parents (dikaryotic) co-exist in a large syncytium. Here, we investigated the impact of these two nuclear organizations on the mycorrhizal response of potatoes (Solanum tuberosum) by inoculating four potato cultivars with eight Rhizophagus irregularis strains individually (four homokaryotic and four dikaryotic). By evaluating plant and fungal fitness-related traits four months post inoculation, we found that AMF genetic organization significantly affects the mycorrhizal response of host plants. Specifically, homokaryotic strains lead to higher total, shoot, and tuber biomass and a higher number of tubers, compared to dikaryotic strains. However, fungal fitness-related traits showed no clear differences between homokaryotic and dikaryotic strains. Nucleotype content analysis of single spores confirmed that the nucleotype ratio of AMF heterokaryon spores can shift depending on host identity. Together, these findings continue to highlight significant ecological differences derived from the two distinct genetic organizations in AMF.
Collapse
Affiliation(s)
- Victoria Terry
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Present address: Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Present address: Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | | | - Bianca Turcu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kendyll Chapman
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zhiming Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Franck Stefani
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
37
|
Guigard L, Jobert L, Busset N, Moulin L, Czernic P. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1278990. [PMID: 37941658 PMCID: PMC10628536 DOI: 10.3389/fpls.2023.1278990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.
Collapse
Affiliation(s)
| | | | | | | | - Pierre Czernic
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
38
|
Cheng Y, Rutten G, Liu X, Ma M, Song Z, Maaroufi NI, Zhou S. Host plant height explains the effect of nitrogen enrichment on arbuscular mycorrhizal fungal communities. THE NEW PHYTOLOGIST 2023; 240:399-411. [PMID: 37482960 DOI: 10.1111/nph.19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Nitrogen (N) enrichment is widely known to affect the root-associated arbuscular mycorrhizal fungal (AMF) community in different ways, for example, via altering soil properties and/or shifting host plant functional structure. However, empirical knowledge of their relative importance is still lacking. Using a long-term N addition experiment, we measured the AMF community taxonomic and phylogenetic diversity at the single plant species (roots of 15 plant species) and plant community (mixed roots) levels. We also measured four functional traits of 35 common plant species along the N addition gradient. We found divergent responses of AMF diversity to N addition for host plants with different innate heights (i.e. plant natural height under unfertilized treatment). Furthermore, our data showed that species-specific responses of AMF diversity to N addition were negatively related to the change in maximum plant height. When scaling up to the community level, N addition affected AMF diversity mainly through increasing the maximum plant height, rather than altering soil properties. Our results highlight the importance of plant height in driving AMF community dynamics under N enrichment at both species and community levels, thus providing important implications for understanding the response of AMF diversity to anthropogenic N deposition.
Collapse
Affiliation(s)
- Yikang Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Gemma Rutten
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems & College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems & College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Nadia I Maaroufi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
- Department of Soil and Environment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
39
|
Zhang Q, Wang S, Xie Q, Xia Y, Lu L, Wang M, Wang G, Long S, Cai Y, Xu L, Wang E, Jiang Y. Control of arbuscule development by a transcriptional negative feedback loop in Medicago. Nat Commun 2023; 14:5743. [PMID: 37717076 PMCID: PMC10505183 DOI: 10.1038/s41467-023-41493-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Shuangshuang Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yuanjun Xia
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Lu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Siyu Long
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yina Jiang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
40
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
41
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
42
|
