1
|
Wang T, Desmet J, Porte C. Protective role of fetal bovine serum on PLHC-1 spheroids exposed to a mixture of plastic additives: A lipidomic perspective. Toxicol In Vitro 2024; 96:105771. [PMID: 38182034 DOI: 10.1016/j.tiv.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of fetal bovine serum (FBS) in cell culture is being questioned for scientific and ethical reasons, prompting the exploration of alternative approaches. Nevertheless, the influence of FBS on cell functioning, especially in fish cells, has not been comprehensively examined. This study aims to evaluate the impact of FBS on the lipidome of PLHC-1 spheroids and investigate cellular and molecular responses to plastic additives in the presence/absence of FBS. Lipidomic analyses were conducted on PLHC-1 cell spheroids using liquid chromatography coupled with a high-resolution quadrupole time-of-flight mass spectrometer (HRMS-QToF). The removal of FBS from the culture medium for 24 h significantly changed the lipid profile of spheroids, resulting in a depletion of cholesterol esters (CEs), phosphatidylcholines (PCs) and lyso-phosphatidylcholines (LPCs), while ceramides and certain glycerophospholipids slightly increased. Additionally, the exclusion of FBS from the medium led to increased cytotoxicity caused by a mixture of plastic additives and increased lipidomic alterations, including an elevation of ceramides. This study emphasizes the protective role of serum components in fish liver spheroids against a mixture of plastic additives and underscores the importance of considering exposure conditions when studying metabolomic and lipidomic responses to toxicants.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; PhD student at the University of Barcelona, Barcelona. Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Investigating the toxic mechanism of iron oxide nanoparticles-induced oxidative stress in tadpole (Duttaphrynus melanostictus): A combined biochemical and molecular study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104432. [PMID: 38554986 DOI: 10.1016/j.etap.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Metal oxide nanomaterials have toxicity towards aquatic organisms, especially microbes and invertebrates, but little is known about their impact on amphibians. We conducted a study on Duttaphrynus melanostictus (D. melanostictus) tadpoles to explore the chronic toxicity effects of iron oxide nanoparticles (IONPs) and the underlying mechanisms of IONPs-induced oxidative stress. IONPs exposure led to increased iron accumulation in the blood, liver, and kidneys of tadpoles, significantly affecting blood parameters and morphology. Higher IONPs concentrations (10 and 50 mg L-1) triggered reactive oxygen species generation, resulting in lipid peroxidation, oxidative stress, and pronounced toxicity in tadpoles. The activity levels of antioxidant enzymes/proteins (SOD, CAT, albumin, and lysozyme) decreased after IONPs exposure, and immunological measures in the blood serum were significantly reduced compared to the control group. Molecular docking analysis revealed that IONPs primarily attached to the surface of SOD/CAT/albumin/lysozyme through hydrogen bonding and hydrophobic forces. Overall, this study emphasizes the ability of IONPs to induce oxidative damage by decreasing immunological profiles such as ACH50 (34.58 ± 2.74 U mL-1), lysozyme (6.94 ± 0.82 U mL-1), total Ig (5.00 ± 0.35 g dL-1), total protein (1.20 ± 0.17 g dL-1), albumin (0.52 ± 0.01 g dL-1) and globulin (0.96 ± 0.01 g dL-1) and sheds light on their potential toxic effects on tadpoles.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India; Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Chandra Sekhar Mohanty
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
3
|
Meneses JO, Cunha FDS, Dias JAR, Sousa NDAC, Couto MVSDO, Cunha AFSDA, Paixão PEG, Abe HA, Nascimento VRS, Cardoso JC, Costa LPDA, Fujimoto RY. Blood cell alterations in Colossoma macropomum juveniles caused by silver nanoparticles. AN ACAD BRAS CIENC 2024; 96:e20230159. [PMID: 38451624 DOI: 10.1590/0001-3765202420230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 03/08/2024] Open
Abstract
This study evaluated the median lethal concentration of silver nanoparticles and their effects in fish tambaqui Colossoma macropomum. Therefore, an acute toxicity assay was carried out in completely randomized design evaluating six different concentrations of silver nanoparticles on blood parameters of tambaqui. The silver nanoparticles were produced by chemical reduction with polyvinyl alcohol (AgNP-PVA). The lethal concentration 50% (LC50) was estimated using probit regression. The blood was collected, analyzed and the data were submitted to T-test (dying x surviving fish) and Tukey test (surviving fish). An increase in glucose, hematocrit, total plasma protein, hemoglobin, erythrocytes, leukocytes, monocytes, and neutrophils as well as reduced MCV (mean corpuscular volume) in dying fish compared to surviving fish were observed. Survived fish exposed to 187.5 µg/L showed an increase in hematocrit, MCV, and MCH and a reduction in erythrocytes, total numbers of leukocyte, thrombocyte, lymphocyte, and neutrophil. The fish exposed to concentrations below 125 µg/L, had returned the blood parameter to baselines compared to control. The estimated LC50 was 165.09 µg/L and was classified as highly toxic for the fish tambaqui. In higher concentrations, it causes an acute respiratory toxicity, but in concentrations below 125 µg/L, the fish can adapt to the stressing agent.
