1
|
Suzuki H, Doura T, Matsuba Y, Matsuoka Y, Araya T, Asada H, Iwata S, Kiyonaka S. Photoresponsive Adenosine Derivatives for the Optical Control of Adenosine A 2A Receptors in Living Cells. ACS Chem Biol 2024; 19:2494-2501. [PMID: 39527802 DOI: 10.1021/acschembio.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The use of photoresponsive ligands to optically control proteins of interest, known as photopharmacology, is a powerful technique for elucidating cellular function in living cells and animals with a high spatiotemporal resolution. The adenosine A2A receptor (A2AR) is a G protein-coupled receptor that is expressed in various tissues; its dysregulation is implicated in severe diseases such as insomnia and Parkinson's disease. A detailed elucidation of the physiological function of A2AR is, therefore, highly desirable. In the present study, we developed two photoswitchable ligands, photoAd(blue) and photoAd(vio), that target A2AR. Using photoAd(vio), we successfully demonstrated the selective activation of A2AR in living cells by violet-light irradiation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Harufumi Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuya Matsuba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuma Matsuoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsuyoshi Araya
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Kobe, Hyogo 679-5148, Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Wei Y, Huang L, Sui J, Liu C, Qi M. Human blood metabolites and risk of post-traumatic stress disorder: A Mendelian randomization study. J Affect Disord 2024; 372:227-233. [PMID: 39643216 DOI: 10.1016/j.jad.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a debilitating chronic mental disorder that leads to reduced quality of life and increased economic burden. Observational studies have found an association between human blood metabolites and PTSD. Nonetheless, these studies have limitations and are subject to confounding factors as well as reverse causation. Herein, we employed a two-sample Mendelian randomization (MR) approach for the systematic analysis of the blood metabolites and PTSD causal link. METHODS Data for the human blood metabolome, cerebrospinal fluid (CSF) metabolome, and PTSD were obtained from publicly available summary-level genome-wide association studies (GWAS), respectively. The inverse variance weighted (IVW) approach represented the main analytic method for assessing exposure-outcome causal associations, employing multiple sensitivity analyses to verify the results' stability. In addition, replication and meta-analysis, steiger test and reverse MR analysis methods were performed to clarify further that these metabolites have independent causal effects on PTSD. Finally, the results of blood and CSF metabolomics analyses were synthesized to obtain biological markers with a causal link to PTSD. RESULTS Conclusively, we identified potential causal associations between six blood metabolites and PTSD. The sensitivity analyses elucidated the absence of pleiotropy or heterogeneity in the MR results. The Steiger test and reverse MR analysis did not reveal reverse causal associations, proving the robustness of our results. Combined blood and CSF metabolome analyses showed the same trend for theophylline. CONCLUSION This study reveals a strong causal link between metabolites and PTSD, which can be used as a biomarker for clinical PTSD disease screening and prevention. This study also provides a new perspective on the mechanism of metabolite-mediated PTSD development by combining genomics and metabolomics.
Collapse
Affiliation(s)
- Yi Wei
- Nanjing University of Chinese Medicine, Nanjing 21023, China
| | - Liyu Huang
- Department of Medical Imaging, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266014, China
| | - Jie Sui
- Department of Health Care, People's Liberation Army Navy No 971 Hospital, Qingdao 266071, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266014, China.
| | - Ming Qi
- Department of Primary Care, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266014, China.
| |
Collapse
|
3
|
Mandal AK, Merriman TR, Choi HK, Mount DB. Caffeine Inhibits Both Basal and Insulin-Activated Urate Transport. Arthritis Rheumatol 2024; 76:1658-1669. [PMID: 38932509 PMCID: PMC11562663 DOI: 10.1002/art.42940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Caffeine, an adenosine receptor antagonist, is a potent central nervous system stimulant that also impairs insulin signaling. Recent studies have suggested that coffee consumption lowers serum urate (SU) and protects against gout by unknown mechanisms. We hypothesized that caffeine lowers SU by affecting activity of urate transporters. METHODS We examined the effect of caffeine and adenosine on basal and insulin stimulation of net 14C-urate uptake in the human renal proximal tubule cell line PTC-05 and on individual urate transporters expressed in Xenopus laevis oocytes. RESULTS We found that caffeine and adenosine efficiently inhibited both basal and insulin stimulation of net 14C-urate uptake mediated by endogenous urate transporters in PTC-05 cells. In oocytes expressing individual urate transporters, caffeine (>0.2 mM) more efficiently inhibited the basal urate transport activity of GLUT9 isoforms, OAT4, OAT1, OAT3, NPT1, ABCG2, and ABCC4 than did adenosine without significantly affecting URAT1 and OAT10. However, unlike adenosine, caffeine at lower concentrations (<0.2 mM) very effectively inhibited insulin activation of urate transport activity of GLUT9, OAT10, OAT1, OAT3, NPT1, ABCG2, and ABCC4 by blocking activation of Akt and extracellular signal-regulated kinase. CONCLUSION We postulate that inhibition of urate transport activity of the re-absorptive transporters GLUT9, OAT10, and OAT4 by caffeine is a key mechanism in its urate-lowering effects. Additionally, the ability of caffeine to block insulin-activated urate transport by GLUT9a and OAT10 suggests greater relative inhibition of these transporters in hyperinsulinemia.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tony R. Merriman
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham AL
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - David B. Mount
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Renal Divisions, VA Boston Healthcare System, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-wide association studies of coffee intake in UK/US participants of European ancestry uncover cohort-specific genetic associations. Neuropsychopharmacology 2024; 49:1609-1618. [PMID: 38858598 PMCID: PMC11319477 DOI: 10.1038/s41386-024-01870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N = 130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across hundreds of biomarkers, health, and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from the UK Biobank (UKB; N = 334,659). We observed consistent positive genetic correlations with substance use and obesity in both cohorts. Other genetic correlations were discrepant, including positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in the UKB, and genetic correlations with cognition that were negative in 23andMe but positive in the UKB. Phenome-wide association study using polygenic scores of coffee intake derived from 23andMe or UKB summary statistics also revealed consistent associations with increased odds of obesity- and red blood cell-related traits, but all other associations were cohort-specific. Our study shows that the genetics of coffee intake associate with substance use and obesity across cohorts, but also that GWAS performed in different populations could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Di Pietrantonio D, Pace Palitti V, Cichelli A, Tacconelli S. Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease. Foods 2024; 13:2280. [PMID: 39063364 PMCID: PMC11276147 DOI: 10.3390/foods13142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Di Pietrantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Valeria Pace Palitti
- Internal Medicine and Hepatology Unit, Azienda Sanitaria Locale, Via R. Paolini 47, 65125 Pescara, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
6
|
Raise-Abdullahi P, Raeis-Abdollahi E, Meamar M, Rashidy-Pour A. Effects of coffee on cognitive function. PROGRESS IN BRAIN RESEARCH 2024; 288:133-166. [PMID: 39168555 DOI: 10.1016/bs.pbr.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This chapter thoroughly examines coffee's impact on cognitive function. It synthesizes research findings involving animals and humans, investigating coffee's influence on various memory and cognitive aspects, including short-term/working memory, long-term memory, attention, vigilance, executive functions, and processing speed. The chapter also discusses moderating factors, such as dose-response relationships, individual differences, age, and habitual consumption patterns, that influence the cognitive effects of coffee. Additionally, it addresses the potential risks and adverse effects associated with coffee intake, memory, and cognitive function, including stress and anxiety, sleep disturbances, cardiovascular effects, and addiction. Studies suggest moderate coffee intake improves attention, processing speed, decision-making, and certain executive functions. However, the effects vary depending on factors like dosage, individual traits, age, and sleep habits. Despite potential benefits, coffee consumption may lead to adverse effects such as anxiety, sleep issues, cardiovascular concerns, and dependency. Future research should address methodological concerns, incorporate neuroimaging methods, explore interactions with other substances, and investigate long-term effects and therapeutic uses. Understanding coffee's neuroscience can shed light on its role in daily life and health.
Collapse
Affiliation(s)
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Abu-Hashem AA, Hakami O, El-Shazly M, El-Nashar HAS, Yousif MNM. Caffeine and Purine Derivatives: A Comprehensive Review on the Chemistry, Biosynthetic Pathways, Synthesis-Related Reactions, Biomedical Prospectives and Clinical Applications. Chem Biodivers 2024; 21:e202400050. [PMID: 38719741 DOI: 10.1002/cbdv.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.