El-Gazzar N, El-Hai KMA, Teama SAM, Rabie GH. Enhancing Vicia faba 's immunity against Rhizoctonia solani root rot diseases by arbuscular mycorrhizal fungi and nano chitosan. BMC PLANT BIOLOGY 2023; 23:403. [PMID: 37620786 PMCID: PMC10463857 DOI: 10.1186/s12870-023-04407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The spreading of root rot disease of faba bean plant (Vichia faba L, VF) in Egypt is still of great challenge faced researchers since VF is an important legume in Egypt, because their seeds are used for human feeding. Fungicides are used for treatment of either seeds or soil; unfortunately they cause environmental pollution. Therefore, there is a need to continue research to find out safe natural solutions. In this regard, Arbuscular mycorrhizal fungi (AMF) and chitosan (micro or nanoform) were used as an inhibitory product against Rhizoctonia solani OM918223 (R.solani) either singly or in combinations. RESULTS The results employed herein have exhibited that R.solani caused root rot disease of VF plants in more than 80% of the plants under investigation. Chitosan nanoparticles (Chitosan NPs) were prepared by ionic gelatin method and characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) imaging and Fourier transform infra-red (FTIR). Chitosan NPs are spherical with a diameter of 78.5 nm and exhibited the presence of different functional groups. The inhibitory natural products against R.solani were arranged according to their ability to inhibit the pathogen used in the following descending manner; combination of AMF with Chitosan NPs, AMF with micro chitosan and single AMF, respectively. Where, Chitosan NPs showed a potent influence on R.solani pathogen and reduced the pre-and post-emergence of R. solani. In addition, Chitosan NPs reduced Disease Incidence (DI %) and Disease Severity (DS %) of root rot disease and are widely functional through mixing with AMF by about 88% and 89%. Further, Chitosan NPs and micro chitosan were proved to increase the growth parameters of VF plants such as nutritional status (mineral, soluble sugar, and pigment content), and defense mechanisms including total phenol, peroxidase, and polyphenol oxidase in mycorrhizal plants more than non-mycorrhizal one either in infected or healthy plants. Moreover, activity of AMF as an inhibitory against R.solani and improvement natural agent for VF growth parameters was enhanced through its fusing with Chitosan NPs. CONCLUSIONS The use of AMF and Chitosan NPs increased faba bean plant resistance against the infection of root rot R. solani, with both prevention and cure together. Therefore, this research opens the door to choose natural and environmental friendly treatments with different mechanisms of plant resistance to disease.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | | | - Safaa A M Teama
- Plant Pathology Research Institute, Agric., Res., Cent, Giza, Egypt
| | - Gamal H Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Sharkia, Egypt
| |
Collapse
|
43
|
Gomez SK, Maurya AK, Irvin L, Kelly MP, Schoenherr AP, Huguet-Tapia JC, Bombarely A. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2023; 52:667-680. [PMID: 37467039 DOI: 10.1093/ee/nvad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.
Collapse
Affiliation(s)
- Susana K Gomez
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Abhinav K Maurya
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Apex Bait Technologies, Inc., Santa Clara, CA 95054, USA
| | - Lani Irvin
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Michael P Kelly
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Andrew P Schoenherr
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, 46022 Valencia, Spain
| |
Collapse
|
44
|
Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4919-4933. [PMID: 36942522 DOI: 10.1002/jsfa.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
45
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
46
|
Li Y, Nan Z, Matthew C, Wang Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa (Medicago sativa) metabolites in response to leaf spot (Phoma medicaginis) infection, with subsequent effects on pea aphid (Acyrthosiphon pisum) behavior. THE NEW PHYTOLOGIST 2023; 239:286-300. [PMID: 37010085 DOI: 10.1111/nph.18924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023]
Abstract
Plant disease occurs simultaneously with insect attack. Arbuscular mycorrhizal fungi (AMF) modify plant biotic stress response. Arbuscular mycorrhizal fungi and pathogens may modify plant volatile organic compound (VOC) production and insect behavior. Nevertheless, such effects are rarely studied, particularly for mesocosms where component organisms interact with each other. Plant-mediated effects of leaf pathogen (Phoma medicaginis) infection on aphid (Acyrthosiphon pisum) infestation, and role of AMF (Rhizophagus intraradices) in modifying these interactions were elucidated in a glasshouse experiment. We evaluated alfalfa disease occurrence, photosynthesis, phytohormones, trypsin inhibitor (TI) and total phenol response to pathogen and aphid attack, with or without AMF, and aphid behavior towards VOCs from AMF inoculated and non-mycorrhizal alfalfa, with or without pathogen infection. AM fungus enhanced alfalfa resistance to pathogen and aphid infestation. Plant biomass, root : shoot ratio, net photosynthetic rate, transpiration rate, stomatal conductance, salicylic acid, and TI were significantly increased in AM-inoculated alfalfa. Arbuscular mycorrhizal fungi and pathogen significantly changed alfalfa VOCs. Aphids preferred VOCs of AM-inoculated and nonpathogen-infected to nonmycorrhizal and pathogen-infected alfalfa. We propose that AMF alter plant response to multiple biotic stresses in ways both beneficial and harmful to the plant host, providing a basis for strategies to manage pathogens and herbivore pests.
