1
|
Xue Z, Patel K, Bhatia P, Miller CL, Shergill RS, Patel BA. 3D-Printed Microelectrodes for Biological Measurement. Anal Chem 2024; 96:12701-12709. [PMID: 39039062 DOI: 10.1021/acs.analchem.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 μm in diameter to 400 μm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.
Collapse
Affiliation(s)
- Zehao Xue
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Kanisha Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Paankhuri Bhatia
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Chloe L Miller
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Ricoveer Singh Shergill
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| |
Collapse
|
2
|
Chow Z, Johnson J, Chauhan A, Jeong JC, Castle JT, Izumi T, Weiss H, Townsend CM, Schrader J, Anthony L, Yang ES, Evers BM, Rychahou P. Inhibition of ribonucleotide reductase subunit M2 enhances the radiosensitivity of metastatic pancreatic neuroendocrine tumor. Cancer Lett 2024; 596:216993. [PMID: 38801884 PMCID: PMC11299177 DOI: 10.1016/j.canlet.2024.216993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.
Collapse
Affiliation(s)
- Zeta Chow
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Aman Chauhan
- Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jong Cheol Jeong
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Jennifer T Castle
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Tadahide Izumi
- Markey Cancer Center, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Heidi Weiss
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Cancer Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Courtney M Townsend
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lowell Anthony
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | - Eddy S Yang
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Piotr Rychahou
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
4
|
Zhu Z, Chen X, Chen S, Hu C, Guo R, Wu Y, Liu Z, Shu X, Jiang M. Examination of the mechanism of Piezo ion channel in 5-HT synthesis in the enterochromaffin cell and its association with gut motility. Front Endocrinol (Lausanne) 2023; 14:1193556. [PMID: 38027192 PMCID: PMC10652390 DOI: 10.3389/fendo.2023.1193556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.
Collapse
Affiliation(s)
- Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Shuang Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Ziyu Liu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
5
|
Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids. ACS Sens 2023; 8:712-720. [PMID: 36749605 DOI: 10.1021/acssensors.2c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.
Collapse
Affiliation(s)
- Emily L Brooks
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khalil K Hussain
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khushboo Kotecha
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Aya Abdalla
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
6
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
7
|
Zhai L, Huang C, Ning Z, Zhang Y, Zhuang M, Yang W, Wang X, Wang J, Zhang L, Xiao H, Zhao L, Asthana P, Lam YY, Chow CFW, Huang JD, Yuan S, Chan KM, Yuan CS, Lau JYN, Wong HLX, Bian ZX. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 2023; 31:33-44.e5. [PMID: 36495868 DOI: 10.1016/j.chom.2022.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D), a globally prevalent functional gastrointestinal (GI) disorder, is associated with elevated serotonin that increases gut motility. While anecdotal evidence suggests that the gut microbiota contributes to serotonin biosynthesis, mechanistic insights are limited. We determined that the bacterium Ruminococcus gnavus plays a pathogenic role in IBS-D. Monocolonization of germ-free mice with R. gnavus induced IBS-D-like symptoms, including increased GI transit and colonic secretion, by stimulating the production of peripheral serotonin. R. gnavus-mediated catabolism of dietary phenylalanine and tryptophan generated phenethylamine and tryptamine that directly stimulated serotonin biosynthesis in intestinal enterochromaffin cells via a mechanism involving activation of trace amine-associated receptor 1 (TAAR1). This R. gnavus-driven increase in serotonin levels elevated GI transit and colonic secretion but was abrogated upon TAAR1 inhibition. Collectively, our study provides molecular and pathogenetic insights into how gut microbial metabolites derived from dietary essential amino acids affect serotonin-dependent control of gut motility.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Yang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Wang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi Fung Willis Chow
- Center for Systems Biology Dresden, Max Planck Institute for Molecular Cell and Biology, Dresden, Germany
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
8
|
Knutson KR, Whiteman ST, Alcaino C, Mercado-Perez A, Finholm I, Serlin HK, Bellampalli SS, Linden DR, Farrugia G, Beyder A. Intestinal enteroendocrine cells rely on ryanodine and IP 3 calcium store receptors for mechanotransduction. J Physiol 2023; 601:287-305. [PMID: 36428286 PMCID: PMC9840706 DOI: 10.1113/jp283383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (∼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.
Collapse
Affiliation(s)
- Kaitlyn R. Knutson
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Sara T. Whiteman
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arnaldo Mercado-Perez
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - Isabelle Finholm
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Hannah K. Serlin
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Shreya S. Bellampalli
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Chen Z, Feng J, Hu S, Hua Y, Ma S, Fu W, Yang Q, Zhang X. Bacillus Subtilis Promotes the Release of 5-HT to Regulate Intestinal Peristalsis in STC Mice via Bile Acid and Its Receptor TGR5 Pathway. Dig Dis Sci 2022; 67:4410-4421. [PMID: 34797444 DOI: 10.1007/s10620-021-07308-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Slow transit constipation (STC) is caused by intestinal peristalsis dysfunction and is closely associated with disturbance of the intestinal microecological balance. Bacillus subtilis plays a positive role in the treatment of STC, but its mechanism needs to be further explored. AIMS The purpose of the present study was to explore the effects and mechanism of B. subtilis on the pathophysiology of STC. METHODS A STC mouse model was established with compound diphenoxylate, following which B. subtilis was used to treat STC. The effects and possible mechanism of B. subtilis on STC were investigated by assessing intestinal motility, histology of the colon, release of 5-HT in enterochromaffin cells (ECs) and the TGR5/TRPA1 pathway. Moreover, LC-MS targeted metabolomics was used to analyze the regulation of Bacillus subtilis on bile acid metabolisms in STC mice. RESULTS Bacillus subtilis significantly increased 24 h defecations, fecal moisture and intestinal transport rate of STC mice, improved pathological damage of the colon and showed protective effects on the intestinal tract. The release of 5-HT from ECs and the bile acid receptor TGR5/TRPA1 pathway were significantly increased in STC mice treated with B. subtilis. In addition, the metabolomics results showed that the bile acid contents of STC mice were significantly decreased, and B. subtilis could increase the bile acid composition and content of STC mice. CONCLUSION Bacillus subtilis regulates intestinal peristalsis of STC by promoting the release of 5-HT from ECs through bile acid metabolism and its receptor TGR5 pathway and plays a positive role in the treatment of STC.
Collapse
Affiliation(s)
- Zhenhai Chen
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jiangyi Feng
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Song Hu
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ye Hua
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Shaying Ma
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Weijie Fu
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Qian Yang
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xin Zhang
- Department of General Surgery, Chongqing Emergency Medical Center/Chongqing University Central Hospital, Chongqing, 400014, China.
| |
Collapse
|
10
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
11
|
Koc G, Soyocak A, Duzgun Ergun D, Pastaci Ozsobaci N, Andac-Ozturk S, Ergun S. Association of TRPM5 Asn235Ser Polymorphism and Trace Elements/Minerals in Chronic Gastritis Patients: a Case-Control Study. Biol Trace Elem Res 2022; 200:535-542. [PMID: 34767145 DOI: 10.1007/s12011-021-03002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
The link between chronic gastritis and chemosensory receptors is considered promising for disease prediction and treatment. The transient receptor potential melastatin member channel 5 (TRPM5) is an ion channel and may be a chemosensor in the gastrointestinal tract. Trace elements and minerals involved in many protein structures can change ion channel activity. Our study aimed to determine trace element and mineral levels according to TRPM5 Asn235Ser missense polymorphism distributions in patients with H. pylori (+) and (-) gastritis and to uncover their possible association with disease pathogenesis. In 109 volunteer patients diagnosed with gastritis [64 H. pylori (+), 45 H. pylori (-)], TRPM5 (Asn235Ser) polymorphism was detected by Kompetitive Allele-Specific PCR method (KASP), but no difference was found between the groups. There are differences between the serum trace element (Se, Zn, Cu, Mg, and Cu/Zn) levels of the two groups. High serum Se and Cu/Zn ratios were detected in H. pylori (+) patients. Cu/Zn ratio can be used as a marker of bacterial inflammation. The amount of Se was found to be statistically significant in the serums of H. pylori (+) patients carrying TT and CT genotype, while the amounts of Zn, Cu, and Mg were found as significant of H. pylori (-) patients. The relationship of Se with the H. pylori needs to be investigated further. In addition, H. pylori (+) patients have a significantly higher neutrophils/lymphocytes ratio (NLR) compared to those with H. pylori (-) NLR can be used as an indicator of inflammation.