Collapse
Affiliation(s)
- Juliana O Meneses
- Pós-Graduação em Saúde e Ambiente, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Fernanda Dos Santos Cunha
- Pós-Graduação em Saúde e Ambiente, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Joel Artur R Dias
- Pós-Graduação em Ciência Animal, Universidade Federal do Pará, Rua Augusto Côrrea, 1, 66075-110 Belém, PA, Brazil
| | - Natalino DA Costa Sousa
- Pós-Graduação em Ciência Animal, Universidade Federal do Pará, Rua Augusto Côrrea, 1, 66075-110 Belém, PA, Brazil
| | - Márcia Valéria S DO Couto
- Pós-Graduação em Ciência Animal, Universidade Federal do Pará, Rua Augusto Côrrea, 1, 66075-110 Belém, PA, Brazil
| | - Ana Flávia S DA Cunha
- Pós-Graduação em Biotecnologia, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Peterson Emmanuel G Paixão
- Pós-Graduação em Saúde e Ambiente, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Higo A Abe
- Pós-Graduação em Ciência Animal, Universidade Federal do Pará, Rua Augusto Côrrea, 1, 66075-110 Belém, PA, Brazil
| | - Victor Ruan S Nascimento
- Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Juliana C Cardoso
- Pós-Graduação em Saúde e Ambiente, Universidade Tiradentes, Avenida Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
- Universidade Tiradentes, Instituto de Tecnologia e Pesquisa (ITP), Avenida Murilo Dantas, 300, 49032490, Aracaju, SE, Brazil
| | - Luiz P DA Costa
- Universidade Federal do Amazonas, Instituto de Ciências exatas e Tecnologia (ICET), Avenida General Octavio Jordão Ramos, 1200, 69067-005 Manaus, AM, Brazil
| | - Rodrigo Y Fujimoto
- Empresa Brasileira de Pesquisa Agropecuária, Laboratório de Aquicultura, Avenida Beira Mar, 3250, 49025-040 Aracaju, SE, Brazil
| |
Collapse
|
4
|
Elango J, Zamora-Ledezma C, Alexis F, Wu W, Maté-Sánchez de Val JE. Protein Adsorption, Calcium-Binding Ability, and Biocompatibility of Silver Nanoparticle-Loaded Polyvinyl Alcohol (PVA) Hydrogels Using Bone Marrow-Derived Mesenchymal Stem Cells. Pharmaceutics 2023; 15:1843. [PMID: 37514030 PMCID: PMC10384843 DOI: 10.3390/pharmaceutics15071843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Several approaches have evolved to facilitate the exploration of hydrogel systems in biomedical research. In this sense, poly(vinyl alcohol) (PVA) has been widely used in hydrogel (HG) fabrication for several therapeutic applications. The biological properties of PVA hydrogels (PVA-HGs) are highly dependent on their interaction with protein receptors and extracellular matrix (mainly calcium) deposition, for which there is not enough evidence from existing research yet. Thus, for the first time, the functional properties, like protein and mineral interactions, related to the proliferation of mesenchymal stem cells (MSCs) by silver nanoparticle (AgNP)-loaded PVA hydrogels (AgNPs-PVA-HGs) were investigated in the present study. The UV absorption spectrum and TEM microscopic results showed a maximum absorbance of synthesized AgNPs at 409 nm, with an average particle size of 14.5 ± 2.5 nm, respectively. The functional properties, such as the calcium-binding and the protein adsorption of PVA-HG, were accelerated by incorporating AgNPs; however, the swelling properties of the HGs were reduced by AgNPs, which might be due to the masking of the free functional groups (hydroxyl groups of PVA) by AgNPs. SEM images showed the presence of AgNPs with a more porous structure in the HGs. The proliferative effect of MSCs increased over culture time from day 1 to day 7, and the cell proliferative effect was upregulated by HGs with more pronounced AgNPs-PVA-HG. In addition, both HGs did not produce any significant cytotoxicity in the MSCs. The histological (bright light and H&E staining) and fluorescence microscopic images showed the presence of a cytoskeleton and the fibrillar structure of the MSCs, and the cells adhered more firmly to all HGs. More fibrillar bipolar and dense fibrillar structures were seen in the day 1 and day 7 cultures, respectively. Interestingly, the MSCs cultured on AgNPs-PVA-HG produced extracellular matrix deposition on day 7. Accordingly, the present results proved the biocompatibility of AgNPs-PVA-HG as a suitable system for culturing mammalian stem cells for regenerative tissue applications.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - José Eduardo Maté-Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
5
|
Ortega F, Minnaard J, Arce V, García M. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Wahab S, Ghazwani M, Hani U, Hakami AR, Almehizia AA, Ahmad W, Ahmad MZ, Alam P, Annadurai S. Nanomaterials-Based Novel Immune Strategies in Clinical Translation for Cancer Therapy. Molecules 2023; 28:molecules28031216. [PMID: 36770883 PMCID: PMC9920693 DOI: 10.3390/molecules28031216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Immunotherapy shows a lot of promise for addressing the problems with traditional cancer treatments. Researchers and clinicians are working to create innovative immunological techniques for cancer detection and treatment that are more selective and have lower toxicity. An emerging field in cancer therapy, immunomodulation offers patients an alternate approach to treating cancer. These therapies use the host's natural defensive systems to identify and remove malignant cells in a targeted manner. Cancer treatment is now undergoing somewhat of a revolution due to recent developments in nanotechnology. Diverse nanomaterials (NMs) have been employed to overcome the limits of conventional anti-cancer treatments such as cytotoxic, surgery, radiation, and chemotherapy. Aside from that, NMs could interact with live cells and influence immune responses. In contrast, unexpected adverse effects such as necrosis, hypersensitivity, and inflammation might result from the immune system (IS)'s interaction with NMs. Therefore, to ensure the efficacy of immunomodulatory nanomaterials, it is essential to have a comprehensive understanding of the intricate interplay that exists between the IS and NMs. This review intends to present an overview of the current achievements, challenges, and improvements in using immunomodulatory nanomaterials (iNMs) for cancer therapy, with an emphasis on elucidating the mechanisms involved in the interaction between NMs and the immune system of the host.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
7
|
Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. TOXICS 2022; 10:781. [PMID: 36548614 PMCID: PMC9787408 DOI: 10.3390/toxics10120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context, aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized, constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity (FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design development of this novel material for the rubber industry.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Silvia Mostoni
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Christian D’Abramo
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Maurizio Gualtieri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesca Rita Pomilla
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Roberto Scotti
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
8
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
9
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Ecotoxicological Effects of Silver Nanoparticles (Ag-NPs) on Parturition Time, Survival Rate, Reproductive Success and Blood Parameters of Adult Common Molly (Poecilia sphenops) and Their Larvae. WATER 2022. [DOI: 10.3390/w14020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) can display toxicological effects on aquatic organisms. This study investigates ecotoxicological effects of Ag-NPs on reproductive and blood parameters of adult common molly (Poecilia sphenops) and their larvae. During the LC50 96 h test, female fish were exposed to concentrations of 0, 5, 15, 25, 35, 45 and 60 mg L−1 of Ag-NPs, while larvae were exposed to 0, 3, 5, 10 and 15 mg L−1. Finally, we aim to evaluate the effects of 0, 5, 10 and 15 mg L−1 of Ag-NPs on parturition time, reproductive success and hematological parameters of the mature fish exposed to sub-lethal concentration during a 62-day period. We also evaluated the survival rate of larvae. The results show a positive correlation between mortality rate and Ag-NP concentration. Values for LC50 96 h in adult fish and larvae were 26.85 mg L−1 and 6.22 mg L−1, respectively. A lack of parturition and reproductive success were seen in fish that underwent chronic exposure to Ag-NPs (15 mg L−1). The results show that RBC, WBC and hematocrit were significantly decreased in fish exposed to Ag-NPs. In addition, the serum concentrations of total protein, albumin, cholesterol and triglycerides were significantly increased in fish submitted to Ag-NPs (concentrations of 5–15). In conclusion, submitting a fish to higher concentration than 10 mg L−1 has adverse effects on reproductive system and blood parameters.
