1
|
Andriambelo B, Vachon A, Dansereau MA, Laurent B, Plourde M. Providing lysophosphatidylcholine-bound omega-3 fatty acids increased eicosapentaenoic acid, but not docosahexaenoic acid, in the cortex of mice with the apolipoprotein E3 or E4 allele. Prostaglandins Leukot Essent Fatty Acids 2024; 204:102661. [PMID: 39642444 DOI: 10.1016/j.plefa.2024.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Several mechanisms have been proposed for the brain uptake of omega-3 fatty acids (n-3), including passive diffusion of the unesterified form and the use of Mfsd2a transporter for the lysophosphatidylcholine (LPC) form. We hypothesize that the accumulation of LPC n-3 in the brain is lower in mice carrying the apolipoprotein E ε4 allele (APOE4), a major genetic risk factor for developing sporadic Alzheimer's disease in humans. OBJECTIVE Determine whether two or four months of supplementation with LPC n-3 increases the levels of docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) in the frontal cortex of APOE3 and APOE4 mice. METHODS APOE3 and APOE4 mice were administered LPC n-3 (9.6 mg DHA + 18.3 mg EPA) or sunflower oil (control) by oral gavage for two or four months (n = 5-8 per genotype, per treatment, and per treatment duration). At the end of the treatment period, frontal cortices were collected, and their FA profiles analyzed by gas chromatography with flame ionization detection. RESULTS After two months of gavage with LPC n-3, APOE3 mice showed increased levels of EPA in their cortex, but not DHA. In APOE4 mice, neither EPA nor DHA levels were significantly affected. After four months of LPC n-3, both APOE3 and APOE4 mice exhibited higher EPA levels, while changes in DHA levels were not statistically significant. CONCLUSION LPC n-3 supplementation increased EPA, but not DHA, levels in the frontal cortex of mice in a duration- and APOE genotype-dependent manner. Further research is needed to explore the implications for brain health.
Collapse
Affiliation(s)
- Bijou Andriambelo
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Annick Vachon
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Marc-André Dansereau
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adi-Pose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Lamarre J, Wilson DR. Short-term dietary changes are reflected in the cerebral content of adult ring-billed gulls. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240616. [PMID: 39113770 PMCID: PMC11303033 DOI: 10.1098/rsos.240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) are produced primarily in aquatic ecosystems and are considered essential nutrients for predators given their structural role in vertebrates' cerebral tissues. Alarmingly, with urbanization, many aquatic animals now rely on anthropogenic foods lacking n3-LCPUFAs. In this study undertaken in Newfoundland (Canada), we tested whether recent or longer term diet explains the cerebral fatty acid composition of ring-billed gulls (Larus delawarensis), a seabird that now thrives in cities. During the breeding season, cerebral levels of n3-LCPUFAs were significantly higher for gulls nesting in a natural habitat and foraging on marine food (mean ± s.d.: 32 ± 1% of total identified fatty acids) than for urban nesters exploiting rubbish (27 ± 1%). Stable isotope analysis of blood and feathers showed that urban and natural nesters shared similar diets in autumn and winter, suggesting that the difference in cerebral n3-LCPUFAs during the breeding season was owing to concomitant and transient differences in diet. We also experimentally manipulated gulls' diets throughout incubation by supplementing them with fish oil rich in n3-LCPUFAs, a caloric control lacking n3-LCPUFAs, or nothing, and found evidence that fish oil increased urban nesters' cerebral n3-LCPUFAs. These complementary analyses provide evidence that the brain of this seabird remains plastic during adulthood and responds to short-term dietary changes.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| | - David R. Wilson
- Department of Psychology, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| |
Collapse
|
4
|
Gao Y, Carne A, Young W, Burrow K, Naji S, Fraser-Miller SJ, Gordon KC, Bekhit AEDA. Effect of consumption of sheep and cow milk on rat brain fatty acid and phospholipid composition. Food Chem 2024; 439:138056. [PMID: 38035492 DOI: 10.1016/j.foodchem.2023.138056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The effect of sheep milk and cow milk on the lipid composition of rat brain was investigated in two feeding experiments of 28-days duration. Total lipids of the rat brain were extracted using ethanol-hexane, and the fatty acids and phospholipid contents analysed using gas chromatography with flame ionization detection (GC-FID) and phosphorus-31 nuclear magnetic resonance (31P NMR). Furthermore, freeze-dried pooled samples were analysed using attenuated total reflectance Fourier Transform Infrared and Fourier Transform Raman Spectroscopy and analysed with multivariate methods. A significantly (P < 0.05) higher C18:2 content was found in the cow milk group compared with sheep milk-treated groups in Study one. In Study two, a significantly (P < 0.05) lower C16:0 content was present in the sheep milk-treated group compared to the control low Ca/P group. No significant (P > 0.05) differences were observed in the spectroscopy analyses. It is concluded that sheep and cow milks fed to rats for 28-days had a low effect on the brain lipidome.