Collapse
Affiliation(s)
- G Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - A Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - S Andac-Ozturk
- Department of Nutrition and Dietetic, Health Science Faculty, Istanbul Zaim University, Istanbul, Turkey
| | - S Ergun
- Department of General Surgery, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of General Surgery, Istanbul Avcılar Murat Koluk State Hospital, Istanbul, Turkey
| |
Collapse
|
12
|
PI3K/mTOR Dual Inhibitor PF-04691502 Is a Schedule-Dependent Radiosensitizer for Gastroenteropancreatic Neuroendocrine Tumors. Cells 2021; 10:cells10051261. [PMID: 34065268 PMCID: PMC8160730 DOI: 10.3390/cells10051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with advanced-stage gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have a poor overall prognosis despite chemotherapy and radiotherapy (e.g., peptide receptor radionuclide therapy (PRRT)). Better treatment options are needed to improve disease regression and patient survival. The purpose of this study was to examine a new treatment strategy by combining PI3K/mTOR dual inhibition and radiotherapy. First, we assessed the efficacy of two PI3K/mTOR dual inhibitors, PF-04691502 and PKI-402, to inhibit pAkt and increase apoptosis in NET cell lines (BON and QGP-1) and patient-derived tumor spheroids as single agents or combined with radiotherapy (XRT). Treatment with PF-04691502 decreased pAkt (Ser473) expression for up to 72 h compared with the control; in contrast, decreased pAkt expression was noted for less than 24 h with PKI-402. Simultaneous treatment with PF-04691502 and XRT did not induce apoptosis in NET cells; however, the addition of PF-04691502 48 h after XRT significantly increased apoptosis compared to PF-04691502 or XRT treatment alone. Our results demonstrate that schedule-dependent administration of a PI3K/mTOR inhibitor, combined with XRT, can enhance cytotoxicity by promoting the radiosensitivity of NET cells. Moreover, our findings suggest that radiotherapy, in combination with timed PI3K/mTOR inhibition, may be a promising therapeutic regimen for patients with GEP-NET.
Collapse
|
13
|
April-Monn SL, Wiedmer T, Skowronska M, Maire R, Schiavo Lena M, Trippel M, Di Domenico A, Muffatti F, Andreasi V, Capurso G, Doglioni C, Kim-Fuchs C, Gloor B, Zatelli MC, Partelli S, Falconi M, Perren A, Marinoni I. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021; 111:273-287. [PMID: 32241015 DOI: 10.1159/000507669] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Molecular mechanisms underlying the development and progression of pancreatic neuroendocrine tumors (PanNETs) are still insufficiently understood. Efficacy of currently approved PanNET therapies is limited. While novel treatment options are being developed, patient stratification permitting more personalized treatment selection in PanNET is yet not feasible since no predictive markers are established. The lack of representative in vitro and in vivo models as well as the rarity and heterogeneity of PanNET are prevailing reasons for this. In this study, we describe an in vitro 3-dimensional (3-D) human primary PanNET culture system as a novel preclinical model for more personalized therapy selection. We present a screening platform allowing multicenter sample collection and drug screening in 3-D cultures of human primary PanNET cells. We demonstrate that primary cells isolated from PanNET patients and cultured in vitro form islet-like tumoroids. Islet-like tumoroids retain a neuroendocrine phenotype and are viable for at least 2 weeks in culture with a high success rate (86%). Viability can be monitored continuously allowing for a per-well normalization. In a proof-of-concept study, islet-like tumoroids were screened with three clinically approved therapies for PanNET: sunitinib, everolimus and temozolomide. Islet-like tumoroids display varying in vitro response profiles to distinct therapeutic regimes. Treatment response of islet-like tumoroids differs also between patient samples. We believe that the presented human PanNET screening platform is suitable for personalized drug testing in a larger patient cohort, and a broader application will help in identifying novel markers predicting treatment response and in refining PanNET therapy.
Collapse
Affiliation(s)
- Simon Leonhard April-Monn
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Renaud Maire
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Mafalda Trippel
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Annunziata Di Domenico
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Capurso
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Unit of Pathology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | | | - Beat Gloor
- Inselspital, University of Bern, Bern, Switzerland
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland,
| |
Collapse
|
14
|
Comparison of a Novel Herbal Medicine and Omeprazole in the Treatment of Functional Dyspepsia: A Randomized Double-Blinded Clinical Trial. Gastroenterol Res Pract 2020; 2020:5152736. [PMID: 33273914 PMCID: PMC7683154 DOI: 10.1155/2020/5152736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background The Trachyspermum ammi L. (TA), Anethum graveolens L. (AG), and Zataria multiflora Boiss (ZM) herbal oils are among the most used herbal products in traditional medicine as the antiseptic, anesthetic, carminative, and antispasmodic. However, there are no clinical studies to evaluate the efficacy of the herbs mentioned in the treatment of functional dyspepsia (FD). This study was designed to appraise the efficacy and safety of a novel herbal medicine consisting of ZM, AG, and TA essential oils compared to omeprazole in FD treatment. Methods The present study was a randomized double-blind clinical trial with parallel groups in Iran. Patients in control and intervention arms received omeprazole 20 mg once a day and 250 mg soft-gel capsules containing 180 mg of essential oils of ZM, AG, and TA twice a day for two weeks, respectively. The primary outcome was the sufficient response rate in the postprandial distress syndrome (PDS) and/or epigastric pain syndrome (EPS) at the end of the intervention. Secondary outcomes were the improvement rate in the PDS, EPS, Gastrointestinal Symptom Rating Scale (GSRS), and quality of life scores. Also, safety and tolerability were assessed. Results The within-group comparison of EPS, PDS, total GSRS, GSRS Pain, and GSRS Dyspepsia scores with that at the end of the treatment indicated a significant reduction in both control and intervention groups (p < 0.001). However, after two weeks of treatment, the herbal medication and omeprazole arms were significantly different in the sufficient response rate based on PDS (p < 0.01) and EPS (p < 0.05) scores (78.3% (18/23) and 73.7% (14/19) in the intervention group vs. 36.4% (8/22) and 40.9% (9/22) in the control group). Also, the mean reduction in EPS (p < 0.05), PDS (p < 0.01), and GSRS (p < 0.001) scores after treatment was significantly higher in the intervention group than control group. Conclusion Based on the study findings, this herbal medicine can be considered as an appropriate treatment of FD. However, a larger multicenter trial is needed to confirm the results of the trial.
Collapse
|
15
|
Tian C, Li S, He L, Han X, Tang F, Huang R, Lin Z, Deng S, Xu J, Huang H, Zhao H, Li Z. Transient receptor potential ankyrin 1 contributes to the lysophosphatidylcholine-induced oxidative stress and cytotoxicity in OLN-93 oligodendrocyte. Cell Stress Chaperones 2020; 25:955-968. [PMID: 32572784 PMCID: PMC7591684 DOI: 10.1007/s12192-020-01131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1), the non-selective cation channel, was found that can mediate the generation of multiple sclerosis, while the mechanism is still controversial. Lysophosphatidylcholine (LPC) is a critical trigger of multiple sclerosis which results from the syndrome of neuronal inflammation and demyelination. In this work, we suggested that TRPA1 can mediate the LPC-induced oxidative stress and cytotoxicity in OLN-93 oligodendrocyte. The expression of TRPA1 in OLN-93 was detected by using quantitative real-time PCR (qRT-PCR) and immunofluorescence. The calcium overload induced by LPC via TRPA1 was detected by calcium imaging. The mechanism of LPC-induced mitochondrial reactive oxygen species (mtROS) generation, mitochondria membrane depolarization, nitric oxide (NO) increase, and development of superoxide production via TRPA1 was verified by using confocal imaging. The cell injury elicited by LPC via TRPA1 was confirmed by both CCK-8 and LDH cytotoxicity detection. These results indicate that TRPA1 plays an important role of the LPC-induced oxidative stress and cell damage in OLN-93 oligodendrocyte. Therefore, inhibition of TRPA1 may protect the LPC-induced demyelination.