Collapse
Affiliation(s)
- Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Cory Matthew
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| |
Collapse
|
47
|
Li J, Cai B, Chang S, Yang Y, Zi S, Liu T. Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1195932. [PMID: 37434599 PMCID: PMC10330952 DOI: 10.3389/fpls.2023.1195932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, is one of the most harmful diseases of tobacco. There are many studies have examined the mechanism underlying the induction of disease resistance by arbuscular mycorrhizal fungi (AMF) and β-aminobutyric acid (BABA) alone, but the synergistic effects of AMF and BABA on disease resistance have not yet been studied. This study examined the synergistic effects of BABA application and AMF inoculation on the immune response to TBS in tobacco. The results showed that spraying BABA on leaves could increase the colonization rate of AMF, the disease index of tobacco infected by P.nicotianae treated with AMF and BABA was lower than that of P.nicotianae alone. The control effect of AMF and BABA on tobacco infected by P.nicotianae was higher than that of AMF or BABA and P.nicotianae alone. Joint application of AMF and BABA significantly increased the content of N, P, and K in the leaves and roots, in the joint AMF and BABA treatment than in the sole P. nicotianae treatment. The dry weight of plants treated with AMF and BABA was 22.3% higher than that treated with P.nicotianae alone. In comparison to P. nicotianae alone, the combination treatment with AMF and BABA had increased Pn, Gs, Tr, and root activity, while P. nicotianae alone had reduced Ci, H2O2 content, and MDA levels. SOD, POD, CAT, APX, and Ph activity and expression levels were increased under the combined treatment of AMF and BABA than in P.nicotianae alone. In comparison to the treatment of P.nicotianae alone, the combined use of AMF and BABA increased the accumulation of GSH, proline, total phenols, and flavonoids. Therefore, the joint application of AMF and BABA can enhance the TBS resistance of tobacco plants to a greater degree than the application of either AMF or BABA alone. In summary, the application of defense-related amino acids, combined with inoculation with AMF, significantly promoted immune responses in tobacco. Our findings provide new insights that will aid the development and use of green disease control agents.
Collapse
Affiliation(s)
- Jia Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Bo Cai
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Sheng Chang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Ying Yang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
48
|
Hafiz FB, Geistlinger J, Al Mamun A, Schellenberg I, Neumann G, Rozhon W. Tissue-Specific Hormone Signalling and Defence Gene Induction in an In Vitro Assembly of the Rapeseed Verticillium Pathosystem. Int J Mol Sci 2023; 24:10489. [PMID: 37445666 DOI: 10.3390/ijms241310489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Abdullah Al Mamun
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
49
|
Bu Z, Li W, Liu X, Liu Y, Gao Y, Pei G, Zhuo R, Cui K, Qin Z, Zheng H, Wu J, Yang Y, Su P, Cao M, Xiong X, Liu X, Zhu Y. The Rice Endophyte-Derived α-Mannosidase ShAM1 Degrades Host Cell Walls To Activate DAMP-Triggered Immunity against Disease. Microbiol Spectr 2023; 11:e0482422. [PMID: 37154721 PMCID: PMC10269736 DOI: 10.1128/spectrum.04824-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.
Collapse
Affiliation(s)
- Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Wei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiaoli Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Gang Pei
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province Hunan, University of Chinese Medicine, Changsha, People’s Republic of China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jie Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yutong Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, People’s Republic of China
| | - Meiting Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
50
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|