1
|
Khan MA, Mousa AM, Alradhi AE, Allemailem K. Efficacy of lipid nanoparticles-based vaccine to protect against vulvovaginal candidiasis (VVC): Implications for women's reproductive health. Life Sci 2025; 361:123312. [PMID: 39674269 DOI: 10.1016/j.lfs.2024.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
AIMS Vulvovaginal candidiasis (VVC) is a common women's health issue, with rising antifungal resistance. This study was aimed to prepare and evaluate the efficacy of a lipid nanoparticle-based vaccine in a murine model of VVC. MATERIALS AND METHODS Dried and reconstituted vesicles containing C. albicans antigens (DRNPs-Ca-Ags) vaccine, formulated with phosphatidylcholine and cholesterol-based lipid nanoparticles via film hydration and freeze-drying. The safety evaluation of DRNPs-CaAgs was conducted by determining hepatic (AST, ALT) or renal (BUN, creatinine) biomarkers. Female mice were immunized with DRNPs-CaAgs or Alum-CaAgs, and immune responses were evaluated via antibody titers, IgG isotypes, and splenocyte proliferation. Protective efficacy of vaccine formulations was assessed through fungal burden, biofilm formation, cytokine levels, and histopathological analysis of vaginal tissues. KEY FINDINGS Mice vaccinated with DRNPs-CaAgs showed significantly enhanced immune responses, with higher antibody titers and IgG2a levels as compared to the Alum-CaAgs group. Vaginal fungal burden was dramatically reduced (665 ± 78 CFUs in DRNPs-CaAgs immunized group vs. 12,944 ± 3540 CFUs in Alum-CaAgs group, p < 0.01). Biofilm formation decreased by 45 % (p < 0.05), and inflammatory cytokines were significantly lowered. Histopathological analysis revealed minimal tissue damage in DRNPs-CaAgs vaccinated mice. SIGNIFICANCE The findings suggest DRNPs-CaAgs as a promising vaccine for VVC, eliciting strong immunity, reducing fungal load, and minimizing inflammation. While the reliance on a murine model is a limitation, future clinical trials are essential to evaluate its efficacy and safety in humans, offering a potential strategy to combat drug-resistant infections and improve women's reproductive health.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Khaled Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
2
|
Prusty JS, Kumar A. In silico-driven identification and experimental confirmation of antifungal proteins (AFPs) against Candidaalbicans. Biochimie 2025; 228:44-57. [PMID: 39134296 DOI: 10.1016/j.biochi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mycoses infect millions of people annually across the world. The most common mycosis agent, Candida albicans is responsible for a great deal of illness and death. C. albicans infection is becoming more widespread and the current antifungals polyenes, triazoles, and echinocandins are less efficient against it. Investigating antifungal peptides (AFPs) as therapeutic is gaining momentum. Therefore, we used MALDI-TOF/MS analysis to identify AFPs and protein-protein docking to analyze their interactions with the C. albicans target protein. Some microorganisms with strong antifungal action against C. albicans were selected for the isolation of AFPs. Using MALDI-TOF/MS, we identified 3 AFPs Chitin binding protein (ACW83017.1; Bacillus licheniformis), the bifunctional protein GlmU (BBQ13478.1; Stenotrophomonas maltophilia), and zinc metalloproteinase aureolysin (BBA25172.1; Staphylococcus aureus). These AFPs showed robust interactions with C. albicans target protein Sap5. We deciphered some important residues in identified APFs and highlighted interaction with Sap5 through hydrogen bonds, protein-protein interactions, and salt bridges using protein-protein docking and MD simulations. The three discovered AFPs-Sap5 complexes exhibit different levels of stability, as seen by the RMSD analysis and interaction patterns. Among protein-protein interactions, the remarkable stability of the BBQ25172.1-2QZX complex highlights the role of salt bridges and hydrogen bonds. Identified AFPs could be further studied for developing successful antifungal candidates and peptide-based new antifungal therapeutic strategies as fresh insights into addressing antifungal resistance also.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India.
| |
Collapse
|
3
|
Kis-György R, Körtési T, Anicka A, Nagy-Grócz G. The Connection Between the Oral Microbiota and the Kynurenine Pathway: Insights into Oral and Certain Systemic Disorders. Curr Issues Mol Biol 2024; 46:12641-12657. [PMID: 39590344 PMCID: PMC11593024 DOI: 10.3390/cimb46110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The oral microbiome, comprising bacteria, fungi, viruses, and protozoa, is essential for maintaining both oral and systemic health. This complex ecosystem includes over 700 bacterial species, such as Streptococcus mutans, which contributes to dental caries through acid production that demineralizes tooth enamel. Fungi like Candida and pathogens such as Porphyromonas gingivalis are also significant, as they can lead to periodontal diseases through inflammation and destruction of tooth-supporting structures. Dysbiosis, or microbial imbalance, is a key factor in the development of these oral diseases. Understanding the composition and functions of the oral microbiome is vital for creating targeted therapies for these conditions. Additionally, the kynurenine pathway, which processes the amino acid tryptophan, plays a crucial role in immune regulation, neuroprotection, and inflammation. Oral bacteria can metabolize tryptophan, influencing the production of kynurenine, kynurenic acid, and quinolinic acid, thereby affecting the kynurenine system. The balance of microbial species in the oral cavity can impact tryptophan levels and its metabolites. This narrative review aims to explore the relationship between the oral microbiome, oral diseases, and the kynurenine system in relation to certain systemic diseases.
Collapse
Affiliation(s)
- Rita Kis-György
- Section of Health Behaviour and Health Promotion, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Szőkefalvi–Nagy Béla u. 4/B, H-6720 Szeged, Hungary
| | - Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Alexandra Anicka
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Út 78/A, H-1182 Budapest, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Alawfi SA. Health of Saudi Women in the Post-Pandemic Era: Candidiasis Incidence and Post COVID-19 and COVID-19-Vaccination. Int J Womens Health 2024; 16:1687-1697. [PMID: 39421715 PMCID: PMC11484768 DOI: 10.2147/ijwh.s472953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Candidiasis, commonly known as yeast infection, affects people worldwide due to the overgrowth of Candida species. Of several types, genital candidiasis, particularly vulvovaginal candidiasis (VVC), primarily caused by C. albicans is frequently observed in females of reproductive age. Candidiasis has also become a serious issue in the post-pandemic era, as it occurs as a secondary infection in COVID-19 patients during or after the course of viral illness. Therefore, this study investigated the incidence of C. albicans infections in women of reproductive age, and its relationship with the incidence of COVID-19 and vaccination in Saudi Arabia. Objective Additionally, this study aimed to determine the awareness of women on candidiasis and its subsequent impact on the occurrence of infection. A survey-based quantitative study was conducted in which primary data were collected from participants using a self-reported questionnaire. Methods A total of 200 women aged 18-45 were selected through random sampling. Apart from their sociodemographic characteristics, the history of COVID-19 incidence, COVID-19 vaccination, and candidiasis occurrences among respondents were recorded. Their level of awareness and knowledge of candidiasis, along with their perceptions of strategies for mitigating the risk of incidence, were also evaluated. The collected data were analysed using different statistical tools. Results The findings of this study revealed a positive correlation between candidiasis, viral infection, and vaccination, regardless of the type and dosage of vaccine administered. Furthermore, both COVID-19 incidence and vaccination had a positive and significant impact on the occurrence of candidiasis among Saudi women. Conclusion Despite certain limitations, this study has theoretical and managerial implications for improved management of candidiasis in the post-COVID era.