Collapse
Affiliation(s)
- Chao Tian
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Shuai Li
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Han
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Feng Tang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Rongqi Huang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junjie Xu
- Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China
| | - Hualin Huang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Huifang Zhao
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
- Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China.
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The gut barrier serves as the primary interface between the environment and host in terms of surface area and complexity. Luminal chemosensing is a term used to describe how small molecules in the gut lumen interact with the host through surface receptors or via transport into the subepithelial space. In this review, we have summarized recent advances in the understanding of the luminal chemosensory system in the gastroduodenal epithelium consisting of enterocytes, enteroendocrine, and tuft cells, with particular emphasis on how chemosensing affects mucosal protective responses and the metabolic syndrome. RECENT FINDINGS Recent single-cell RNA sequencing provides detailed cell type-specific expression of chemosensory receptors and other bioactive molecules as well as cell lineages; some are similar to lingual taste cells whereas some are gut specific. Gut luminal chemosensing is not only important for the local or remote regulation of gut function, but also contributes to the systemic regulation of metabolism, energy balance, and food intake. We will discuss the chemosensory mechanisms of the proximal intestine, in particular to gastric acid, with a focus on the cell types and receptors involved in chemosensing, with emphasis on the rare chemosensory cells termed tuft cells. We will also discuss the chemosensory functions of intestinal ectoenzymes and bacterial components (e.g., lipopolysaccharide) as well as how they affect mucosal function through altering the gut-hormonal-neural axis. SUMMARY Recent updates in luminal chemosensing by different chemosensory cells have provided new possibilities for identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders, and abnormal visceral sensation.
Collapse
|
17
|
Efficacy and Safety of a Novel Herbal Medicine in the Treatment of Irritable Bowel Syndrome: A Randomized Double-Blinded Clinical Trial. Gastroenterol Res Pract 2020; 2020:8213082. [PMID: 32565786 PMCID: PMC7273440 DOI: 10.1155/2020/8213082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background The unresponsiveness to conventional pharmacological treatments and their side effects have led patients with irritable bowel syndrome (IBS) to use complementary and alternative medicine such as herbal remedies. Beside, Zataria multiflora Boiss (ZM), Trachyspermum ammi L. (TA), and Anethum graveolens L. (AG) are being used as an antiseptic, carminative, and antispasmodic in traditional medicine. This trial investigated the efficacy and safety of a combination of ZM, AG, and TA essential oils in the treatment of IBS. Method The present study was a randomized double-blind clinical trial with parallel groups in Iran. Patients in the control arm received three tablets of 10 mg hyoscine butylbromide daily for two weeks, and the intervention arm was daily treated with two 250 mg softgel capsules containing 180 mg of essential oils of ZM, AG, and TA for two weeks. Primary outcomes were the response rates based on the IBS Symptom Severity Scale (IBS-SSS), IBS Adequate Relief (IBS-AR), and IBS Global Assessment Improvement (IBS-GAI) at the end and two weeks after the end of the intervention. Secondary outcomes were the improvement rates in IBS-SSS scores, improving the quality of life, safety, and tolerability. Results The posttreatment improvement percentage based on IBS-AR, IBS-GAI, and IBS-SSS scales was 83.9%, 75%, and 87% in the intervention group and 37.9%, 27.5%, and 34.4% in the control group, respectively (P < 0.001). Also, the improvement of the quality of life in the herbal medicine arm was significantly more than that in the control arm (P < 0.001). Conclusions According to the results, the herbal medicine investigated in this study can be considered an appropriate alternative treatment for IBS.
Collapse
|
18
|
Lieder B, Hoi J, Burian N, Hans J, Holik AK, Beltran Marquez LR, Ley JP, Hatt H, Somoza V. Structure-Dependent Effects of Cinnamaldehyde Derivatives on TRPA1-Induced Serotonin Release in Human Intestinal Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3924-3932. [PMID: 32162915 PMCID: PMC7205389 DOI: 10.1021/acs.jafc.9b08163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Activation of the transient receptor potential (TRP) channel TRPA1 by cinnamaldehyde has been shown to stimulate serotonin release in enterochromaffin QGP-1 cells. However, the impact of cinnamaldehyde on serotonin release in enterocytes is less well understood. In addition, since the neurotransmitter serotonin plays a regulatory role in a large variety of gastrointestinal and metabolic functions, it is of interest to study which structural characteristics determine cinnamaldehyde-induced serotonin release by enterocytes. Thus, the present study analyzed serotonin release in differentiated Caco-2 cells as a model for enterocytes in comparison to enterochromaffin QGP-1 cells after stimulation with cinnamaldehyde and 17 naturally occurring structurally related compounds by means of a serotonin ELISA. Stimulation with cinnamaldehyde induced a dose-dependent increase in serotonin release starting from 0.5 mM in both cell lines, with a larger effect size in Caco-2 enterocytes compared to that in QGP-1 enterochromaffin cells. Serotonin release in Caco-2 cells induced by additional 17 structurally related compounds correlated with serotonin release in QGP-1 cells, showing the highest effects for coniferylaldehyde with a 15.84 ± 3.23-fold increase in Caco-2 cells, followed by the parent compound cinnamaldehyde (13.45 ± 2.15), cinnamyl alcohol (6.68 ± 1.08), and α-methyl-cinnamaldehyde (6.59 ± 0.93). Analysis of structural and molecular characteristics that modulate serotonin release in Caco-2 enterocytes revealed that the ability of a compound to activate TRPA1, demonstrated by means of HEK293 cells transiently expressing hTRPA1, is a decisive factor to stimulate serotonin release in Caco-2 enterocytes, preferring small, electrophilic compounds with a lower polar surface area. In addition, blocking of TRPA1 using 30 μM AP-18 significantly reduced the cinnamaldehyde-induced serotonin release by 30.0 ± 5.24%, confirming a TRPA1-dependent component in serotonin release by Caco-2 cells.
Collapse
Affiliation(s)
- Barbara Lieder
- Department
of Physiological Chemistry and Christian Doppler Laboratory for Bioactive
Aroma Compounds, Faculty of Chemistry, University
of Vienna, Althanstraße 14, 1090 Vienna, Austria
- , Tel: +43
1 4277 70611
| | - Julia Hoi
- Department
of Physiological Chemistry and Christian Doppler Laboratory for Bioactive
Aroma Compounds, Faculty of Chemistry, University
of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Nathalie Burian
- Department
of Physiological Chemistry and Christian Doppler Laboratory for Bioactive
Aroma Compounds, Faculty of Chemistry, University
of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Joachim Hans
- Symrise
AG, Mühlenfeldstraße
1, 37603 Holzminden, Germany
| | - Ann-Katrin Holik
- Department
of Physiological Chemistry and Christian Doppler Laboratory for Bioactive
Aroma Compounds, Faculty of Chemistry, University
of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Leopoldo Raul Beltran Marquez
- Department
of Physiological Chemistry and Christian Doppler Laboratory for Bioactive
Aroma Compounds, Faculty of Chemistry, University
of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jakob P. Ley
- Symrise
AG, Mühlenfeldstraße
1, 37603 Holzminden, Germany
| | - Hanns Hatt
- Riechforschung, Ruhr-University Bochum, 44801 Bochum, Germany
| | | |
Collapse
|
19
|
Loss of copy of MIR1-2 increases CDK4 expression in ileal neuroendocrine tumors. Oncogenesis 2020; 9:37. [PMID: 32198354 PMCID: PMC7083839 DOI: 10.1038/s41389-020-0221-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Ileal neuroendocrine tumors (I-NETs) are the most common tumors of the small intestine. Although I-NETs are known for a lack of recurrently mutated genes, a majority of tumors do show loss of one copy of chromosome 18. Among the genes on chromosome 18 is MIR1-2, which encodes a microRNA, MIR1-3p, with high complementarity to the mRNA of CDK4. Here we show that transfection of neuroendocrine cell lines with MIR1-3p lowered CDK4 expression and activity, and arrested growth at the G1 stage of the cell cycle. Loss of copy of MIR1-2 in ileal neuroendocrine tumors associated with increased expression of CDK4. Genetic events that attenuated RB activity, including loss of copy of MIR1-2 as well as loss of copy of CDKN1B and CDKN2A, were more frequent in tumors from patients with metastatic I-NETs. These data suggest that inhibitors of CDK4/CDK6 may benefit patients whose I-NETs show loss of copy of MIR1-2, particularly patients with metastatic disease.