Collapse
Affiliation(s)
- Yutong Gao
- Food Science Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Alan Carne
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Wayne Young
- AgResearch Ltd, Tennent Drive, Palmerston North 4442, New Zealand
| | - Keegan Burrow
- Department of Wine, Food and Molecular Biosciences, RFH Building, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Samer Naji
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Alaa El-Din A Bekhit
- Food Science Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand.
| |
Collapse
|
5
|
Klievik BJ, Tyrrell AD, Chen CT, Bazinet RP. Measuring brain docosahexaenoic acid turnover as a marker of metabolic consumption. Pharmacol Ther 2023:108437. [PMID: 37201738 DOI: 10.1016/j.pharmthera.2023.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) accretion in brain phospholipids is critical for maintaining the structural fluidity that permits proper assembly of protein complexes for signaling. Furthermore, membrane DHA can by released by phospholipase A2 and act as substrate for synthesis of bioactive metabolites that regulate synaptogenesis, neurogenesis, inflammation, and oxidative stress. Thus, brain DHA is consumed through multiple pathways including mitochondrial β-oxidation, autoxidation to neuroprostanes, as well as enzymatic synthesis of bioactive metabolites including oxylipins, synaptamide, fatty-acid amides, and epoxides. By using models developed by Rapoport and colleagues, brain DHA loss has been estimated to be 0.07-0.26 μmol DHA/g brain/d. Since β-oxidation of DHA in the brain is relatively low, a large portion of brain DHA loss may be attributed to synthesis of autoxidative and bioactive metabolites. In recent years, we have developed a novel application of compound specific isotope analysis to trace DHA metabolism. By the use of natural abundance in 13C-DHA in food supply, we are able to trace brain phospholipid DHA loss in free-living mice with estimates ranging from 0.11 to 0.38 μmol DHA/g brain/d, in reasonable agreement with previous methods. This novel fatty acid metabolic tracing methodology should improve our understanding of the factors that regulate brain DHA metabolism.
Collapse
Affiliation(s)
- Brinley J Klievik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Aidan D Tyrrell
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
6
|
Zhang H, He Y, Song C, Chai Z, Liu C, Sun S, Huang Q, He C, Zhang X, Zhou Y, Zhao F. Analysis of fatty acid composition and sensitivity to dietary n-3 PUFA intervention of mouse n-3 PUFA-enriched tissues/organs. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102568. [PMID: 37003143 DOI: 10.1016/j.plefa.2023.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE n-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA; C22:6 n3) and eicosapentaenoic acid (EPA; C20:5 n3), are of concern for their health-promoting effects such as anti-inflammatory, but the tissue selectivity for n-3 PUFA (i.e., which tissues and organs are rich in n-3 PUFA) is still not well known. In addition, it is unclear which tissues and organs are more sensitive to n-3 PUFA intervention. These unresolved issues have greatly hindered the exploring of the health benefits of n-3 PUFA. METHODS Twenty-four 7-week-old male C57BL/6 J mice were assigned to the control, fish oil, DHA, and EPA groups. The last three groups were given a 4-week oral intervention of fatty acids in ethyl ester (400 mg/kg bw). The fatty acid profiles in 27 compartments were determined by gas chromatography. RESULTS The proportion of long-chain n-3 PUFA (the total relative percentage of EPA, DPA n3, and DHA) was analyzed. Eight tissues and organs, including the brain (cerebral cortex, hippocampus, hypothalamus) and peripheral organs (tongue, quadriceps, gastrocnemius, kidney, and heart) were determined as being n-3 PUFA-enriched tissues and organs, owing to their high n-3 PUFA levels. The highest n-3 PUFA content was observed in the tongue for the first time. Notably, the content of linoleic acid (LA; C18:2 n6c) in peripheral organs was observed to be relatively high compared with that in the brain. Interestingly, the proportions of EPA in the kidney, heart, quadriceps, gastrocnemius, and tongue increased more markedly after the EPA intervention than after the DHA or fish oil intervention. As expected, the levels of proinflammatory arachidonic acid (AA; C20:4 n6) in the kidney, quadriceps, and tongue were markedly decreased after the three dietary interventions. CONCLUSION Peripheral tissues and organs, including the tongue, quadriceps, gastrocnemius, kidney, and heart, besides the brain, showed obvious tissue selectivity for n-3 PUFA. In the whole body of mice, the tongue exhibits the strongest preference for n-3 PUFA, with the highest proportion of n-3 PUFA. Moreover, these peripheral tissues and organs, especially the kidney, are more sensitive to dietary EPA administration in comparison with the brain.
Collapse
Affiliation(s)
- Hui Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; OmegaBandz.Inc, Shanghai, 1180 Xingxian Road, Shanghai, 201815, China
| | - Chunyan Song
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Chundi Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuben Sun
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Qiuhan Huang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Feng Zhao
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
7
|
Lamontagne-Kam DM, Davari S, Aristizabal-Henao JJ, Cho S, Chalil D, Mielke JG, Stark KD. Sex differences in hippocampal-dependent memory and the hippocampal lipidome in adolescent rats raised on diets with or without DHA. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102569. [PMID: 36966673 DOI: 10.1016/j.plefa.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Saeideh Davari
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Juan J Aristizabal-Henao
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; BPGbio Inc., 500 Old Connecticut Path Building B, Framingham, MA, 01701, USA
| | - Seungjae Cho
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
8
|
N-3 Polyunsaturated Fatty Acids Ameliorate Neurobehavioral Outcomes Post-Mild Traumatic Brain Injury in the Fat-1 Mouse Model. Nutrients 2021; 13:nu13114092. [PMID: 34836347 PMCID: PMC8620437 DOI: 10.3390/nu13114092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022] Open
Abstract
Concussions and mild traumatic brain injury (m-TBI) have been identified as a consequential public health concern because of their potential to cause considerable impairments in physical, cognitive, behavioral, and social functions. Given their prominent structural and functional roles in the brain, n-3 polyunsaturated fatty acids (PUFA) have been identified as a potentially viable prophylactic agent that may ameliorate the deleterious effects of m-TBI on brain function. The purpose of the present pilot study was to investigate the effect of n-3 PUFA on neurologic function using a weight drop injury (WDI) model. Fat-1 mice, capable of synthesizing n-3 PUFA endogenously from n-6 PUFA, and their wild-type (WT) counterparts, were subjected to a mild low-impact WDI on the closed cranium, and recovery was evaluated using the neurological severity score (NSS) to assess the motor and neurobehavioral outcomes. In comparison to the WT mice, the fat-1 mice had a significantly (p ≤ 0.05) lower NSS at all time points post-WDI, and significantly greater neurological restoration measured as the time to first movement. Overall, these findings demonstrate the protective effect of n-3 PUFA against mild brain injury.