Collapse
Affiliation(s)
- Sami A Alawfi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Schwartzman S, Puig L, Cohen AD, Khattri S, Jossart C, Diaz C, Garrelts A, Ngantcha M, Eberhart N, Eleftheriadi A, Tangsirisap N, Schuster C, Gottlieb AB. Treatment-emergent Candida infections in patients with psoriasis, psoriatic arthritis, and axial spondyloarthritis treated with ixekizumab: an integrated safety analysis of 25 clinical studies. Expert Opin Drug Saf 2024; 23:1347-1357. [PMID: 39234767 DOI: 10.1080/14740338.2024.2399092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND This safety analysis investigates treatment-emergent mucosal/cutaneous Candida infections in patients treated with ixekizumab (IXE), an anti-interleukin-17A monoclonal antibody, across the approved indications: psoriasis (PsO), psoriatic arthritis (PsA), and axial spondyloarthritis (axSpA). RESEARCH DESIGN AND METHODS Safety data were pooled from 25 clinical studies. Incidence rates (IRs) are expressed as per 100 patient-years (PY), using the entire duration of exposure. RESULTS Candida infections had an IR of 1.9 per 100 PY in patients with PsO (N = 6892; total PY = 18025.7), 2.0 per 100 PY in patients with PsA (N = 1401; total PY = 2247.7), and 1.2 per 100 PY in patients with axSpA (N = 932; total PY = 2097.7). The majority of treatment-emergent Candida infections were: (i) experienced only once by patients (IR = 1.3;IR = 1.6;IR = 1.0), (ii) mild/moderate in severity (IR = 0.8/0.9;IR = 1.5/0.4;IR = 0.8/0.5) as opposed to severe (IR = 0.0; IR = 0.0; IR = 0.0), (iii) oral Candida or genital Candida (IR = 0.9/0.6;IR = 1.0/0.7;IR = 0.4/0.6), (iv) marked as recovered/resolved during the studies (89.3%;93.8%;90.3%), (v) not leading to IXE discontinuation (0.0%;0.0%;0.1% discontinued), (vi) managed with topical (34.7%;22.2%;11.5%) or no anti-fungal medications (63.5%;77.8%;80.8%) as opposed to systemic therapies (1.5%;0.0%;7.7%), (vii) typically resolved before next visit. CONCLUSIONS This integrated safety analysis shows that the risk of developing Candida infections is low with IXE, and the severity is mild-to-moderate in most instances across the approved IXE indications. TRIAL REGISTRATION A comprehensive list of the clinical trials and their registration numbers is reported in Table S1 of the supplemental material.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Arnon D Cohen
- Department of Quality Measurements and Research, Clalit Health Services, Tel Aviv, Israel
| | - Saakshi Khattri
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | | | | | | | | | | | - Christopher Schuster
- Eli Lilly and Company, Indianapolis, USA
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice B Gottlieb
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
6
|
Peng Y, Lu Y, Sun H, Ma J, Li X, Han X, Fang Z, Tan J, Qiu Y, Qu T, Yin M, Yan Z. Cryo-EM structures of Candida albicans Cdr1 reveal azole-substrate recognition and inhibitor blocking mechanisms. Nat Commun 2024; 15:7722. [PMID: 39242571 PMCID: PMC11379888 DOI: 10.1038/s41467-024-52107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
In Candida albicans, Cdr1 pumps azole drugs out of the cells to reduce intracellular accumulation at detrimental concentrations, leading to azole-drug resistance. Milbemycin oxime, a veterinary anti-parasitic drug, strongly and specifically inhibits Cdr1. However, how Cdr1 recognizes and exports azole drugs, and how milbemycin oxime inhibits Cdr1 remain unclear. Here, we report three cryo-EM structures of Cdr1 in distinct states: the apo state (Cdr1Apo), fluconazole-bound state (Cdr1Flu), and milbemycin oxime-inhibited state (Cdr1Mil). Both the fluconazole substrate and the milbemycin oxime inhibitor are primarily recognized within the central cavity of Cdr1 through hydrophobic interactions. The fluconazole is suggested to be exported from the binding site into the environment through a lateral pathway driven by TM2, TM5, TM8 and TM11. Our findings uncover the inhibitory mechanism of milbemycin oxime, which inhibits Cdr1 through competition, hindering export, and obstructing substrate entry. These discoveries advance our understanding of Cdr1-mediated azole resistance in C. albicans and provide the foundation for the development of innovative antifungal drugs targeting Cdr1 to combat azole-drug resistance.
Collapse
Affiliation(s)
- Ying Peng
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yan Lu
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Hui Sun
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jinying Ma
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xiaodan Han
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhixiong Fang
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Junming Tan
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yingchen Qiu
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Tingting Qu
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Yin
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China.
| | - Zhaofeng Yan
- Affiliated Hospital of Hunan University/Xiangtan Central Hospital, School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
7
|
Mehta A, Yadav M, Gupta BK, Thapa B, Rai J, Thapa SB, Yadav SK, Yadav D, Sharma MR. Multiple brain abscesses in a neonate: a rare case report along with review of literature. Ann Med Surg (Lond) 2024; 86:4793-4798. [PMID: 39118725 PMCID: PMC11305707 DOI: 10.1097/ms9.0000000000002155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction and importance Brain abscess (BA) is a pyogenic infection of the brain parenchyma caused by various organisms. Multiple BAs are uncommon in neonates, and Candida albicans as a causative agent is very rare. If left untreated, BAs are invariably fatal. Early diagnosis, prompt surgical intervention, simultaneous eradication of the primary source, and high-dose intravenous antibiotics decrease the incidence of morbidity and mortality. Case presentation A 20-day-old newborn, delivered normally at term with a full APGAR score, presented with a 5-day history of fever, decreased activity, jaundice, and seizures. Imaging identified multiple cerebral cysts, diagnosed as multiple cerebral abscesses. Treatment involved intraoperative USG-guided burr-hole drainage, followed by a 6-week antifungal therapy course. C. albicans was found to be the causative organism following microscopic examination and culture of the pus. Clinical discussion This literature highlights the rarity of fungal involvement in multiple cerebral abscesses in neonates. Managing such cases is very challenging, as the presentation may mimic bacterial infections. The importance of considering fungi as a causative agent in treatment decisions is crucial. Conclusion Multiple BAs of fungal origin are extremely rare. Early detection and management of cases can reduce mortality among neonates.
Collapse
Affiliation(s)
- Aanand Mehta
- Tribhuvan University Teaching Hospital, Maharajgunj
| | - Manish Yadav
- Maharajgunj Medical Campus, Tribhuvan University
| | | | - Bikash Thapa
- Tribhuvan University Teaching Hospital, Maharajgunj
| | - Junu Rai
- Tribhuvan University Teaching Hospital, Maharajgunj
| | | | | | - Digraj Yadav
- Maharajgunj Medical Campus, Tribhuvan University
| | | |
Collapse
|
8
|
do Nascimento Dias J, Hurtado Erazo FA, Bessa LJ, Eaton P, Leite JRDSDA, Paes HC, Nicola AM, Silva-Pereira I, Albuquerque P. Synergic Effect of the Antimicrobial Peptide ToAP2 and Fluconazole on Candida albicans Biofilms. Int J Mol Sci 2024; 25:7769. [PMID: 39063009 PMCID: PMC11276877 DOI: 10.3390/ijms25147769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Candida albicans is one of the agents of invasive candidiasis, a life-threatening disease strongly associated with hospitalization, particularly among patients in intensive care units with central venous catheters. This study aimed to evaluate the synergistic activity of the antifungal peptide ToAP2 combined with fluconazole against C. albicans biofilms grown on various materials. We tested combinations of different concentrations of the peptide ToAP2 with fluconazole on C. albicans biofilms. These biofilms were generated on 96-well plates, intravenous catheters, and infusion tubes in RPMI medium at two maturation stages. Scanning electron microscopy and atomic force microscopy were employed to assess the biofilm structure. We also evaluated the expression of genes previously proven to be involved in C. albicans biofilm formation in planktonic and biofilm cells after treatment with the peptide ToAP2 using qPCR. ToAP2 demonstrated a synergistic effect with fluconazole at concentrations up to 25 µM during both the early and mature stages of biofilm formation in 96-well plates and on medical devices. Combinations of 50, 25, and 12.5 µM of ToAP2 with 52 µM of fluconazole significantly reduced the biofilm viability compared to individual treatments and untreated controls. These results were supported by substantial structural changes in the biofilms observed through both scanning and atomic force microscopy. The gene expression analysis of C. albicans cells treated with 25 µM of ToAP2 revealed a decrease in the expression of genes associated with membrane synthesis, along with an increase in the expression of genes involved in efflux pumps, adhesins, and filamentation. Our results highlight the efficacy of the combined ToAP2 and fluconazole treatment against C. albicans biofilms. This combination not only shows therapeutic potential but also suggests its utility in developing preventive biofilm tools for intravenous catheters.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Fabián Andrés Hurtado Erazo
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Lucinda J. Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
- The Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Hugo Costa Paes
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| |
Collapse
|
9
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
10
|
Manzano JAH, Brogi S, Calderone V, Macabeo APG, Austriaco N. Globospiramine Exhibits Inhibitory and Fungicidal Effects against Candida albicans via Apoptotic Mechanisms. Biomolecules 2024; 14:610. [PMID: 38927014 PMCID: PMC11201426 DOI: 10.3390/biom14060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Candidiasis is considered an emerging public health concern because of the occurrence of drug-resistant Candida strains and the lack of an available structurally diverse antifungal drug armamentarium. The indole alkaloid globospiramine from the anticandidal Philippine medicinal plant Voacanga globosa exhibits a variety of biological activities; however, its antifungal properties remain to be explored. In this study, we report the in vitro anticandidal activities of globospiramine against two clinically relevant Candida species (C. albicans and C. tropicalis) and the exploration of its possible target proteins using in silico methods. Thus, the colony-forming unit (CFU) viability assay revealed time- and concentration-dependent anticandidal effects of the alkaloid along with a decrease in the number of viable CFUs by almost 50% at 60 min after treatment. The results of the MIC and MFC assays indicated inhibitory and fungicidal effects of globospiramine against C. albicans (MIC = 8 µg/mL; MFC = 8 µg/mL) and potential fungistatic effects against C. tropicalis at lower concentrations (MIC = 4 µg/mL; MFC > 64 µg/mL). The FAM-FLICA poly-caspase assay showed metacaspase activation in C. albicans cells at concentrations of 16 and 8 µg/mL, which agreed well with the MIC and MFC values. Molecular docking and molecular dynamics simulation experiments suggested globospiramine to bind strongly with 1,3-β-glucan synthase and Als3 adhesin-enzymes indirectly involved in apoptosis-driven candidal inhibition.
