1
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
2
|
Tsai MS, Liou GG, Liao JW, Lai PY, Yang DJ, Wu SH, Wang SH. N-acetyl Cysteine Overdose Induced Acute Toxicity and Hepatic Microvesicular Steatosis by Disrupting GSH and Interfering Lipid Metabolisms in Normal Mice. Antioxidants (Basel) 2024; 13:832. [PMID: 39061900 PMCID: PMC11273582 DOI: 10.3390/antiox13070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, β-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred β-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.
Collapse
Affiliation(s)
- Ming-Shiun Tsai
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Pin-Yen Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Di-Jie Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Szu-Hua Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402201, Taiwan
| |
Collapse
|
3
|
Kobroob A, Kumfu S, Chattipakorn N, Wongmekiat O. Modulation of Sirtuin 3 by N-Acetylcysteine Preserves Mitochondrial Oxidative Phosphorylation and Restores Bisphenol A-Induced Kidney Damage in High-Fat-Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:4935-4950. [PMID: 38785564 PMCID: PMC11119914 DOI: 10.3390/cimb46050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Bisphenol A (BPA) and high-fat diets (HFD) are known to adversely affect the kidneys. However, the combined effects of both cases on kidney health and the potential benefits of N-acetylcysteine (NAC) in mitigating these effects have not been investigated. To explore these aspects, male Wistar rats were fed with HFD and allocated to receive a vehicle or BPA. At week twelve, the BPA-exposed rats were subdivided to receive a vehicle or NAC along with BPA until week sixteen. Rats fed HFD and exposed to BPA showed renal dysfunction and structural abnormalities, oxidative stress, inflammation, and mitochondrial dysfunction, with alterations in key proteins related to mitochondrial oxidative phosphorylation (OXPHOS), bioenergetics, oxidative balance, dynamics, apoptosis, and inflammation. Treatment with NAC for 4 weeks significantly improved these conditions. The findings suggest that NAC is beneficial in protecting renal deterioration brought on by prolonged exposure to BPA in combination with HFD, and modulation of sirtuin 3 (SIRT3) signaling by NAC appears to play a key role in the preservation of homeostasis and integrity within the mitochondria by enhancing OXPHOS activity, maintaining redox balance, and reducing inflammation. This study provides valuable insights into potential therapeutic strategies for preserving kidney health in the face of environmental and dietary challenges.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Sohouli MH, Eslamian G, Ardehali SH, Raeissadat SA, Shimi G, Pourvali K, Zand H. Effects of N-acetylcysteine on the expressions of UCP1 and factors related to thyroid function in visceral adipose tissue of obese adults: a randomized, double-blind clinical trial. GENES & NUTRITION 2024; 19:8. [PMID: 38702594 PMCID: PMC11069202 DOI: 10.1186/s12263-024-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Evidences have shown that obesity is influenced by various factors, including various hormones such as thyroid hormones and the body's metabolism rate. It seems that practical solutions such as weight loss diets and common drugs can affect these potential disorders. In this study, we investigate one of these common drugs, N-Acetylcysteine (NAC), on expressions of UCP1 and factors related to thyroid function in adults with obesity. METHODS AND ANALYSIS The current investigation was carried out as a randomized clinical trial (RCT) including 43 adults with obesity who were potential candidates for bariatric surgery. These individuals were randomly divided into two groups: 600 mg of NAC (n = 22) or placebo (n = 21) for a duration of 8 weeks. Visceral adipose tissue was utilized in the context of bariatric surgery to investigate the gene expression of UCP1 and thyroid function. Polymerase chain reaction (PCR) was performed in duplicate for UCP1, DIO2, DIO3, THRα and β, and 18s RNA (as an internal control) using the provided instructions to investigate the expression of the respective genes. RESULTS Our findings revealed that after 8 weeks compared to placebo, NAC caused a significant decrease in the expression of the DIO3 gene as one of the genes related to thyroid function and metabolism. However, regarding other related genes, no statistically significant was found (despite the increase in UCP1, DIO2, and THRα expression and decrease in THRβ expression). In addition, after adjustment of possible confounders, no significant effect was observed on anthropometric factors and serum levels of thyroid hormones. CONCLUSION The results of this study indicate that, following an 8-week period, NAC effectively decreases the expression of the DIO3 gene in the visceral fat tissue, in comparison to the placebo.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology, School of Medicine, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Raeissadat