Collapse
|
9
|
Chen CT, Haven S, Lecaj L, Borgstrom M, Torabi M, SanGiovanni JP, Hibbeln JR. Brain PUFA Concentrations Are Differentially Affected by Interactions of Diet, Sex, Brain Regions, and Phospholipid Pools in Mice. J Nutr 2020; 150:3123-3132. [PMID: 33188433 PMCID: PMC7726127 DOI: 10.1093/jn/nxaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PUFAs play vital roles in the development, maintenance, and functioning of circuitries that regulate reward and social behaviors. Therefore, modulations in PUFA concentrations of these brain regions may disrupt reward and social circuitries contributing to mood disorders, developmental disabilities, and addictions. Though much is known about regional and phospholipid-pool-specific PUFA concentrations, less is known about the effects of dietary interventions that concurrently lowers n-6 PUFA and supplements n-3 PUFA, on brain PUFA concentrations. There is even less knowledge on the effects of sex on brain PUFA concentrations. OBJECTIVE This study aimed to comprehensively examine the interaction effects of diet (D), sex (S), brain regions (BR), and phospholipid pools (PL) on brain PUFA concentrations. METHODS Male and female C57BL/6J mice were fed 1 of 4 custom-designed diets varying in linoleic acid (LNA) (8 en% or 1 en%) and eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) (0.4 en% or 0 en%) concentrations from in utero to 15 weeks old. At 15 weeks old, the prefrontal cortex, dorsal striatum, and cerebellum were collected. Fatty acids of 5 major PL were quantified by GC-flame ionization detection. Repeated measures ANOVA was used to test for differences among the groups for D, S, BR, and PL. RESULTS No significant 4-way interactions on PUFA concentrations. DHA, predominant n-3 PUFA, concentrations were dependent on significant D × BR × PL interactions. DHA concentration was not affected by sex. Arachidonic acid (ARA; predominant n-6 PUFA) concentrations were not dependent on 3-way interactions. However, significant 2-way D × PL, BR × PL, and D × Sinteractions affected ARA concentrations. Brain fatty acid concentrations were differentially affected by various combinations of D, S, BR, and PL interactions. CONCLUSION Though DHA concentrations are not affected by sex, ARA concentrations are affected by interactions of the 4 variables examined. This study provides comprehensive references in the investigation of complex interactions between factors that affect brain PUFA concentrations in mice.
Collapse
Affiliation(s)
| | - Sophie Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Lea Lecaj
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Mark Borgstrom
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | - Mohammad Torabi
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | | | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| |
Collapse
|
10
|
Bredehöft J, Bhandari DR, Pflieger FJ, Schulz S, Kang JX, Layé S, Roth J, Gerstberger R, Mayer K, Spengler B, Rummel C. Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chem Neurosci 2019; 10:4394-4406. [PMID: 31513369 DOI: 10.1021/acschemneuro.9b00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux 33076, France
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Konstantin Mayer
- University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Klinikstrasse 33, Giessen D-35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| |
Collapse
|
11
|
Metherel AH, Irfan M, Chouinard-Watkins R, Trépanier MO, Stark KD, Bazinet RP. DHA Cycling Halves the DHA Supplementation Needed to Maintain Blood and Tissue Concentrations via Higher Synthesis from ALA in Long-Evans Rats. J Nutr 2019; 149:586-595. [PMID: 30715388 DOI: 10.1093/jn/nxy282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) recommendations are frequently stated at 500 mg/d; however, adherence to these recommendations would result in a large global commercial EPA/DHA production deficit. Previously, our laboratory demonstrated that acute DHA intake in rats can increase the capacity for synthesis-secretion of n-3 (ω-3) polyunsaturated fatty acids (PUFAs). OBJECTIVE We aimed to investigate the utility of a dietary DHA cycling strategy that employs 2 wk of repeated DHA feeding for a total of 3 cycles over 12 wk. METHODS Male Long-Evans rats were fed a 10% fat diet by weight comprised of either 1) a 2-wk, 2% α-linolenic acid (ALA, DHA-ALA group 18:3n-3) diet followed by a 2-wk, 2% DHA + 2% ALA diet over 3 consecutive 4-wk periods ("DHA cycling," DHA-ALA group); 2) a 2% DHA + 2% ALA diet (DHA group) for 12 wk; or 3) a 2% ALA-only diet (ALA group) for 12 wk. At 15 wk old, blood and tissue fatty acid concentrations and liver mRNA expression and 13C-DHA natural abundances were determined. RESULTS DHA concentrations in plasma, erythrocytes, and whole blood between the DHA-ALA group and the DHA groups were not different (P ≥ 0.05), but were 72-110% higher (P < 0.05) than in the ALA group. Similarly, DHA concentrations in liver, heart, adipose, and brain were not different (P ≥ 0.05) between the DHA-fed groups, but were at least 62%, 72%, 320%, and 68% higher (P < 0.05) than in the ALA group in liver, heart, adipose, and skeletal muscle, respectively. Compound-specific isotope analysis indicated that 310% more liver DHA in the DHA-ALA group compared with the DHA group is derived from dietary ALA, and this was accompanied by a 123% and 93% higher expression of elongation of very long-chain (Elovl)2 and Elovl5, respectively, in the DHA-ALA group compared with the ALA group. CONCLUSIONS DHA cycling requires half the dietary DHA while achieving equal blood and tissue DHA concentrations in rats. Implementation of such dietary strategies in humans could reduce the gap between global dietary n-3 PUFA recommendations and commercial production.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maha Irfan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Rey C, Delpech JC, Madore C, Nadjar A, Greenhalgh AD, Amadieu C, Aubert A, Pallet V, Vaysse C, Layé S, Joffre C. Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain Behav Immun 2019; 76:17-27. [PMID: 30086401 DOI: 10.1016/j.bbi.2018.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/26/2022] Open
Abstract