Collapse
Affiliation(s)
- Ameen A Abu-Hashem
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Othman Hakami
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud N M Yousif
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
8
|
Ruan P, Yang M, Lv X, Shen K, Chen Y, Li H, Zhao D, Huang J, Xiao Y, Peng W, Wu H, Lu Q. Metabolic shifts during coffee consumption refresh the immune response: insight from comprehensive multiomics analysis. MedComm (Beijing) 2024; 5:e617. [PMID: 38887468 PMCID: PMC11181901 DOI: 10.1002/mco2.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Coffee, a widely consumed beverage, has shown benefits for human health but lacks sufficient basic and clinical evidence to fully understand its impacts and mechanisms. Here, we conducted a cross-sectional observational study of coffee consumption and a 1-month clinical trial in humans. We found that coffee consumption significantly reshaped the immune system and metabolism, including reduced levels of inflammatory factors and a reduced frequency of senescent T cells. The frequency of senescent T cells and the levels of the senescence-associated secretory phenotype were lower in both long-term coffee consumers and new coffee consumers than in coffee nondrinking subjects, suggesting that coffee has anti-immunosenescence effects. Moreover, coffee consumption downregulated the activities of the The Janus kinase/signal transduction and activator of transcription (JAK/STAT) and mitogen-activated protein kinases (MAPK) signaling pathways and reduced systemic proinflammatory cytokine levels. Mechanistically, coffee-associated metabolites, such as 1-methylxanthine, 3-methylxanthine, paraxanthine, and ceramide, reduced the frequency of senescent CD4+CD57+ T cells in vitro. Finally, in vivo, coffee intake alleviated inflammation and immunosenescence in imiquimod-induced psoriasis-like mice. Our results provide novel evidence of the anti-inflammatory and anti-immunosenescence effects of coffee, suggesting that coffee consumption could be considered a healthy habit.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
| | - Ming Yang
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
| | - Xinyi Lv
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
| | - Kai Shen
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
| | - Yiran Chen
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Di Zhao
- Hunan Academy of Chinese MedicineHunan University of Chinese MedicineChangshaChina
| | - Jianhua Huang
- Hunan Academy of Chinese MedicineHunan University of Chinese MedicineChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haijing Wu
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
| | - Qianjin Lu
- Department of DermatologyThe Second Xiangya Hospital, Central South UniversityHunan Key Laboratory of Medical EpigenomicsChangshaChina
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
9
|
Baltos JA, Casillas-Espinosa PM, Rollo B, Gregory KJ, White PJ, Christopoulos A, Kwan P, O'Brien TJ, May LT. The role of the adenosine system in epilepsy and its comorbidities. Br J Pharmacol 2024; 181:2143-2157. [PMID: 37076128 DOI: 10.1111/bph.16094] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Lemes Dos Santos Sanna P, Bernardes Carvalho L, Cristina Dos Santos Afonso C, de Carvalho K, Aires R, Souza J, Rodrigues Ferreira M, Birbrair A, Martha Bernardi M, Latini A, Foganholi da Silva RA. Adora2A downregulation promotes caffeine neuroprotective effect against LPS-induced neuroinflammation in the hippocampus. Brain Res 2024; 1833:148866. [PMID: 38494098 DOI: 10.1016/j.brainres.2024.148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1β. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.
Collapse
Affiliation(s)
| | | | | | - Kassia de Carvalho
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Rogério Aires
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Jennyffer Souza
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unity, Botucatu Medical School, São Paulo State University, Brazil.
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maria Martha Bernardi
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A Foganholi da Silva
- Dentistry, University of Taubaté, Taubaté, São Paulo, São Paulo, Brazil; Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Kim YK, Lim JM, Kim YJ, Kim W. Alterations in pH of Coffee Bean Extract and Properties of Chlorogenic Acid Based on the Roasting Degree. Foods 2024; 13:1757. [PMID: 38890985 PMCID: PMC11171841 DOI: 10.3390/foods13111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Factors influencing the sour taste of coffee and the properties of chlorogenic acid are not yet fully understood. This study aimed to evaluate the impact of roasting degree on pH-associated changes in coffee bean extract and the thermal stability of chlorogenic acid. Coffee bean extract pH decreased up to a chromaticity value of 75 but increased with higher chromaticity values. Ultraviolet-visible spectrophotometry and structural analysis attributed this effect to chlorogenic and caffeic acids. Moreover, liquid chromatography-mass spectrometry analysis identified four chlorogenic acid types in green coffee bean extract. Chlorogenic acid isomers were eluted broadly on HPLC, and a chlorogenic acid fraction graph with two peaks, fractions 5 and 9, was obtained. Among the various fractions, the isomer in fraction 5 had significantly lower thermal stability, indicating that thermal stability differs between chlorogenic acid isomers.
Collapse
Affiliation(s)
- Yi Kyeoung Kim
- Department of Plant Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Jae-Min Lim
- Department of Chemistry, College of Natural Sciences, Changwon National University, Changwon 51140, Republic of Korea
| | - Young Jae Kim
- Department of Bio Health Science, College of Natural Sciences, Changwon National University, Changwon 51140, Republic of Korea
| | - Wook Kim
- Department of Plant Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
12
|
García-Milla P, Peñalver R, Nieto G. Formulation and Physical-Chemical Analysis of Functional Muffin Made with Inulin, Moringa, and Cacao Adapted for Elderly People with Parkinson's Disease. Antioxidants (Basel) 2024; 13:683. [PMID: 38929120 PMCID: PMC11200759 DOI: 10.3390/antiox13060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects people's health. Constipation is probably one of the most prominent gastrointestinal symptoms (non-motor symptoms) of PD with devastating consequences. The aim of this research work is to formulate a functional food product, supplemented with inulin, cocoa, and Moringa, which can be an adjuvant in the treatment of constipation. The product was prepared according to a muffin or "Chilean cake" recipe; this basic muffin was prepared with additions of inulin (MI), inulin + cacao (MIC), and inulin + Moringa (MIM). A physical-chemical analysis of the macronutrients and an antioxidant capacity assessment of the samples were conducted, as well as a sensory evaluation performed by a group of people suffering from Parkinson's disease. A statistically significant difference was observed in the soluble (p = 0.0023) and insoluble (p = 0.0015) fiber values between the control samples and all samples. Furthermore, inulin + cacao improved the antioxidant capacity and folate intake compared to the control. Inulin alone has been shown to have antioxidant capacity according to ABTS (262.5728 ± 34.74 μmol TE/g) and DPPH (9.092518 ± 10.43 μmol TE/g) assays. A sensory evaluation showed a preference for the product with inulin and for the product with inulin + cacao, with a 78% purchase intention being reported by the subjects who evaluated the products. The incorporation of inulin and cacao improved the nutritional value of the muffins; the dietary fiber, antioxidant capacity and folate content are some of the features that stood out. A bakery product enriched with inulin, cocoa and Moringa could serve as a nutritional strategy to enhance nutritional value, thus helping in the treatment of constipation.
