1
|
Mishra PS, Phaneuf D, Boutej H, Picher-Martel V, Dupre N, Kriz J, Julien JP. Inhibition of NF-κB with an Analog of Withaferin-A Restores TDP-43 Homeostasis and Proteome Profiles in a Model of Sporadic ALS. Biomedicines 2024; 12:1017. [PMID: 38790979 PMCID: PMC11118033 DOI: 10.3390/biomedicines12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The current knowledge on pathogenic mechanisms in amyotrophic lateral sclerosis (ALS) has widely been derived from studies with cell and animal models bearing ALS-linked genetic mutations. However, it remains unclear to what extent these disease models are of relevance to sporadic ALS. Few years ago, we reported that the cerebrospinal fluid (CSF) from sporadic ALS patients contains toxic factors for disease transmission in mice via chronic intracerebroventricular (i.c.v.) infusion. Thus a 14-day i.c.v. infusion of pooled CSF samples from ALS cases in mice provoked motor impairment as well as ALS-like pathological features. This offers a unique paradigm to test therapeutics in the context of sporadic ALS disease. Here, we tested a new Withaferin-A analog (IMS-088) inhibitor of NF-κB that was found recently to mitigate disease phenotypes in mouse models of familial disease expressing TDP-43 mutant. Our results show that oral intake of IMS-088 ameliorated motor performance of mice infused with ALS-CSF and it alleviated pathological changes including TDP-43 proteinopathy, neurofilament disorganization, and neuroinflammation. Moreover, CSF infusion experiments were carried out with transgenic mice having neuronal expression of tagged ribosomal protein (hNfL-RFP mice), which allowed immunoprecipitation of neuronal ribosomes for analysis by mass spectrometry of the translational peptide signatures. The results indicate that treatment with IMS-088 prevented many proteomic alterations associated with exposure to ALS-CSF involving pathways related to cytoskeletal changes, inflammation, metabolic dysfunction, mitochondria, UPS, and autophagy dysfunction. The effective disease-modifying effects of this drug in a mouse model based on i.c.v. infusion of ALS-CSF suggest that the NF-κB signaling pathway represents a compelling therapeutic target for sporadic ALS.
Collapse
Affiliation(s)
- Pooja Shree Mishra
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Daniel Phaneuf
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Hejer Boutej
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Vincent Picher-Martel
- Division of Neurosciences, Centre Hospitalier Universitaire de Québec, Laval University, Quebec, QC G1V 4G2, Canada; (V.P.-M.); (N.D.)
| | - Nicolas Dupre
- Division of Neurosciences, Centre Hospitalier Universitaire de Québec, Laval University, Quebec, QC G1V 4G2, Canada; (V.P.-M.); (N.D.)
| | - Jasna Kriz
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Halcrow PW, Quansah DN, Kumar N, Steiner JP, Nath A, Geiger JD. HERV-K (HML-2) Envelope Protein Induces Mitochondrial Depolarization and Neurotoxicity via Endolysosome Iron Dyshomeostasis. J Neurosci 2024; 44:e0826232024. [PMID: 38383499 PMCID: PMC10993035 DOI: 10.1523/jneurosci.0826-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are associated with the pathogenesis of amyotrophic lateral sclerosis (ALS); a disease characterized by motor neuron degeneration and cell death. The HERV-K subtype HML-2 envelope protein (HERV-K Env) is expressed in the brain, spinal cord, and cerebrospinal fluid of people living with ALS and through CD98 receptor-linked interactions causes neurodegeneration. HERV-K Env-induced increases in oxidative stress are implicated in the pathogenesis of ALS, and ferrous iron (Fe2+) generates reactive oxygen species (ROS). Endolysosome stores of Fe2+ are central to iron trafficking and endolysosome deacidification releases Fe2+ into the cytoplasm. Because HERV-K Env is an arginine-rich protein that is likely endocytosed and arginine is a pH-elevating amino acid, it is important to determine HERV-K Env effects on endolysosome pH and whether HERV-K Env-induced neurotoxicity is downstream of Fe2+ released from endolysosomes. Here, we showed using SH-SY5Y human neuroblastoma cells and primary cultures of human cortical neurons (HCNs, information on age and sex was not available) that HERV-K Env (1) is endocytosed via CD98 receptors, (2) concentration dependently deacidified endolysosomes, (3) decreased endolysosome Fe2+ concentrations, (4) increased cytosolic and mitochondrial Fe2+ and ROS levels, (5) depolarized mitochondrial membrane potential, and (6) induced cell death, effects blocked by an antibody against the CD98 receptor and by the endolysosome iron chelator deferoxamine. Thus, HERV-K Env-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear to be mechanistically caused by HERV-K Env endocytosis, endolysosome deacidification, and endolysosome Fe2+ efflux into the cytoplasm.