The brain is highly enriched in long chain polyunsaturated fatty acids (LC-PUFAs) that display immunomodulatory properties in the brain. At the periphery, the modulation of inflammation by LC-PUFAs occurs through lipid mediators called oxylipins which have anti-inflammatory and pro-resolving activities when derived from n-3 LC-PUFAs and pro-inflammatory activities when derived from n-6 LC-PUFAs. However, whether a diet rich in LC-PUFAs modulates oxylipins and neuroinflammation in the brain has been poorly investigated. In this study, the effect of a dietary n-3 LC-PUFA supplementation on oxylipin profile and neuroinflammation in the brain was analyzed. Mice were given diets deficient or supplemented in n-3 LC-PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS) at adulthood. We first showed that dietary n-3 LC-PUFA supplementation induced n-3 LC-PUFA enrichment in the hippocampus and subsequently an increase in n-3 PUFA-derived oxylipins and a decrease in n-6 PUFA-derived oxylipins. In response to LPS, n-3 LC-PUFA deficient mice presented a pro-inflammatory oxylipin profile whereas n-3 LC-PUFA supplemented mice displayed an anti-inflammatory oxylipin profile in the hippocampus. Accordingly, the expression of cyclooxygenase-2 and 5-lipoxygenase, the enzymes implicated in pro- and anti-inflammatory oxylipin synthesis, was induced by LPS in both diets. In addition, LPS-induced pro-inflammatory cytokine increase was reduced by dietary n-3 LC-PUFA supplementation. These results indicate that brain n-3 LC-PUFAs increase by dietary means and promote the synthesis of anti-inflammatory derived bioactive oxylipins. As neuroinflammation plays a key role in all brain injuries and many neurodegenerative disorders, the present data suggest that dietary habits may be an important regulator of brain cytokine production in these contexts.
Collapse
Affiliation(s)
- C Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; ITERG, Institut des corps gras, 33600 Pessac, France
| | - J C Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - C Madore
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - A D Greenhalgh
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - C Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - C Vaysse
- ITERG, Institut des corps gras, 33600 Pessac, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
13
|
Giuliano V, Lacombe RS, Hopperton KE, Bazinet RP. Applying stable carbon isotopic analysis at the natural abundance level to determine the origin of docosahexaenoic acid in the brain of the fat-1 mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1388-1398. [DOI: 10.1016/j.bbalip.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/31/2022]
|
14
|
Trépanier MO, Hopperton KE, Giuliano V, Masoodi M, Bazinet RP. Increased brain docosahexaenoic acid has no effect on the resolution of neuroinflammation following intracerebroventricular lipopolysaccharide injection. Neurochem Int 2018; 118:115-126. [PMID: 29792954 DOI: 10.1016/j.neuint.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
Resolution of inflammation in the periphery was once thought to be a passive process, but new research now suggests it is an active process mediated by specialized pro-resolving lipid mediators (SPM) derived from omega-3 polyunsaturated fatty acids (n-3 PUFA). However, this has yet to be illustrated in neuroinflammation. The purpose of this study was to measure resolution of neuroinflammation and to test whether increasing brain docosahexaenoic acid (DHA) affects the resolution of neuroinflammation. C57Bl/6 mice, fat-1 mice and their wildtype littermates, fed either fish oil or safflower oil, received lipopolysaccharide (LPS) in the left lateral ventricle. Animals were then euthanized at various time points for immunohistochemistry, gene expression, and lipidomic analyses. Peak microglial activation was observed at 5 days post-surgery and the resolution index was 10 days. Of the approximately 350 genes significantly changed over the 28 days post LPS injection, 130 were uniquely changed at 3 days post injection. No changes were observed in the bioactive mediator pools. However, a few lysophospholipid species were decreased at 24hr post surgery. When brain DHA is increased, microglial cell density did not resolve faster and did not alter gene expression. In conclusion, resolution of neuroinflammation appears to be independent of SPM. Increasing brain DHA had no effect in this model.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Mojgan Masoodi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada; Lipid Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
15
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
16
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
17
|
Hopperton KE, James NCE, Mohammad D, Irfan M, Bazinet RP. Dietary fish oil, and to a lesser extent the fat-1 transgene, increases astrocyte activation in response to intracerebroventricular amyloid-β 1-40 in mice. Nutr Neurosci 2017; 22:418-424. [PMID: 29113539 DOI: 10.1080/1028415x.2017.1396068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Increases in astrocytes and one of their markers, glial fibrillary acidic protein (GFAP) have been reported in the brains of patients with Alzheimer's disease (AD). N-3 polyunsaturated fatty acids (PUFA) modulate neuroinflammation in animal models; however, their effect on astrocytes is unclear. METHODS Fat-1 mice and their wildtype littermates were fed either a fish oil diet or a safflower oil diet deprived of n-3 PUFA. At 12 weeks, mice underwent intracerebroventricular infusion of amyloid-β 1-40. Astrocyte phenotype in the hippocampus was assessed at baseline and 10 days post-surgery using immunohistochemistry with various microscopy and image analysis techniques. RESULTS GFAP increased in all groups in response to amyloid-β, with a greater increase in fish oil-fed mice than either fat-1 or wildtype safflower oil-fed mice. Astrocytes in this group were also more hypertrophic, suggesting increased activation. Both fat-1- and fish oil-fed mice had greater increases in branch number and length in response to amyloid-β infusion than wildtype safflower animals. CONCLUSION Fish oil feeding, and to a lesser extent the fat-1 transgene, enhances the astrocyte activation phenotype in response to amyloid-β 1-40. Astrocytes in mice fed fish oil were more activated in response to amyloid-β than in fat-1 mice despite similar levels of hippocampal n-3 PUFA, which suggests that other fatty acids or dietary factors contribute to this effect.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Nicholas C E James
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Dana Mohammad
- b Department of Pharmacology and Toxicology , University of Toronto , Toronto , Canada
| | - Maha Irfan
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Richard P Bazinet
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| |
Collapse
|
18
|
Joffre C, Grégoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, Layé S. Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Essent Fatty Acids 2016; 114:1-10. [PMID: 27926457 DOI: 10.1016/j.plefa.2016.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to genetic model of PUFA modulation; 4) different in n-3 PUFA deficient aged C57BL6/J when compared to SAMP8 mouse model of aging. From these experiments, we highlight the difficulty to compare results obtained in different mouse models, different strains, different brain regions and different ages.