Collapse
|
11
|
Deng J, Wang J, Shi J, Li H, Lu M, Fan Z, Gu Z, Cheng H. Tailoring the physicochemical properties of nanomaterials for immunomodulation. Adv Drug Deliv Rev 2022; 180:114039. [PMID: 34742825 DOI: 10.1016/j.addr.2021.114039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Immunomodulation is poised to revolutionize the treatment of cancer, autoimmune diseases, and many other inflammation-related disorders. The immune system in these conditions can be either activated or suppressed by nanocarriers loaded with bioactive molecules. Although immunomodulation via these therapeutics has long been recognized, and a broad range of nanocarriers have been designed to accommodate varied usages, less studies have focused on the effects of nanomaterial physicochemical properties on immune responses, especially the immunity altered by nanocarrier materials alone. Conclusions are sometimes seemly inconsistent due to the complexities of nanomaterials and the immune system. An in-depth understanding of the nanocarrier-induced immune responses is essential for clinical applications. In this review, we summarize recent studies of the immune responses influenced by nanomaterial physicochemical properties with an emphasis on the intrinsic features of nanomaterials that modulate the innate and adaptive immunities. We then provide our perspectives on the design of nanomaterials for immunomodulation.
Collapse
|
12
|
Shanmugam G, Sundaramoorthy A, Shanmugam N. Biosynthesis of Silver Nanoparticles from Leaf Extract of Salvia coccinea and Its Effects of Anti-inflammatory Potential in Human Monocytic THP-1 Cells. ACS APPLIED BIO MATERIALS 2021; 4:8433-8442. [DOI: 10.1021/acsabm.1c00963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gobinath Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Arun Sundaramoorthy
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Narkunaraja Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
13
|
Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021; 11:1481. [PMID: 34680114 PMCID: PMC8533414 DOI: 10.3390/biom11101481] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/23/2023] Open
Abstract
The biocidal properties of silver nanoparticles (AgNPs) prepared with the use of biologically active compounds seem to be especially significant for biological and medical application. Therefore, the aim of this research was to determine and compare the antibacterial and fungicidal properties of fifteen types of AgNPs. The main hypothesis was that the biological activity of AgNPs characterized by comparable size distributions, shapes, and ion release profiles is dependent on the properties of stabilizing agent molecules adsorbed on their surfaces. Escherichia coli and Staphylococcus aureus were selected as models of two types of bacterial cells. Candida albicans was selected for the research as a representative type of eukaryotic microorganism. The conducted studies reveal that larger AgNPs can be more biocidal than smaller ones. It was found that positively charged arginine-stabilized AgNPs (ARGSBAgNPs) were the most biocidal among all studied nanoparticles. The strongest fungicidal properties were detected for negatively charged EGCGAgNPs obtained using (-)-epigallocatechin gallate (EGCG). It was concluded that, by applying a specific stabilizing agent, one can tune the selectivity of AgNP toxicity towards desired pathogens. It was established that E. coli was more sensitive to AgNP exposure than S. aureus regardless of AgNP size and surface properties.
Collapse
Affiliation(s)
- Agnieszka Gibała
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Joanna Szaleniec
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| |
Collapse
|
14
|
Barbasz A, Czyżowska A, Piergies N, Oćwieja M. Design cytotoxicity: The effect of silver nanoparticles stabilized by selected antioxidants on melanoma cells. J Appl Toxicol 2021; 42:570-587. [PMID: 34558088 DOI: 10.1002/jat.4240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Silver nanoparticles (AgNPs) prepared and stabilized by diverse biologically active substances seem to be especially useful in diverse biological and medical applications. The combination of AgNPs with bioactive substances, such as antioxidants, can lead to the development of new systems of desired anticancer properties. In this research, AgNPs were prepared with the use of diverse antioxidant combinations including gallic acid (GA), (-)-epicatechin-3-gallate (EGCG), and caffeine (CAF). The insightful physicochemical characteristic revealed that each type of AgNPs exhibited spherical shape, comparable size distribution and negative surface charge. Surface-enhanced Raman spectroscopy (SERS) delivered the information about the chemistry of AgNP stabilizing layers, which turned out to be a crucial factor tuning toxicity of AgNPs toward murine B16 melanoma cells (B16-F0) and human skin melanoma (COLO 679) cells. EGCGAgNPs were the most cytotoxic among all the investigated AgNPs. They strongly reduced the activity of mitochondria, damaged cell membrane integrity, and penetrated inside the cells causing DNA damage. In turn, the toxicity of GAAgNPs strongly manifested via the induction of oxidative stress in the cells. It was found that CAFGAAgNPs exhibited the lowest toxicity toward the melanoma cells, which proved that a proper combination of antioxidants enable to prepare AgNPs of differentiated toxicity. It was established that human skin melanoma cells were significantly more sensitive to AgNPs than the murine melanoma cells.