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Darius N.K. Quansah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Joseph P. Steiner
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| |
Collapse
|
3
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
4
|
Kumar R, Malik Z, Singh M, Rachana R, Mani S, Ponnusamy K, Haider S. Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. Curr Gene Ther 2023; 23:148-162. [PMID: 36366843 DOI: 10.2174/1566523223666221108113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Zubbair Malik
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - R Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | | | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Gois AM, Bispo JM, Lins LC, Medeiros KA, Souza MF, Santos ER, Santos JF, Ribeiro AM, Silva RH, Paixão MO, Leopoldino JF, Marchioro M, Santos JR, Mendonça DM. Motor behavioral abnormalities and histopathological findings in middle aged male Wistar rats inoculated with cerebrospinal fluid from patients with Amyotrophic Lateral Sclerosis. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Li Y, Zheng W, Lu Y, Zheng Y, Pan L, Wu X, Yuan Y, Shen Z, Ma S, Zhang X, Wu J, Chen Z, Zhang X. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death Dis 2021; 13:14. [PMID: 34930907 PMCID: PMC8688453 DOI: 10.1038/s41419-021-04469-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Mitophagy is a highly conserved cellular process that maintains the mitochondrial quantity by eliminating dysfunctional or superfluous mitochondria through autophagy machinery. The mitochondrial outer membrane protein BNIP3L/Nix serves as a mitophagy receptor by recognizing autophagosomes. BNIP3L is initially known to clear the mitochondria during the development of reticulocytes. Recent studies indicated it also engages in a variety of physiological and pathological processes. In this review, we provide an overview of how BNIP3L induces mitophagy and discuss the biological functions of BNIP3L and its regulation at the molecular level. We further discuss current evidence indicating the involvement of BNIP3L-mediated mitophagy in human disease, particularly in cancer and neurological disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Wanqing Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Pan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xiaoli Wu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yang Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Jiaying Wu
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Ng Kee Kwong KC, Harbham PK, Selvaraj BT, Gregory JM, Pal S, Hardingham GE, Chandran S, Mehta AR. 40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology? Front Mol Neurosci 2021; 14:647895. [PMID: 33815058 PMCID: PMC8012723 DOI: 10.3389/fnmol.2021.647895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Based on early evidence of in vitro neurotoxicity following exposure to serum derived from patients with amyotrophic lateral sclerosis (ALS), several studies have attempted to explore whether cerebrospinal fluid (CSF) obtained from people with ALS could possess similar properties. Although initial findings proved inconclusive, it is now increasingly recognized that ALS-CSF may exert toxicity both in vitro and in vivo. Nevertheless, the mechanism underlying CSF-induced neurodegeneration remains unclear. This review aims to summarize the 40-year long history of CSF toxicity studies in ALS, while discussing the various mechanisms that have been proposed, including glutamate excitotoxicity, proteotoxicity and oxidative stress. Furthermore, we consider the potential implications of a toxic CSF circulatory system in the pathophysiology of ALS, and also assess its significance in the context of current ALS research.