Collapse
|
20
|
Najjar SA, Davis BM, Albers KM. Epithelial-Neuronal Communication in the Colon: Implications for Visceral Pain. Trends Neurosci 2020; 43:170-181. [PMID: 31983457 DOI: 10.1016/j.tins.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Visceral hypersensitivity and pain result, at least in part, from increased excitability of primary afferents that innervate the colon. In addition to intrinsic changes in these neurons, emerging evidence indicates that changes in lining epithelial cells may also contribute to increased excitability. Here we review recent studies on how colon epithelial cells communicate directly with colon afferents. Specifically, anatomical studies revealed specialized synaptic connections between epithelial cells and nerve fibers and studies using optogenetic activation of the epithelium showed initiation of pain-like responses. We review the possible mechanisms of epithelial-neuronal communication and provide an overview of the possible neurotransmitters and receptors involved. Understanding the biology of this interface and how it changes in pathological conditions may provide new treatments for visceral pain conditions.
Collapse
Affiliation(s)
- Sarah A Najjar
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian M Davis
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Herrera-Martínez AD, Feelders RA, Van den Dungen R, Dogan-Oruc F, van Koetsveld PM, Castaño JP, de Herder WW, Hofland LJ. Effect of the Tryptophan Hydroxylase Inhibitor Telotristat on Growth and Serotonin Secretion in 2D and 3D Cultured Pancreatic Neuroendocrine Tumor Cells. Neuroendocrinology 2020; 110:351-363. [PMID: 31319410 DOI: 10.1159/000502200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Serotonin, a biologically active amine, is related to carcinoid syndrome in functioning neuroendocrine tumors (NETs). Telotristat ethyl is a novel inhibitor of the tryptophan hydroxylase (TPH), a key enzyme in the production of serotonin. While its use in patients with carcinoid syndrome and uncontrolled diarrhea under somatostatin analogs (SSAs) has been recently approved, in vitro data evaluating its effectiveness are lacking. For this reason, we aimed to evaluate the effect of telotristat as monotherapy, and in combination with SSAs, on proliferation and secretion in a NET cell line model. The human pancreatic NET cell lines BON-1/QGP-1 were used as 2D and 3D cultured models; somatostatin receptor and TPH mRNA expression, as well as the potential autocrine effect of serotonin on tumor cell proliferation using a 3D culture system were evaluated. Telotristat decreased serotonin production in a dose-dependent manner at a clinically feasible concentration, without affecting cell proliferation. Its combination with pasireotide, but not with octreotide, had an additive inhibitory effect on serotonin secretion. The effect of telotristat was slightly less potent, when BON-1 cells were co-treated with octreotide. Octreotide and pasireotide had no effect on the expression of TPH. Telotristat did not have an effect on mRNA expression of somatostatin receptor subtypes. Finally, we showed that serotonin did not have an autocrine effect on NET cell proliferation on the 3D cell model. These results suggest that telotristat is an effective drug for serotonin inhibition, but the effectiveness of its combination with SST2 (somatostatin receptor subtype 2)-preferring SSA should be evaluated in more detail.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain,
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rosanna Van den Dungen
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fadime Dogan-Oruc
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
He Q, Li M, Wang X, Xia Z, Du Y, Li Y, Wei L, Shang J. A simple, efficient and rapid HPLC-UV method for the detection of 5-HT in RIN-14B cell extract and cell culture medium. BMC Chem 2019; 13:76. [PMID: 31384823 PMCID: PMC6661732 DOI: 10.1186/s13065-019-0591-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
5-Hydroxytryptamine (also known as 5-HT, serotonin) is one of the monoamine neurotransmitters which is distributed widely in plasma and brain of mammals and plays important roles in physiological manipulations. In the present method, we describe the development of a simple, efficient and rapid high performance liquid chromatographic method coupled with ultraviolet (HPLC-UV) detector for the qualitative and quantitative analysis of 5-HT in both cell extract and cell culture medium (RIN-14B). The experiments use repeated freeze-thaw cycles followed by centrifugation and direct injection of the supernatant into the chromatography. An analytical C18 column (Agilent Zorbax Extend, 4.6 × 250 mm, 5 μm.) was taken for chromatographic separation; the mobile phase was 0.05 mol/L potassium dihydrogen phosphate (KH2PO4)/acetonitrile (90:10 v/v). Isocratic elution is established at the flow rate of 1.0 mL/min. The time required for this chromatographic run is 8 min. Over the concentration range of 0.1-10 μg/mL, the calibration curve is linear in this method. Other unique characteristics and advantages include high accuracy (92.02-103.28%) and high precision (intra- and inter-day coefficients of variation ≤ 4.69%). This method is applicable for the investigation of drug/condition-response relationships in the function of synthesis and secretion of 5-HT in cultured RIN-14B cells in various in vitro studies.
Collapse
Affiliation(s)
- Qiangqiang He
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Maoru Li
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
- 0000 0000 9776 7793grid.254147.1Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198 China
- 0000 0000 9776 7793grid.254147.1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Xuechun Wang
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
| | - Zhenjiang Xia
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuzhi Du
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
| | - Yan Li
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lixin Wei
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
| | - Jing Shang
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
- 0000 0000 9776 7793grid.254147.1Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198 China
- 0000 0000 9776 7793grid.254147.1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| |
Collapse
|
23
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
24
|
Hoi JK, Lieder B, Pignitter M, Hans J, Ley JP, Lietard J, Hoelz K, Somoza M, Somoza V. Identification of Cinnamaldehyde as Most Effective Fatty Acid Uptake Reducing Cinnamon-Derived Compound in Differentiated Caco-2 Cells Compared to Its Structural Analogues Cinnamyl Alcohol, Cinnamic Acid, and Cinnamyl Isobutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11638-11649. [PMID: 31532204 DOI: 10.1021/acs.jafc.9b04274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 μM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 μM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.
Collapse
Affiliation(s)
| | | | | | - Joachim Hans
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | - Jakob P Ley
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | | | | | | | | |
Collapse
|
25
|
Saito H, Nakakita Y, Segawa S, Tsuchiya Y. Oral administration of heat-killed Lactobacillus brevis SBC8803 elevates the ratio of acyl/des-acyl ghrelin in blood and increases short-term food intake. Benef Microbes 2019; 10:671-677. [DOI: 10.3920/bm2018.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is known that gastrointestinal microbiota, probiotics and heat-killed microbes can regulate intestinal immunity; however, their effect on the secretion of gastrointestinal hormones is unclear. The secretion of gastrointestinal hormones can be mediated by the elevation of intracellular Ca2+ concentration, suggesting that these hormones may act through common mechanisms. We have previously shown that heat-killed Lactobacillus brevis SBC8803 (hk-SBC8803) induced the secretion of serotonin and elevated intracellular Ca2+ concentration in serotonin-producing RIN-14B cells, suggesting that hk-SBC8803 could potentially cause the same effect on other gastrointestinal hormones, including hunger hormone ghrelin. Here, we tested this hypothesis by treating cultured cells and experimental animals with hk-SBC8803 and assessing ghrelin secretion, expression of ghrelin-related genes, and food intake. The results indicated that hk-SBC8803 treatment for 30 min significantly upregulated the secretion of acyl ghrelin (active form) (P=0.046) and mRNA expression of the Syt3 (synaptotagmin 3) gene related to ghrelin exocytosis (P<0.05) in primary mouse stomach cells. In addition, oral administration of 500 mg/kg hk-SBC8803 to rats tended to upregulate acyl ghrelin concentration (P=0.10) and significantly increased the ratio of acyl to des-acyl (inactive) ghrelin (P=0.027) in blood, which corresponded to a tendency of stimulating food intake (P=0.087) at 30 min post-treatment. However, when in order to minimise individual differences we normalised the data on food intake to those on one-day food intake prior to food deprivation, the resultant food intake ratio showed a significant increase (by 5% compared to control; P=0.032) at 30 min after hk-SBC8803 treatment, indicating that hk-SBC8803 administration stimulated rats to take more food during the first meal after fasting. These results suggest that hk-SBC8803 induces short-term ghrelin secretion and transiently increases appetite, which is an important effect for individuals with low energy intake.