Collapse
Affiliation(s)
- Joe Anthony H. Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- UST Laboratories for Vaccine Science, Molecular Biology and Biotechnology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Laboratory for Organic Reactivity, Discovery, and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery, and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Nicanor Austriaco
- UST Laboratories for Vaccine Science, Molecular Biology and Biotechnology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| |
Collapse
|
11
|
Hou GW, Huang T. Essential oils as promising treatments for treating Candida albicans infections: research progress, mechanisms, and clinical applications. Front Pharmacol 2024; 15:1400105. [PMID: 38831882 PMCID: PMC11145275 DOI: 10.3389/fphar.2024.1400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Candida albicans: (C. albicans) is a prevalent opportunistic pathogen that can cause severe mucosal and systemic fungal infections, leading to high morbidity and mortality rates. Traditional chemical drug treatments for C. albicans infection have limitations, including the potential for the development of drug resistance. Essential oils, which are secondary metabolites extracted from plants, have gained significant attention due to their antibacterial activity and intestinal regulatory effects. It makes them an ideal focus for eco-friendly antifungal research. This review was aimed to comprehensively evaluate the research progress, mechanisms, and clinical application prospects of essential oils in treating C. albicans infections through their antibacterial and intestinal regulatory effects. We delve into how essential oils exert antibacterial effects against C. albicans infections through these effects and provide a comprehensive analysis of related experimental studies and clinical trials. Additionally, we offer insights into the future application prospects of essential oils in antifungal therapy, aiming to provide new ideas and methods for the development of safer and more effective antifungal drugs. Through a systematic literature review and data analysis, we hope to provide insights supporting the application of essential oils in antifungal therapy while also contributing to the research and development of natural medicines. In the face of increasingly severe fungal infections, essential oils might emerge as a potent method in our arsenal, aiding in the effective protection of human and animal health.
Collapse
Affiliation(s)
| | - Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
12
|
Sharma DD, Girgis P, Gandhi D, Adapa S, Karishma F, Kaur G, Balasingh GP, Ismail Elnimer MM. Contemporary Insights Into HIV Esophagitis: Pathogenesis, Therapeutic Strategies, and Prognostic Outcomes. Cureus 2024; 16:e60788. [PMID: 38903321 PMCID: PMC11189106 DOI: 10.7759/cureus.60788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Opportunistic infections caused by various bacteria, viruses, fungi, or parasites can cause esophagitis. The fungus Candida albicans is often believed to be the thief behind this disorder. This condition's distinctive signs include the process of inflammation and the development of esophageal ulcers. The underlying immunodeficiency condition in HIV/AIDS patients, especially those in the late stages of the disease, may lead to severe illness or even death if the lowered immune system can no longer combat common infections. These individuals are, therefore, more at risk of contracting diseases like Candidiasis since they already have weakened immune systems. Furthermore, bacteria and mycobacteria can cause esophagitis in the same way that viruses can. Tobacco use, alcohol drinking, and nutritional deficiency are three additional problems that can lead to an HIV esophagitis infection. Complaints of inability to swallow, suffocating feeling or discomfort behind the breastbone, and painful swallowing are the primary symptoms of the patients. White plaques or ulcers observed in the esophagus during an endoscopy can be biopsied for further examination. The presence of C. albicans hyphae and inflammatory infiltrates in these samples confirms the diagnosis of HIV-associated esophagitis. Treatment involves the use of antifungal medications and addressing any underlying causes of esophagitis, which is linked to AIDS. For superficial to moderate infections, fluconazole is typically used first. If the disease is severe or recurs after treatment, intravenous amphotericin B may be necessary. Patients with recurring oral symptoms of HIV esophagitis might also need to take antifungal drugs as a preventative measure.
Collapse
Affiliation(s)
| | - Peter Girgis
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Dhruv Gandhi
- Internal Medicine, K. J. Somaiya Medical College, Mumbai, IND
| | | | - Fnu Karishma
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Khairpur, PAK
| | - Gurvir Kaur
- Internal Medicine, American University of Antigua, Los Angeles, USA
| | | | | |
Collapse
|
13
|
Góralska K, Lis S, Brzeziańska-Lasota E. Cell pleomorphism and changes in the enzymatic profile of selected Candida albicans strains in interaction with Escherichia coli - pilot study. J Mycol Med 2024; 34:101458. [PMID: 38091834 DOI: 10.1016/j.mycmed.2023.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 03/10/2024]
Abstract
Interactions between C. albicans and the microbiota play an important role in maintaining the balance between commensal and pathogenic organisms. Although the exact role of bacteria in reducing the pathogenicity of yeast remains poorly understood, a few examples have been documented so far: probiotics administration effectively reduces the formation of biofilm and bacterial metabolites inhibit the formation of hyphae. The aim of the study was to analyze C. albicans virulence levels based on the changes in the morphological structure and enzymatic profile in experimental cultures mixed with Escherichia coli. Viable cell abundance, cell pleomorphism and enzymatic profile were analyzed in single and mixed cultures (C. albicans + E. coli). The microscope analysis showed a large decrease in the number of viable C. albicans cells in mixed cultures with E. coli from 485.3±132.1 immediately after the establishment of the culture to 238.1±71.2 after an hour of incubation and 24.4±5.4 after 24 h. The length of C. albicans cells differed significantly between the single-species cultures and the mixed cultures for 24 h. Our present findings indicate a significant reduction in the secretion of several enzymes by fungi following contact with E. coli, including acid phosphatase, N-acetyl-β-glucosaminidase, naphthol-AS-BI-phosphohydrolase and leucine arylamidase. The interactions between fungi and bacteria appear to be extremely complex. On the one hand, during C. albicans with E. coli co-incubation, the bacteria stimulated the elongation of yeast cells, leading to the formation of a filamentous form; however, the number of yeast cells and their enzymatic activity decreased significantly. Therefore, it can be concluded that while E. coli stimulates some pathogenic properties, e.g. cell elongation, it also inhibits other virulence features, e.g. enzymatic activity of C. albicans.
Collapse
Affiliation(s)
- Katarzyna Góralska
- Department of Biology and Parasitology, Chair of Biology and Medical Microbiology, Medical University of Lodz, Poland.
| | - Szymon Lis
- Rheumatology Clinic, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Poland
| |
Collapse
|
14
|
Jiang Q, Zhang J, Zhou G. Oral Malassezia infection co-occurring with tinea versicolor: metagenomic sequencing of the saliva. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:e45-e52. [PMID: 38155006 DOI: 10.1016/j.oooo.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
Malassezia is a lipid-dependent cutaneous symbiotic fungal genus associated with tinea versicolor. Here, we first present a rare case of a young tinea versicolor patient with oral manifestations presenting as white strips, patches, and pigmentation. The patient had a family history of tinea versicolor and a habit of frequent intake of cream. Histopathologic features and periodic acid-schiff staining of oral lesion indicated oral infection with round budding yeasts with short hyphae. Saliva metagenomic sequencing identified Malassezia and demonstrated the upregulated amount, diversity and activity of inflammatory bacteria. The clinical manifestations of oral Malassezia infection and changes in bacterial communities shed light on the pathogenic role of Malassezia in oral mucosa. In conclusion, we report the first oral Malassezia infection, which broadens the pathogenic cognitive scope of Malassezia and highlights the value of molecular techniques in the diagnostic process.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
15
|
Pérez-Vielma NM, Gómez-López M, Martínez-Godínez MDLÁ, Luna-Torres AL, Domínguez López A, Miliar-García Á. Candida Variety in the Oral Cavity of Mexican Subjects with Type 2 Diabetes Mellitus and TLR2 Gene Expression. Clin Pract 2024; 14:417-425. [PMID: 38525710 PMCID: PMC10961687 DOI: 10.3390/clinpract14020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The aim was to diagnose Candida in the oral cavity of subjects with type 2 diabetes mellitus (T2DM) using a genotyping technique and compare the results with those from conventional diagnosis by Papanicolaou (Pap) staining. METHODS Palatal mucosa smears were performed on 18 dental care patients diagnosed with T2DM and grade I, II, and III prosthetic stomatitis who met the inclusion criteria; 18 healthy control subjects were also included in the study. Hemoglobin A1c (HbA1c) levels were determined from total blood. Using exfoliative cytology, the Pap staining technique was used to diagnose candidiasis. Exfoliative cytology was also used for molecular diagnosis; DNA was obtained for Candida genotyping, and RNA was used for gene expression studies. RESULTS Clinical patterns indicated that all subjects were positive for Candida; however, Pap analysis revealed only three positive subjects, whereas end-point polymerase chain reaction (PCR) analysis revealed 15 subjects with some type of Candida. The most common Candida species found were Candida guilliermondii (38.8%), Candida krusei (33.3%), Candida tropicalis, and Candida lusitaniae (22.2%). Interestingly, the coexpression of different species of Candida was found in various patients. In all patients, HbA1c levels were increased. Gene expression analysis showed a significant decrease (p ≤ 0.05) in TLR2 expression in positive subjects, whereas TLR4 expression did not differ significantly among patients. CONCLUSIONS The end-point PCR technique showed better sensitivity for the diagnosis of Candida when compared with the diagnosis by Pap staining. T2DM subjects showed an increased presence of C. guilliermondii that was correlated with decreased TLR2 expression.