- Physical Medicine and Rehabilitation Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Castro MC, Villagarcía HG, Di Sarli Gutiérrez L, Arbeláez LG, Schinella G, Massa ML, Francini F. Akt Signaling and Nitric Oxide Synthase as Possible Mediators of the Protective Effect of N-acetyl-L-cysteine in Prediabetes Induced by Sucrose. Int J Mol Sci 2024; 25:1215. [PMID: 38279215 PMCID: PMC10817010 DOI: 10.3390/ijms25021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 01/28/2024] Open
Abstract
The aim of this work was to evaluate possible mechanisms involved in the protective effect of N-acetyl-L-cysteine (NAC) on hepatic endocrine-metabolic, oxidative stress, and inflammatory changes in prediabetic rats. For that, normal male Wistar rats (60 days old) were fed for 21 days with 10% sucrose in their drinking water and 5 days of NAC administration (50 mg/kg, i.p.) and thereafter, we determined: serum glucose, insulin, transaminases, uric acid, and triglyceride levels; hepatic fructokinase and glucokinase activities, glycogen content, lipogenic gene expression; enzymatic and non-enzymatic oxidative stress, insulin signaling pathway, and inflammatory markers. Results showed that alterations evinced in sucrose-fed rats (hypertriglyceridemia, hyperinsulinemia, and high liver fructokinase activity together with increased liver lipogenic gene expression and oxidative stress and inflammatory markers) were prevented by NAC administration. P-endothelial nitric oxide synthase (P-eNOS)/eNOS and pAKT/AKT ratios, decreased by sucrose ingestion, were restored after NAC treatment. In conclusion, the results suggest that NAC administration improves glucose homeostasis, oxidative stress, and inflammation in prediabetic rats probably mediated by modulation of the AKT/NOS pathway. Administration of NAC may be an effective complementary strategy to alleviate or prevent oxidative stress and inflammatory responses observed in type 2 diabetes at early stages of its development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Hernán Gonzalo Villagarcía
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luciana Di Sarli Gutiérrez
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luisa González Arbeláez
- CIC—Centro de Investigaciones Cardiovasculares (UNLP—CONICET CCT La Plata, FCM), Calle 60 y 120, La Plata 1900, Argentina;
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, UNLP, Calle 60 y 120, La Plata 1900, Argentina;
- Instituto de Ciencias de la Salud, UNAJ-CICPBA (Av. Calchaquí 6200), Florencia Varela 1888, Argentina
| | - María Laura Massa
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Flavio Francini
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| |
Collapse
|
6
|
Bauzá-Thorbrügge M, Peris E, Zamani S, Micallef P, Paul A, Bartesaghi S, Benrick A, Wernstedt Asterholm I. NRF2 is essential for adaptative browning of white adipocytes. Redox Biol 2023; 68:102951. [PMID: 37931470 PMCID: PMC10652207 DOI: 10.1016/j.redox.2023.102951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for β3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Shabnam Zamani
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Gothenburg, Sweden; The Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Benrick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Pieri BLDS, Rodrigues MS, Farias HR, Silveira GDB, Ribeiro VDSGDC, Silveira PCL, De Souza CT. Role of Oxidative Stress on Insulin Resistance in Diet-Induced Obesity Mice. Int J Mol Sci 2023; 24:12088. [PMID: 37569463 PMCID: PMC10419159 DOI: 10.3390/ijms241512088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Insulin resistance is the link between obesity and type 2 diabetes mellitus. The molecular mechanism by which obese individuals develop insulin resistance has not yet been fully elucidated; however, inconclusive and contradictory studies have shown that oxidative stress may be involved in the process. Thus, this study aimed to evaluate the effect of reactive species on the mechanism of insulin resistance in diet-induced obese mice. Obese insulin-resistant mice were treated with N-acetylcysteine (NAC; 50 mg/kg per day, for 15 days) by means of oral gavage. Twenty-four hours after the last NAC administration, the animals were euthanized and their tissues were extracted for biochemical and molecular analyses. NAC supplementation induced improved insulin resistance and fasting glycemia, without modifications in food intake, body weight, and adiposity. Obese mice showed increased dichlorofluorescein (DCF) oxidation, reduced catalase (CAT) activity, and reduced glutathione levels (GSH). However, treatment with NAC increased GSH and CAT activity and reduced DCF oxidation. The gastrocnemius muscle of obese mice showed an increase in nuclear factor kappa B (NFκB) and protein tyrosine phosphatase (PTP1B) levels, as well as c-Jun N-terminal kinase (JNK) phosphorylation compared to the control group; however, NAC treatment reversed these changes. Considering the molecules involved in insulin signaling, there was a reduction in insulin receptor substrate (IRS) and protein kinase B (Akt) phosphorylation. However, NAC administration increased IRS and Akt phosphorylation and IRS/PI3k (phosphoinositide 3-kinase) association. The results demonstrated that oxidative stress-associated obesity could be a mechanism involved in insulin resistance, at least in this animal model.