Collapse
Affiliation(s)
- H. Saito
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Y. Nakakita
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - S. Segawa
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Y. Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| |
Collapse
|
26
|
Rock S, Li X, Song J, Townsend CM, Weiss HL, Rychahou P, Gao T, Li J, Evers BM. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling. PLoS One 2019; 14:e0211134. [PMID: 30917119 PMCID: PMC6436710 DOI: 10.1371/journal.pone.0211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Neurotensin is a peptide hormone released from enteroendocrine cells in the small intestine in response to fat ingestion. Although the mechanisms regulating neurotensin secretion are still incompletely understood, our recent findings implicate a role for extracellular signal-regulated kinase 1 and 2 as positive regulators of free fatty acid-stimulated neurotensin secretion. Previous studies have shown that kinase suppressor of Ras 1 acts as a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase 1 and 2 kinase cascade and regulates intensity and duration of extracellular signal-regulated kinase 1 and 2 signaling. Here, we demonstrate that inhibition of kinase suppressor of Ras 1 attenuates neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling in human endocrine cells. Conversely, we show that overexpression of kinase suppressor of Ras 1 enhances neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling. We also show that inhibition of extracellular signal-regulated kinase 2 and exocyst complex component 70, a substrate of extracellular signal-regulated kinase 2 and mediator of secretory vesicle exocytosis, potently inhibits basal and docosahexaenoic acid-stimulated neurotensin secretion, whereas overexpression of exocyst complex component 70 enhances basal and docosahexaenoic acid-stimulated neurotensin secretion. Together, our findings demonstrate a role for kinase suppressor of Ras 1 as a positive regulator of neurotensin secretion from human endocrine cells and indicate that this effect is mediated by the extracellular signal-regulated kinase 1 and 2 signaling pathway. Moreover, we reveal a novel role for exocyst complex component 70 in regulation of neurotensin vesicle exocytosis through its interaction with the extracellular signal-regulated kinase 1 and 2 signaling pathway.
Collapse
Affiliation(s)
- Stephanie Rock
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xian Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Song
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Courtney M. Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi L. Weiss
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tianyan Gao
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - B. Mark Evers
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
27
|
Büch TRH, Büch EAM, Boekhoff I, Steinritz D, Aigner A. Role of Chemosensory TRP Channels in Lung Cancer. Pharmaceuticals (Basel) 2018; 11:ph11040090. [PMID: 30248976 PMCID: PMC6316293 DOI: 10.3390/ph11040090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential (TRP) channels represent a large family of cation channels and many members of the TRP family have been shown to act as polymodal receptor molecules for irritative or potentially harmful substances. These chemosensory TRP channels have been extensively characterized in primary sensory and neuronal cells. However, in recent years the functional expression of these proteins in non-neuronal cells, e.g., in the epithelial lining of the respiratory tract has been confirmed. Notably, these proteins have also been described in a number of cancer types. As sensor molecules for noxious compounds, chemosensory TRP channels are involved in cell defense mechanisms and influence cell survival following exposure to toxic substances via the modulation of apoptotic signaling. Of note, a number of cytostatic drugs or drug metabolites can activate these TRP channels, which could affect the therapeutic efficacy of these cytostatics. Moreover, toxic inhalational substances with potential involvement in lung carcinogenesis are well established TRP activators. In this review, we present a synopsis of data on the expression of chemosensory TRP channels in lung cancer cells and describe TRP agonists and TRP-dependent signaling pathways with potential relevance to tumor biology. Furthermore, we discuss a possible role of TRP channels in the non-genomic, tumor-promoting effects of inhalational carcinogens such as cigarette smoke.
Collapse
Affiliation(s)
- Thomas R H Büch
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16-18, D-04107 Leipzig, Germany.
| | - Eva A M Büch
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16-18, D-04107 Leipzig, Germany.
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University, D-80336 Munich, Germany.
| | - Dirk Steinritz
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University, D-80336 Munich, Germany.
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany.
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
28
|
Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, Weiss T, Townsend CM, Gao T, Evers BM. FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 2018; 159:2939-2952. [PMID: 29796668 PMCID: PMC6486825 DOI: 10.1210/en.2018-00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a 13 amino-acid peptide, is predominantly released from enteroendocrine cells of the small bowel in response to fat ingestion. Free fatty acid receptors (FFARs) FFAR1 and FFAR4 regulate secretion of gut hormones and insulin. Here, we show that docosahexaenoic acid, a long-chain fatty acid, has the most dramatic effect on NT release. FFAR1 agonists slightly stimulate and FFAR4 agonists dramatically stimulate and amplify NT secretion. Double knockdown of FFAR1 and FFAR4 decreases NT release, whereas overexpression of FFAR4, but not FFAR1, increases NT release. Administration of cpdA, an FFAR4 agonist, but not TAK-875, a selective FFAR1 agonist, increases plasma NT levels and further increases olive oil-stimulated plasma NT levels. Inhibition of MAPK kinase (MEK)/ERK1/2 decreased fatty acid-stimulated NT release but increased AMP-activated protein kinase (AMPK) phosphorylation. In contrast, inhibition of AMPK further increased NT secretion and ERK1/2 phosphorylation mediated by FFAR1 or FFAR4. Our results indicate that FFAR4 plays a more critical role than FFAR1 in mediation of fat-regulated NT release and in inhibitory crosstalk between MEK/ERK1/2 and AMPK in the control of NT release downstream of FFAR1 and FFAR4.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xian Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Stephanie B Rock
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heather F Sinner
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Todd Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Courtney M Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Correspondence: B. Mark Evers, MD, University of Kentucky, Markey Cancer Center, CC140 Roach Building, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
29
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25. [PMID: 29540494 PMCID: PMC8133373 DOI: 10.1530/erc-17-0445e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Correspondence should be addressed to T Hofving:
| | - Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and Immunology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25:367-380. [PMID: 29444910 PMCID: PMC5827037 DOI: 10.1530/erc-17-0445] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 12/23/2022]
Abstract
Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2 Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors.
Collapse
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Arvidsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and ImmunologyCenter for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical SciencesChalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of SurgeryInstitute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Hummel M, Knappenberger T, Reilly M, Whiteside GT. Pharmacological evaluation of NSAID-induced gastropathy as a "Translatable" model of referred visceral hypersensitivity. World J Gastroenterol 2017; 23:6065-6076. [PMID: 28970722 PMCID: PMC5597498 DOI: 10.3748/wjg.v23.i33.6065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate whether non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastropathy is a clinically predictive model of referred visceral hypersensitivity.
METHODS Gastric ulcer pain was induced by the oral administration of indomethacin to male, CD1 mice (n = 10/group) and then assessed by measuring referred abdominal hypersensitivity to tactile application. A diverse range of pharmacological mechanisms contributing to the pain were subsequently investigated. These mechanisms included: transient receptor potential (TRP), sodium and acid-sensing ion channels (ASICs) as well as opioid receptors and guanylate cyclase C (GC-C).
RESULTS Results showed that two opioids and a GC-C agonist, morphine, asimadoline and linaclotide, respectively, the TRP antagonists, AMG9810 and HC-030031 and the sodium channel blocker, carbamazepine, elicited a dose- and/or time-dependent attenuation of referred visceral hypersensitivity, while the ASIC blocker, amiloride, was ineffective at all doses tested.
CONCLUSION Together, these findings implicate opioid receptors, GC-C, and sodium and TRP channel activation as possible mechanisms associated with visceral hypersensitivity. More importantly, these findings also validate NSAID-induced gastropathy as a sensitive and clinically predictive mouse model suitable for assessing novel molecules with potential pain-attenuating properties.