Collapse
Affiliation(s)
- Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Krakow, Poland
| | | | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
15
|
Mansour WAA, Abdelsalam NR, Tanekhy M, Khaled AA, Mansour AT. Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109068. [PMID: 33915277 DOI: 10.1016/j.cbpc.2021.109068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
The rapid increase of incorporating silver nanoparticles (Ag-NPs) in different anthropogenic and industrial activities increased the discharge of these particles in the aquatic ecosystem. The environmental impact of Ag-NPs, especially the green synthesized is still not completely understood on fish. Therefore, this study aimed to investigate the effects of exposure to graded series of starch-mediated Ag-NPs at levels of 0, 3.31, 6.63, 13.25, and 26.50 mg L-1 representing 0, 6.25, 12.5, 25, and 50% of LC50 on Nile tilapia (O. niloticus), respectively. Fish with initial weight 37.63 ± 0.41 g were maintained in 70 L glass aquaria and exposed to starch-mediated Ag-NPs (average particle size 40 nm) for 28 days. The results revealed that starch-mediated Ag-NPs induced severe changes in the mRNA levels of toxicity (CYP1A and Hsp70) and inflammatory (TNF-α and TGF-β) genes. The expression of antioxidant genes (SOD and CAT) was significantly suppressed, and the activities of their enzymes were inhibited significantly upon exposure. Simultaneously, the malondialdehyde level increased significantly with increasing the exposure levels of starch-mediated Ag-NPs. The red blood cells, hemoglobin, hematocrit and white blood cell values were decreased significantly with doses over 3.31 mg L-1 of Ag-NPs. In addition, the total protein and globulin decreased significantly with increasing Ag-NPs in a dose-dependent manner. The liver function enzymes and kidney function indicators revealed severe toxicity with Ag-NPs exposure. In conclusion, the effect of starch-mediated Ag-NPs in doses over 3.31 mg L-1 induced obvious toxicity in the molecular and proteomic levels in Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Wafaa A A Mansour
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Mahmoud Tanekhy
- Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Asmaa A Khaled
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt.
| |
Collapse
|
16
|
Vincent MP, Karabin NB, Allen SD, Bobbala S, Frey MA, Yi S, Yang Y, Scott EA. The Combination of Morphology and Surface Chemistry Defines the Immunological Identity of Nanocarriers in Human Blood. ADVANCED THERAPEUTICS 2021; 4:2100062. [PMID: 34485684 PMCID: PMC8411909 DOI: 10.1002/adtp.202100062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Upon exposure to blood, a corona of proteins adsorbs to nanocarrier surfaces to confer a biological identity that interfaces with the immune system. While the nanocarrier surface chemistry has long been the focus of protein corona formation, the influence of nanostructure has remained unclear despite established influences on biodistribution, clearance, and inflammation. Here, combinations of nanocarrier morphology and surface chemistry are engineered to i) achieve compositionally distinct protein coatings in human blood and ii) control protein-mediated interactions with the immune system. A library of nine PEGylated nanocarriers differing in their combination of morphology (spheres, vesicles, and cylinders) and surface chemistry (methoxy, hydroxyl, and phosphate) are synthesized to represent properties of therapeutic and biomimetic delivery vehicles. Analysis by quantitative label-free proteomic techniques reveal that specific surface chemistry and morphology combinations adsorb unique protein signatures from human blood, resulting in differential complement activation and elicitation of distinct proinflammatory cytokine responses. Furthermore, nanocarrier morphology is shown to primarily influence uptake and clearance by human monocytes, macrophages, and dendritic cells. This comprehensive analysis provides mechanistic insights into rational design choices that impact the immunological identity of nanocarriers in human blood, which can be leveraged to engineer drug delivery vehicles for precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sean D Allen
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Molly A Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Sijia Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yufan Yang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Robert H. Lurie Medical Research Center, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Gautam R, Yang S, Maharjan A, Jo J, Acharya M, Heo Y, Kim C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. FRONTIERS IN TOXICOLOGY 2021; 3:649666. [PMID: 35295130 PMCID: PMC8915822 DOI: 10.3389/ftox.2021.649666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using in vitro alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| | - ChangYul Kim
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
18
|
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. NANOSCALE ADVANCES 2021; 3:2196-2212. [PMID: 36133761 PMCID: PMC9416924 DOI: 10.1039/d0na00716a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/12/2021] [Indexed: 05/17/2023]
Abstract
Whether one wishes to optimise drug delivery using nano-sized carriers or avoid hazard posed by engineered nanomaterials, the kinetics of nanoparticle uptake into human cells and their subsequent intracellular distribution is key. Unique properties of the nanoscale implies that such nanoparticles are taken up and trafficked in a different fashion compared to molecular species. In this review, we discuss in detail how to describe the kinetics of nanoparticle uptake and intracellular distribution, using previous studies for illustration. We also cover the extracellular kinetics, particle degradation, endosomal escape and cell division, ending with an outlook on the future of kinetic studies.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
19
|
Mittal K, Rahim AA, George S, Ghoshal S, Basu N. Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish ( Danio rerio). Nanotoxicology 2021; 15:527-541. [PMID: 33756094 DOI: 10.1080/17435390.2021.1897173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Silver (nAg) and titanium dioxide nanoparticles (nTiO2) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO2 released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test). Cells and embryos were exposed to suspensions of pristine nAg or nTiO2, panels (unpainted or painted with nAg or nTiO2) or base paint, after sonication. Cell viability and gene expression were assessed using resazurin assay and qPCR, respectively, while embryo mortality and deformities were scored visually via microscopic examination. In the cell studies, both paint-released nanoparticles did not affect viability, but paint-released nAg resulted in differential expression of a few genes including gclc and ncf1. In embryos, paint-released nAg increased mortality and incidence of deformities, whereas paint-released nTiO2 resulted in differential expression of several genes including gclc, ncf1, txnrd1, gpx1b, and cyp1c1 but without major phenotypic abnormalities. Comparing the two types of exposures, paint-released exposures affected both molecular (gene expression) and apical (embryotoxicity) endpoints, while pristine exposures affected the expression of some genes but had no apical effects. The differing effects of paint-released and pristine nanoparticle exposures suggest that further research is needed to further understand how paint coatings (and the products of their weathering and aging) may influence nanoparticle toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Krittika Mittal