Collapse
Affiliation(s)
| | - Pratap K. Harbham
- West Midlands Academic Foundation Programme, University of Birmingham, Birmingham, United Kingdom
| | - Bhuvaneish T. Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenna M. Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Pathology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, InStem, Bengaluru, India
| | - Arpan R. Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Das S, Nalini A, Laxmi TR, Raju TR. ALS-CSF-induced structural changes in spinal motor neurons of rat pups cause deficits in motor behaviour. Exp Brain Res 2020; 239:315-327. [PMID: 33170340 DOI: 10.1007/s00221-020-05969-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset, neurodegenerative disease associated with the loss of motor neurons in the spinal cord, brain stem and primary motor cortex. Deficit in the motor function is one of the clinical features of this disease. However, the association between adverse morphological alterations in the spinal motor neurons and motor deficit in sporadic ALS (SALS) is still debated. The present study has sought to investigate the effects of serial intrathecal injections of ALS-CSF into rat pups, at post-natal (P) days 3, 9 and 14, on the motor neuronal (MN) morphology at the cervical and lumbar levels of the spinal cord at P16 and P22. The present study used Cresyl violet and Golgi-Cox staining methods to determine the progressive changes in the morphology of spinal MNs in both cervical and lumbar extensions. The study found a loss of motor neurons in the spinal cord (36% for P16 in cervical and 41.7% in P16 lumbar and 49.57% for P22 cervical and 44.63% for P22 lumbar) and reduced choline acetyl transferase (ChAT) expression after repeated infusion of ALS-CSF. Significant increase in the soma area was also found in ALS-CSF rats (around 21% in P22 cervical and 26.4% in P22 lumbar). Soma hypertrophy was associated with increased dendritic arborization of MNs at both cervical and lumbar levels of the spinal cord. The data also showed a direct correlation between ALS-CSF induced changes in the MN number in the spinal cord and motor behavioral deficits. The loss of MNs, reduced ChAT, changes in soma and dendritic morphology with declined rotarod performance, thus, confirming the pathological phenotypes as seen in ALS patients.
Collapse
Affiliation(s)
- Sanjay Das
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India
| | - A Nalini
- Department of Neurology, NIMHANS, Hosur Road, Bengaluru, Karnataka, India
| | - T R Laxmi
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India.
| | - T R Raju
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India
| |
Collapse
|
9
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
10
|
Zhao Q, Gao SM, Wang MC. Molecular Mechanisms of Lysosome and Nucleus Communication. Trends Biochem Sci 2020; 45:978-991. [PMID: 32624271 DOI: 10.1016/j.tibs.2020.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Lysosomes transcend the role of degradation stations, acting as key nodes for interorganelle crosstalk and signal transduction. Lysosomes communicate with the nucleus through physical proximity and functional interaction. In response to external and internal stimuli, lysosomes actively adjust their distribution between peripheral and perinuclear regions and modulate lysosome-nucleus signaling pathways; in turn, the nucleus fine-tunes lysosomal biogenesis and functions through transcriptional controls. Changes in coordination between these two essential organelles are associated with metabolic disorders, neurodegenerative diseases, and aging. In this review, we address recent advances in lysosome-nucleus communication by multi-tiered regulatory mechanisms and discuss how these regulations couple metabolic inputs with organellar motility, cellular signaling, and transcriptional network.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Bräuer S, Günther R, Sterneckert J, Glaß H, Hermann A. Human Spinal Motor Neurons Are Particularly Vulnerable to Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2020; 21:ijms21103564. [PMID: 32443559 PMCID: PMC7278966 DOI: 10.3390/ijms21103564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation—a typical finding in lower organism models and human postmortem tissue—was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks—including pathological protein aggregation—were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.