Collapse
Affiliation(s)
- Michele Hummel
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| | | | - Meghan Reilly
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| | - Garth T Whiteside
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| |
Collapse
|
32
|
Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O'Donnell TA, Brierley SM, Ingraham HA, Julius D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017; 170. [PMID: 28648659 PMCID: PMC5839326 DOI: 10.1016/j.cell.2017.05.034] [Citation(s) in RCA: 532] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James R Bayrer
- Department of Pediatrics, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Castro
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tracey A O'Donnell
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Lieder B, Hoi JK, Holik AK, Geissler K, Hans J, Friedl B, Liszt K, Krammer GE, Ley JP, Somoza V. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells. PLoS One 2017; 12:e0171580. [PMID: 28192456 PMCID: PMC5305062 DOI: 10.1371/journal.pone.0171580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by -48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by -57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1.
Collapse
Affiliation(s)
- Barbara Lieder
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department for Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia Katharina Hoi
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ann-Katrin Holik
- Department for Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Joachim Hans
- Symrise AG, Mühlenfeldstraße 1, Holzminden, Germany
| | - Barbara Friedl
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kathrin Liszt
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Jakob P. Ley
- Symrise AG, Mühlenfeldstraße 1, Holzminden, Germany
| | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department for Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Alcaino C, Knutson K, Gottlieb PA, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4. Channels (Austin) 2017; 11:245-253. [PMID: 28085630 DOI: 10.1080/19336950.2017.1279370] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a humanEC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4. In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.
Collapse
Affiliation(s)
- Constanza Alcaino
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| | - Kaitlyn Knutson
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| | - Philip A Gottlieb
- b Department of Physiology and Biophysics, Center for Single Molecule Biophysics , State University of New York , Buffalo , NY , USA
| | - Gianrico Farrugia
- b Department of Physiology and Biophysics, Center for Single Molecule Biophysics , State University of New York , Buffalo , NY , USA
| | - Arthur Beyder
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
35
|
TRPA1, substance P, histamine and 5-hydroxytryptamine interact in an interdependent way to induce nociception. Inflamm Res 2016; 66:311-322. [PMID: 27904941 DOI: 10.1007/s00011-016-1015-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Although TRPA1, SP, histamine and 5-hydroxytryptamine (5-HT) have recognized contribution to nociceptive mechanisms, little is known about how they interact with each other to mediate inflammatory pain in vivo. In this study we evaluated whether TRPA1, SP, histamine and 5-HT interact, in an interdependent way, to induce nociception in vivo. METHODS AND RESULTS The subcutaneous injection of the TRPA1 agonist allyl isothiocyanate (AITC) into the rat's hind paw induced a dose-dependent and short lasting behavioral nociceptive response that was blocked by the co-administration of the TRPA1 antagonist, HC030031, or by the pretreatment with antisense ODN against TRPA1. AITC-induced nociception was significantly decreased by the co-administration of selective antagonists for the NK1 receptor for substance P, the H1 receptor for histamine and the 5-HT1A or 3 receptors for 5-HT. Histamine- or 5-HT-induced nociception was decreased by the pretreatment with antisense ODN against TRPA1. These findings suggest that AITC-induced nociception depends on substance P, histamine and 5-HT, while histamine- or 5-HT-induced nociception depends on TRPA1. Most important, AITC interact in a synergistic way with histamine, 5-HT or substance P, since their combination at non-nociceptive doses induced a nociceptive response much higher than that expected by the sum of the effect of each one alone. This synergistic effect is dependent on the H1, 5-HT1A or 3 receptors. CONCLUSION Together, these findings suggest a self-sustainable cycle around TRPA1, no matter where the cycle is initiated each step is achieved and even subeffective activation of more than one step results in a synergistic activation of the overall cycle.
Collapse
|
36
|
Kalbe B, Schlimm M, Mohrhardt J, Scholz P, Jansen F, Hatt H, Osterloh S. Helional induces Ca2+ decrease and serotonin secretion of QGP-1 cells via a PKG-mediated pathway. J Mol Endocrinol 2016; 57:201-10. [PMID: 27553203 DOI: 10.1530/jme-16-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The secretion, motility and transport by intestinal tissues are regulated among others by specialized neuroendocrine cells, the so-called enterochromaffin (EC) cells. These cells detect different luminal stimuli, such as mechanical stimuli, fatty acids, glucose and distinct chemosensory substances. The EC cells react to the changes in their environment through the release of transmitter molecules, most importantly serotonin, to mediate the corresponding physiological response. However, little is known about the molecular targets of the chemical stimuli delivered from consumed food, spices and cosmetics within EC cells. In this study, we evaluated the expression of the olfactory receptor (OR) 2J3 in the human pancreatic EC cell line QGP-1 at the mRNA and protein levels. Using ratiofluorometric Ca(2+) imaging experiments, we demonstrated that the OR2J3-specific agonist helional induces a transient dose-dependent decrease in the intracellular Ca(2+) levels. This Ca(2+) decrease is mediated by protein kinase G (PKG) on the basis that the specific pharmacological inhibition of PKG with Rp-8-pCPT-cGMPS abolished the helional-induced Ca(2+) response. Furthermore, stimulation of QGP-1 cells with helional caused a dose-dependent release of serotonin that was comparable with the release induced by the application of a direct PKG activator (8-bromo-cGMP). Taken together, our results demonstrate that luminal odorants can be detected by specific ORs in QGP-1 cells and thus cause the directed release of serotonin and a PKG-dependent decrease in intracellular Ca(2.)
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Marian Schlimm
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Julia Mohrhardt
- Department of ChemosensationInstitute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Paul Scholz
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Fabian Jansen
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 2016; 595:79-91. [PMID: 27392819 DOI: 10.1113/jp272718] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.
Collapse
Affiliation(s)
- Fan Wang
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 300 Yanchang Middle Road, Shanghai, PR China
| | - Kaitlyn Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Constanza Alcaino
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - David R Linden
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Simon J Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Madhusudan Grover
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Richard Oeckler
- Division of Pulmonary and Critical Care, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Philip A Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, USA
| | - Hui Joyce Li
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| |
Collapse
|
38
|
Taelman VF, Radojewski P, Marincek N, Ben-Shlomo A, Grotzky A, Olariu CI, Perren A, Stettler C, Krause T, Meier LP, Cescato R, Walter MA. Upregulation of Key Molecules for Targeted Imaging and Therapy. J Nucl Med 2016; 57:1805-1810. [DOI: 10.2967/jnumed.115.165092] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/22/2016] [Indexed: 01/25/2023] Open
|
39
|
Yang Z, Zhang L, Serra S, Law C, Wei A, Stockley TL, Ezzat S, Asa SL. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft. Endocr Pathol 2016; 27:97-103. [PMID: 27067082 DOI: 10.1007/s12022-016-9429-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroendocrine tumors (NETs) are increasing in incidence yet the cause of these tumors remains unknown. Familial associations have shed light on the genetic basis of some of these tumors, but sporadic tumors seem to have primarily epigenetic dysregulation. The rarity of cell lines and animal models has been a barrier to studies of treatment modalities. We set out to develop a xenograft model of gastrointestinal NETs. Primary human NETs were collected at the time of surgery under sterile conditions and xenografted into the flanks of immunodeficient mice. Tumor growth was measured and when tumors reached 1500 mm(3), they were excised and half was re-xenografted through multiple generations. The other half was bisected; a part was frozen and a part was fixed for morphologic and immunohistochemical characterization as well as molecular validation of fidelity of a successful xenograft. Of 106 human NETs, seven were successfully engrafted of which only one tumor was successfully propagated for eight passages. Two years later, the tumor retains its neuroendocrine features and similarity to the original primary human tumor. It has retained expression of keratin as well as chromogranin A reactivity. The establishment of a NET xenograft provides a model for further study of the biological behavior of these tumors and can be used to examine the in vivo effects of various medical and targeted radiotherapeutic agents on tumor growth.