Collapse
Affiliation(s)
- Nadia Mabel Pérez-Vielma
- Sección de Estudios de Posgrado e Investigación, Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (N.M.P.-V.); (A.L.L.-T.)
| | - Modesto Gómez-López
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.G.-L.); (M.d.l.Á.M.-G.); (A.D.L.)
| | - María de los Ángeles Martínez-Godínez
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.G.-L.); (M.d.l.Á.M.-G.); (A.D.L.)
| | - Ana Laura Luna-Torres
- Sección de Estudios de Posgrado e Investigación, Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (N.M.P.-V.); (A.L.L.-T.)
| | - Aarón Domínguez López
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.G.-L.); (M.d.l.Á.M.-G.); (A.D.L.)
| | - Ángel Miliar-García
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.G.-L.); (M.d.l.Á.M.-G.); (A.D.L.)
| |
Collapse
|
16
|
Stupina TA, Shchudlo NA, Varsegova TN, Ostanina DA. Pathogenetic and clinical significance of fungal infection of the palmar aponeurosis in Dupuytren's contracture. GENIJ ORTOPEDII 2024; 30:59-66. [DOI: 10.18019/1028-4427-2024-30-1-59-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction Among the generally accepted theories of the etiology and pathogenesis of palmar fascial fibromatosis, the role of infectious factors has not been considered; however, there are references to fungal skin lesions in patients with advanced contractures and several studies that identified fungal infection in surgical material from such patients.The purpose of the work was to assess the pathogenetic and clinical significance of fungal infection of the palmar fascia in Dupuytren's contracture.Materials and methods We studied 41 medical records of patients operated on for Dupuytren's contracture in stages II-IV. The surgical material was examined at the light-optical level (hematoxylin-eosin and methenamine-silver PASM stains) and with scanning electron microscopy.Results Fungal infection of the palmar aponeurosis was detected in 20 out of 41 patients; various types of tissue reaction to the introduction of fungi into the palmar aponeurosis and the blood vessels perforating it were found. Groups of patients without signs of fungal invasion (n = 21) and with signs of fungal infection of the palmar aponeurosis (n = 20) were comparable in clinical and demographic characteristics, but significantly differed in the rate of early relapses, 0 versus 25 % in the group with fungal infection (p = 0.02).Discussion The immunogenetic characteristics of patients with palmar fascial fibromatosis and characteristic skin lesions create general and local conditions for the introduction of fungal flora.Conclusion Histological detection of pseudohyphae of the genus Candida in the palmar aponeurosis and the lumens of blood vessels in patients with Dupuytren's contracture verifies invasive candidiasis; the relationship between fungal infection of the aponeurosis and an increased rate of early relapses of contracture has been statistically proven. To increase the duration of the relapse-free period and potentially the life expectancy of patients, consultations with infectious disease mycologists and correction of modifiable risk factors for candidiasis are necessary.
Collapse
Affiliation(s)
- T. A. Stupina
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - N. A. Shchudlo
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - T. N. Varsegova
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| | - D. A. Ostanina
- Ilizarov National Medical Research Centre for Traumatology and Orthopedics
| |
Collapse
|
17
|
Sharma K, Parmanu PK, Sharma M. Mechanisms of antifungal resistance and developments in alternative strategies to combat Candida albicans infection. Arch Microbiol 2024; 206:95. [PMID: 38349529 DOI: 10.1007/s00203-023-03824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Candida albicans is a commensal fungus that infects the humans and becomes an opportunistic pathogen particularly in immuno-compromised patients. Among the Candida genus, yeast C. albicans is the most frequently incriminated species and is responsible for nearly 50-90% of human candidiasis, with vulvovaginal candidiasis alone, affecting about 75% of the women worldwide. One of the significant virulence traits in C. albicans is its tendency to alternate between the yeast and hyphae morphotypes, accounting for the development of multi-drug resistance in them. Thus, a thorough comprehension of the decision points and genes controlling this transition is necessary, to understand the pathogenicity of this, naturally occurring, pernicious fungus. Additionally, the formation of C. albicans biofilm is yet another pathogenesis trait and a paramount cause of invasive candidiasis. Since 1980 and in 90 s, wide spread use of immune-suppressing therapies and over prescription of fluconazole, a drug used to treat chronic fungal infections, triggered the emergence of novel anti-fungal drug development. Thus, this review thoroughly elucidates the diseases associated with C. albicans infection as well as the anti-fungal resistance mechanism associated with them and identifies the emerging therapeutic agents, along with a rigorous discussion regarding the future strategies that can possibly be adopted for the cure of this deleterious pathogen.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Prashant Kumar Parmanu
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India.
| |
Collapse
|
18
|
Chwastowski J, Wójcik K, Kołoczek H, Oszczęda Z, Khachatryan K, Tomasik P. Effect of water treatment with low-temperature and low-pressure glow plasma of low frequency on the growth of selected microorganisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2169708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jarosław Chwastowski
- Institute of Chemistry and Inorganic Technology, Krakow University of Technology, Krakow, Poland
| | - Katarzyna Wójcik
- Central Laboratory for Diagnostics of Tuberculosis Mycobacterium, John Paul the IInd, Hospital, Krakow, Poland
| | - Henryk Kołoczek
- Institute of Chemistry and Inorganic Technology, Krakow University of Technology, Krakow, Poland
| | | | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Piotr Tomasik
- Nantes Nanotechnological Systems, Bolesławiec, Poland
| |
Collapse
|
19
|
Fathy SM, Abdel-Halim MS, El-Safty S, El-Ganiny AM. Evaluation of polymethyl-methacrylate and acetal denture base resins processed by two different techniques before and after nano-chlorohexidine surface treatment. BMC Oral Health 2023; 23:985. [PMID: 38066495 PMCID: PMC10709906 DOI: 10.1186/s12903-023-03718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Flexible denture base polymers have gained popularity in modern dentistry however, their biofilm formation tendency, adversely affecting the oral tissue heath, remains a concern. Consequently, this study aimed to evaluate surface roughness and biofilm formation tendency of two types of denture base resins manufactured with two techniques before and after surface coating with chlorohexidine (CHX) NPs. MATERIALS AND METHODS Acetal (AC) and Polymethyl-methacrylate (PMMA) resins manufactured by conventional and CAD/CAM methods were shaped into disk (10 X 10 X 1 mm). They were dipped for 8 h and 24 h in colloidal suspension prepared by mixing aqueous solution of CHX digluconate and hexa-metaphosphate (0.01 M). Surface roughness, optical density (OD) of microbial growth media and biofilm formation tendency were evaluated directly after coating. Elutes concentrations of released CHX were evaluated for 19 days using spectrophotometer. Three-way ANOVA and Tukey's post-hoc statistical analysis were used to assess the outcomes. RESULTS AC CAD/CAM groups showed statistically significant higher roughness before and after coating (54.703 ± 4.32 and 77.58 ± 6.07 nm, respectively). All groups showed significant reduction in OD and biofilm formation tendency after surface coating even after 19 days of CHX NPs release. CONCLUSIONS Biofilm formation tendency was highly relevant to surface roughness of tested resins before coating. After CHX NPs coating all tested groups showed significant impact on microbial growth and reduction in biofilm formation tendency with no relation to surface roughness. Significant antimicrobial effect remained even after 19 days of NPs release and specimens storage.
Collapse
Affiliation(s)
- Salma M Fathy
- Dental Biomaterials Department, Faculty of Oral and Dental Medicine, Zagazig University, Zagazig, Egypt, and Faculty of Dentistry, Badr University, Cairo, Egypt.
| | | | - Samy El-Safty
- Dental Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Du M, Li F, Hu Y. A Uniform Design Method Can Optimize the Combinatorial Parameters of Antimicrobial Photodynamic Therapy, Including the Concentrations of Methylene Blue and Potassium Iodide, Light Dose, and Methylene Blue's Incubation Time, to Improve Fungicidal Effects on Candida Species. Microorganisms 2023; 11:2557. [PMID: 37894215 PMCID: PMC10609332 DOI: 10.3390/microorganisms11102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The optimal combinatorial parameters of antimicrobial photodynamic therapy (aPDT) mediated by methylene blue (MB) with the addition of potassium iodide (KI) against Candida species have never been defined. This study aimed to optimize the combinatorial parameters of aPDT, including the concentrations of MB (X1, 0.1-1.0 mM) and KI (X2, 100-400 mM), light dose (X3, 10-70 J/cm2), and MB's incubation time (X4, 5-35 min) for three Candida species. The best MB + KI-aPDT fungicidal effects (Y) against Candida albicans ATCC 90028 (YCa), Candida parapsilosis ATCC 22019 (YCp), and Candida glabrata ATCC 2950 (YCg) were investigated using a uniform design method. The regression models deduced using this method were YCa = 7.126 + 1.199X1X3 - 1.742X12 + 0.206X22 - 0.361X32; YCp = 10.724 - 0.867X1 - 1.497X2 + 0.560X3 + 1.298X22; and YCg = 0.892 - 0.956X1 + 2.296X3 + 1.299X42 - 3.316X3X4. The optimal combinatorial parameters inferred from the regression equations were MB 0.1 mM, KI 400 mM, a light dose of 20 J/cm2, and a 5-minute incubation time of MB for Candida albicans; MB 0.1 mM, KI 400 mM, a light dose of 70 J/cm2, and a 5-minute incubation time of MB for Candida parapsilosis; MB 0.1 mM, KI 100 mM, a light dose of 10 J/cm2, and a 35-minute incubation time of MB for Candida glabrata. The uniform design method can optimize the combinatorial parameters of aPDT mediated by MB plus KI to obtain the best aPDT fungicidal effects on Candida species, providing a new method to optimize the combinatorial parameters of aPDT for different pathogens in the future.