Collapse
Affiliation(s)
- Bruno Luiz da Silva Pieri
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre 90010-150, Brazil
| | - Hemelin Resende Farias
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre 90010-150, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | | | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Claudio Teodoro De Souza
- Post Graduate Program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil;
| |
Collapse
|
8
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
9
|
Redwan A, Kiriaev L, Kueh S, Morley JW, Houweling P, Perry BD, Head SI. Six weeks of N-acetylcysteine antioxidant in drinking water decreases pathological fiber branching in MDX mouse dystrophic fast-twitch skeletal muscle. Front Physiol 2023; 14:1109587. [PMID: 36866174 PMCID: PMC9971923 DOI: 10.3389/fphys.2023.1109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: It has been proposed that an increased susceptivity to oxidative stress caused by the absence of the protein dystrophin from the inner surface of the sarcolemma is a trigger of skeletal muscle necrosis in the destructive dystrophin deficient muscular dystrophies. Here we use the mdx mouse model of human Duchenne Muscular Dystrophy to test the hypothesis that adding the antioxidant NAC at 2% to drinking water for six weeks will treat the inflammatory phase of the dystrophic process and reduce pathological muscle fiber branching and splitting resulting in a reduction of mass in mdx fast-twitch EDL muscles. Methods: Animal weight and water intake was recorded during the six weeks when 2% NAC was added to the drinking water. Post NAC treatment animals were euthanised and the EDL muscles dissected out and placed in an organ bath where the muscle was attached to a force transducer to measure contractile properties and susceptibility to force loss from eccentric contractions. After the contractile measurements had been made the EDL muscle was blotted and weighed. In order to assess the degree of pathological fiber branching mdx EDL muscles were treated with collagenase to release single fibers. For counting and morphological analysis single EDL mdx skeletal muscle fibers were viewed under high magnification on an inverted microscope. Results: During the six-week treatment phase NAC reduced body weight gain in three- to nine-week-old mdx and littermate control mice without effecting fluid intake. NAC treatment also significantly reduced the mdx EDL muscle mass and abnormal fiber branching and splitting. Discussion: We propose chronic NAC treatment reduces the inflammatory response and degenerative cycles in the mdx dystrophic EDL muscles resulting in a reduction in the number of complexed branched fibers reported to be responsible for the dystrophic EDL muscle hypertrophy.
Collapse
Affiliation(s)
- Asma Redwan
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Leonit Kiriaev
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sindy Kueh
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Peter Houweling
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ben D. Perry
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,Murdoch Children’s Research Institute, Melbourne, VIC, Australia,*Correspondence: Stewart I. Head,
| |
Collapse
|
10
|
Slusarczyk P, Mandal PK, Zurawska G, Niklewicz M, Chouhan K, Mahadeva R, Jończy A, Macias M, Szybinska A, Cybulska-Lubak M, Krawczyk O, Herman S, Mikula M, Serwa R, Lenartowicz M, Pokrzywa W, Mleczko-Sanecka K. Impaired iron recycling from erythrocytes is an early hallmark of aging. eLife 2023; 12:79196. [PMID: 36719185 PMCID: PMC9931393 DOI: 10.7554/elife.79196] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.