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Saji George
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
21
|
Vali S, Mohammadi G, Tavabe KR, Moghadas F, Naserabad SS. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110353. [PMID: 32146193 DOI: 10.1016/j.ecoenv.2020.110353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to evaluate the effects of different waterborne sublethal concentrations of Ag-NPs LC50 (96h) on common carp Cyprinus carpio using a multi-biomarker approach. Fish (9.22 ± 0.12 g) were stocked in fiberglass tanks and exposed to concentrations of 0 (control), 12.5%, 25% and 50% of Ag-NPs LC50 (96h) or Ag-NO3 LC50 (96h), as the source of Ag+ ion, for a period of 21 days. At the end of study, tissue Ag contents were significantly (P < 0.05) higher and different in fish exposed to concentrations of 25% and 50% compared to the control. The numbers of RBCs, hematocrit, and MCHC values at these concentrations differed significantly in respect to the control. No significant effects were observed for hemoglobin, MCH, and MCV values. The number of WBCs was significantly higher at concentrations of 12.5% and 25% compared to the control. Meanwhile, the percentage of neutrophils significantly elevated at concentrations of 25% and 50%. Serum total protein at concentration of 50% detected significantly lower than that of 12.5% or the control. The serum albumin and globulin levels significantly declined in Ag-NPs-exposed groups versus the control. The serum ACH50 and total immunoglobulins showed significantly lower values in the treatments of 25% and 50% compared to the control. The serum glucose, cortisol, ALT, and ALP values significantly escalated upon Ag-NPs exposure. The serum SOD and CAT showed enhanced activity in the treatment of 12.5% vice versa significantly diminished at concentrations of 25% and 50% compared to the control. The exposure to the concentrations of 25% and 50% significantly dwindled the lysozyme activity and total immunoglobulin levels in skin mucus. In conclusion, sublethal concentrations of Ag-NPs LC50 (96h) impaired fish health status at higher concentrations and 12.5% of Ag-NPs LC50 (96h) was presumably safe for common carp aquaculture.
Collapse
Affiliation(s)
- Sara Vali
- Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Ghasem Mohammadi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Kamran Rezaei Tavabe
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fatemeh Moghadas
- Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
22
|
Giannakou C, Park MVDZ, Bosselaers IEM, de Jong WH, van der Laan JW, van Loveren H, Vandebriel RJ, Geertsma RE. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1633. [PMID: 32266791 PMCID: PMC7507198 DOI: 10.1002/wnan.1633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Various nanomedicinal products (NMPs) have been reported to induce an adverse immune response, which may be related to their tendency to accumulate in or target cells of the immune system. Therefore, before their market authorization, NMPs should be thoroughly evaluated for their immunotoxic potential. Nonclinical regulatory immunotoxicity testing of nonbiological medicinal products, including NMPs, is currently performed by following the guideline S8 “Immunotoxicity Studies for Human Pharmaceuticals” of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). However, this guideline does not cover all the immunotoxicity endpoints reported for NMPs in the literature, such as complement activation related pseudo allergy, hypersensitivity and immunosuppression. In addition, ICH‐S8 does not provide any nanospecific testing considerations, which is important given their tendency to interfere with many commonly used toxicity assays. We therefore propose a nonclinical regulatory immunotoxicity assessment strategy, which considers the immunotoxicity endpoints currently missing in the ICH‐S8. We also list the known pitfalls related to the testing of NMPs and how to tackle them. Next to defining the relevant physicochemical and pharmacokinetic properties of the NMP and its intended use, the proposed strategy includes an in vitro assay battery addressing various relevant immunotoxicity endpoints. A weight of evidence evaluation of this information can be used to shape the type and design of further in vivo investigations. The final outcome of the immunotoxicity assessment can be included in the overall risk assessment of the NMP and provide alerts for relevant endpoints to address during clinical investigation. This article is categorized under:Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
Collapse
Affiliation(s)
| | | | | | | | | | - Henk van Loveren
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | | | | |
Collapse
|
23
|
Souza IR, Silva LR, Fernandes LSP, Salgado LD, Silva de Assis HC, Firak DS, Bach L, Santos-Filho R, Voigt CL, Barros AC, Peralta-Zamora P, Mattoso N, Franco CRC, Soares Medeiros LC, Marcon BH, Cestari MM, Sant'Anna-Santos BF, Leme DM. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113551. [PMID: 31801672 DOI: 10.1016/j.envpol.2019.113551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5-100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4-5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
Collapse
Affiliation(s)
- Irisdoris R Souza
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lucas R Silva
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Letícia S P Fernandes
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lilian D Salgado
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniele S Firak
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Larissa Bach
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ronaldo Santos-Filho
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Carmen L Voigt
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Ariana C Barros
- Department of Botany, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Ney Mattoso
- Department of Physics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Celia Regina C Franco
- Department of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Marta M Cestari
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Daniela M Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