Collapse
Affiliation(s)
- Corinne Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Grégoire
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Véronique De Smedt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Niyazi Acar
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Lionel Bretillon
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
19
|
Dinel AL, Rey C, Baudry C, Fressange-Mazda C, Le Ruyet P, Nadjar A, Pallet P, Joffre C, Layé S. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood. Prostaglandins Leukot Essent Fatty Acids 2016; 113:9-18. [PMID: 27720041 DOI: 10.1016/j.plefa.2016.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory.
Collapse
Affiliation(s)
- A L Dinel
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - C Rey
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France; ITERG, Institut des Corps Gras, 33600 Pessac, France
| | - C Baudry
- Lactalis, R&D, Retiers F-35240, France
| | | | | | - A Nadjar
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - P Pallet
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - C Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - S Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Hopperton KE, Trépanier MO, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice. J Neuroinflammation 2016; 13:257. [PMID: 27688126 PMCID: PMC5041295 DOI: 10.1186/s12974-016-0721-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. METHODS Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. RESULTS Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. CONCLUSIONS Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the hypothesis that omega-3 PUFA may be protective against AD by modulating the immune response to amyloid-β.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
21
|
Ahn SH, Park SY, Baek JE, Lee SY, Baek WY, Lee SY, Lee YS, Yoo HJ, Kim H, Lee SH, Im DS, Lee SK, Kim BJ, Koh JM. Free Fatty Acid Receptor 4 (GPR120) Stimulates Bone Formation and Suppresses Bone Resorption in the Presence of Elevated n-3 Fatty Acid Levels. Endocrinology 2016; 157:2621-35. [PMID: 27145004 DOI: 10.1210/en.2015-1855] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4(-/-)) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1(Tg+)) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4(-/-) and fat-1(Tg+) mice over two generations to generate four genotypes of mice littermates: Ffar4(+/+);fat-1(Tg-), Ffar4(+/+);fat-1(Tg+), Ffar4(-/-);fat-1(Tg-), and Ffar4(-/-);fat-1(Tg+). Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1(Tg+) mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In a high-fat diet-fed model, male fat-1(Tg+) mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.
Collapse
Affiliation(s)
- Seong Hee Ahn
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sook-Young Park
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Ji-Eun Baek
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Su-Youn Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Wook-Young Baek
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sun-Young Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Young-Sun Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Hyun Ju Yoo
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Hyeonmok Kim
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Seung Hun Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Dong-Soon Im
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Sun-Kyeong Lee
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Beom-Jun Kim
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| | - Jung-Min Koh
- Department of Endocrinology and Metabolism (S.H.A.), Inha University Hospital, Inha University School of Medicine, Incheon 402-751, South Korea; Asan Institute for Life Sciences (S.-Y.P., J.-E.B., S.-Youn.L., W.-.Y.B., S.-Young.L., Y.-S.L.) and Biomedical Research Center (H.J.Y.) and Division of Endocrinology and Metabolism (H.K., S.H.L., B.-J.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea; Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy (D.-S.I.), Pusan National University, Busan 609-735, South Korea; and UConn Center on Aging (S.-K.L.), University of Connecticut Health Center, Farmington, Connecticut 06030-1601
| |
Collapse
|
22
|
Yin J, Li H, Meng C, Chen D, Chen Z, Wang Y, Wang Z, Chen G. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway. Int J Biochem Cell Biol 2016; 75:11-22. [DOI: 10.1016/j.biocel.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/25/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023]
|
23
|
Kitson AP, Metherel AH, Chen CT, Domenichiello AF, Trépanier MO, Berger A, Bazinet RP. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion. J Nutr Biochem 2016; 33:91-102. [PMID: 27135386 DOI: 10.1016/j.jnutbio.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
Abstract
Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations.
Collapse
Affiliation(s)
- Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | | | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Alvin Berger
- Arctic Nutrition AS, NO-6155, Ørsta, Norway; Department of Food Science & Nutrition, University of Minnesota, St. Paul, MN, 55108-1038, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada.