Collapse
Affiliation(s)
- Paula García-Milla
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
- Nutrition and Dietetics Program, Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia 7500975, Chile
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| |
Collapse
|
13
|
Tanaka M, Battaglia S, Giménez-Llort L, Chen C, Hepsomali P, Avenanti A, Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024; 13:790. [PMID: 38786014 PMCID: PMC11120114 DOI: 10.3390/cells13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan;
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ET, UK;
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Köse Y, Şirin C, Turgut AÇ, Tomruk C, Uyanıkgil Y, Turgut M. The neuroprotective effect of exogen melatonin upon fetal hippocampus damage caused by high-dose caffeine administration in pregnant rats. Int J Dev Neurosci 2024; 84:251-261. [PMID: 38469915 DOI: 10.1002/jdn.10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVE The aim of this study is to evaluate whether exogenous melatonin (MEL) mitigates the deleterious effects of high-dose caffeine (CAF) administration in pregnant rats upon the fetal hippocampus. MATERIALS AND METHODS A total of 32 adult Wistar albino female rats were divided into four groups after conception (n = 8). At 9-20 days of pregnancy, intraperitoneal (i.p.) MEL was administered at a dose of 10 mg/kg/day in the MEL group, while i.p. CAF was administered at a dose of 60 mg/kg/day in the CAF group. In the CAF plus MEL group, i.p. CAF and MEL were administered at a dose of 60 and 10 mg/kg/day, respectively, at the same period. Following extraction of the brains of the fetuses sacrificed on the 21st day of pregnancy, their hippocampal regions were analyzed by hematoxylin and eosin and Cresyl Echt Violet, anti-GFAP, and antisynaptophysin staining methods. RESULTS While there was a decrease in fetal and brain weights in the CAF group, it was found that the CAF plus MEL group had a closer weight average to that of the control group. Histologically, it was observed that the pyramidal cell layer consisted of 8-10 layers of cells due to the delay in migration in hippocampal neurons in the CAF group, while the MEL group showed similar characteristics with the control group. It was found that these findings decreased in the CAF plus MEL group. CONCLUSION It is concluded that high-dose CAF administration causes a delay in neurogenesis of the fetal hippocampus, and exogenous MEL is able to mitigate its deleterious effects.
Collapse
Affiliation(s)
- Yağmur Köse
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
| | - Cansın Şirin
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Ali Çağlar Turgut
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
- Department of Radiology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Canberk Tomruk
- Histology and Embryology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
- Department of Stem Cell, Health Science Institute, Ege University, İzmir, Turkey
- Application and Research Center of Cord Blood Cell-Tissue, Ege University, İzmir, Turkey
| | - Mehmet Turgut
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
- Department of Neurosurgery, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
15
|
Li XY, Xue T, Lai H, Dai J, Peng F, Xu F, Zhu J, Li X, Hu J, Li W, He R, Chen L, Chen Y, Ding C, Zhao G, Chen X, Ye Q, Xu Z, Wang C. Pyruvate is modified by tea/coffee metabolites and reversely correlated with multiple system atrophy and Parkinson's disease. Heliyon 2024; 10:e26588. [PMID: 38434286 PMCID: PMC10906427 DOI: 10.1016/j.heliyon.2024.e26588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder. Although diverse biomarkers have been established for Parkinson's disease (PD), no widely accepted markers have been identified in MSA. Pyruvate and lactate are the end-product of glycolysis and crucial for brain metabolism. However, their correlation with MSA remains unclear. Moreover, it is elusive how lifestyles modify these metabolites. Methods To investigate the correlation and diagnostic value of plasma pyruvate and lactate levels in MSA and PD. Moreover, we explored how lifestyle-related metabolites interact with these metabolites in determining the disease risk. We assayed the 3 metabolites in pyruvate/lactate and 6 in the tea/coffee metabolic pathways by targeted mass spectrometry and evaluate their interactions and performance in diagnosis and differentiation between MSA and PD. Results We found that 7 metabolites were significantly different between MSA, PD and healthy controls (HCs). Particularly, pyruvate was increased in PD while significantly decreased in MSA patients. Moreover, the tea/coffee metabolites were negatively associated with the pyruvate level in HCs, but not in MSA and PD patients. Using machine-learning models, we showed that the combination of pyruvate and tea/coffee metabolites diagnosed MSA (AUC = 0.878) and PD (AUC = 0.833) with good performance. Additionally, pyruvate had good performance in distinguishing MSA from PD (AUC = 0.860), and the differentiation increased (AUC = 0.922) when combined with theanine and 1,3-dimethyluric acid. Conclusions This study demonstrates that pyruvate correlates reversely with MSA and PD, and may play distinct roles in their pathogenesis, which can be modified by lifestyle-related tea/coffee metabolites.
Collapse
Affiliation(s)
- Xu-Ying Li
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Xue
- Zhongyuanborui Key Laboratory of Genetics and Metabolism, Guangdong-Macao In-depth Cooperation Zone in Hengqin, China
- Zhongguancun Biological and Medical Big Data Center, Beijing, China
| | - Hong Lai
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jing Dai
- National Center for Occupational Safety and Health, NHC (National Center for Occupational Medicine of Coal Industry), Beijing, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC (National Center for Occupational Medicine of Coal Industry), Beijing, China
| | - Fanxi Xu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Junge Zhu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xian Li
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Junya Hu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Wei Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lina Chen
- Department of Neurology, Fujian Medical University Union Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC (National Center for Occupational Medicine of Coal Industry), Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Xianyang Chen
- Zhongguancun Biological and Medical Big Data Center, Beijing, China
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zhiheng Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaodong Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| |
Collapse
|
16
|
Qin X, Li C, Wei W, He D, Zhao Y, Cai Q, Zhang N, Chu X, Shi S, Zhang F. Assessing the association of coffee consumption on the relationship of chronic pain with depression and anxiety. Nutr Neurosci 2024; 27:196-206. [PMID: 36735653 DOI: 10.1080/1028415x.2023.2175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND A bidirectional relationship between chronic pain (CP) and mental disorders has been reported, and coffee was believed to be associated with both. However, the association of coffee in this bidirectional relationship remains unclear. We aim to analyze the association of coffee consumption on the relationship of CP with depression and anxiety. METHODS A total of 376,813 participants from UK Biobank were included. We collected data on anxiety, depression and CP from objects of our study population. The association of coffee consumption on the relationship of CP with depression and anxiety was assessed through logistic/linear regression models. Moreover, seemingly unrelated estimation test (SUEST) was used to compare whether the coefficients differed in two different groups. RESULTS We observed significant associations of coffee consumption in the interaction of CP with depression and anxiety, such as the association of multisite chronic pain (MCP) on self-reported depression (βcoffee = 0.421, βnon-coffee = 0.488, PSUEST = 0.001), and the association of MCP on generalized anxiety disorder-7 (GAD-7) scores (βcoffee = 0.561, βnon-coffee = 0.678, PSUEST = 0.004) were significantly different between coffee drinking and non-coffee drinking groups. Furthermore, in analysis stratified by gender, we found headache (βmale = 0.392, βfemale = 0.214, PSUEST = 0.022) and hip pain (βmale = 0.480, βfemale = 0.191, PSUEST = 0.021) had significant associations with self-reported depression between males and females groups in coffee drinkers. CONCLUSIONS Our results suggested that coffee consumption has a significant association on the relationship of CP with depression and anxiety.
Collapse
Affiliation(s)
- Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
17
|
Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Xie S, Shang F, Wen S, Wu T, Jin H, Huang F, Liu G, Hu J, Su Q, Huang M, Zhu Q, Zhou B, Zhu L, Peng L, Liu Z, Huang J, Tian N, Liu S. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4464-4475. [PMID: 38376143 DOI: 10.1021/acs.jafc.3c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theobromine is an important quality component in tea plants (Camellia sinensis), which is produced from 7-methylxanthine by theobromine synthase (CsTbS), the key rate-limiting enzyme in theobromine biosynthetic pathway. Our transcriptomics and widely targeted metabolomics analyses suggested that CsMYB114 acted as a potential hub gene involved in the regulation of theobromine biosynthesis. The inhibition of CsMYB114 expression using antisense oligonucleotides (ASO) led to a 70.21% reduction of theobromine level in leaves of the tea plant, which verified the involvement of CsMYB114 in theobromine biosynthesis. Furthermore, we found that CsMYB114 was located in the nucleus of the cells and showed the characteristic of a transcription factor. The dual luciferase analysis, a yeast one-hybrid assay, and an electrophoretic mobility shift assay (EMSA) showed that CsMYB114 activated the transcription of CsTbS, through binding to CsTbS promoter. In addition, a microRNA, miR828a, was identified that directly cleaved the mRNA of CsMYB114. Therefore, we conclude that CsMYB114, as a transcription factor of CsTbS, promotes the production of theobromine, which is inhibited by miR828a through cleaving the mRNA of CsMYB114.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, California 92507, United States
| | - Lan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Fanghuizi Shang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Ting Wu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Huiying Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery, Changsha 410125, China
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jinyu Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qin Su
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Mengdi Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qian Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Biao Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lihua Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lvwen Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| |
Collapse
|
18
|
Rosa F, Marigliano B, Mannucci S, Candelli M, Savioli G, Merra G, Gabrielli M, Gasbarrini A, Franceschi F, Piccioni A. Coffee and Microbiota: A Narrative Review. Curr Issues Mol Biol 2024; 46:896-908. [PMID: 38275671 PMCID: PMC10814731 DOI: 10.3390/cimb46010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world, which has important repercussions on the health of the individual, mainly because of certain compounds it contains. Coffee consumption exerts significant influences on the entire body, including the gastrointestinal tract, where a central role is played by the gut microbiota. Dysbiosis in the gut microbiota is implicated in the occurrence of numerous diseases, and knowledge of the microbiota has proven to be of fundamental importance for the development of new therapeutic strategies. In this narrative review, we thoroughly investigated the link between coffee consumption and its effects on the gut microbiota and the ensuing consequences on human health. We have selected the most significant articles published on this very interesting link, with the aim of elucidating the latest evidence about the relationship between coffee consumption, its repercussions on the composition of the gut microbiota, and human health. Based on the various studies carried out in both humans and animal models, it has emerged that coffee consumption is associated with changes in the gut microbiota, although further research is needed to understand more about this link and the repercussions for the whole organism.