24
|
Alghsham RS, Satpathy SR, Bodduluri SR, Hegde B, Jala VR, Twal W, Burlison JA, Sunkara M, Haribabu B. Zinc Oxide Nanowires Exposure Induces a Distinct Inflammatory Response via CCL11-Mediated Eosinophil Recruitment. Front Immunol 2019; 10:2604. [PMID: 31787980 PMCID: PMC6856074 DOI: 10.3389/fimmu.2019.02604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023] Open
Abstract
High aspect ratio zinc oxide nanowires (ZnONWs) have become one of the most important products in nanotechnology. The wide range applications of ZnONWs have heightened the need for evaluating the risks and biological consequences to these particles. In this study, we investigated inflammatory pathways activated by ZnONWs in cultured cells as well as the consequences of systemic exposure in mouse models. Confocal microscopy showed rapid phagocytic uptake of FITC-ZnONWs by macrophages. Exposure of macrophages or lung epithelial cells to ZnONWs induced the production of CCL2 and CCL11. Moreover, ZnONWs exposure induced both IL-6 and TNF-α production only in macrophages but not in LKR13 cells. Intratracheal instillation of ZnONWs in C57BL/6 mice induced a significant increase in the total numbers of immune cells in the broncho alveolar lavage fluid (BALFs) 2 days after instillation. Macrophages and eosinophils were the predominant cellular infiltrates of ZnONWs exposed mouse lungs. Similar cellular infiltrates were also observed in a mouse air-pouch model. Pro-inflammatory cytokines IL-6 and TNF-α as well as chemokines CCL11, and CCL2 were increased both in BALFs and air-pouch lavage fluids. These results suggest that exposure to ZnONWs may induce distinct inflammatory responses through phagocytic uptake and formation of soluble Zn2+ ions.
Collapse
Affiliation(s)
- Ruqaih S Alghsham
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Shuchismita R Satpathy
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sobha R Bodduluri
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Bindu Hegde
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Waleed Twal
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Joseph A Burlison
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mahendra Sunkara
- Department of Chemical Engineering, Conn Center for Renewable Energy, University of Louisville, Louisville, KY, United States
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
25
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|
26
|
Wathiong B, Deville S, Jacobs A, Smisdom N, Gervois P, Lambrichts I, Ameloot M, Hooyberghs J, Nelissen I. Role of nanoparticle size and sialic acids in the distinct time-evolution profiles of nanoparticle uptake in hematopoietic progenitor cells and monocytes. J Nanobiotechnology 2019; 17:62. [PMID: 31084605 PMCID: PMC6513515 DOI: 10.1186/s12951-019-0495-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Human hematopoietic progenitor cells (HPCs) are important for cell therapy in cancer and tissue regeneration. In vitro studies have shown a transient association of 40 nm polystyrene nanoparticles (PS NPs) with these cells, which is of interest for intelligent design and application of NPs in HPC-based regenerative protocols. In this study, we aimed to investigate the involvement of nanoparticles’ size and membrane-attached glycan molecules in the interaction of HPCs with PS NPs, and compared it with monocytes. Human cord blood-derived HPCs and THP-1 cells were exposed to fluorescently labelled, carboxylated PS NPs of 40, 100 and 200 nm. Time-dependent nanoparticle membrane association and/or uptake was observed by measuring fluorescence intensity of exposed cells at short time intervals using flow cytometry. By pretreating the cells with neuraminidase, we studied the possible effect of membrane-associated sialic acids in the interaction with NPs. Confocal microscopy was used to visualize the cell-specific character of the NP association. Results Confocal images revealed that the majority of PS NPs was initially observed to be retained at the outer membrane of HPCs, while the same NPs showed immediate internalization by THP-1 monocytic cells. After prolonged exposure up to 4 h, PS NPs were also observed to enter the HPCs’ intracellular compartment. Cell-specific time courses of NP association with HPCs and THP-1 cells remained persistent after cells were enzymatically treated with neuraminidase, but significantly increased levels of NP association could be observed, suggesting a role for membrane-associated sialic acids in this process. Conclusions We conclude that the terminal membrane-associated sialic acids contribute to the NP retention at the outer cell membrane of HPCs. This retention behavior is a unique characteristic of the HPCs and is independent of NP size. Electronic supplementary material The online version of this article (10.1186/s12951-019-0495-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart Wathiong
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sarah Deville
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - An Jacobs
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Nick Smisdom
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Pascal Gervois
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Jef Hooyberghs
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.,Theoretical Physics, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Inge Nelissen
- Health Department, Flemish Institute For Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
27
|
Jorge de Souza TA, Rosa Souza LR, Franchi LP. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:691-700. [PMID: 30658305 DOI: 10.1016/j.ecoenv.2018.12.095] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/24/2023]
Abstract
Nowadays, silver nanoparticles (AgNPs) are the most widely used nanoparticles (NPs) in the industry due to their peculiar biocidal features. However, the use of these NPs still runs into limitations mainly because of the low efficiency of environmental friendly synthesis methods and lack of size standardization. When NPs are release in the environment, they can be transformed by oxidation, adsorption or aggregation. These modification shows a dual role in toxic response of AgNPs. The adsorption of natural organic matter from environment on AgNPs, for example, can decrease their toxicity. Otherwise oxidation occurred in the environment is also able to increase the release of toxic Ag+ from NPs. Thus, the current review proposes an integrated approach of AgNP synthetic methods using bacteria, fungi, and plants, AgNP cytotoxic and genotoxic effects as well as their potential therapeutic applications are also presented.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- Department of Genetics, FMRP-USP, University of São Paulo - USP, Bloco G. Av. Bandeirantes, 3900, Monte Alegre Zip Code: 14049-900, Ribeirão Preto, SP, Brazil; Department of Agronomic Engineering, Adventist University of São Paulo - UNASP, Engenheiro Coelho, SP, Brazil.