Collapse
Affiliation(s)
- Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033, People's Republic of China
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Le Zhang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033, People's Republic of China
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Stefano Serra
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Calvin Law
- Department of Surgery and Odette Cancer Centre, Sunnybrook Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Alice Wei
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Tracy L Stockley
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shereen Ezzat
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Sylvia L Asa
- Princess Margaret Hospital, University Health Network, Toronto, Ontario, M5G 2M9, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, Ontario, M5G 2S3, Canada.
| |
Collapse
|
40
|
Patel BA. Mucosal serotonin overflow is associated with colonic stretch rather than phasic contractions. Neurogastroenterol Motil 2016; 28:914-23. [PMID: 26891254 DOI: 10.1111/nmo.12791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many studies have shown that mucosal serotonin (5-HT) is associated with motility, however, recently there have been some questions to the precise role of this transmitter. The majority of studies have focused on understanding the role of mucosal 5-HT on colonic migratory motor complexes, but very few studies have been carried out to understand how 5-HT release may be associated with other motility patterns. METHODS Using distal colon segments from C57BL/6J mice, mucosal 5-HT overflow was monitored using amperometry while applying tension in longitudinal or circular directions to stretch the tissue. KEY RESULTS Phasic and basal 5-HT levels were not associated with the strength of phasic contractions, while being altered using scopolamine and L-NNA. There was a significant increase in mucosal 5-HT with longitudinal and circular muscle stretch. A greater applied force was needed to activate 5-HT release in the circular muscle. In the longitudinal muscle, 5-HT levels increased with stretch until 3 mN, after which the levels returned back to baseline. This stretch-evoked 5-HT overflow was inhibited by transient receptor potential A1 (TRPA1) agonist, 30 μM ruthenium red in both circular and longitudinal muscle preparations. The decreased 5-HT overflow after 3 mN of tension was reversed using a 5-HT4 antagonist 100 nM GR113808. CONCLUSIONS & INFERENCES Our findings show a relationship between colonic stretch and mucosal 5-HT overflow, while no relationship is observed with phasic colonic contractions. Such findings provide more insight into the role of mucosal 5-HT in influencing the pattern of colonic motility to diversify fecal propulsion.
Collapse
Affiliation(s)
- B A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
41
|
Li J, Song J, Weiss HL, Weiss T, Townsend CM, Evers BM. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells. Mol Endocrinol 2015; 30:26-36. [PMID: 26528831 DOI: 10.1210/me.2015-1094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Jun Song
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Heidi L Weiss
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Todd Weiss
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Courtney M Townsend
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - B Mark Evers
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
42
|
Vandamme T, Peeters M, Dogan F, Pauwels P, Van Assche E, Beyens M, Mortier G, Vandeweyer G, de Herder W, Van Camp G, Hofland LJ, Op de Beeck K. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1. J Mol Endocrinol 2015; 54:137-47. [PMID: 25612765 DOI: 10.1530/jme-14-0304] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human BON-1 and QGP-1 cell lines are two frequently used models in pancreatic neuroendocrine tumor (PNET) research. Data on the whole-exome genetic constitution of these cell lines is largely lacking. This study presents, to our knowledge, the first whole-exome profile of the BON-1 and QGP-1 cell lines. Cell line identity was confirmed by short tandem repeat profiling. Using GTG-banding and a CytoSNP-12v2 Beadchip array, cell line ploidy and chromosomal alterations were determined in BON-1 and QGP-1. The exomes of both cell lines were sequenced on Ilumina's HiSeq next-generation sequencing (NGS) platform. Single-nucleotide variants (SNVs) and insertions and deletions (indels) were detected using the Genome Analysis ToolKit. SNVs were validated by Sanger sequencing. Ploidy of BON-1 and QGP-1 was 3 and 4 respectively, with long stretches of loss of heterozygosity across multiple chromosomes, which is associated with aggressive tumor behavior. In BON-1, 57 frameshift indels and 1725 possible protein-altering SNVs were identified in the NGS data. In the QGP-1 cell line, 56 frameshift indels and 1095 SNVs were identified. ATRX, a PNET-associated gene, was mutated in both cell lines, while mutation of TSC2 was detected in BON-1. A mutation in NRAS was detected in BON-1, while KRAS was mutated in QGP-1, implicating aberrations in the RAS pathway in both cell lines. Homozygous mutations in TP53 with possible loss of function were identified in both cell lines. Various MUC genes, implicated in cell signaling, lubrication and chemical barriers, which are frequently expressed in PNET tissue samples, showed homozygous protein-altering SNVs in the BON-1 and QGP-1 cell lines.
Collapse
Affiliation(s)
- Timon Vandamme
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Fadime Dogan
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Patrick Pauwels
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Elvire Van Assche
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Matthias Beyens
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Geert Mortier
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Wouter de Herder
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Van Camp
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Leo J Hofland
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Ken Op de Beeck
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
43
|
Transient receptor potential ankyrin 1 (TRPA1) channel activation by the thienopyridine-type drugs ticlopidine, clopidogrel, and prasugrel. Cell Calcium 2014; 55:200-7. [PMID: 24636274 DOI: 10.1016/j.ceca.2014.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/24/2014] [Accepted: 02/14/2014] [Indexed: 01/06/2023]
Abstract
Transient receptor potential A1 (TRPA1) is widely expressed throughout the human and animal organism, including the dorsal root ganglia as well as the bladder, stomach and small intestine. Here, we examined the effect of three platelet aggregation inhibitors on TRPA1: ticlopidine, clopidogrel and prasugrel. Utilising fluorometric Ca(2+) influx analysis and electrophysiological whole cell measurements in TRPA1-expressing HEK293 and in human enterochromaffin-like QGP-1 cells, we found that ticlopidine, clopidogrel and prasugrel are direct activators of TRPA1. Although this polymodal channel commonly contributes to the perception of pain, temperature and chemical irritants, recent studies provide evidence for its involvement in the release of serotonin (5-HT) from enterochromaffin cells. Therefore, we further investigated the ability of ticlopidine, clopidogrel and prasugrel to stimulate 5-HT release from QGP-1 cells. We could determine 5-HT in supernatants from cultured QGP-1 cells upon treatment with ticlopidine and clopidogrel but not with prasugrel. These findings indicate that a robust TRPA1 activation by ticlopidine and clopidogrel correlates with the stimulatory effect on the secretion of 5-HT. As recipients of ticlopidine and clopidogrel frequently complain about gastrointestinal adverse events such as nausea, vomiting and diarrhoea, an activation of TRPA1 may contribute to adverse effects of such drugs in the digestive system.
Collapse
|
44
|
Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliott VA, Kim JT, Harris JW, Campbell K, Weiss H, Wang C, Song J, Anthony L, Townsend CM, Evers BM. Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine tumors. Clin Cancer Res 2014; 20:1212-22. [PMID: 24443523 DOI: 10.1158/1078-0432.ccr-13-1897] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The precise involvement of the PI3K/mTOR and RAS/MEK pathways in carcinoid tumors is not well defined. Therefore, the purpose of our study was to evaluate the role these pathways play in carcinoid cell proliferation, apoptosis, and secretion and to determine the effects of combined treatment on carcinoid tumor inhibition. METHODS The human neuroendocrine cell lines BON (pancreatic carcinoid), NCI-H727 (lung carcinoid), and QGP-1 (somatostatinoma) were treated with either the pan-PI3K inhibitor, BKM120, or the dual PI3K-mTOR inhibitor, BEZ235, alone or in combination with the MEK inhibitor, PD0325901; proliferation, apoptosis, and protein expression were assessed. Peptide secretion was evaluated in BON and QGP-1 cells. The antiproliferative effect of BEZ235, alone or combined with PD0325901, was then tested in vivo. RESULTS Both BKM120 and BEZ235 decreased proliferation and increased apoptosis; combination with PD0325901 significantly enhanced the antineoplastic effects of either treatment alone. In contrast, neurotensin peptide secretion was markedly stimulated with BKM120 treatment, but not BEZ235. The combination of BEZ235 + PD0325901 significantly inhibited the growth of BON xenografts without systemic toxicity. CONCLUSIONS Both BKM120 and BEZ235 effectively inhibited neuroendocrine tumor (NET) cell proliferation and stimulated apoptosis. However, inhibition of the PI3K pathway alone with BKM120 significantly stimulated neurotensin peptide secretion; this did not occur with the dual inhibition of both PI3K and mTOR using BEZ235 suggesting that this would be a more effective treatment regimen for NETs. Moreover, the combination of BEZ235 and the MEK inhibitor PD0325901 was a safe and more effective therapy in vivo compared with single agents alone.