Collapse
Affiliation(s)
- Federico Rosa
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Benedetta Marigliano
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Sergio Mannucci
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Gabriele Savioli
- Emergency Department, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Maurizio Gabrielli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Francesco Franceschi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| |
Collapse
|
19
|
Huang Y, Chen Q, Wang Z, Wang Y, Lian A, Zhou Q, Zhao G, Xia K, Tang B, Li B, Li J. Risk factors associated with age at onset of Parkinson's disease in the UK Biobank. NPJ Parkinsons Dis 2024; 10:3. [PMID: 38167894 PMCID: PMC10762149 DOI: 10.1038/s41531-023-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.
Collapse
Affiliation(s)
- Yuanfeng Huang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Qian Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yijing Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Beisha Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Bin Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
20
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.09.23295284. [PMID: 37745582 PMCID: PMC10516045 DOI: 10.1101/2023.09.09.23295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - 23andMe Research Team
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah L Elson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan WY, Davidson EA, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder EA, Coppi A, Schulz W, Iwasaki A, Pierce RW, Cruz CSD, Desir GV, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis NS, Ko AI, Thompson DC, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Hum Genomics 2023; 17:80. [PMID: 37641126 PMCID: PMC10463861 DOI: 10.1186/s40246-023-00521-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Alvaro Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Wan Ying Tan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Internal Medicine Residency Program, Department of Internal Medicine, Norwalk Hospital, Norwalk, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Wade Schulz
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, MD, Chevy Chase, USA
| | - Richard W Pierce
- Department of Pediatrics , Yale School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gary V Desir
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, USA
| | - Kirill Veselkov
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK
| | - Rupak Datta
- Veterans Affairs Connecticut Healthcare System, CT, West Haven, USA
- Department of Internal Medicine, Yale School of Medicine, CT, New Haven, USA
| | - Melissa Campbell
- Department of Pediatrics, Division of Pediatric Infectious Diseases, School of Medicine, Duke University, NC, Durham, USA
| | - Nikolaos S Thomaidis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Dong R, Denier-Fields DN, Van Hulle CA, Kollmorgen G, Suridjan I, Wild N, Lu Q, Anderson RM, Zetterberg H, Blennow K, Carlsson CM, Johnson SC, Engelman CD. Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer's disease pathology. Eur J Epidemiol 2023; 38:559-571. [PMID: 36964431 PMCID: PMC11070200 DOI: 10.1007/s10654-023-00988-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.
Collapse
Affiliation(s)
- Ruocheng Dong
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Diandra N Denier-Fields
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Nutrition Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carol A Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | | | | | - Norbert Wild
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1H 0AL, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
| | - Cynthia M Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Sterling C Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| |
Collapse
|
23
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
24
|
Murai T, Matsuda S. The Chemopreventive Effects of Chlorogenic Acids, Phenolic Compounds in Coffee, against Inflammation, Cancer, and Neurological Diseases. Molecules 2023; 28:molecules28052381. [PMID: 36903626 PMCID: PMC10005755 DOI: 10.3390/molecules28052381] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Coffee is one of the most widely consumed beverages, which has several effects on the human body. In particular, current evidence suggests that coffee consumption is associated with a reduced risk of inflammation, various types of cancers, and certain neurodegenerative diseases. Among the various constituents of coffee, phenolic phytochemicals, more specifically chlorogenic acids, are the most abundant, and there have been many attempts to utilize coffee chlorogenic acid for cancer prevention and therapy. Due to its beneficial biological effect on the human body, coffee is regarded as a functional food. In this review article, we summarize the recent advances and knowledge on the association of phytochemicals contained in coffee as nutraceuticals, with a particular focus on phenolic compounds, their intake, and nutritional biomarkers, with the reduction of disease risk, including inflammation, cancer, and neurological diseases.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
- Correspondence:
| |
Collapse
|
25
|
Purine Intake and All-Cause Mortality in Ovarian Cancer: Results from a Prospective Cohort Study. Nutrients 2023; 15:nu15040931. [PMID: 36839289 PMCID: PMC9965699 DOI: 10.3390/nu15040931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Current biological evidence suggests that purine involvement in purine metabolism may contribute to the development and progression of ovarian cancer (OC), but the epidemiological association is currently unknown. METHODS A total of 703 newly diagnosed patients with OC aged 18-79 years were included in this prospective cohort study. Utilizing a verified food-frequency questionnaire, the participants' dietary consumption was gathered. Using medical records and ongoing follow-up, the deaths up until 31 March 2021 were determined. To assess the hazard ratios (HRs) and 95% confidence intervals (CIs) of purine intake with OC mortality, Cox proportional-hazard models were utilized. RESULTS During the median follow-up of 31 months (interquartile: 20-47 months), 130 deaths occurred. We observed an improved survival for the highest tercile of total purine intake compared with the lowest tercile (HR = 0.39, 95% CI = 0.19-0.80; p trend < 0.05), and this protective association was mainly attributed to xanthine intake (HR = 0.52, 95% CI = 0.29-0.94, p trend < 0.05). Additionally, we observed a curving relationship in which OC mortality decreased with total purine intake, and the magnitude of the decrease was negatively correlated with intake (p non-linear < 0.05). Significant inverse associations were also observed in subgroup analyses and sensitivity analyses according to demographic and clinical characteristics. Moreover, we observed that xanthine intake and hypoxanthine intake had a multiplicative interaction with ER and PR expression (p < 0.05), respectively. CONCLUSION A high total purine and xanthine intake was linked to a lower risk of OC mortality. Further clarification of these findings is warranted.
Collapse
|
26
|
Liu D, Xie F, Zeng N, Han R, Cao D, Yu Z, Wang Y, Wan Z. Urine caffeine metabolites are positively associated with cognitive performance in older adults: An analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Nutr Res 2023; 109:12-25. [PMID: 36543015 DOI: 10.1016/j.nutres.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore urine caffeine metabolites in relation to cognitive performance among 2011-2014 National Health and Nutrition Examination Survey participants aged ≥60 years. We hypothesized that urine caffeine metabolites were positively associated with cognition in older adults. Caffeine and 14 of its metabolites were quantified in urine by use of high-performance liquid chromatography-electrospray ionization-tandem quadruple mass spectrometry with stable isotope labeled internal standards. Cognitive assessment was based on scores from the word learning and recall modules. Participants were categorized based on the quartiles of caffeine and its metabolites level. The association between caffeine metabolites and each cognitive dimension was analyzed using multiple logistic regression analysis in adjusted models. Stratification analyses by gender were also performed. For CERAD test, there was a significant association between 1-methyluric acid (OR=0.62, 95% CI: 0.42 to 0.92), 7-methylxanthine(OR=0.49, 95% CI: 0.27 to 0.89), theophylline (OR=0.52, 95% CI: 0.29 to 0.92), as well as paraxanthine (OR=0.49, 95% CI: 0.27 to 0.88) and cognitive function. For animal fluency test, there was a positive association between theophylline (TP) (OR=0.44, 95% CI: 0.22 to 0.89) and cognitive function. The trend that the risk of low cognitive function decreased with increasing concentration of 1-methylxanthine (P trend=0.0229) was also observed. Furthermore, the same trend existed for 3-methylxanthine (p trend = 0.0375) in men. In conclusion, there was a significant positive association between urine caffeine metabolites and cognitive performance in older adults, particularly for theophylline, paraxanthine and caffeine; and the association might be dependent on gender.