Collapse
Affiliation(s)
- Stefan Bräuer
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Department of Neurology, Städtisches Klinikum Dresden, 01129 Dresden, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany;
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)-381-494-9541
| |
Collapse
|
12
|
Mishra PS, Boutej H, Soucy G, Bareil C, Kumar S, Picher-Martel V, Dupré N, Kriz J, Julien JP. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun 2020; 8:65. [PMID: 32381112 PMCID: PMC7206749 DOI: 10.1186/s40478-020-00943-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023] Open
Abstract
To test the hypothesis that the cerebrospinal fluid (CSF) could provide a spreading route for pathogenesis of amyotrophic lateral sclerosis (ALS), we have examined the effects of intraventricular infusion during 2 weeks of pooled CSF samples from sporadic ALS patients or control CSF samples into transgenic mice expressing human TDP43WT which do not develop pathological phenotypes. Infusion of ALS-CSF, but not of control CSF, triggered motor and cognitive dysfunction, as well as ALS-like pathological changes including TDP43 proteinopathy, neurofilament disorganization and neuroinflammation. In addition, the neuron-specific translational profiles from peptide analyses of immunoprecipitated ribosomes revealed dysregulation of multiple protein networks in response to ALS-CSF altering cytoskeletal organization, vesicle trafficking, mitochondrial function, and cell metabolism. With normal mice, similar ALS-CSF infusion induced mild motor dysfunction but without significant TDP43 pathology in spinal neurons. We conclude that the CSF from sporadic ALS contains factors that can transmit and disseminate disease including TDP43 proteinopathy into appropriate recipient animal model expressing human TDP43. These findings open new research avenues for the discovery of etiogenic factors for sporadic ALS and for the testing of drugs aiming to neutralize the ALS-CSF toxicity.
Collapse
|
13
|
Gois AM, Mendonça DMF, Freire MAM, Santos JR. IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW. Brain Res Bull 2020; 159:32-43. [PMID: 32247802 DOI: 10.1016/j.brainresbull.2020.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper motor neurons (UMN) and lower motor neurons (LMN). Disease affects people all over the world and is more prevalent in men. Patients with ALS develop extensive muscle wasting, paralysis and ultimately death, with a median survival of usually fewer than five years after disease onset. ALS may be sporadic (sALS, 90%) or familial (fALS, 10%). The large majority of fALS cases are associated with genetic alterations, which are mainly related to the genes SOD1, TDP-43, FUS, and C9ORF72. In vitro and in vivo models have helped elucidate ALS etiology and pathogenesis, as well as its molecular, cellular, and physiological mechanisms. Many studies in cell cultures and animal models, such as Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and non-human primates have been performed to clarify the relationship of these genes to ALS disease. However, there are inherent limitations to consider when using experimental models. In this review, we provide an updated overview of the most used in vitro and in vivo studies that have contributed to a better understanding of the different ALS pathogenic mechanisms.
Collapse
Affiliation(s)
- Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Deise M F Mendonça
- Laboratory of Neurobiology of Degenerative Diseases of the Nervous System, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Postgraduation Program in Health and Society, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jose R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
14
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|
15
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
16
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
17
|
Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2019; 10:emmm.201708166. [PMID: 29335339 PMCID: PMC5840540 DOI: 10.15252/emmm.201708166] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioenergetic failure and oxidative stress are common pathological hallmarks of amyotrophic lateral sclerosis (ALS), but whether these could be targeted effectively for novel therapeutic intervention needs to be determined. One of the reported contributors to ALS pathology is mitochondrial dysfunction associated with excessive mitochondrial fission and fragmentation, which is predominantly mediated by Drp1 hyperactivation. Here, we determined whether inhibition of excessive fission by inhibiting Drp1/Fis1 interaction affects disease progression. We observed mitochondrial excessive fragmentation and dysfunction in several familial forms of ALS patient‐derived fibroblasts as well as in cultured motor neurons expressing SOD1 mutant. In both cell models, inhibition of Drp1/Fis1 interaction by a selective peptide inhibitor, P110, led to a significant reduction in reactive oxygen species levels, and to improvement in mitochondrial structure and functions. Sustained treatment of mice expressing G93A SOD1 mutation with P110, beginning at the onset of disease symptoms at day 90, produced an improvement in motor performance and survival, suggesting that Drp1 hyperactivation may be an attractive target in the treatment of ALS patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna D Cunnigham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Šoltić D, Bowerman M, Stock J, Shorrock HK, Gillingwater TH, Fuller HR. Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). Brain Sci 2018; 8:brainsci8120212. [PMID: 30518112 PMCID: PMC6315439 DOI: 10.3390/brainsci8120212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
Unravelling the complex molecular pathways responsible for motor neuron degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) remains a persistent challenge. Interest is growing in the potential molecular similarities between these two diseases, with the hope of better understanding disease pathology for the guidance of therapeutic development. The aim of this study was to conduct a comparative analysis of published proteomic studies of ALS and SMA, seeking commonly dysregulated molecules to be prioritized as future therapeutic targets. Fifteen proteins were found to be differentially expressed in two or more proteomic studies of both ALS and SMA, and bioinformatics analysis identified over-representation of proteins known to associate in vesicles and molecular pathways, including metabolism of proteins and vesicle-mediated transport—both of which converge on endoplasmic reticulum (ER)-Golgi trafficking processes. Calreticulin, a calcium-binding chaperone found in the ER, was associated with both pathways and we independently confirm that its expression was decreased in spinal cords from SMA and increased in spinal cords from ALS mice. Together, these findings offer significant insights into potential common targets that may help to guide the development of new therapies for both diseases.