Collapse
Affiliation(s)
- Patryk Slusarczyk
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Gabriela Zurawska
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Marta Niklewicz
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Komal Chouhan
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Aneta Jończy
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Matylda Macias
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Olga Krawczyk
- Maria Sklodowska-Curie National Research Institute of OncologyWarsawPoland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian UniversityCracowPoland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of OncologyWarsawPoland
| | - Remigiusz Serwa
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda Unit, IMol Polish Academy of SciencesWarsawPoland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian UniversityCracowPoland
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | |
Collapse
|
11
|
Basak M, Das K, Mahata T, Sengar AS, Verma SK, Biswas S, Bhadra K, Stewart A, Maity B. RGS7-ATF3-Tip60 Complex Promotes Hepatic Steatosis and Fibrosis by Directly Inducing TNFα. Antioxid Redox Signal 2023; 38:137-159. [PMID: 35521658 DOI: 10.1089/ars.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: The pathophysiological mechanism(s) underlying non-alcoholic fatty liver disease (NAFLD) have yet to be fully delineated and only a single drug, peroxisome proliferator-activated receptor (PPAR) α/γ agonist saroglitazar, has been approved. Here, we sought to investigate the role of Regulator of G Protein Signaling 7 (RGS7) in hyperlipidemia-dependent hepatic dysfunction. Results: RGS7 is elevated in the livers of NAFLD patients, particularly those with severe hepatic damage, pronounced insulin resistance, and high inflammation. In the liver, RGS7 forms a unique complex with transcription factor ATF3 and histone acetyltransferase Tip60, which is implicated in NAFLD. The removal of domains is necessary for ATF3/Tip60 binding compromises RGS7-dependent reactive oxygen species generation and cell death. Hepatic RGS7 knockdown (KD) prevented ATF3/Tip60 induction, and it provided protection against fibrotic remodeling and inflammation in high-fat diet-fed mice translating to improvements in liver function. Hyperlipidemia-dependent oxidative stress and metabolic dysfunction were largely reversed in RGS7 KD mice. Interestingly, saroglitazar failed to prevent RGS7/ATF3 upregulation but it did partially restore Tip60 levels. RGS7 drives the release of particularly tumor necrosis factor α (TNFα) from isolated hepatocytes, stellate cells and its depletion reverses steatosis, oxidative stress by direct TNFα exposure. Conversely, RGS7 overexpression in the liver is sufficient to trigger oxidative stress in hepatocytes that can be mitigated via TNFα inhibition. Innovation: We discovered a novel non-canonical function for an R7RGS protein, which usually functions to regulate G protein coupled receptor (GPCR) signaling. This is the first demonstration for a functional role of RGS7 outside the retina and central nervous system. Conclusion: RGS7 represents a potential novel target for the amelioration of NAFLD. Antioxid. Redox Signal. 38, 137-159.
Collapse
Affiliation(s)
| | - Kiran Das
- Centre of Biomedical Research, Lucknow, India
| | | | | | | | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Kalyani, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida, USA
| | | |
Collapse
|
12
|
Reduction of Obesity and Insulin Resistance through Dual Targeting of VAT and BAT by a Novel Combination of Metabolic Cofactors. Int J Mol Sci 2022; 23:ijms232314923. [PMID: 36499250 PMCID: PMC9738317 DOI: 10.3390/ijms232314923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity is an epidemic disease worldwide, characterized by excessive fat accumulation associated with several metabolic perturbations, such as metabolic syndrome, insulin resistance, hypertension, and dyslipidemia. To improve this situation, a specific combination of metabolic cofactors (MC) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) was assessed as a promising treatment in a high-fat diet (HFD) mouse model. Obese animals were distributed into two groups, orally treated with the vehicle (obese + vehicle) or with the combination of metabolic cofactors (obese + MC) for 4 weeks. Body and adipose depots weights; insulin and glucose tolerance tests; indirect calorimetry; and thermography assays were performed at the end of the intervention. Histological analysis of epidydimal white adipose tissue (EWAT) and brown adipose tissue (BAT) was carried out, and the expression of key genes involved in both fat depots was characterized by qPCR. We demonstrated that MC supplementation conferred a moderate reduction of obesity and adiposity, an improvement in serum glucose and lipid metabolic parameters, an important improvement in lipid oxidation, and a decrease in adipocyte hypertrophy. Moreover, MC-treated animals presented increased adipose gene expression in EWAT related to lipolysis and fatty acid oxidation. Furthermore, MC supplementation reduced glucose intolerance and insulin resistance, with an increased expression of the glucose transporter Glut4; and decreased fat accumulation in BAT, raising non-shivering thermogenesis. This treatment based on a specific combination of metabolic cofactors mitigates important pathophysiological characteristics of obesity, representing a promising clinical approach to this metabolic disease.