Collapse
Affiliation(s)
- Di Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Fengfei Xie
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, P. R. China
| | - Nimei Zeng
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, P. R. China
| | - Renfang Han
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, P. R. China
| | - Deli Cao
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, P. R. China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yun Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu 215008, P. R. China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China; College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
27
|
Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022; 13:330-343. [PMID: 36247524 PMCID: PMC9554826 DOI: 10.1016/j.ibneur.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) and Parkinson's disease (PD) share monoamine and alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different manifestations of one only disease we call "Neurodegenerative Elderly Syndrome (NES)". NES goes through three phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We present recent literature supporting NES and discuss how this hypothesis could radically change the comprehension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, Rome 00199, Italy
| | - Flora Giocondo
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
28
|
Eldesouki S, Qadri R, Abu Helwa R, Barqawi H, Bustanji Y, Abu-Gharbieh E, El-Huneidi W. Recent Updates on the Functional Impact of Kahweol and Cafestol on Cancer. Molecules 2022; 27:molecules27217332. [PMID: 36364160 PMCID: PMC9654648 DOI: 10.3390/molecules27217332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Kahweol and cafestol are two diterpenes extracted from Coffea arabica beans that have distinct biological activities. Recent research describes their potential activities, which include anti-inflammatory, anti-diabetic, and anti-cancer properties, among others. The two diterpenes have been shown to have anticancer effects in various in vitro and in vivo cancer models. This review aims to shed light on the recent developments regarding the potential effects of kahweol and cafestol on various cancers. A systematic literature search through Google Scholar and PubMed was performed between February and May 2022 to collect updates about the potential effects of cafestol and kahweol on different cancers in in vitro and in vivo models. The search terms “Kahweol and Cancer” and “Cafestol and Cancer” were used in this literature review as keywords; the findings demonstrated that kahweol and cafestol exhibit diverse effects on different cancers in in vitro and in vivo models, showing pro-apoptotic, cytotoxic, anti-proliferative, and anti-migratory properties. In conclusion, the diterpenes kahweol and cafestol display significant anticancer effects, while remarkably unaffecting normal cells. Our results show that both kahweol and cafestol exert their actions on various cancers via inducing apoptosis and inhibiting cell growth. Additionally, kahweol acts by inhibiting cell migration.
Collapse
Affiliation(s)
- Salma Eldesouki
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rashid Abu Helwa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hiba Barqawi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| |
Collapse
|
29
|
Jeon M, Xie Z, Evangelista JE, Wojciechowicz ML, Clarke DJB, Ma’ayan A. Transforming L1000 profiles to RNA-seq-like profiles with deep learning. BMC Bioinformatics 2022; 23:374. [PMID: 36100892 PMCID: PMC9472394 DOI: 10.1186/s12859-022-04895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThe L1000 technology, a cost-effective high-throughput transcriptomics technology, has been applied to profile a collection of human cell lines for their gene expression response to > 30,000 chemical and genetic perturbations. In total, there are currently over 3 million available L1000 profiles. Such a dataset is invaluable for the discovery of drug and target candidates and for inferring mechanisms of action for small molecules. The L1000 assay only measures the mRNA expression of 978 landmark genes while 11,350 additional genes are computationally reliably inferred. The lack of full genome coverage limits knowledge discovery for half of the human protein coding genes, and the potential for integration with other transcriptomics profiling data. Here we present a Deep Learning two-step model that transforms L1000 profiles to RNA-seq-like profiles. The input to the model are the measured 978 landmark genes while the output is a vector of 23,614 RNA-seq-like gene expression profiles. The model first transforms the landmark genes into RNA-seq-like 978 gene profiles using a modified CycleGAN model applied to unpaired data. The transformed 978 RNA-seq-like landmark genes are then extrapolated into the full genome space with a fully connected neural network model. The two-step model achieves 0.914 Pearson’s correlation coefficients and 1.167 root mean square errors when tested on a published paired L1000/RNA-seq dataset produced by the LINCS and GTEx programs. The processed RNA-seq-like profiles are made available for download, signature search, and gene centric reverse search with unique case studies.
Collapse
|
30
|
Valada P, Alçada-Morais S, Cunha RA, Lopes JP. Thebromine Targets Adenosine Receptors to Control Hippocampal Neuronal Function and Damage. Int J Mol Sci 2022; 23:ijms231810510. [PMID: 36142422 PMCID: PMC9502181 DOI: 10.3390/ijms231810510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Theobromine is a caffeine metabolite most abundant in dark chocolate, of which consumption is linked with a lower risk of cognitive decline. However, the mechanisms through which theobromine affects neuronal function remain ill-defined. Using electrophysiological recordings in mouse hippocampal synapses, we now characterized the impact of a realistic concentration of theobromine on synaptic transmission and plasticity. Theobromine (30 μM) facilitated synaptic transmission while decreasing the magnitude of long-term potentiation (LTP), with both effects being blunted by adenosine deaminase (2 U/mL). The pharmacological blockade of A1R with DPCPX (100 nM) eliminated the theobromine-dependent facilitation of synaptic transmission, whereas the A2AR antagonist SCH58261 (50 nM), as well as the genetic deletion of A2AR, abrogated the theobromine-induced impairment of LTP. Furthermore, theobromine prevented LTP deficits and neuronal loss, respectively, in mouse hippocampal slices and neuronal cultures exposed to Aβ1-42 peptides, considered a culprit of Alzheimer's disease. Overall, these results indicate that theobromine affects information flow via the antagonism of adenosine receptors, normalizing synaptic plasticity and affording neuroprotection in dementia-related conditions in a manner similar to caffeine.
Collapse
Affiliation(s)
- Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sofia Alçada-Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
31
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
32
|
Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022; 37:1787-1801. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Cerebral hypoperfusion (CH) is a common underlying mechanism of dementia disorders linked to aberrations in the neurovascular unit. Hemodynamic disturbances adversely affect cellular energy homeostasis that triggers a sequence of events leading to irrevocable damage to the brain and neurobehavioral discrepancies. Theobromine is a common ingredient of many natural foods consumed by a large population worldwide. Theobromine has shown health benefits in several studies, attributed to regulation of calcium homeostasis, phosphodiesterase, neurotransmission, and neurotrophins. The current study evaluated the neuroprotective potential of theobromine against CH in the permanent bilateral common carotid artery occlusion (BCCAO) prototype. Wistar rats were distributed in Sham-operated (S), S + T100, CH, CH + T50, and CH + T100 groups. Animals received permanent BCCAO or Sham treatment on day 1. Theobromine (50, 100 mg/kg) was given orally in animals subjected to BCCAO for 14 days daily. CH caused neurological deficits (12-point scale), motor dysfunction, and memory impairment in rats. Treatment with theobromine significantly attenuated neurological deficits and improved sensorimotor functions and memory in rats with CH. In biochemistry investigation of the entire brain, findings disclosed reduction in brain oxidative stress, inflammatory intermediaries (tumor necrosis factor-α, interleukin-1β and - 6, nuclear factor-κB), markers of cell demise (lactate dehydrogenase, caspase-3), acetylcholinesterase activity, and improvement in γ-aminobutyric acid quantity in rats that were given theobromine for 14 days daily after CH. Histopathological analysis substantiated attenuation of neurodegenerative changes by theobromine. The findings of this study indicated that theobromine could improve neurological scores, sensorimotor abilities, and memory in CH prototype.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
33
|
Ishola I, Awogbindin I, Olubodun-Obadun T, Oluwafemi O, Onuelu J, Adeyemi O. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain Res 2022; 1789:147958. [DOI: 10.1016/j.brainres.2022.147958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
|
34
|
Agnieszka W, Paweł P, Małgorzata K. How to Optimize the Effectiveness and Safety of Parkinson's Disease Therapy? - A Systematic Review of Drugs Interactions with Food and Dietary Supplements. Curr Neuropharmacol 2022; 20:1427-1447. [PMID: 34784871 PMCID: PMC9881082 DOI: 10.2174/1570159x19666211116142806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Despite increasing worldwide incidence of Parkinson's disease, the therapy is still suboptimal due to the diversified clinical manifestations, lack of sufficient treatment, the poor adherence in advanced patients, and varied response. Proper intake of medications regarding food and managing drug-food interactions may optimize Parkinson's disease treatment. OBJECTIVES We investigated potential effects that food, beverages, and dietary supplements may have on the pharmacokinetics and pharmacodynamics of drugs used by parkinsonian patients; identified the most probable interactions; and shaped recommendations for the optimal intake of drugs regarding food. METHODS We performed a systematic review in adherence to PRISMA guidelines, and included a total of 81 studies in the qualitative synthesis. RESULTS AND CONCLUSION We found evidence for levodopa positive interaction with coffee, fiber and vitamin C, as well as for the potential beneficial impact of low-fat and protein redistribution diet. Contrastingly, high-protein diet and ferrous sulfate supplements can negatively affect levodopa pharmacokinetics and effectiveness. For other drugs, the data of food impact are scarce. Based on the available limited evidence, all dopamine agonists (bromocriptine, cabergoline, ropinirole), tolcapone, rasagiline, selegiline in tablets, safinamide, amantadine and pimavanserin can be taken with or without a meal. Opicapone and orally disintegrating selegiline tablets should be administered on an empty stomach. Of monoamine oxidase B inhibitors, safinamide is the least susceptible for interaction with the tyramine-rich food, whereas selegiline and rasagiline may lose selectivity to monoamine oxidase B when administered in supratherapeutic doses. The level of presented evidence is low due to the poor studies design, their insufficient actuality, and missing data.