Collapse
Affiliation(s)
- Darija Šoltić
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Joanne Stock
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Hannah K. Shorrock
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Thomas H. Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Heidi R. Fuller
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- Correspondence: ; Tel.: +44-169-140-4693; Fax: +44-169-140-4065
| |
Collapse
|
19
|
Effects of craniopharyngioma cyst fluid on neurons and glial cells cultured from rat brain hypothalamus. J Chem Neuroanat 2018; 94:93-101. [PMID: 30339791 DOI: 10.1016/j.jchemneu.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Craniopharyngiomas (CPs) are rare, epithelial tumors of the central nervous system (CNS) that could lead to manifestation of multiple post-operative symptoms, ranging from hormonal imbalance to obesity, diabetes, visual, neurological and neurocognitive impairments. CP is more frequent in children, and has been reported in middle aged adults as well. In fact, arterial laceration and/or brain stroke which may occur following the removal of some CPs is mainly due to calcification of that CPs along with strong attachments to the blood vessels. The dense oily fluid content of CPs is reported to cause brain tissue damage, demyelination and axonal loss in the hypothalamus; however, its exact effect on different cell types of CNS is still unexplored. In this study, we have collected CP cyst fluid (CCF) from mostly young patients during surgical removal and exposed it 9-10 days in vitro to the primary cultures derived from rat brain hypothalamus for 48 h. A gradual decline in cell viability was noted with increasing concentration of CCF. Moreover, a distinct degenerative morphological transformation was observed in neurons and glial cells, including appearance of blebbing and overall reduction of the cell volume. Further, enhanced expression of Caspase-3 in neurons and glial cells exposed to CCF by immunofluorescence imaging, supported by Western blot experiment suggest CCF induced apoptosis of hypothalamic cells in culture. In this study, we have demonstrated the deleterious effects of the cyst fluid on various cell types within the tumors originating region of the brain and its surroundings for the first time. Taken together, this finding could be beneficial towards identifying the region specific toxic effects of the cyst fluid and its underlying mechanism.
Collapse
|
20
|
Cerebrospinal Fluid from Patients with Sporadic Amyotrophic Lateral Sclerosis Induces Degeneration of Motor Neurons Derived from Human Embryonic Stem Cells. Mol Neurobiol 2018; 56:1014-1034. [PMID: 29858777 DOI: 10.1007/s12035-018-1149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Disease modeling has become challenging in the context of amyotrophic lateral sclerosis (ALS), as obtaining viable spinal motor neurons from postmortem patient tissue is an unlikely possibility. Limitations in the animal models due to their phylogenetic distance from human species hamper the success of translating possible findings into therapeutic options. Accordingly, there is a need for developing humanized models as a lead towards identifying successful therapeutic possibilities. In this study, human embryonic stem cells-BJNHem20-were differentiated into motor neurons expressing HB9, Islet1, and choline acetyl transferase using retinoic acid and purmorphamine. These motor neurons discharged spontaneous action potentials with two different frequencies (< 5 and > 5 Hz), and majority of them were principal neurons firing with < 5 Hz. Exposure to cerebrospinal fluid from ALS patients for 48 h induced several degenerative changes in the motor neurons as follows: cytoplasmic changes such as beading of neurites and vacuolation; morphological alterations, viz., dilation and vacuolation of mitochondria, curled and closed Golgi architecture, dilated endoplasmic reticulum, and chromatin condensation in the nucleus; lowered activity of different mitochondrial complex enzymes; reduced expression of brain-derived neurotrophic factor; up-regulated neurofilament phosphorylation and hyperexcitability represented by increased number of spikes. All these changes along with the enhanced expression of pro-apoptotic proteins-Bax and caspase 9-culminated in the death of motor neurons.