| |
Collapse
|
24
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
25
|
Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 2015; 40:525-36. [PMID: 25228141 PMCID: PMC4289942 DOI: 10.1038/npp.2014.196] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) display immunomodulatory properties in the brain, n-3 PUFAs being able to reduce inflammation whereas n-6 PUFAs are more pro-inflammatory. It has been extensively demonstrated that exposure to a peripheral immune challenge leads to the production and release of inflammatory mediators in the brain in association with cognitive deficits. The question arises whether n-3 PUFA supplementation could downregulate the brain inflammatory response and subsequent cognitive alterations. In this study, we used a genetically modified mouse line carrying the fat-1 gene from the roundworm Caenorhabditis elegans, encoding an n-3 PUFA desaturase that catalyzes conversion of n-6 into n-3 PUFA. Consequently, these mice display endogenously elevated n-3 PUFA tissue contents. Fat-1 mice or wild-type (WT) littermates were injected peripherally with lipopolysaccharide (LPS), a bacterial endotoxin, to induce an inflammatory episode. Our results showed that LPS altered differently the phenotype of microglia and the expression of cytokines and chemokines in Fat-1 and WT mice. In Fat-1 mice, pro-inflammatory factors synthesis was lowered compared with WT mice, whereas anti-inflammatory mechanisms were favored 24 h after LPS treatment. Moreover, LPS injection impaired spatial memory in WT mice, whereas interestingly, the Fat-1 mice showed normal cognitive performances. All together, these data suggest that the central n-3 PUFA increase observed in Fat-1 mice modulated the brain innate immune system activity, leading to the protection of animals against LPS-induced pro-inflammatory cytokine production and subsequent spatial memory alteration.
Collapse
|
26
|
Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 2015; 92:33-40. [PMID: 24986271 DOI: 10.1016/j.plefa.2014.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada.
| |
Collapse
|
27
|
Mason JK, Kharotia S, Wiggins AKA, Kitson AP, Chen J, Bazinet RP, Thompson LU. 17β-Estradiol Increases Liver and Serum Docosahexaenoic Acid in Mice Fed Varying Levels of α-Linolenic Acid. Lipids 2014; 49:745-56. [DOI: 10.1007/s11745-014-3913-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023]
|
28
|
Astarita G, McKenzie JH, Wang B, Strassburg K, Doneanu A, Johnson J, Baker A, Hankemeier T, Murphy J, Vreeken RJ, Langridge J, Kang JX. A protective lipidomic biosignature associated with a balanced omega-6/omega-3 ratio in fat-1 transgenic mice. PLoS One 2014; 9:e96221. [PMID: 24760204 PMCID: PMC3997567 DOI: 10.1371/journal.pone.0096221] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/04/2014] [Indexed: 01/26/2023] Open
Abstract
A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3) lack appropriate control diets and carry many other confounding factors derived from genetic and environmental variability. In our study, we used the fat-1 transgenic mouse model as a proxy for long-term omega-3 supplementation to determine, in a well-controlled manner, the molecular phenotype associated with a balanced omega-6/omega-3 ratio. The fat-1 mouse can convert omega-6 to omega-3 PUFAs, which protect against a wide variety of diseases including chronic inflammatory diseases and cancer. Both wild-type (WT) and fat-1 mice were subjected to an identical diet containing 10% corn oil, which has a high omega-6 content similar to that of the Western diet, for a six-month duration. We used a multi-platform lipidomic approach to compare the plasma lipidome between fat-1 and WT mice. In fat-1 mice, an unbiased profiling showed a significant increase in the levels of unesterified eicosapentaenoic acid (EPA), EPA-containing cholesteryl ester, and omega-3 lysophosphospholipids. The increase in omega-3 lipids is accompanied by a significant reduction in omega-6 unesterified docosapentaenoic acid (omega-6 DPA) and DPA-containing cholesteryl ester as well as omega-6 phospholipids and triacylglycerides. Targeted lipidomics profiling highlighted a remarkable increase in EPA-derived diols and epoxides formed via the cytochrome P450 (CYP450) pathway in the plasma of fat-1 mice compared with WT mice. Integration of the results of untargeted and targeted analyses has identified a lipidomic biosignature that may underlie the healthful phenotype associated with a balanced omega-6/omega-3 ratio, and can potentially be used as a circulating biomarker for monitoring the health status and the efficacy of omega-3 intervention in humans.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States of America
- * E-mail: (GA); (JXK)
| | - Jennifer H. McKenzie
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katrin Strassburg
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Centre, Leiden University, Leiden, The Netherlands
| | - Angela Doneanu
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
| | - Jay Johnson
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
| | - Andrew Baker
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
| | - Thomas Hankemeier
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Centre, Leiden University, Leiden, The Netherlands
| | - James Murphy
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
| | - Rob J. Vreeken
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Centre, Leiden University, Leiden, The Netherlands
| | - James Langridge
- Health Sciences, Waters Corporation, Milford, Massachusetts, United States of America
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GA); (JXK)
| |
Collapse
|
29
|
Anderson BM, MacLennan MB, Hillyer LM, Ma DWL. Lifelong exposure to n-3 PUFA affects pubertal mammary gland development. Appl Physiol Nutr Metab 2014; 39:699-706. [PMID: 24758708 DOI: 10.1139/apnm-2013-0365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing evidence that early developmental periods may importantly influence future breast cancer risk. Also, there is great interest in the role of dietary fat in breast cancer risk, but the role of dietary fat during pubertal mammary gland development remains poorly understood. This study investigated the effect of n-3 polyunsaturated fatty acids (PUFA) using complementary dietary and genetic approaches to examine the effect of lifelong exposure of n-3 PUFA or n-6 PUFA (control) on mammary gland development and fatty acid composition. n-3 PUFA from both diet and genetics were enriched in mammary glands as early as 3 weeks of age. Parameters related to mammary gland development, including number of terminal end buds (TEB), percent coverage of ductal tree, and infiltration of TEB, were influenced by n-3 PUFA at 3 and 4 weeks of age. Overall, findings suggest that n-3 PUFA incorporation into the mammary gland early in life plays a role in the morphological development of the mammary gland during puberty.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Animal Science/Nutrition Building, Rm 342, 491 Gordon Street, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
30
|
Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules 2013; 18:14203-27. [PMID: 24248147 PMCID: PMC6270577 DOI: 10.3390/molecules181114203] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022] Open
Abstract
Incorporating n-3 polyunsaturated fatty acids (PUFA) in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA) remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA) and long chain (EPA and DHA) n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.