Collapse
Affiliation(s)
- Meixia Du
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Yanwei Hu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| |
Collapse
|
21
|
Ferreira DT, da Silva PV, de Oliveira Junior HCC, Rocha KAP, da Silva DR, de Souza Pitangui N, de Cássia Orlandi Sardi J. Can There Be a Relationship Between Oral Candidiasis and Candidemia in ICU Patients? CURRENT FUNGAL INFECTION REPORTS 2023; 17:195-201. [DOI: 10.1007/s12281-023-00470-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 01/03/2025]
|
22
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
23
|
Helmy NM, Parang K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals (Basel) 2023; 16:892. [PMID: 37375840 DOI: 10.3390/ph16060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal infections remain a significant concern for human health. The emergence of microbial resistance, the improper use of antimicrobial drugs, and the need for fewer toxic antifungal treatments in immunocompromised patients have sparked substantial interest in antifungal research. Cyclic peptides, classified as antifungal peptides, have been in development as potential antifungal agents since 1948. In recent years, there has been growing attention from the scientific community to explore cyclic peptides as a promising strategy for combating antifungal infections caused by pathogenic fungi. The identification of antifungal cyclic peptides from various sources has been possible due to the widespread interest in peptide research in recent decades. It is increasingly important to evaluate narrow- to broad-spectrum antifungal activity and the mode of action of synthetic and natural cyclic peptides for both synthesized and extracted peptides. This short review aims to highlight some of the antifungal cyclic peptides isolated from bacteria, fungi, and plants. This brief review is not intended to present an exhaustive catalog of all known antifungal cyclic peptides but rather seeks to showcase selected cyclic peptides with antifungal properties that have been isolated from bacteria, fungi, plants, and synthetic sources. The addition of commercially available cyclic antifungal peptides serves to corroborate the notion that cyclic peptides can serve as a valuable source for the development of antifungal drugs. Additionally, this review discusses the potential future of utilizing combinations of antifungal peptides from different sources. The review underscores the need for the further exploration of the novel antifungal therapeutic applications of these abundant and diverse cyclic peptides.
Collapse
Affiliation(s)
- Naiera M Helmy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
24
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
25
|
Qiu J, Roza MP, Colli KG, Dalben YR, Maifrede SB, Valiatti TB, Novo VM, Cayô R, Grão-Velloso TR, Gonçalves SS. Candida-associated denture stomatitis: clinical, epidemiological, and microbiological features. Braz J Microbiol 2023; 54:841-848. [PMID: 36940013 PMCID: PMC10234952 DOI: 10.1007/s42770-023-00952-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/21/2023] Open
Abstract
OBJECTIVE The identification of Candida spp. in denture stomatitis, the clinical manifestations, and the antifungal susceptibility profile lead to a correct and individualized therapeutic management of the patients. This study is aimed at investigating the clinical manifestations and epidemiological and microbiological characteristics of Candida-associated denture stomatitis. DESIGN The samples were obtained by swabbing the oral mucosa of the subjects and then seeded onto Sabouraud Dextrose Agar and onto CHROMagar® Candida plates. The identification at the species level was confirmed by Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry. Clinical classification was performed according to the criteria proposed by Newton (1962): (i) pinpoint hyperemia, (ii) diffuse hyperemia, and (iii) granular hyperemia. For carrying out the antifungal susceptibility testing, we adopted the CLSI M27-S4 protocol. RESULTS C. albicans was the most prevalent species in our study. Regarding non-albicans Candida species, C. glabrata was the most common species isolated from the oral mucosa (n = 4, 14.8%), while in the prosthesis, it was C. tropicalis (n = 4, 14.8%). The most prevalent clinical manifestation was pinpoint hyperemia and diffuse hyperemia. Candida albicans, C. glabrata, and C. parapsilosis were susceptible to all the tested antifungals. Concerning fluconazole and micafungin, only two strains showed dose-dependent sensitivity (minimum inhibitory concentration (MIC), 1 μg/mL) and intermediate sensitivity (MIC, 0.25 μg/mL). One C. tropicalis strain was resistant to voriconazole (MIC, 8 μg/mL). CONCLUSIONS C. albicans was the most common species found in oral mucosa and prosthesis. The tested antifungal drugs showed great activity against most isolates. The most prevalent clinical manifestations were Newton's type I and type II.
Collapse
Affiliation(s)
- Jiuyan Qiu
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
| | - Milena P. Roza
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
| | - Karolyne G. Colli
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
| | - Yago R. Dalben
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
- Infectious Diseases Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Simone B. Maifrede
- Pathology Department, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Tiago B. Valiatti
- Alerta Laboratory, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Vinicius M. Novo
- Dental Science Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Rodrigo Cayô
- Alerta Laboratory, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
- Immunology and Microbiology Laboratory (LIB), Biological Sciences Department (DCB), Immunology and Microbiology Sector, Institute of Environmental Sciences, Chemical and Pharmaceutical Sciences (ICAQF), University of Federal São Paulo (UNIFESP), Diadema, SP Brazil
| | - Tânia Regina Grão-Velloso
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
- Dental Science Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Sarah S. Gonçalves
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
- Infectious Diseases Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
- Pathology Department, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| |
Collapse
|
26
|
Al-Enazi NM, Alsamhary K, Ameen F. Evaluation of citrus pectin capped copper sulfide nanoparticles against Candidiasis causing Candida biofilms. ENVIRONMENTAL RESEARCH 2023; 225:115599. [PMID: 36898420 DOI: 10.1016/j.envres.2023.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The incidence of candidiasis has significantly increased globally in recent decades, and it is a significant source of morbidity and mortality, particularly in critically ill patients. Candida sp. ability to generate biofilms is one of its primary pathogenic traits. Drug-resistant strains have led to clinical failures of traditional antifungals, necessitating the development of a more modern therapy that can inhibit biofilm formation and enhance Candida sp. sensitivity to the immune system. The present study reports the anticandidal potential of pectin-capped copper sulfide nanoparticles (pCuS NPs) against Candida albicans. The pCuS NPs inhibit C. albicans growth at a minimum inhibitory concentration (MIC) of 31.25 μM and exhibit antifungal action by compromising membrane integrity and overproducing reactive oxygen species. The pCuS NPs, at their biofilm inhibitory concentration (BIC) of 15.63 μM, effectively inhibited C. albicans cells adhering to the glass slides, confirmed by light microscopy and scanning electron microscopy. Phase contrast microscopy pictures revealed that NPs controlled the morphological transitions between the yeast and hyphal forms by limiting conditions that led to filamentation and reducing hyphal extension. In addition, C. albicans showed reduced exopolysaccharide (EPS) production and exhibited less cell surface hydrophobicity (CSH) after pCuS NPs treatment. The findings suggest that pCuS NPs may be able to inhibit the emergence of virulence traits that lead to the formation of biofilms, such as EPS, CSH, and hyphal morphogenesis. The results raise the possibility of developing NPs-based therapies for C. albicans infections associated with biofilms.
Collapse
Affiliation(s)
- Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
27
|
Fernández-Manteca MG, Ocampo-Sosa AA, Ruiz de Alegría-Puig C, Pía Roiz M, Rodríguez-Grande J, Madrazo F, Calvo J, Rodríguez-Cobo L, López-Higuera JM, Fariñas MC, Cobo A. Automatic classification of Candida species using Raman spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122270. [PMID: 36580749 DOI: 10.1016/j.saa.2022.122270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
One of the problems that most affect hospitals is infections by pathogenic microorganisms. Rapid identification and adequate, timely treatment can avoid fatal consequences and the development of antibiotic resistance, so it is crucial to use fast, reliable, and not too laborious techniques to obtain quick results. Raman spectroscopy has proven to be a powerful tool for molecular analysis, meeting these requirements better than traditional techniques. In this work, we have used Raman spectroscopy combined with machine learning algorithms to explore the automatic identification of eleven species of the genus Candida, the most common cause of fungal infections worldwide. The Raman spectra were obtained from more than 220 different measurements of dried drops from pure cultures of each Candida species using a Raman Confocal Microscope with a 532 nm laser excitation source. After developing a spectral preprocessing methodology, a study of the quality and variability of the measured spectra at the isolate and species level, and the spectral features contributing to inter-class variations, showed the potential to discriminate between those pathogenic yeasts. Several machine learning and deep learning algorithms were trained using hyperparameter optimization techniques to find the best possible classifier for this spectral data, in terms of accuracy and lowest possible overfitting. We found that a one-dimensional Convolutional Neural Network (1-D CNN) could achieve above 80 % overall accuracy for the eleven classes spectral dataset, with good generalization capabilities.