Collapse
|
21
|
Gómez-Pinedo U, Galán L, Yañez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin J, Benito-Martin M, Leon-Espinosa G, Vela-Souto A, Lendinez C, Guillamón-Vivancos T, Matias-Guiu J, Arranz-Tagarro J, Barcia J, Garcia A. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
22
|
Shanmukha S, Narayanappa G, Nalini A, Alladi PA, Raju TR. Sporadic amyotrophic lateral sclerosis (SALS) - skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model. Dis Model Mech 2018; 11:11/4/dmm031997. [PMID: 29666144 PMCID: PMC5963857 DOI: 10.1242/dmm.031997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/05/2018] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle atrophy is the most prominent feature of amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease of motor neurons. However, the contribution of skeletal muscle to disease progression remains elusive. Our previous studies have shown that intrathecal injection of cerebrospinal fluid from sporadic ALS patients (ALS-CSF) induces several degenerative changes in motor neurons and glia of neonatal rats. Here, we describe various pathologic events in the rat extensor digitorum longus muscle following intrathecal injection of ALS-CSF. Adenosine triphosphatase staining and electron microscopic (EM) analysis revealed significant atrophy and grouping of type 2 fibres in ALS-CSF-injected rats. Profound neuromuscular junction (NMJ) damage, such as fragmentation accompanied by denervation, were revealed by α-bungarotoxin immunostaining. Altered expression of key NMJ proteins, rapsyn and calpain, was also observed by immunoblotting. In addition, EM analysis showed sarcolemmal folding, Z-line streaming, structural alterations of mitochondria and dilated sarcoplasmic reticulum. The expression of trophic factors was affected, with significant downregulation of vascular endothelial growth factor (VEGF), marginal reduction in insulin-like growth factor-1 (IGF-1), and upregulation of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF). However, motor neurons might be unable to harness the enhanced levels of BDNF and GDNF, owing to impaired NMJs. We propose that ALS-CSF triggers motor neuronal degeneration, resulting in pathological changes in the skeletal muscle. Muscle damage further aggravates the motor neuronal pathology, because of the interdependency between them. This sets in a vicious cycle, leading to rapid and progressive loss of motor neurons, which could explain the relentless course of ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shruthi Shanmukha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| |
Collapse
|
23
|
Mishra PS, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, Raju TR. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation 2017; 14:251. [PMID: 29246232 PMCID: PMC5732516 DOI: 10.1186/s12974-017-1028-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. Methods We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. Results We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Conclusion Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory pathways for its treatment. Electronic supplementary material The online version of this article (10.1186/s12974-017-1028-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja-Shree Mishra
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Present Address: Centre de Recherche CERVO, Quebec, QC, G1J 2G3, Canada
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - A Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - T N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - B W Kramer
- School of Mental Health and Neuroscience, Maastricht Universitair Medisch Centrum, Maastricht, Limburg, Netherlands
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| |
Collapse
|
24
|
Milošević M, Milićević K, Božić I, Lavrnja I, Stevanović I, Bijelić D, Dubaić M, Živković I, Stević Z, Giniatullin R, Andjus P. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line. Front Immunol 2017; 8:1619. [PMID: 29218049 PMCID: PMC5703705 DOI: 10.3389/fimmu.2017.01619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2–0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2DCFDA. The observed phenomena demonstrate the potential role of inflammatory humoral factors, IgGs, as potential triggers of the activation in microglia, known to occur in later stages of ALS. Therefore, revealing the ALS IgG signaling cascade in microglial cells could offer a valuable molecular biomarker and/or a potential therapeutic target.