Collapse
|
13
|
Morgan C, Sáez-Briones P, Barra R, Reyes A, Zepeda-Morales K, Constandil L, Ríos M, Ramírez P, Burgos H, Hernández A. Prefrontal Cortical Control of Activity in Nucleus Accumbens Core Is Weakened by High-Fat Diet and Prevented by Co-Treatment with N-Acetylcysteine: Implications for the Development of Obesity. Int J Mol Sci 2022; 23:10089. [PMID: 36077493 PMCID: PMC9456091 DOI: 10.3390/ijms231710089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
A loss of neuroplastic control on nucleus accumbens (NAc) neuronal activity exerted by the medial prefrontal cortex (mPFC) through long-term depression (LTD) is involved in triggering drug-seeking behavior and relapse on several substances of abuse due to impaired glutamate homeostasis in tripartite synapses of the nucleus accumbens (NAc) core. To test whether this maladaptive neuroplastic mechanism underlies the addiction-like behavior induced in young mice by a high-fat diet (HFD), we utilized 28-days-old male mice fed HFD ad-libitum over 2 weeks, followed by 5 days of HFD abstinence. Control groups were fed a regular diet. HFD fed mice showed increased ΔFosB levels in the NAc core region, whereas LTD triggered from the mPFC became suppressed. Interestingly, LTD suppression was prevented by an i.p. injection of 100 mg/kg N-acetylcysteine 2.5 h before inducing LTD from the mPFC. In addition, excessive weight gain due to HFD feeding was diminished by adding 2mg/mL N-acetylcysteine in drinking water. Those results show a loss of neuroplastic mPFC control over NAc core activity induced by HFD consumption in young subjects. In conclusion, ad libitum consumption of HFD can lead to neuroplastic changes an addiction-like behavior that can be prevented by N-acetylcysteine, helping to decrease the rate of excessive weight gain.
Collapse
Affiliation(s)
- Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Andrea Reyes
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Katherine Zepeda-Morales
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Miguel Ríos
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Paulina Ramírez
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA
| | - Héctor Burgos
- Escuela de Psicología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 7570008, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
14
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
15
|
Yang W, Guo R, Pi A, Ding Q, Hao L, Song Q, Chen L, Dou X, Na L, Li S. Long non-coding RNA-EN_181 potentially contributes to the protective effects of N-acetylcysteine against non-alcoholic fatty liver disease in mice. Br J Nutr 2022; 129:1-15. [PMID: 35710106 DOI: 10.1017/s0007114522001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.
Collapse
Affiliation(s)
- Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Aiwen Pi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lixin Na
- Public Health College, Shanghai University of Medicine & Health Sciences, Shanghai201318, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| |
Collapse
|
16
|
Wołosowicz M, Dajnowicz-Brzezik P, Łukaszuk B, Żebrowska E, Maciejczyk M, Zalewska A, Kasacka I, Chabowski A. Diverse impact of N-acetylcysteine or alpha-lipoic acid supplementation during high-fat diet regime on fatty acid transporters in visceral and subcutaneous adipose tissue. Adv Med Sci 2022; 67:216-228. [PMID: 35594763 DOI: 10.1016/j.advms.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Adipose tissue's (AT) structural changes accompanying obesity may alter lipid transport protein expression and, thus, the fatty acids (FAs) transport and lipid balance of the body. Metabolic abnormalities within AT contribute to the elevated production of reactive oxygen species and increased oxidative/nitrosative stress. Although compounds such as N-acetylcysteine (NAC) and α-lipoic acid (ALA), which restore redox homeostasis, may improve lipid metabolism in AT, the mechanism of action of these antioxidants on lipid metabolism in AT is still unknown. This study aimed to examine the impact of NAC and ALA on the level and FA composition of the lipid fractions, and the expression of FA transporters in the visceral and subcutaneous AT of high-fat diet-fed rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into four groups. The mRNA levels and protein expression of FA transporters were assessed using real-time PCR and Western Blot analyses. The collected samples were subjected to histological evaluation. The level of lipids (FFA, DAG, and TAG) was measured using gas-liquid chromatography. RESULTS We found that antioxidants affect FA transporter expressions at both the transcript and protein levels, and, therefore, they promote changes in AT's lipid pools. One of the most remarkable findings of our research is that different antioxidant molecules may have a varying impact on AT phenotype. CONCLUSION NAC and ALA exert different influences on AT, which is reflected in histopathological images, FA transport proteins expression patterns, or even the lipid storage capacity of adipocytes.