| | | | - Leonardo Pereira Franchi
- Department of Genetics, FMRP-USP, University of São Paulo - USP, Bloco G. Av. Bandeirantes, 3900, Monte Alegre Zip Code: 14049-900, Ribeirão Preto, SP, Brazil; Department of Chemistry, FFCLRP-USP, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
González-Ballesteros N, Rodríguez-Argüelles MC, Prado-López S, Lastra M, Grimaldi M, Cavazza A, Nasi L, Salviati G, Bigi F. Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:498-509. [DOI: 10.1016/j.msec.2018.12.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
|
29
|
The clinical pharmacokinetics impact of medical nanometals on drug delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:47-61. [DOI: 10.1016/j.nano.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
|
30
|
Ahn EY, Lee YJ, Park J, Chun P, Park Y. Antioxidant Potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris Extracts for Biofabrication of Gold Nanoparticles and Cytotoxicity Assessment. NANOSCALE RESEARCH LETTERS 2018; 13:348. [PMID: 30377868 PMCID: PMC6207604 DOI: 10.1186/s11671-018-2751-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/12/2018] [Indexed: 05/31/2023]
Abstract
Three aqueous plant extracts (Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris) were selected for the biofabrication of gold nanoparticles. The antioxidant activities (i.e., free radical scavenging activity, total phenolic content, and reducing power) of the extracts and how these activities affected the biofabrication of gold nanoparticles were investigated. P. vulgaris exerted the highest antioxidant activity, followed by A. capillaris and then P. oleracea. P. vulgaris was the most efficient reducing agent in the biofabrication process. Gold nanoparticles biofabricated by P. vulgaris (PV-AuNPs) had a maximum surface plasmon resonance of 530 nm with diverse shapes. High-resolution X-ray diffraction analysis showed that the PV-AuNPs had a face-centered cubic structure. The reaction yield was estimated to be 99.3% by inductively coupled plasma optical emission spectroscopy. The hydrodynamic size was determined to be 45 ± 2 nm with a zeta potential of - 13.99 mV. The PV-AuNPs exerted a dose-dependent antioxidant activity. Remarkably, the highest cytotoxicity of the PV-AuNPs was observed against human colorectal adenocarcinoma cells in the absence of fetal bovine serum, while for human pancreas ductal adenocarcinoma cells, the highest cytotoxicity was observed in the presence of fetal bovine serum. This result demonstrates that P. vulgaris extract was an efficient reducing agent for biofabrication of gold nanoparticles exerting cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Eun-Young Ahn
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - You Jeong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Jisu Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Youmie Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| |
Collapse
|
31
|
Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
33
|
Felix LC, Ortega VA, Goss GG. Cellular uptake and intracellular localization of poly (acrylic acid) nanoparticles in a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:58-68. [PMID: 28917946 DOI: 10.1016/j.aquatox.2017.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The ever-growing production of engineered nanoparticles (NPs) for use in many agricultural, commercial, consumer, and industrial applications will lead to their accidental or intentional release into the environment. Potential routes of environmental exposure include manufacturing or transport spills, disposal of NP-containing products down the drain and/or in landfills, as well as direct usage on agricultural land. Therefore, NPs will inevitably contaminate aquatic environments and interact with resident organisms. However, there is limited information regarding the mechanisms that regulate NP transport into fish from the environment. Thus, our primary objective was to elucidate the mechanism(s) underlying cellular uptake and intracellular fate of 3-9nm poly (acrylic acid) NPs loaded with the fluorescent dye Nile red using a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line (RTgill-W1). In vitro measurements with NP-treated RTgill-W1 cells were carried out using a combination of laser scanning confocal microscopy, flow cytometry, fluorescent biomarkers (transferrin, cholera toxin B subunit, and dextran), endocytosis inhibitors (chlorpromazine, genistein, and wortmannin), and stains (4', 6-diamidino-2-phenylindole, Hoechst 33342, CellMask Deep Red, and LysoTracker Yellow). Clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis and macropinocytosis pathways were active in RTgill-W1 cells, and these pathways were exploited by the non-cytotoxic NPs to enter these cells. We have demonstrated that NP uptake by RTgill-W1 cells was impeded when clathrin-coated pit formation was blocked by chlorpromazine. Furthermore, colocalization analysis revealed a moderate positive relationship between NPs and LysoTracker Yellow-positive lysosomal compartments indicating that CME was the dominant operative mechanism involved in NP internalization by RTgill-W1 cells. Overall, our results clearly show that fish gill epithelial cells internalized NPs via energy-dependent endocytotic processes. This study enhances our understanding of complex NP-cell interactions and the results obtained in vitro imply a potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Lindsey C Felix
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, T6G 2M9, Canada.
| |
Collapse
|
34
|
Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One 2017; 12:e0185554. [PMID: 28953974 PMCID: PMC5617228 DOI: 10.1371/journal.pone.0185554] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The potential risk of a nanoparticle as a medical application has raised wide concerns, and this study aims to investigate silver nanoparticle (AgNP)-induced acute toxicities, genotoxicities, target organs and the underlying mechanisms. Methods Sprague-Dawley rats were randomly divided into 4 groups (n = 4 each group), and AgNP (containing Ag nanoparticles and released Ag+, 5 mg/kg), Ag+ (released from the same dose of AgNP, 0.0003 mg/kg), 5% sucrose solution (vechicle control) and cyclophophamide (positive control, 40 mg/kg) were administrated intravenously for 24 h respectively. Clinical signs and body weight of rats were recorded, and the tissues were subsequently collected for biochemical examination, Ag+ distribution detection, histopathological examination and genotoxicity assays. Results The rank of Ag detected in organs from highest to lowest is lung>spleen>liver>kidney>thymus>heart. Administration of AgNP induced a marked increase of ALT, BUN, TBil and Cre. Histopathological examination results showed that AgNP induced more extensive organ damages in liver, kidneys, thymus, and spleen. Bone marrow micronucleus assay found no statistical significance among groups (p > 0.05), but the number of aberration cells and multiple aberration cells were predominately increased from rats dosed with Ag+ and AgNP (p < 0.01), and more polyploidy cells were generated in the AgNP group (4.3%) compared with control. Conclusion Our results indicated that the AgNP accumulated in the immune system organs, and mild irritation was observed in the thymus and spleen of animals treated with AgNP, but not with Ag+. The liver and kidneys could be the most affected organs by an acute i.v. dose of AgNP, and significantly increased chromosome breakage and polyploidy cell rates also implied the potential genotoxicity of AgNP. However, particle-specific toxicities and potential carcinogenic effect remain to be further confirmed in a chronic toxicity study.