Collapse
Affiliation(s)
- Milena Milošević
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Milićević
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Božić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanović
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Dunja Bijelić
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Dubaić
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stević
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rashid Giniatullin
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory in Neurobiology, Kazan Federal University, Kazan, Russia
| | - Pavle Andjus
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
26
|
RNA-seq analyses reveal that cervical spinal cords and anterior motor neurons from amyotrophic lateral sclerosis subjects show reduced expression of mitochondrial DNA-encoded respiratory genes, and rhTFAM may correct this respiratory deficiency. Brain Res 2017; 1667:74-83. [PMID: 28511992 DOI: 10.1016/j.brainres.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a generally fatal neurodegenerative disease of adults that produces weakness and atrophy due to dysfunction and death of upper and lower motor neurons. We used RNA-sequencing (RNA-seq) to analyze expression of all mitochondrial DNA (mtDNA)-encoded respiratory genes in ALS and CTL human cervical spinal cords (hCSC) and isolated motor neurons. We analyzed with RNA-seq mtDNA gene expression in human neural stem cells (hNSC) exposed to recombinant human mitochondrial transcription factor A (rhTFAM), visualized in 3-dimensions clustered gene networks activated by rhTFAM, quantitated their interactions with other genes and determined their gene ontology (GO) families. RNA-seq and quantitative PCR (qPCR) analyses showed reduced mitochondrial gene expression in ALS hCSC and ALS motor neurons isolated by laser capture microdissection (LCM), and revealed that hNSC and CTL human cervical spinal cords were similar. Rats treated with i.v. rhTFAM showed a dose-response increase in brain respiration and an increase in spinal cord mitochondrial gene expression. Treatment of hNSC with rhTFAM increased expression of mtDNA-encoded respiratory genes and produced one major and several minor clusters of gene interactions. Gene ontology (GO) analysis of rhTFAM-stimulated gene clusters revealed enrichment in GO families involved in RNA and mRNA metabolism, suggesting mitochondrial-nuclear signaling. In postmortem ALS hCSC and LCM-isolated motor neurons we found reduced expression of mtDNA respiratory genes. In hNSC's rhTFAM increased mtDNA gene expression and stimulated mRNA metabolism by unclear mechanisms. rhTFAM may be useful in improving bioenergetic function in ALS.
Collapse
|
27
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|
28
|
Mishra PS, Dhull DK, Nalini A, Vijayalakshmi K, Sathyaprabha TN, Alladi PA, Raju TR. Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J Neuroinflammation 2016; 13:212. [PMID: 27578023 PMCID: PMC5006495 DOI: 10.1186/s12974-016-0698-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background Non-cell autonomous toxicity is one of the potential mechanisms implicated in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). However, the exact role of glial cells in ALS pathology is yet to be fully understood. In a cellular model recapitulating the pathology of sporadic ALS, we have studied the inflammatory response of astroglia following exposure to the cerebrospinal fluid from ALS patients (ALS-CSF). Methods Various inflammatory markers including pro-inflammatory and anti-inflammatory cytokines, COX-2, PGE-2, trophic factors, glutamate, nitric oxide (NO), and reactive oxygen species (ROS) were analyzed in the rat astroglial cultures exposed to ALS-CSF and compared with the disease control or normal controls. We used immunofluorescence, ELISA, and immunoblotting techniques to investigate the protein expression and real-time PCR to study the messenger RNA (mRNA) expression. Glutamate, NO, and ROS were estimated using appropriate biochemical assays. Further, the effect of conditioned medium from the astroglial cultures exposed to ALS-CSF on NSC-34 motor neuronal cell line was detected using the MTT assay. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc test, or Student’s t test, as applicable. Results Here, we report that the ALS-CSF enhanced the production and release of inflammatory cytokines IL-6 and TNF-α, as well as COX-2 and PGE-2. Concomitantly, anti-inflammatory cytokine IL-10 and the beneficial trophic factors, namely VEGF and GDNF, were down-regulated. We also found impaired regulation of glutamate, NO, and ROS in the astroglial cultures treated with ALS-CSF. The conditioned medium from the ALS-CSF exposed astroglial cultures induced degeneration in NSC-34 cells. Conclusions Our study demonstrates that the astroglial cells contribute to the neuroinflammation-mediated neurodegeneration in the in vitro model of sporadic ALS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0698-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja-Shree Mishra