Collapse
Affiliation(s)
| | - Alain A Ocampo-Sosa
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Ruiz de Alegría-Puig
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pía Roiz
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jorge Rodríguez-Grande
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Fidel Madrazo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Jorge Calvo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Rodríguez-Cobo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel López-Higuera
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Carmen Fariñas
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Adolfo Cobo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic candida species in obesity. Microb Pathog 2023; 174:105894. [PMID: 36496057 DOI: 10.1016/j.micpath.2022.105894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF RESEARCH The aim of the current study was gut profiling of culturable Candida species and their possible pathogenic potential to asses role in obesity. METHODS This case control study includes stool samples from 75 obese individuals and 50 controls. Isolation and identification of various Candida species was carried out by standard microbiological techniques. For pathogenic profiling, extracellular enzymatic assays, biofilm forming ability and resistance to azole were analyzed. RESULTS Culturable gut profiling identified comparative higher abundance and diversity of Candida species among obese compared to controls. The most abundant specie among both groups was C.kefyr. A comparatively higher pathogenic potential as more hydrolases expression was detected in C.kefyr, C.albicans and Teunomyces krusei from obese group. Majority isolates from obese group were strong biofilm formers (47.1%) compared to control group (35.4%) suggesting it as strong risk factor for obesity. Fluconazole resistance was highest among C.kefyr (51%) followed by Teunomyces krusei and C.albicans. All the isolates from different species were voriconazole sensitive except C.kefyr displaying a 4.2% resistance in obese group only. A significant association of dominant colonizing species with meat, fruit/vegetable consumption and residence area was present (p < 0.05). CONCLUSION The presence of hydrolytic enzymes in gut Candida species showed strong association with protein's degradation and enhanced pathogenicity. C.kefyr and Teunomyces krusei has emerged as potential pathogen showing increased colonization as result of protein rich and low carb diet. Thus presenting it as a bad choice for weight loss in obese individuals.
Collapse
Affiliation(s)
- Mehreen Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Faheem Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan; Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Marbaila Nane Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Ghufranud Din
- Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Bibi Khadija
- Department of Medical Lab Technology, National Skills University, Islamabad, Pakistan.
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
29
|
Epidemiology and Antifungal Susceptibility of Candida Species Isolated from 10 Tertiary Care Hospitals in Iran. Microbiol Spectr 2022; 10:e0245322. [PMID: 36445122 PMCID: PMC9769558 DOI: 10.1128/spectrum.02453-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In recent decades, the incidence of Candida infections has increased in immunocompromised patients. This multicenter study aimed to evaluate in vitro antifungal activities of 8 antifungal agents against the Candida species isolated from 10 university hospitals in Iran. During the period from Dec 2019 to Dec 2021, Candida species were collected from clinical samples of patients. The isolates were identified by PCR restriction fragment length polymorphism and sequencing methods. The antifungal susceptibility tests of each isolate to eight antifungal agents were performed according to the microdilution CLSI M27, M59, and M60 standard methods. A total of 598 Candida strains were isolated from clinical samples. The most commonly isolated Candida species was C. albicans, followed by C. glabrata, C. parapsilosis, Debaryomyces hansenii (Candida famata), C. tropicalis, Pichia kudriavzevii (Candida krusei), C. orthopsilosis, Meyerozyma guilliermondii (Candida guilliermondii), Kluyveromyces marxianus (Candida kefyr), and Clavispora lusitaniae (Candida lusitaniae). MIC90 values in all Candida species were as follows: 0.25 μg/mL for caspofungin and voriconazole; 0.5 μg/mL for amphotericin B and isavuconazole; 2 μg/mL for itraconazole, luliconazole, and posaconazole; and 16 μg/mL for fluconazole. Although 30/285 C. albicans, 15/31 C. hansenii, 3/12 M. guilliermondii, 67/125 C. glabrata, 5/15 P. kudriavzevii, 6/60 C. parapsilosis, and 5/23 C. tropicalis isolates were multiazole resistant with resistance to 2 to 4 azoles, pan-azole resistance was not observed. According to our data, Candida albicans and C. glabrata were the most frequent species isolated from clinical samples in Iran. Caspofungin and voriconazole, with lower MIC90 values, are the most effective than other antifungal agents for the treatment of Candida infections in this region. IMPORTANCE Candida species cause severe invasive infections of the heart, brain, eyes, bones, and other parts of the body. Knowledge of regional distributions of causative Candida agents and their antifungal susceptibility patterns can help to monitor resistance to antifungal agents of various species and support local and national surveillance programs. In the present study, C. albicans and C. glabrata were the most frequently isolated species from clinical samples in Iran. Increasing rates of non-albicans Candida isolates from the Iranian population should be looked at as alarming due to various levels of intrinsic MIC values or resistance to various antifungal drugs. Caspofungin and voriconazole are recommended over fluconazole for the treatment of Candida infections in the study region. However, amphotericin B and isavuconazole are also active against the most common Candida species isolated from patients. Pan azole-resistant Candida species were not observed in the present study.
Collapse
|
30
|
Ülke E, Hasanoğlu Özkan E, Nartop D, Öğütcü H. New Antimicrobial Polymeric Microspheres Containing Azomethine. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Pawar S, Markowitz K, Velliyagounder K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Arch Oral Biol 2022; 137:105399. [DOI: 10.1016/j.archoralbio.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
|
32
|
Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biol 2022; 126:407-420. [DOI: 10.1016/j.funbio.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
|
33
|
Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens 2022; 11:pathogens11030335. [PMID: 35335659 PMCID: PMC8953496 DOI: 10.3390/pathogens11030335] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Candida colonisation of the oral cavity increases in immunocompromised individuals which leads to the development of oral candidiasis. In addition, host factors such as xerostomia, smoking, oral prostheses, dental caries, diabetes and cancer treatment accelerate the disease process. Candida albicans is the primary causative agent of this infection, owing to its ability to form biofilm and hyphae and to produce hydrolytic enzymes and candialysin. Although mucosal immunity is activated, from the time hyphae-associated toxin is formed by the colonising C. albicans cells, an increased number and virulence of this pathogenic organism collectively leads to infection. Prevention of the development of infection can be achieved by addressing the host physiological factors and habits. For maintenance of oral health, conventional oral hygiene products containing antimicrobial compounds, essential oils and phytochemicals can be considered, these products can maintain the low number of Candida in the oral cavity and reduce their virulence. Vulnerable patients should be educated in order to increase compliance.
Collapse
|
34
|
Vavreckova M, Galanova N, Kostovcik M, Krystynik O, Ivanovova E, Roubalova R, Jiraskova Zakostelska Z, Friedecky D, Friedecka J, Haluzik M, Karasek D, Kostovcikova K. Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women. Front Endocrinol (Lausanne) 2022; 13:970825. [PMID: 36133313 PMCID: PMC9484836 DOI: 10.3389/fendo.2022.970825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Gestation is linked to changes in gut microbiota composition and function. Since gestational diabetes mellitus (GDM) can develop at any time of the pregnancy, we stratified the women into four groups according to the time and test used for the diagnosis. We focused on the gut microbiota pattern in early pregnancy to detect changes which could be linked to later GDM development. METHODS We collected stool samples from 104 pregnant women including obese individuals (first trimester body mass index median was 26.73). We divided the women into four groups according to routine screening of fasting plasma glucose (FPG) levels and oral glucose tolerance test (oGTT) in the first and third trimesters, respectively. We processed the stool samples for bacterial 16S rRNA and fungal ITS1 genes sequencing by Illumina MiSeq approach and correlated the gut microbiota composition with plasma short-chain fatty acid levels (SCFA). RESULTS We found that gut bacterial microbiota in the first trimester significantly differs among groups with different GDM onset based on unweighted UniFrac distances (p=0.003). Normoglycemic women had gut microbiota associated with higher abundance of family Prevotellaceae, and order Fusobacteriales, and genus Sutterella. Women diagnosed later during pregnancy either by FGP levels or by oGTT had higher abundances of genera Enterococcus, or Erysipelotrichaceae UCG-003, respectively. We observed significant enrichment of fungal genus Mucor in healthy pregnant women whereas Candida was more abundant in the group of pregnant women with impaired oGTT. Using correlation analysis, we found that Holdemanella negatively correlated with Blautia and Candida abundances and that Escherichia/Shigella abundance positively correlated and Subdoligranulum negatively correlated with plasma lipid levels. Coprococcus, Akkermansia, Methanobrevibacter, Phascolarctobacterium and Alistipes positively correlated with acetate, valerate, 2-hydroxybutyrate and 2-methylbutyrate levels, respectively, in women with GDM. CONCLUSIONS We conclude that there are significant differences in the gut microbiota composition between pregnant women with and without GDM already at the early stage of pregnancy in our cohort that included also overweight and obese individuals. Specific microbial pattern associated with GDM development during early pregnancy and its correlation to plasma lipid or SCFA levels could help to identify women in higher risk of GDM development.