Collapse
|
31
|
Domenichiello AF, Chen CT, Trepanier MO, Stavro PM, Bazinet RP. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J Lipid Res 2013; 55:62-74. [PMID: 24212299 PMCID: PMC3927474 DOI: 10.1194/jlr.m042275] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is important for brain function, however, the exact
amount required for the brain is not agreed upon. While it is believed that the
synthesis rate of DHA from α-linolenic acid (ALA) is low, how this
synthesis rate compares with the amount of DHA required to maintain brain DHA
levels is unknown. The objective of this work was to assess whether DHA
synthesis from ALA is sufficient for the brain. To test this, rats consumed a
diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15
weeks, whole body and brain DHA accretion was measured, while at the end of the
study, whole body DHA synthesis rates, brain gene expression, and DHA uptake
rates were measured. Despite large differences in body DHA accretion, there was
no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed
ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of
rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than
the DHA uptake rate into the brain. This work indicates that DHA synthesis from
ALA may be sufficient to supply the brain.
Collapse
|
32
|
Kelton D, Lysecki C, Aukema H, Anderson B, Kang JX, Ma DWL. Endogenous synthesis of n-3 PUFA modifies fatty acid composition of kidney phospholipids and eicosanoid levels in the fat-1 mouse. Prostaglandins Leukot Essent Fatty Acids 2013; 89:169-77. [PMID: 23994161 DOI: 10.1016/j.plefa.2013.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 11/16/2022]
Abstract
The goal of the present study was to determine whether endogenous synthesis of n-3 polyunsaturated fatty acids (PUFA) in the fat-1 mouse is comparable to fish oil feeding with respect to kidney n-3 PUFA composition and eicosanoid levels. Wild-type and heterozygous fat-1 mice, capable of synthesizing n-3 PUFA endogenously, were given diets enriched in either n-3 or n-6 PUFA in a 2×2 factorial design and terminated after 12 weeks. Kidney phospholipid fatty acids were analysed by gas chromatography. Kidney eicosanoids were analysed by liquid chromatography tandem mass spectrometry. Relative to control mice fed n-6 PUFA, n-3 PUFA fed and fat-1 mice had higher levels of kidney phospholipid n-3 PUFA, and lower levels of n-6 PUFA and eicosanoids. However, mice fed n-3 PUFA mice had higher levels of n-3 PUFA and lower levels of eicosanoids as compared to fat-1 mice. In conclusion, diet feeding had a greater impact on kidney fatty acid composition and eicosanoid levels than the genetic effect of the fat-1 gene. However, the fat-1 mouse remains a close approximation that can be used as a complementary model to study the role of n-3 PUFA in the kidney.
Collapse
Affiliation(s)
- D Kelton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DWL, Serhan CN, Bazinet RP. Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 2013; 127:378-93. [PMID: 23919613 DOI: 10.1111/jnc.12392] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 polyunsaturated fatty acid modulation in transgenic and wild-type mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Furthermore, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LC-MS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute intracerebroventricular infusion of 17S-hydroperoxy-docosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. Our study shows that chronically increased brain unesterified DHA levels, but not solely phospholipid DHA levels, attenuate neuroinflammation. Similar attenuations occur with acute increases in brain unesterified DHA or 17S-HpDHA levels, highlighting the importance of an available pool of precursor unesterified DHA for the production of enzymatically derived specialized pro-resolving mediators that are critical in the regulation of neuroinflammation.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Heerwagen MJR, Stewart MS, de la Houssaye BA, Janssen RC, Friedman JE. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLoS One 2013; 8:e67791. [PMID: 23825686 PMCID: PMC3692451 DOI: 10.1371/journal.pone.0067791] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023] Open
Abstract
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
Collapse
Affiliation(s)
- Margaret J. R. Heerwagen
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael S. Stewart
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Becky A. de la Houssaye
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Rachel C. Janssen
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jacob E. Friedman
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
35
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
36
|
Sun H, Hu Y, Gu Z, Owens RT, Chen YQ, Edwards IJ. Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway. Carcinogenesis 2011; 32:1518-24. [PMID: 21771724 DOI: 10.1093/carcin/bgr132] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human epidemiological studies have shown that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) are associated with a lower incidence of cancers including breast cancer. Our previous studies showed that the n-3 PUFA, docosahexaenoic acid (DHA), upregulated syndecan-1 (SDC-1) expression to induce apoptosis in the human breast cancer cell line MCF-7. We now present evidence of a signaling pathway that is impacted by SDC-1 in these cells and in mouse mammary tissues to result in apoptosis. In MCF-7 cells and SK-BR-3 cells, DHA and a SDC-1 ectodomain impaired signaling of the p44/42 mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of MAPK/Erk (MEK)/extracellular signal-regulated kinase (Erk) and Bad to induce apoptosis. SDC-1 siRNA significantly enhanced phosphorylation of these signal molecules and blocked the inhibitory effects of DHA on their phosphorylation. SDC-1 siRNA diminished apoptosis of MCF-7 cells, an effect that was markedly blocked by MEK inhibitor, PD98059. In vivo studies used (i) Fat-1 mice, a genetic model able to convert n-6 to n-3 PUFA to result in higher SDC-1 levels in Fat-1 mammary tissue compared with that of wild-type (wt) mice. Phosphorylation of MEK, Erk and Bad was lower in the Fat-1 versus wt tissue and (ii) SDC-1(-/-) mice that demonstrated markedly higher levels of phosphorylated MEK, Erk and Bad in mammary gland tissue compared with those of SDC(+/+) mice. These data elucidate a pathway whereby SDC-1, upregulated by DHA, induces apoptosis in breast cancer cells through inhibition of MEK/Erk/Bad signaling.