Collapse
Affiliation(s)
- Wiesner Agnieszka
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Paśko Paweł
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Kujawska Małgorzata
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland,Address correspondence to this author at the Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; Tel/Fax: +48618472081, +4861847072; E-mail:
| |
Collapse
|
35
|
Yang L, Yu X, Zhang Y, Liu N, Li D, Xue X, Fu J. Proteomic analysis of the effects of caffeine in a neonatal rat model of hypoxic-ischemic white matter damage. CNS Neurosci Ther 2022; 28:1019-1032. [PMID: 35393758 PMCID: PMC9160447 DOI: 10.1111/cns.13834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aim White matter damage (WMD) is the main cause of cerebral palsy and cognitive impairment in premature infants. Although caffeine has been shown to possess neuroprotective effects in neonatal rats with hypoxic‐ischemic WMD, the mechanisms underlying these protective effects are unclear. Herein, proteins modulated by caffeine in neonatal rats with hypoxic‐ischemic WMD were evaluated. Methods We identified differential proteins and performed functional enrichment analyses between the Sham, hypoxic‐ischemic WMD (HI), and HI+caffeine‐treated WMD (Caffeine) groups. Confirmed the changes and effect of proteins in animal models and determined cognitive impairment via water maze experiments. Results In paraventricular tissue, 47 differential proteins were identified between the Sham, HI, and Caffeine groups. Functional enrichment analyses showed that these proteins were related to myelination and axon formation. In particular, the myelin basic protein (MBP), proteolipid protein, myelin‐associated glycoprotein precursor, and sirtiun 2 (SIRT2) levels were reduced in the hypoxic‐ischemic WMD group, and this effect could be prevented by caffeine. Caffeine alleviated the hypoxic‐ischemic WMD‐induced cognitive impairment and improved MBP, synaptophysin, and postsynaptic density protein 95 protein levels after hypoxic‐ischemic WMD by preventing the HI‐induced downregulation of SIRT2; these effects were subsequently attenuated by the SIRT2 inhibitor AK‐7. Conclusion Caffeine may have clinical applications in the management of prophylactic hypoxic‐ischemic WMD; its effects may be mediated by proteins related to myelin development and synapse formation through SIRT2.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajun Zhang
- Department of Anesthesiology, Dalian Municipal Maternal and Child Health Care Hospital, Dalian, China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
37
|
Reichmann H. [Caffeine, Chocolate and Adenosine A2A Receptor Antagonists in the Treatment of Parkinson's Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022. [PMID: 35584767 DOI: 10.1055/a-1785-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Patients with Parkinson's disease can apparently benefit from caffeine consumption, as a number of experimental and clinical studies have already shown. METHODS The review examined the available literature on caffeine and Parkinson's disease. RESULTS Caffeine can penetrate the blood-brain barrier and exerts its biological effects mainly by antagonizing adenosine receptors. Numerous studies indicate that caffeine and its derivatives theobromine and theophylline are associated with a reduced risk of Parkinson's disease. Caffeine and adenosine antagonists reduce the excitotoxicity caused by glutamate. Evidence from animal models supports the potential of A2A receptor antagonism as an innovative disease-modifying target in Parkinson's disease CONCLUSION: The present review shows that the investigation and synthesis of xanthine derivatives as well as their analysis in clinical studies could be a promising approach in the therapy of neurodegenerative diseases.
Collapse
|
38
|
Radeva-llieva M, Stoeva S, Hvarchanova N, Zhelev I, Georgiev KD. Influence of methylxanthines isolated from Bancha green tea on the pharmacokinetics of sildenafil in rats. Daru 2022; 30:75-84. [PMID: 35146639 PMCID: PMC9114228 DOI: 10.1007/s40199-022-00433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension and is metabolized in the liver mainly by CYP3A4, thus co-administration with drugs or herbal extracts that affect CYP3A4 activity may lead to drug-drug or drug-herb interactions, respectively. The aim of the present study was to evaluate the influence of single and multiple oral doses of methylxanthine fraction, isolated from Bancha green tea leaves on the pharmacokinetics of sildenafil in rats. METHODS Rats were given sildenafil alone as well as simultaneously with methylxanthines or ketoconazole. The plasma concentrations of sildenafil were measured with high-performance liquid chromatography method with ultraviolet detection. The pharmacokinetic parameters of sildenafil were calculated by non-compartmental analysis. RESULTS Concomitant use of sildenafil with a single oral dose of methylxanthines resulted in a decrease in Cmax (p > 0.05), AUC0-t (p < 0.05) and AUC0-inf (p < 0.05), while the administration of sildenafil after methylxanthines pretreatment resulted in an increase in Cmax (p < 0.0001), AUC0-t (p < 0.0001) and AUC0-inf (p < 0.001) compared to the sildenafil group. After co-administration of sildenafil and ketoconazole, a significant increase in Cmax, AUC0-t and AUC0-inf was observed in both of the experiments. CONCLUSION Drug-herb interactions were observed when sildenafil was co-administered with Bancha methylxanthines in rats. Further in vivo studies about the potential drug interactions between sildenafil and methylxanthines, especially caffeine, are needed to clarify mechanisms underlying the observed changes in sildenafil pharmacokinetics.