Collapse
Affiliation(s)
- Marketa Vavreckova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Kostovcik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Krystynik
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Olomouc, Czechia
| | - Eliska Ivanovova
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Jaroslava Friedecka
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - David Karasek
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Olomouc, Czechia
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Klara Kostovcikova,
| |
Collapse
|
35
|
Frías-De-León MG, García-Salazar E, Reyes-Montes MDR, Duarte-Escalante E, Acosta-Altamirano G. Opportunistic Yeast Infections and Climate Change: The Emergence of Candida auris. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Pippin M. Skin Infections and Infestations. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
YILMAZ R, KESKİN O, GÜLLÜ YÜCETEPE A. Ceylanlarda (Gazella subgutturosa) parazitik pnömoni veTrueperella pyogenes ve Candida albicans ile ilişkili nekrotik-purulent bronkopnömoni. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
38
|
Liao J, Pan B, Zhuo X, Liao G, Gao Y, Yao Z, Wang L, Wu Q, Pan W, Jiao B, Zhao Q. β-1,2-Mannan-based glycoconjugates as potential antifungal vaccines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Boriollo MFG, Oliveira MC, Bassinello V, Aníbal PC, da Silva TA, da Silva JJ, Bassi RC, Netto MFR, Dos Santos Dias CT, Höfling JF. Candida species biotypes and polyclonality of potentially virulent Candida albicans isolated from oral cavity of patients with orofacial clefts. Clin Oral Investig 2021; 26:3061-3084. [PMID: 34791549 DOI: 10.1007/s00784-021-04290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study evaluated the incidence of Candida species, and the genetic diversity and virulence of C. albicans of the oral cavity from patients with cleft lip and palate (CLP). MATERIALS AND METHODS Oral samples were investigated by microbiological and species-specific PCR methods. The genetic diversity of C. albicans was established using isoenzyme markers, Nei's statistics, and clustering analysis. Hydrolytic enzymes (SAPs and PLs) were analyzed in vitro. RESULTS Oral colonization by Candida species was observed in 29 patients with CLP (65.9%), and C. albicans was highly prevalent. SAP and PL activities were observed in 100% and 51.9% of isolates, respectively. High genetic diversity and patterns of monoclonal and polyclonal oral colonization by C. albicans were observed among patients with CLP. Two major polymorphic taxa (A and B) and other minor polymorphic taxa (C to J) were identified. Only one of the 16 clusters (taxon A) harbored strains from patients with and without CLP, whereas other clusters harbored strains exclusively from CLP patients. CONCLUSIONS The anatomical conditions of the oral cavity of patients with CLP contribute to the high incidence of Candida species (C. albicans, C. krusei, C. tropicalis, and/or Candida spp.). Data suggest high genetic diversity of potentially virulent C. albicans strains in the oral cavity of CLP patients. CLINICAL RELEVANCE Microbiological niches in orofacial clefts can contribute to the emergence of a relative clinical genotypic identity of C. albicans. However, orofacial rehabilitation centers can contribute to the direct and indirect sources of transmission and propagation of Candida species.
Collapse
Affiliation(s)
- Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil.
| | - Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Vanessa Bassinello
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Paula Cristina Aníbal
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Thaísla Andrielle da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Rodrigo Carlos Bassi
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Manoel Francisco Rodrigues Netto
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Carlos Tadeu Dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), 11 Pádua Dias Ave, Piracicaba, SP, 13418-900, Brazil
| | - José Francisco Höfling
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
40
|
Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch-Herxheimer Reactions If High Infectious Loads Are Present. Healthcare (Basel) 2021; 9:healthcare9111537. [PMID: 34828583 PMCID: PMC8623232 DOI: 10.3390/healthcare9111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-system disease with no cure and no FDA-approved treatment. Approximately 25% of patients are house or bedbound, and some are so severe in function that they require tube-feeding and are unable to tolerate light, sound, and human touch. The overall goal of this case report was to (1) describe how past events (e.g., chronic sinusitis, amenorrhea, tick bites, congenital neutropenia, psychogenic polydipsia, food intolerances, and hypothyroidism) may have contributed to the development of severe ME/CFS in a single patient, and (2) the extensive medical interventions that the patient has pursued in an attempt to recover, which enabled her to return to graduate school after becoming bedridden with ME/CFS 4.5 years prior. This paper aims to increase awareness of the harsh reality of ME/CFS and the potential complications following initiation of any level of intervention, some of which may be necessary for long-term healing. Treatments may induce severe paradoxical reactions (Jarisch–Herxheimer reaction) if high infectious loads are present. It is our hope that sharing this case will improve research and treatment options for ME/CFS.
Collapse
|
41
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Khwantongyim P, Wansee S, Lu X, Zhang W, Sun G. Variations in the Community Structure of Fungal Microbiota Associated with Apple Fruit Shaped by Fruit Bagging-Based Practice. J Fungi (Basel) 2021; 7:jof7090764. [PMID: 34575802 PMCID: PMC8470174 DOI: 10.3390/jof7090764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
The various fungal communities that adhere to apple fruit are influenced by agricultural practices. However, the effects of fruit bagging-based management practice on the fungal microbiota are still unknown, and little is known about the fungal communities of bagged apple fruit. We conducted a study using apple fruit grown in a conventionally managed orchard where pesticide use is an indispensable practice. Fungal communities were collected from the calyx-end and peel tissues of bagged and unbagged fruit and characterized using barcode-type next-generation sequencing. Fruit bagging had a stronger effect on fungal richness, abundance, and diversity of the fungal microbiota in comparison to non-bagging. In addition, bagging also impacted the compositional variation of the fungal communities inhabiting each fruit part. We observed that fruit bagging had a tendency to maintain ecological equilibrium since Ascomycota and Basidiomycota were more distributed in bagged fruit than in unbagged fruit. These fungal communities consist of beneficial fungi rather than potentially harmful fungi. Approximately 50 dominant taxa were detected in bagged fruit, for example, beneficial genera such as Articulospora, Bullera, Cryptococcus, Dioszegia, Erythrobasidium, and Sporobolomyces, as well as pathogenic genera such as Aureobasidium and Taphrina. These results suggested that fruit bagging could significantly increase fungal richness and promote healthy fungal communities, especially the harmless fungal communities, which might be helpful for protecting fruit from the effects of pathogens. This study provides a foundation for understanding the impacts of bagging-based practice on the associated fungal microbiota.
Collapse
|
43
|
Arginine-phenylalanine and arginine-tryptophan-based surfactants as new biocompatible antifungal agents and their synergistic effect with Amphotericin B against fluconazole-resistant Candida strains. Colloids Surf B Biointerfaces 2021; 207:112017. [PMID: 34391169 DOI: 10.1016/j.colsurfb.2021.112017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/21/2021] [Accepted: 08/01/2021] [Indexed: 01/09/2023]
Abstract
In the past two decades, the increase in microbial resistance to conventional antimicrobials has spurred scientists around the world to search tirelessly for new treatments. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds. In this work, two new cationic amino acid-based surfactants were synthesized and their physicochemical, antifungal and antibiofilm properties evaluated. The surfactants were based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM) and prepared from renewable raw materials using a simple chemical procedure. The critical micelle concentrations of the new surfactants were determined by conductivity and fluorescence. Micellization of LPAM and LTAM took place at 1.05 and 0.54 mM, respectively. Both exhibited good antifungal activity against fluconazole-resistant Candida spp. strains, with a low minimum inhibitory concentration (8.2 μg/mL). Their mechanism of action involves alterations in cell membrane permeability and mitochondrial damage, leading to death by apoptosis. Furthermore, when LPAM and LTAM were applied with Amphotericin B, a significant synergistic effect was observed against all the studied Candida strains. These new cationic surfactants are also able to disperse biofilms of Candida spp. at low concentrations. The results indicate that LPAM and LTAM have potential application to combat the advance of fungal resistance as well as microbial biofilms.
Collapse
|
44
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
45
|
Giacone L, Cordisco E, Garrido MC, Petenatti E, Sortino M. Photodynamic activity of Tagetes minuta extracts against superficial fungal infections. Med Mycol 2021; 58:797-809. [PMID: 31724710 DOI: 10.1093/mmy/myz114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Candida and dermatophyte species are the most common causes of superficial mycoses because their treatment can be difficult due to limitations of current antifungal drugs in terms of toxicity, bioavailability, interactions, narrow-spectrum activity, and development of resistance. Photodynamic therapy (PDT) involves the topical administration of a photosensitizer in combination with light of an appropriate wavelength and molecular oxygen that produces reactive oxygen species (ROS), which promote damage to several vital components of the microorganism. Tagetes species are known as a source of thiophenes, biologically active compounds whose antifungal activity is enhanced by irradiation with UVA. The present investigation evaluated Tagetes minuta extracts as a photosensitizer on growth of Candida and dermatophytes and their effect on Candida virulence factors. T. minuta root hexane and dichloromethane extracts demonstrated high photodynamic antifungal activity. Bioautographic assays and chromatographic analysis revealed the presence of five thiophenes with reported photodynamic antifungal activities under UVA. Analysis of ROS production indicated that both type I and II reactions were involved in the activity of the extracts. In addition, the extracts inhibited virulence factors of Candida, such as adherence to epithelial surfaces and germ tube formation and showed efficacy against different Candida morphologies: budding cells, cells with germ tube and biofilms. Results suggested that PDT with T. minuta extracts might become a valuable alternative to the already established antifungal drugs for the treatment of superficial fungal infections.