Collapse
Affiliation(s)
- Haiguo Sun
- Department of Pathology, Wake ForestUniversity School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sun H, Hu Y, Gu Z, Wilson MD, Chen YQ, Rudel LL, Willingham MC, Edwards IJ. Endogenous synthesis of n-3 polyunsaturated fatty acids in Fat-1 mice is associated with increased mammary gland and liver syndecan-1. PLoS One 2011; 6:e20502. [PMID: 21655218 PMCID: PMC3105073 DOI: 10.1371/journal.pone.0020502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/02/2011] [Indexed: 01/12/2023] Open
Abstract
Long chain n-3 PUFA have been shown to have chemopreventive properties against breast cancer through various mechanisms. One pathway, studied in human breast cancer cell lines, involves upregulation of the proteoglycan, syndecan-1 (SDC-1) by n-3 PUFA-enriched LDL. Using Fat-1 mice that are able to convert n-6 to n-3 PUFA, we tested whether SDC-1 level in vivo is elevated in mammary glands due to endogenously synthesized rather than LDL-derived n-3 PUFA. Female Fat-1 and wild type (wt) mice were fed an n-6 PUFA- enriched diet for 7 weeks. Fatty acid analysis of plasma lipoproteins showed that total n-6 PUFA reflected dietary intake similarly in both genotypes (VLDL, 36.2±2.2 and 40.9±3.9; LDL, 49.0±3.3 and 48.1±2.0; HDL, 54.6±1.2 and 58.2±1.3, mean ± SEM percent of total fatty acids for Fat-1 and wt animals respectively). Lipoprotein percent n-3 PUFA was also similar between groups. However, phospholipids and triglycerides extracted from mammary and liver tissues demonstrated significantly higher n-3 PUFA and a corresponding decrease in the ratio n-6/n-3 PUFA in Fat-1 compared to wt mice. This was accompanied by higher SDC-1 in mammary glands and livers of Fat-1 mice, thus demonstrating that endogenously synthesized n-3 PUFA may upregulate SDC-1 in the presence of high dietary n-6 PUFA.
Collapse
Affiliation(s)
- Haiguo Sun
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yunping Hu
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zhennan Gu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yong Q. Chen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark C. Willingham
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Iris J. Edwards
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: E-mail:
| |
Collapse
|
38
|
Smith BK, Holloway GP, Reza-Lopez S, Jeram SM, Kang JX, Ma DWL. A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl Physiol Nutr Metab 2010; 35:699-706. [PMID: 20962926 DOI: 10.1139/h10-066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A reduction in skeletal muscle fatty acid oxidation (FAO), manifested as a reduction in mitochondrial content and (or) FAO within mitochondria, may contribute to the development of insulin resistance. n-3 polyunsaturated fatty acids (PUFA) have been observed to increase the capacity for FAO and improve insulin sensitivity. We used the fat-1 mouse model, a transgenic animal capable of synthesizing n-3 PUFA from n-6 PUFA, to examine this relationship. Fat-1 mice exhibited a approximately 20-fold decrease in the n-6/n-3 ratio in skeletal muscle, and plasma glucose and the area under the glucose curve were significantly (p < 0.05) lower in fat-1 mice during a glucose challenge test. The improvement in whole-body glucose tolerance in the fat-1 mouse was associated with a approximately 21% (p < 0.05) decrease in whole-muscle citrate synthase (CS) activity (in red muscle only), without alterations in CS activity of isolated mitochondria (either red or white muscle; p > 0.05). These data suggest that the fat-1 mouse has decreased skeletal muscle mitochondrial content. However, the intrinsic ability of mitochondria to oxidize fatty acids was not altered in the fat-1 mouse, as rates of palmitate oxidation in isolated mitochondria from both red and white muscle were unchanged. Overall, this study demonstrates that a decrease in the n-6/n-3 ratio can enhance glucose tolerance in healthy animals, independent of changes in mitochondrial content.
Collapse
Affiliation(s)
- Brennan K Smith
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Bousquet M, Gue K, Emond V, Julien P, Kang JX, Cicchetti F, Calon F. Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease. J Lipid Res 2010; 52:263-71. [PMID: 21115966 DOI: 10.1194/jlr.m011692] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have recently identified a neuroprotective role for omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a toxin-induced mouse model of Parkinson's disease (PD). Combined with epidemiological data, these observations suggest that low n-3 PUFA intake is a modifiable environmental risk factor for PD. In order to strengthen these preclinical findings as prerequisite to clinical trials, we further investigated the neuroprotective role of n-3 PUFAs in Fat-1 mice, a transgenic model expressing an n-3 fatty acid desaturase converting n-6 PUFAs into n-3 PUFAs. Here, we report that the expression of the fat-1 transgene increased cortical n-3:n-6 PUFA ratio (+28%), but to a lesser extent than dietary supplementation (92%). Such a limited endogenous production of n-3 PUFAs in the Fat-1 mouse was insufficient to confer neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity as assessed by dopamine levels, tyrosine hydroxylase (TH)-positive neurons and fibers, as well as nigral Nurr1 and dopamine transporter (DAT) mRNA expression. Nevertheless, higher cortical docosahexaenoic acid (DHA) concentrations were positively correlated with markers of nigral dopaminergic neurons such as the number of TH-positive cells, in addition to Nurr1 and DAT mRNA levels. These associations are consistent with the protective role of DHA in a mouse model of PD. Taken together, these data suggest that dietary intake of a preformed DHA supplement is more effective in reaching the brain and achieving neuroprotection in an animal model of PD.
Collapse
Affiliation(s)
- Melanie Bousquet
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|