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Present address: Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec (CRIUSMQ), Québec, QC, G1J 2G3, Canada
| | - Dinesh K Dhull
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Present address: Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - A Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - T N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India. trraju.nimhans.@gmail.com
| |
Collapse
|
29
|
Gómez-Pinedo U, Galán L, Yañez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin JR, Benito-Martin MS, Leon-Espinosa G, Vela-Souto A, Lendinez C, Guillamon-Vivancos T, Matias-Guiu JA, Arranz-Tagarro JA, Barcia JA, Garcia AG. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia 2016; 33:211-223. [PMID: 27570180 DOI: 10.1016/j.nrl.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. MATERIAL AND METHODS We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. RESULTS Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. CONCLUSION Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Galán
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M Yañez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matias-Guiu
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Valencia
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Guerrero-Sola
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - F Lopez-Sosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J R Brin
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M S Benito-Martin
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - G Leon-Espinosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Vela-Souto
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Lendinez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - T Guillamon-Vivancos
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España; Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Arranz-Tagarro
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| | - J A Barcia
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A G Garcia
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
30
|
Santa-Cruz LD, Guerrero-Castillo S, Uribe-Carvajal S, Tapia R. Mitochondrial Dysfunction during the Early Stages of Excitotoxic Spinal Motor Neuron Degeneration in Vivo. ACS Chem Neurosci 2016; 7:886-96. [PMID: 27090876 DOI: 10.1021/acschemneuro.6b00032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutamate excitotoxicity and mitochondrial dysfunction are involved in motor neuron degeneration process during amyotrophic lateral sclerosis (ALS). We have previously shown that microdialysis perfusion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) in the lumbar region of the rat spinal cord produces permanent paralysis of the ipsilateral hindlimb and death of motor neurons by a Ca(2+)-dependent mechanism, in a process that starts 2-3 h after AMPA perfusion. Co-perfusion with different energy metabolic substrates, mainly pyruvate, prevented the paralysis and motor neuron degeneration induced by AMPA, suggesting that mitochondrial energetic deficiencies are involved in this excitotoxic motor neuron death. To test this, in the present work, we studied the functional and ultrastructural characteristics of mitochondria isolated from the ventral horns of lumbar spinal cords of rats, at the beginning of the AMPA-induced degeneration process, when motor neurons are still alive. Animals were divided in four groups: perfused with AMPA, AMPA + pyruvate, and pyruvate alone and Krebs-Ringer medium as controls. Mitochondria from the AMPA-treated group showed decreased oxygen consumption rates, respiratory controls, and transmembrane potentials. Additionally, activities of the respiratory chain complexes I and IV were significantly decreased. Electron microscopy showed that mitochondria from AMPA-treated rats presented swelling, disorganized cristae and disrupted membranes. Remarkably, in the animals co-perfused with AMPA and pyruvate all these abnormalities were prevented. We conclude that mitochondrial dysfunction plays a crucial role in spinal motor neuron degeneration induced by overactivation of AMPA receptors in vivo. These mechanisms could be involved in ALS motor neuron degeneration.
Collapse
Affiliation(s)
- Luz Diana Santa-Cruz
- División
de Neurociencias
and División de Investigación Básica, Instituto
de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México
| | - Sergio Guerrero-Castillo
- División
de Neurociencias
and División de Investigación Básica, Instituto
de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México
| | - Salvador Uribe-Carvajal
- División
de Neurociencias
and División de Investigación Básica, Instituto
de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México
| | - Ricardo Tapia
- División
de Neurociencias
and División de Investigación Básica, Instituto
de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México
| |
Collapse
|
31
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|