Collapse
Affiliation(s)
- Maya Radeva-llieva
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Stanila Stoeva
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Nadezhda Hvarchanova
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Iliya Zhelev
- grid.20501.360000 0000 8767 9052Department of Biology, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Kaloyan D. Georgiev
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| |
Collapse
|
39
|
Liu J, Zhang Y, Ye T, Yu Q, Yu J, Yuan S, Gao X, Wan X, Zhang R, Han W, Zhang Y. Effect of Coffee against MPTP-Induced Motor Deficits and Neurodegeneration in Mice Via Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:184-195. [PMID: 35016506 DOI: 10.1021/acs.jafc.1c06998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms of coffee against Parkinson disease (PD) remained incompletely elucidated. Numerous studies suggested that gut microbiota played a crucial role in the pathogenesis of PD. Here, we explored the further mechanisms of coffee against PD via regulating gut microbiota. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD mouse model, then treated with coffee for 4 consecutive weeks. Behavioral tests consisting of the pole test and beam-walking test were conducted to evaluate the motor function of mice. The levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) were assessed for dopaminergic neuronal loss. The levels of occludin, glial fibrillary acidic protein (GFAP), Bcl-2, Bax, cleaved caspase-3, and cytochrome c (Cyt c) were detected. Moreover, microbial components were measured by 16s rRNA sequencing. Our results showed that coffee significantly improved the motor deficits and TH neuron loss, and reduced the level of α-syn in the MPTP-induced mice. Moreover, coffee increased the level of BBB tight junction protein occludin and reduced the level of astrocyte activation marker GFAP in the MPTP-induced mice. Furthermore, coffee significantly decreased the levels of proapoptotic proteins, including Bax, cleaved caspase-3, and cytochrome c, while it increased the level of antiapoptotic protein Bcl-2, consequently preventing MPTP-induced apoptotic cascade. Moreover, coffee improved MPTP-induced gut microbiota dysbiosis. These findings suggested that the neuroprotective effects of coffee on PD were involved in the regulation of gut microbiota, which might provide a novel option to elucidate the effects of coffee on PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinxin Wan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weihua Han
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
40
|
Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
41
|
Capillary electrophoresis-UV analysis using silica-layer coated capillary for separation of seven phenolic acids and caffeine and its application to tea analysis. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04849-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
This work presents an innovative silica-layer coated capillary with comparison study of the silica-layer coated capillary and the fused-silica capillary for the separation of seven phenolic acids viz. p-hydroxyphenylacetic acid (PHPA), p-coumaric acid (PCA), p-hydroxybenzoic acid (PHBA), caffeic acid (CFA), (3,4-dihydroxyphenyl)acetic acid (DHPA), gallic acid (GLA), and 2,3,4-trihydroxybenzoic acid (THBA), together with caffeine (CF), by capillary electro-chromatography (CEC) and micellar electrokinetic chromatography (MEKC), respectively. The running buffer was 25.0 mM borate at pH 9.0, with addition of 50.0 mM sodium dodecyl sulfate for the MEKC mode. The non-coated capillary could not separate all seven phenolic acids by CEC or MEKC. This was achieved using the coated capillary for both CEC and MEKC. The innovative coated capillary with CEC had plate number N ≥ 2.0 × 104 m−1 and resolution Rs ≥ 1.6 for all adjacent pairs of peaks. The capillary was also able to separate GLA and THBA which are structural isomers. Although MEKC mode provided comparable efficiency and selectivity, the reduced EOF of the coated capillary led to longer separation time. The linear calibration range of the seven phenolic acids and caffeine were different but the coefficients of determinations (r2) were all > 0.9965. The precisions of the relative migration times and peak area ratios of analyte to internal standard were 0.1–1.8% and 1.8–6.8%, respectively. There were no statistical differences in the efficiency of separation of the phenolic acids and caffeine for three coated capillaries. It was applied to the analysis of caffeine and phenolic acids in brewed tea using tyramine as the internal standard. The tea samples were diluted prior to analysis by CEC. The separation was less than 15 min. Caffeine, gallic acid and p-coumaric acid were detected and quantified. Caffeine and gallic acid contents were 10.8–15.0 and 2.6–4.8 mg g−1 dry tea leaves, respectively. p-Coumaric acid was detected in only one of the samples with a content of 0.4 mg g−1. Percent recoveries of spiked diluted samples were 90 ± 9 to 106 ± 13%, respectively.
Article highlights
Silica-layer coated capillary is first reported for simultaneous separation of seven phenolic acids by non-MEKC analysis.
Performance between coated, and non-coated capillaries with analysis by CEC and MEKC were compared.
Plate number, resolution, capillary reproducibility, and electroosmotic flow mobility are investigated.
Graphical abstract
Collapse
|
42
|
Zhong GC, Hu TY, Yang PF, Peng Y, Wu JJ, Sun WP, Cheng L, Wang CR. Chocolate consumption and all-cause and cause-specific mortality in a US population: a post hoc analysis of the PLCO cancer screening trial. Aging (Albany NY) 2021; 13:18564-18585. [PMID: 34329196 PMCID: PMC8351724 DOI: 10.18632/aging.203302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Few studies with mixed results have examined the association between chocolate consumption and mortality. We aimed to examine this association in a US population. A population-based cohort of 91891 participants aged 55 to 74 years was identified. Chocolate consumption was assessed via a food frequency questionnaire. Cox regression was used to estimate risk estimates. After an average follow-up of 13.5 years, 19586 all-cause deaths were documented. Compared with no regular chocolate consumption, the maximally adjusted hazard ratios of all-cause mortality were 0.89 [95% confidence interval (CI) 0.84-0.94], 0.84 (95% CI 0.79-0.90), 0.86 (95% CI 0.81-0.93), and 0.87 (95% CI 0.82-0.93) for >0-0.5 servings/week, >0.5-1 serving/week, >1-2 servings/week, and >2 servings/week, respectively (Ptrend = 0.009). A somewhat stronger inverse association was observed for mortality from cardiovascular disease and Alzheimer's disease. A nonlinear dose-response pattern was found for all-cause and cardiovascular mortality (all Pnonlinearity < 0.01), with the lowest risk observed at chocolate consumption of 0.7 servings/week and 0.6 servings/week, respectively. The favorable associations with all-cause and cardiovascular mortality were found to be more pronounced in never smokers than in current or former smokers (all Pinteraction < 0.05). In conclusion, chocolate consumption confers reduced risks of mortality from all causes, cardiovascular disease, and Alzheimer's disease in this US population.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-Yang Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng-Fei Yang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Geriatrics, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing-Jing Wu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Wei-Ping Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Cheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Rui Wang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Coffee effectively attenuates impaired attention in ADORA2A C/C-allele carriers during chronic sleep restriction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110232. [PMID: 33373678 DOI: 10.1016/j.pnpbp.2020.110232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Many people consume coffee to attenuate increased sleepiness and impaired vigilance and attention due to insufficient sleep. We investigated in genetically caffeine sensitive men and women whether 'real world' coffee consumption during a simulated busy work week counteracts disabling consequences of chronically restricted sleep. We subjected homozygous C-allele carriers of ADORA2A (gene encoding adenosine A2A receptors) to five nights of only 5 h time-in-bed. We administered regular coffee (n = 12; 200 mg caffeine at breakfast and 100 mg caffeine after lunch) and decaffeinated coffee (n = 14) in double-blind fashion on all days following sleep restriction. At regular intervals four times each day, participants rated their sleepiness and performed the psychomotor vigilance test, the visual search task, and the visuo-spatial and letter n-back tasks. At bedtime, we quantified caffeine and the major caffeine metabolites paraxanthine, theobromine and theophylline in saliva. The two groups did not differ in age, body-mass-index, sex-ratio, chronotype and mood states. Subjective sleepiness increased in both groups across consecutive sleep restriction days and did not differ. By contrast, regular coffee counteracted the impact of repeated sleep loss on sustained and selective attention, as well as executive control when compared to decaffeinated coffee. The coffee also induced initial or transient benefits on different aspects of baseline performance during insufficient sleep. All differences between the groups disappeared after the recovery night and the cessation of coffee administration. The data suggest that 'real world' coffee consumption can efficiently attenuate sleep restriction-induced impairments in vigilance and attention in genetically caffeine sensitive individuals. German Clinical Trial Registry: # DRSK00014379.
Collapse
|
44
|
Carneiro SM, Oliveira MBP, Alves RC. Neuroprotective properties of coffee: An update. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Weibel J, Lin YS, Landolt HP, Berthomier C, Brandewinder M, Kistler J, Rehm S, Rentsch KM, Meyer M, Borgwardt S, Cajochen C, Reichert CF. Regular Caffeine Intake Delays REM Sleep Promotion and Attenuates Sleep Quality in Healthy Men. J Biol Rhythms 2021; 36:384-394. [PMID: 34024173 PMCID: PMC8276335 DOI: 10.1177/07487304211013995] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute caffeine intake can attenuate homeostatic sleep pressure and worsen sleep quality. Caffeine intake—particularly in high doses and close to bedtime—may also affect circadian-regulated rapid eye movement (REM) sleep promotion, an important determinant of subjective sleep quality. However, it is not known whether such changes persist under chronic caffeine consumption during daytime. Twenty male caffeine consumers (26.4 ± 4 years old, habitual caffeine intake 478.1 ± 102.8 mg/day) participated in a double-blind crossover study. Each volunteer completed a caffeine (3 × 150 mg caffeine daily for 10 days), a withdrawal (3 × 150 mg caffeine for 8 days then placebo), and a placebo condition. After 10 days of controlled intake and a fixed sleep-wake cycle, we recorded electroencephalography for 8 h starting 5 h after habitual bedtime (i.e., start on average at 04:22 h which is around the peak of circadian REM sleep promotion). A 60-min evening nap preceded each sleep episode and reduced high sleep pressure levels. While total sleep time and sleep architecture did not significantly differ between the three conditions, REM sleep latency was longer after daily caffeine intake compared with both placebo and withdrawal. Moreover, the accumulation of REM sleep proportion was delayed, and volunteers reported more difficulties with awakening after sleep and feeling more tired upon wake-up in the caffeine condition compared with placebo. Our data indicate that besides acute intake, also regular daytime caffeine intake affects REM sleep regulation in men, such that it delays circadian REM sleep promotion when compared with placebo. Moreover, the observed caffeine-induced deterioration in the quality of awakening may suggest a potential motive to reinstate caffeine intake after sleep.