Collapse
Affiliation(s)
- Joseph D Valentino
- Authors' Affiliations: Departments of Surgery, Internal Medicine, and Biostatistics; Markey Cancer Center, University of Kentucky, Lexington, Kentucky; and Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kojima R, Nozawa K, Doihara H, Keto Y, Kaku H, Yokoyama T, Itou H. Effects of novel TRPA1 receptor agonist ASP7663 in models of drug-induced constipation and visceral pain. Eur J Pharmacol 2013; 723:288-93. [PMID: 24291101 DOI: 10.1016/j.ejphar.2013.11.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022]
Abstract
Constipation is a major gastrointestinal motility disorder with clinical need for effective drugs. We previously reported that transient receptor potential ankyrin 1 (TRPA1) is highly expressed in enterochromaffin (EC) cells, which are 5-hydroxytryptamine (5-HT)-releasing cells, and might therefore be a novel target for constipation. Here, we examined the effects of ASP7663, a novel and selective TRPA1 agonist, in constipation models as well as an abdominal pain model. ASP7663 activated human, rat, and mouse TRPA1 and released 5-HT from QGP-1 cells, and oral but not intravenous administration of ASP7663 significantly improved the loperamide-induced delay in colonic transit in mice. While pretreatment with the TRPA1 antagonist HC-030031 and vagotomy both inhibited the ameliorating effect of oral ASP7663 on the colonic transit, both orally and intravenously administered ASP7663 significantly inhibited colorectal distension (CRD)-induced abdominal pain response in rats. Taken together, these results demonstrate that ASP7663 exerts both anti-constipation and anti-abdominal pain actions, the former is likely triggered from the mucosal side of the gut wall via activation of vagus nerves while the latter is assumed to be provoked through systemic blood flow. We conclude that ASP7663 can be an effective anti-constipation drug with abdominal analgesic effect.
Collapse
Affiliation(s)
- Ryosuke Kojima
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | - Katsura Nozawa
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hitoshi Doihara
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Yoshihiro Keto
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hidetaka Kaku
- Chemistry Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Toshihide Yokoyama
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroyuki Itou
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
46
|
Abstract
Pancreatic neuroendocrine tumors (PNETs), also known as islet cell tumors, are mostly indolent neoplasms that probably arise from a network of endocrine cells that includes islet cells and pluripotent precursors in the pancreatic ductal epithelium. The incidence and prevalence of PNETs continue to rise in recent years because of more sensitive detection. The molecular pathogenesis, early detection, molecular predictors of tumor behavior, and targeted drug therapy of PNETs are not well understood and require additional basic and translational research. The rarity and indolent nature of these tumors, difficulty of access to appropriate patient tissue samples, and varying histopathology and secreted hormones pose particular challenges to PNET researchers. Animal models and cell lines are indispensable tools for investigating the pathogenesis, pathophysiology, mechanisms for tumor invasion and metastasis, and therapeutics of PNETs. This review summarizes currently available animal models and cell lines of PNETs, which have provided valuable insights into the pathogenesis and natural history of human PNETs. In the future, animal models and cell lines of PNETs should also be used to study early tumor detection and molecular predictors of tumor behavior and to test the responses to, and mechanisms for, novel targeted drug therapies.
Collapse
|
47
|
Takahashi K, Ohta T. Inflammatory acidic pH enhances hydrogen sulfide-induced transient receptor potential ankyrin 1 activation in RIN-14B cells. J Neurosci Res 2013; 91:1322-7. [PMID: 23873754 DOI: 10.1002/jnr.23251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2 S), a toxic volcanic gas, functions as a gaseous physiological and pathophysiological molecule. Recently we have shown that H2 S elicits acute pain through the activation of transient receptor potential ankyrin 1 (TRPA1), which is expressed mainly in primary nociceptive neurons. We also demonstrated enhancement of H2 S-induced TRPA1 activation and pain under inflammatory acidic conditions, but the underlying mechanism has not been elucidated. Here, we attempted to clarify this mechanism by using endogenously TRPA1-expressing RIN-14B, a rat pancreatic islet cell line. For this purpose, the intracellular Ca(2+) concentration ([Ca(2+) ]i )], reactive oxygen species (ROS), and intracellular pH (pHi ) were measured with fluorescent imaging techniques. The intracellular H2 S concentration was assayed by the methylene blue method. To clarify the cellular function of H2 S, 5-hydroxytryptamine (5-HT) secretion was analyzed. In RIN-14B, the increase of [Ca(2+) ]i and the release of 5-HT induced by NaHS, an H2 S donor, were enhanced under inflammatory acidic conditions. Transition of H2 S into cells was enhanced at pH 6.8. H2 S failed to increase the intracellular ROS level and only slightly decreased pHi . These results suggest that H2 S directly activates TRPA1 and that its increment of diffusion into cells may be involved in the potentiation of TRPA1 activation under external acidic conditions. Thus, our study supports the pathophysiological functions of H2 S in inflammatory pain.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | |
Collapse
|
48
|
Schulze A, Oehler B, Urban N, Schaefer M, Hill K. Apomorphine is a bimodal modulator of TRPA1 channels. Mol Pharmacol 2012; 83:542-51. [PMID: 23220749 DOI: 10.1124/mol.112.081976] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apomorphine is a non-narcotic derivative of morphine, which acts as a dopamine agonist and is clinically used to treat "off-states" in patients suffering from Parkinson's disease. Adverse effects of apomorphine treatment include severe emesis and nausea, and ulceration and pain at the injection site. We wanted to test whether sensory transient receptor potential (TRP) channels are a molecular target for apomorphine. Here, we show that rTRPV1, rTRPV2, rTRPV3, and mTRPV4, as well as hTRPM8, and rTRPM3, which are expressed in dorsal root ganglion neurons, are insensitive toward apomorphine treatment. This also applied to the cellular redox sensor hTRPM2. On the contrary, human TRPA1 could be concentration-dependently modulated by apomorphine. Whereas the addition of apomorphine in the low micromolar range produced an irreversible activation of the channel, application of higher concentrations caused a reversible voltage-dependent inhibition of heterologously expressed TRPA1 channels, resulting from a reduction of single-channel open times. In addition, we provide evidence that apomorphine also acts on endogenous TRPA1 in cultured dorsal root ganglion neurons from rats and in the enterochromaffin model cell line QGP-1, from which serotonin is released upon activation of TRPA1. Our study shows that human TRPA1 is a target for apomorphine, suggesting that an activation of TRPA1 might contribute to adverse side effects such as nausea and painful injections, which can occur during treatment with apomorphine.
Collapse
Affiliation(s)
- Anja Schulze
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
49
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res 2011; 31:350-8. [PMID: 21848366 DOI: 10.3109/10799893.2011.602413] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transient receptor potential subfamily A member 1 (TRPA1) is a non-selective cation channel implicated in the pathogenesis of several airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Most of the research on TRPA1 focuses on its expression and function in neuronal context; studies investigating non-neuronal expression of TRPA1 are lacking. In the present study, we show functional expression of TRPA1 in human lung fibroblast cells (CCD19-Lu) and human pulmonary alveolar epithelial cell line (A549). We demonstrate TRPA1 expression at both mRNA and protein levels in these cell types. TRPA1 selective agonists like allyl isothiocyanate (AITC), 4-hydroxynonenal (4-HNE), crotonaldehyde and zinc, induced a concentration-dependent increase in Ca+2 influx in CCD19-Lu and A549 cells. AITC-induced Ca+2 influx was inhibited by Ruthenium red (RR), a TRP channel pore blocker, and by GRC 17536, a TRPA1 specific antagonist. Furthermore, we also provide evidence that activation of the TRPA1 receptor by TRPA1 selective agonists promotes release of the chemokine IL-8 in CCD19-Lu and A549 cells. The IL-8 release in response to TRPA1 agonists was attenuated by TRPA1 selective antagonists. In conclusion, we demonstrate here for the first time that TRPA1 is functionally expressed in cultured human lung fibroblast cells (CCD19-Lu) and human alveolar epithelial cell line (A549) and may have a potential role in modulating release of this important chemokine in inflamed airways.
Collapse
Affiliation(s)
- Indranil Mukhopadhyay
- Biological Research, Glenmark Pharmaceuticals Ltd., Glenmark Research Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|