Collapse
Affiliation(s)
- Hairuo Wen
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, P.R., China
| | - Mo Dan
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, P.R., China
| | - Ying Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, P.R., China
| | - Jianjun Lyu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, P.R., China
| | - Anliang Shao
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing, P. R., China
| | - Xiang Cheng
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Liang Chen
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing, P. R., China
| | - Liming Xu
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing, P. R., China
- * E-mail:
| |
Collapse
|
35
|
Ozcelikkale A, Moon HR, Linnes M, Han B. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1460. [PMID: 28198106 PMCID: PMC5555839 DOI: 10.1002/wnan.1460] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
Abstract
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Linnes
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
36
|
Rodríguez-León E, Íñiguez-Palomares RA, Navarro RE, Rodríguez-Beas C, Larios-Rodríguez E, Alvarez-Cirerol FJ, Íñiguez-Palomares C, Ramírez-Saldaña M, Hernández Martínez J, Martínez-Higuera A, Galván-Moroyoqui JM, Martínez-Soto JM. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1194-1206. [DOI: 10.1080/21691401.2017.1366332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | - Rosa Elena Navarro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, México
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | | | | | | | | - Aarón Martínez-Higuera
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | |
Collapse
|
37
|
Hristov DR, Ye D, de Araújo JM, Ashcroft C, DiPaolo B, Hart R, Earhart C, Lopez H, Dawson KA. Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions. NANOSCALE 2017; 9:4524-4535. [PMID: 28317988 DOI: 10.1039/c6nr09331k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Comprehensive characterization of nanomaterials for medical applications is a challenging and complex task due to the multitude of parameters which need to be taken into consideration in a broad range of conditions. Routine methods such as dynamic light scattering or nanoparticle tracking analysis provide some insight into the physicochemical properties of particle dispersions. For nanomedicine applications the information they supply can be of limited use. For this reason, there is a need for new methodologies and instruments that can provide additional data on nanoparticle properties such as their interactions with surfaces. Nanophotonic force microscopy has been shown as a viable method for measuring the force between surfaces and individual particles in the nano-size range. Here we outline a further application of this technique to measure the size of single particles and based on these measurement build the distribution of a sample. We demonstrate its efficacy by comparing the size distribution obtained with nanophotonic force microscopy to established instruments, such as dynamic light scattering and differential centrifugal sedimentation. Our results were in good agreement to those observed with all other instruments. Furthermore, we demonstrate that the methodology developed in this work can be used to study complex particle mixtures and the surface alteration of materials. For all cases studied, we were able to obtain both the size and the interaction potential of the particles with a surface in a single measurement.
Collapse
Affiliation(s)
- Delyan R Hristov
- Center for BioNano Interaction, School of Chemistry, University College Dublin, Belfield, Dublin, Ireland.
| | - Dong Ye
- Center for BioNano Interaction, School of Chemistry, University College Dublin, Belfield, Dublin, Ireland.
| | - Joao Medeiros de Araújo
- Center for BioNano Interaction, School of Chemistry, University College Dublin, Belfield, Dublin, Ireland. and Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil
| | | | | | - Robert Hart
- Optofluidics, Inc., Philadelphia, PA 19104, USA
| | | | - Hender Lopez
- Center for BioNano Interaction, School of Chemistry, University College Dublin, Belfield, Dublin, Ireland.
| | - Kenneth A Dawson
- Center for BioNano Interaction, School of Chemistry, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
38
|
Manshian BB, Jimenez J, Himmelreich U, Soenen SJ. Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated Mice. Adv Healthc Mater 2017; 6. [PMID: 27885834 DOI: 10.1002/adhm.201601099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Indexed: 12/22/2022]
Abstract
To date, most nanomedical studies rely on the use of immune-deficient mice in which the contribution of the immune system on the applied therapy is ignored. Here, the degradation of silver nanoparticles (Ag NPs) is exploited as a means to treat subcutaneous tumor models in mice. To investigate the impact of the immune system, the same tumor cell type (KLN 205 murine squamous cell carcinoma) is used in a xenograft model in NOD SCIDγ immune-deficient mice and as a syngeneic model in immune-competent DBA/2 mice. The Ag NPs are screened for their cytotoxicity on various cancer cell lines, indicating a concentration-dependent induction of oxidative stress, mitochondrial damage, and autophagy on all cell types tested. At subcytotoxic concentrations, prolonged cellular exposure to the Ag NPs results in toxicity due to NP degradation and the generation of toxic Ag+ ions. At subcytotoxic conditions, the NPs are found to cause inflammation in vitro. Similar results are obtained in the immune-competent mouse model, where clear inflammation is observed after treatment of the implanted tumors with Ag NPs. This inflammation leads to an ongoing antitumoral effect, which results in a significantly reduced tumor growth compared to Ag NP-treated tumors in an immune-deficient model.
Collapse
Affiliation(s)
- Bella B. Manshian
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| | - Julio Jimenez
- Organ Systems; Department of Development and Regeneration; KU Leuven; Herestraat 49 B3000 Leuven Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| | - Stefaan J. Soenen
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| |
Collapse
|