Collapse
Affiliation(s)
- Janine Weibel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Yu-Shiuan Lin
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | | | | | - Joshua Kistler
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sophia Rehm
- Laboratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina M Rentsch
- Laboratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Meyer
- Clinical Sleep Laboratory, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Mussap M, Siracusano M, Noto A, Fattuoni C, Riccioni A, Rajula HSR, Fanos V, Curatolo P, Barberini L, Mazzone L. The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity. Metabolites 2020; 10:metabo10110476. [PMID: 33238400 PMCID: PMC7700197 DOI: 10.3390/metabo10110476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Autism diagnosis is moving from the identification of common inherited genetic variants to a systems biology approach. The aims of the study were to explore metabolic perturbations in autism, to investigate whether the severity of autism core symptoms may be associated with specific metabolic signatures; and to examine whether the urine metabolome discriminates severe from mild-to-moderate restricted, repetitive, and stereotyped behaviors. We enrolled 57 children aged 2–11 years; thirty-one with idiopathic autism and twenty-six neurotypical (NT), matched for age and ethnicity. The urine metabolome was investigated by gas chromatography-mass spectrometry (GC-MS). The urinary metabolome of autistic children was largely distinguishable from that of NT children; food selectivity induced further significant metabolic differences. Severe autism spectrum disorder core deficits were marked by high levels of metabolites resulting from diet, gut dysbiosis, oxidative stress, tryptophan metabolism, mitochondrial dysfunction. The hierarchical clustering algorithm generated two metabolic clusters in autistic children: 85–90% of children with mild-to-moderate abnormal behaviors fell in cluster II. Our results open up new perspectives for the more general understanding of the correlation between the clinical phenotype of autistic children and their urine metabolome. Adipic acid, palmitic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid can be proposed as candidate biomarkers of autism severity.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
- Correspondence: ; Tel.: +39-070-51093403
| | - Martina Siracusano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (A.N.); (L.B.)
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| | - Hema Sekhar Reddy Rajula
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (A.N.); (L.B.)
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| |
Collapse
|
47
|
Zhao T, Hu Y, Cheng L. Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches. Brief Bioinform 2020; 22:5922326. [PMID: 33048110 DOI: 10.1093/bib/bbaa212] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION The functional changes of the genes, RNAs and proteins will eventually be reflected in the metabolic level. Increasing number of researchers have researched mechanism, biomarkers and targeted drugs by metabolites. However, compared with our knowledge about genes, RNAs, and proteins, we still know few about diseases-related metabolites. All the few existed methods for identifying diseases-related metabolites ignore the chemical structure of metabolites, fail to recognize the association pattern between metabolites and diseases, and fail to apply to isolated diseases and metabolites. RESULTS In this study, we present a graph deep learning based method, named Deep-DRM, for identifying diseases-related metabolites. First, chemical structures of metabolites were used to calculate similarities of metabolites. The similarities of diseases were obtained based on their functional gene network and semantic associations. Therefore, both metabolites and diseases network could be built. Next, Graph Convolutional Network (GCN) was applied to encode the features of metabolites and diseases, respectively. Then, the dimension of these features was reduced by Principal components analysis (PCA) with retainment 99% information. Finally, Deep neural network was built for identifying true metabolite-disease pairs (MDPs) based on these features. The 10-cross validations on three testing setups showed outstanding AUC (0.952) and AUPR (0.939) of Deep-DRM compared with previous methods and similar approaches. Ten of top 15 predicted associations between diseases and metabolites got support by other studies, which suggests that Deep-DRM is an efficient method to identify MDPs. CONTACT liangcheng@hrbmu.edu.cn. AVAILABILITY AND IMPLEMENTATION https://github.com/zty2009/GPDNN-for-Identify-ing-Disease-related-Metabolites.
Collapse
Affiliation(s)
- Tianyi Zhao
- Department of Computer Science at the Harbin Institute of Technology
| | - Yang Hu
- Department of Life Science at the Harbin Institute of Technology
| | - Liang Cheng
- CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, College of Bioinformatics Science and Technology at Harbin Medical University
| |
Collapse
|
48
|
Flores G, Flores-Gómez GD, Díaz A, Penagos-Corzo JC, Iannitti T, Morales-Medina JC. Natural products present neurotrophic properties in neurons of the limbic system in aging rodents. Synapse 2020; 75:e22185. [PMID: 32779216 DOI: 10.1002/syn.22185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Aging is a complex process that can lead to neurodegeneration and, consequently, several pathologies, including dementia. Physiological aging leads to changes in several body organs, including those of the central nervous system (CNS). Morphological changes in the CNS and particularly the brain result in motor and cognitive deficits affecting learning and memory and the circadian cycle. Characterizing neural modifications is critical to designing new therapies to target aging and associated pathologies. In this review, we compared aging to the changes occurring within the brain and particularly the limbic system. Then, we focused on key natural compounds, apamin, cerebrolysin, Curcuma longa, resveratrol, and N-PEP-12, which have shown neurotrophic effects particularly in the limbic system. Finally, we drew our conclusions delineating future perspectives for the development of novel natural therapeutics to ameliorate aging-related processes.
Collapse
Affiliation(s)
- Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Gabriel Daniel Flores-Gómez
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla, Puebla, México
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Tommaso Iannitti
- Charles River Discovery Research Services UK Limited part of the Charles River Group, Bristol, UK
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
49
|
Wasim S, Kukkar V, Awad VM, Sakhamuru S, Malik BH. Neuroprotective and Neurodegenerative Aspects of Coffee and Its Active Ingredients in View of Scientific Literature. Cureus 2020; 12:e9578. [PMID: 32923185 PMCID: PMC7478584 DOI: 10.7759/cureus.9578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coffee and its components have several neuroprotective properties that lower the risk of cognitive decline and other neurodegenerative diseases. This study reviews the mechanisms by which coffee and its respective compounds affect the brain and its pathologies. Many epidemiological studies in this literature review have shown coffee to reduce the risk of developing dementia, stroke, and Alzheimer's disease. It may also have a positive impact on the disease course of amyotrophic lateral sclerosis, Parkinson's disease, and depression. The optimal benefits achieved from coffee in these pathologies rely on higher daily doses. Most of its effects are attributed to caffeine by the antagonism of adenosine receptors in the central nervous system; however, other coffee constituents like chlorogenic acids have also shown much promise in therapeutic value. Existing research considers coffee to have great potential, but additional studies are still needed to clarify the mechanisms and actual causal relationships in certain neuropathologies.
Collapse
Affiliation(s)
- Shehnaz Wasim
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Vishal Kukkar
- Radiology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Vanessa M Awad
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sirisha Sakhamuru
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
50
|
C. Gonçalves V, J. L. L. Pinheiro D, de la Rosa T, G. de Almeida AC, A. Scorza F, A. Scorza C. Propolis as A Potential Disease-Modifying Strategy in Parkinson's Disease: Cardioprotective and Neuroprotective Effects in the 6-OHDA Rat Model. Nutrients 2020; 12:E1551. [PMID: 32466610 PMCID: PMC7352297 DOI: 10.3390/nu12061551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with Parkinson's disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47×10-19), SDNN (p = 3.42×10-10) and RMSSD (p = 8.2×10-6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66×10-15) and reduced striatal fiber degeneration (p = 7.4×10-5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07×10-5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.
Collapse
Affiliation(s)
- Valeria C. Gonçalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Daniel J. L. L. Pinheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Tomás de la Rosa
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Minas Gerais 36301-160, Brazil;
| | - Fúlvio A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Carla A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| |
Collapse
|