Collapse
Affiliation(s)
- Lucía Giacone
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Estefanía Cordisco
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María Clara Garrido
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Elisa Petenatti
- Herbario, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | - Maximiliano Sortino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.,Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
46
|
Araujo JTCD, Martin-Pastor M, Pérez L, Pinazo A, Sousa FFOD. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Kim H, Lee DG. Naringin-generated ROS promotes mitochondria-mediated apoptosis in Candida albicans. IUBMB Life 2021; 73:953-967. [PMID: 33934490 DOI: 10.1002/iub.2476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/06/2022]
Abstract
Naringin is a flavonoid which has a therapeutic effect. However, the details of its antifungal mechanism have not yet been fully elucidated. This study focused on clarifying the relationship between naringin and Candida albicans, to understand its mode of antifungal action. In general, naringin is an antioxidant, but our results indicated that 1 mM naringin generates intracellular superoxide (O2 - ) and hydroxyl radicals (OH- ). Reactive oxygen species (ROS) have a serious impact on Ca2+ signaling and the production of mitochondrial ROS. After exposure to enhanced O2 - and OH- , mitochondrial Ca2+ overload and mitochondrial O2 - generation were confirmed in C. albicans. It was verified that mitochondrial O2 - transforms mitochondrial glutathione (GSH) to oxidized GSH (GSSG), leading to extreme oxidative stress in mitochondria. The previously observed Ca2+ accumulation and oxidative stress resulted in mitochondrial membrane potential (MMP) alteration and increased mitochondrial mass. In succession, cytochrome c release from the mitochondria to the cytosol was detected due to MMP loss. Cytochrome c promotes the initiation of apoptosis, and further experiments were performed to assess the apoptotic hallmarks. Metacaspases activation, chromosomal condensation, DNA fragmentation, and phosphatidylserine exposure were observed, indicating that naringin induces apoptosis in C. albicans. In conclusion, our findings manifested that naringin-generated O2 - and OH- damage the mitochondria and that mitochondrial dysfunction-mediated apoptosis is novel antifungal mechanism of naringin.
Collapse
Affiliation(s)
- Heesu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
48
|
Genetic diversity and molecular epidemiology of Candida albicans from vulvovaginal candidiasis patients. INFECTION GENETICS AND EVOLUTION 2021; 92:104893. [PMID: 33964472 DOI: 10.1016/j.meegid.2021.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 01/11/2023]
Abstract
Candida albicans (C. albicans) is a common cause of vulvovaginal candidiasis (VVC). In this paper, the genetic diversity and molecular epidemiology of 173C. albicans strains were investigated by multilocus sequence typing (MLST). A total of 52 diploid sequence types (DSTs) were recognized, and 27 (51.9%) of which have not been reported in the MLST database. Genotyping was performed on the multiple isolates collected from patients with recurrent VVC (RVVC, referring to VVC which attacks more than 4 times in one year) in different acute infectious phases. The results showed that 59.1% (26/44) of the patients suffered a relapse, with DST 79 (65.4%) as the dominant genotype. The etiology of the remaining 40.9% (18/44) of patients was reinfection, and the main genotypes included DST 79 (33.3%), DST 124 (8.6%) and DST 1895 (8.6%). DST 79 (45%) and DST 1395 (7.5%) were the main isolates of VVC patients, while DST 79 (24.1%), DST 727 (6.9%), DST 732 (6.9%) and DST 1867 (6.9%) were the main types of healthy volunteers. The results of the genotypes between RVVC patients and other groups were statistically different. Furthermore, cluster analysis was carried out on 1468 isolates, among which 1337 were downloaded from the MLST database, 130 were divided into 8 Clades in the present study and the remaining one was taken as a singleton. 92.3% isolates from relapse patients, 58.3% isolates from re-infected patients, 77.5% isolates from VVC patients and 51.7% isolates from volunteers were distributed in Clade 1. The analysis of the genotypes of multiple isolates from RVVC patients further demonstrated that point mutation and loss of heterozygosity contributed to the microevolution of C. albicans.
Collapse
|
49
|
Khan A, Azam M, Allemailem KS, Alrumaihi F, Almatroudi A, Alhumaydhi FA, Ahmad HI, Khan MU, Khan MA. Coadministration of Ginger Extract and Fluconazole Shows a Synergistic Effect in the Treatment of Drug-Resistant Vulvovaginal Candidiasis. Infect Drug Resist 2021; 14:1585-1599. [PMID: 33907432 PMCID: PMC8071092 DOI: 10.2147/idr.s305503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Azoles are the most common antifungal drugs used in the treatment of vulvovaginal candidiasis (VVC). The frequency of azole-resistant Candida isolates has increased dramatically in the last two decades. Here, we assessed the antifungal activity of a combination of fluconazole (FLZ) and methanolic extract of ginger (Meth-Gin) against drug-resistant vulvovaginal candidiasis (VVC) in a murine model. METHODS The in vitro activity of FLZ or a combination of FLZ and Meth-Gin was determined against Candida albicans by the agar well diffusion, macrodilution, time-kill and the biofilm eradication methods. The therapeutic efficacy of the formulations was assessed by analyzing the fungal load, pro-inflammatory cytokines, percent apoptotic cells and the histological changes in the vaginal tissues of the mice. Moreover, the renal toxicity the drug formulation was evaluated by analyzing the levels of the blood urea nitrogen (BUN) and creatinine. RESULTS The results of in vitro study demonstrated that FLZ did not show any activity against C. albicans, whereas a combination of FLZ and Meth-Gin demonstrated greater activity as shown by the data of the zone of growth inhibition, MIC and time-kill assay. FLZ or Meth-Gin treatment could not completely cure VVC, whereas a combination of FLZ and Meth-Gin was greatly effective in the treatment of VVC. The vaginal tissue from mice of the infected control group had the highest fungal load of 155370 ± 20617 CFUs. Treatment with FLZ at a dose of 40 mg/kg reduced the fungal load to 120863 ± 10723 CFUs. Interestingly, the mice treated with a combination of FLZ (40 mg/kg) and Meth-Gin (200 mg/kg) had a fungal load of 256 ± 152 CFUs. Besides, FLZ and Meth-Gin combination effectively reduced the pro-inflammatory cytokines (IL-1β, TNF-α and IL-17) and the percentage of apoptotic cells in the vaginal tissues. Likewise, the histological analysis revealed the epithelial necrosis, shedding and ulceration in the vaginal tissue, whereas treatment with FLZ and Meth-Gin combination reversed the histopathological changes in the vaginal epithelium and lamina propria. CONCLUSION The findings of the current study suggest that the co-administration of Meth-Gin and FLZ may have a potential therapeutic effect in the treatment of azole-resistant candidiasis.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hafiz Iqtidar Ahmad
- Department of Tashreeh Wa Munafeul Aza, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, 202002, India
| | - Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
50
|
Yu D, Xu C, Tu H, Ye A, Wu L. miR-384-5p regulates inflammation in Candida albicans-induced acute lung injury by downregulating PGC1β and enhancing the activation of Candida albicans-triggered signaling pathways. Sci Prog 2021; 104:368504211014361. [PMID: 33970047 PMCID: PMC10358457 DOI: 10.1177/00368504211014361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is one of the most prevalent respiratory syndromes of excessive inflammatory reaction during lung infection. Candida albicans (C. albicans) infection is among the leading causes of ALI. MicroRNAs (miRNAs) regulate the expression of target mRNAs, including those involved in inflammatory processes, by binding to the 3'UTR. To date, the roles of miRNAs in C. albicans-induced ALI remain unclear. In this study, we investigated the role of miR-384-5p in C. albicans-induced ALI and its underlying molecular mechanism. RT-PCR, Western blot, ELISA, Myeloperoxidase (MPO) assay, microRNA target analysis, transient transfection, and luciferase reporter assay were utilized. In vivo study was conducted on mouse model. The expression of miR-384-5p was upregulated and positively correlated with inflammatory cytokine production in lung tissues and RAW264.7 and J774A.1 macrophages infected with C. albicans. The miR-384-5p inhibitor alleviated the inflammatory reaction induced by C. albicans. Target prediction analysis revealed that PGC1β was a target of miR-384-5p, which was further validated by the PGC1β 3'-UTR luciferase assay and the inverse correlation between the expression of miR-384-5p and PGC1β in C. albicans-infected ALI tissues and macrophages. Moreover, macrophages transfected with miR-384-5p mimic exhibited reduced levels of PGC1β. The suppression of the expression of PGC1β by C. albicans infection in the macrophages was abrogated by miR-384-5p inhibitor. Then, we demonstrated that PGC1β played an inhibitory role in C. albicans-induced production of inflammatory cytokines. Furthermore, suppression of miR-384-5p in macrophages inhibited the activation of the NF-κB, MAPK, and Akt signaling pathways triggered by C. albicans, but not the STAT3 pathway. These results demonstrate that miR-384-5p contributes to C. albicans-induced ALI at least in part by targeting PGC1β and enhancing the activation of the NF-κB, MAPK, and Akt inflammatory signaling pathways. Thus, targeting miR-384-5p might exert a protective effect on C. albicans-induced ALI.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hongxiang Tu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Aifang Ye
- Translational Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lingjian Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|