Collapse
Affiliation(s)
- Marta Wołosowicz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Liggett JR, Kang J, Ranjit S, Rodriguez O, Loh K, Patil D, Cui Y, Duttargi A, Nguyen S, He B, Lee Y, Oza K, Frank BS, Kwon D, Li HH, Kallakury B, Libby A, Levi M, Robson SC, Fishbein TM, Cui W, Albanese C, Khan K, Kroemer A. Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia-reperfusion injury in steatotic livers. Front Immunol 2022; 13:898799. [PMID: 36148239 PMCID: PMC9486542 DOI: 10.3389/fimmu.2022.898799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Type 1 Natural Killer T-cells (NKT1 cells) play a critical role in mediating hepatic ischemia-reperfusion injury (IRI). Although hepatic steatosis is a major risk factor for preservation type injury, how NKT cells impact this is understudied. Given NKT1 cell activation by phospholipid ligands recognized presented by CD1d, we hypothesized that NKT1 cells are key modulators of hepatic IRI because of the increased frequency of activating ligands in the setting of hepatic steatosis. We first demonstrate that IRI is exacerbated by a high-fat diet (HFD) in experimental murine models of warm partial ischemia. This is evident in the evaluation of ALT levels and Phasor-Fluorescence Lifetime (Phasor-FLIM) Imaging for glycolytic stress. Polychromatic flow cytometry identified pronounced increases in CD45+CD3+NK1.1+NKT1 cells in HFD fed mice when compared to mice fed a normal diet (ND). This observation is further extended to IRI, measuring ex vivo cytokine expression in the HFD and ND. Much higher interferon-gamma (IFN-γ) expression is noted in the HFD mice after IRI. We further tested our hypothesis by performing a lipidomic analysis of hepatic tissue and compared this to Phasor-FLIM imaging using "long lifetime species", a byproduct of lipid oxidation. There are higher levels of triacylglycerols and phospholipids in HFD mice. Since N-acetylcysteine (NAC) is able to limit hepatic steatosis, we tested how oral NAC supplementation in HFD mice impacted IRI. Interestingly, oral NAC supplementation in HFD mice results in improved hepatic enhancement using contrast-enhanced magnetic resonance imaging (MRI) compared to HFD control mice and normalization of glycolysis demonstrated by Phasor-FLIM imaging. This correlated with improved biochemical serum levels and a decrease in IFN-γ expression at a tissue level and from CD45+CD3+CD1d+ cells. Lipidomic evaluation of tissue in the HFD+NAC mice demonstrated a drastic decrease in triacylglycerol, suggesting downregulation of the PPAR-γ pathway.
Collapse
Affiliation(s)
- Jedson R Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States.,Microscopy & Imaging Shared Resource, Georgetown University, Washington, DC, United States
| | - Olga Rodriguez
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Sang Nguyen
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Britney He
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Yichien Lee
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brett S Frank
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - DongHyang Kwon
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Andrew Libby
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Simon C Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Chris Albanese
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States.,Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
18
|
Schuurman M, Wallace M, Sahi G, Barillaro M, Zhang S, Rahman M, Sawyez C, Borradaile N, Wang R. N-acetyl-L-cysteine treatment reduces beta-cell oxidative stress and pancreatic stellate cell activity in a high fat diet-induced diabetic mouse model. Front Endocrinol (Lausanne) 2022; 13:938680. [PMID: 36093092 PMCID: PMC9452715 DOI: 10.3389/fendo.2022.938680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity plays a major role in type II diabetes (T2DM) progression because it applies metabolic and oxidative stress resulting in dysfunctional beta-cells and activation of intra-islet pancreatic stellate cells (PaSCs) which cause islet fibrosis. Administration of antioxidant N-acetyl-L-cysteine (NAC) in vivo improves metabolic outcomes in diet-induced obese diabetic mice, and in vitro inhibits PaSCs activation. However, the effects of NAC on diabetic islets in vivo are unknown. This study examined if dosage and length of NAC treatment in HFD-induced diabetic mice effect metabolic outcomes associated with maintaining healthy beta-cells and quiescent PaSCs, in vivo. Male C57BL/6N mice were fed normal chow (ND) or high-fat (HFD) diet up to 30 weeks. NAC was administered in drinking water to HFD mice in preventative treatment (HFDpNAC) for 23 weeks or intervention treatment for 10 (HFDiNAC) or 18 (HFDiNAC+) weeks, respectively. HFDpNAC and HFDiNAC+, but not HFDiNAC, mice showed significantly improved glucose tolerance and insulin sensitivity. Hyperinsulinemia led by beta-cell overcompensation in HFD mice was significantly rescued in NAC treated mice. A reduction of beta-cell nuclear Pdx-1 localization in HFD mice was significantly improved in NAC treated islets along with significantly reduced beta-cell oxidative stress. HFD-induced intra-islet PaSCs activation, labeled by αSMA, was significantly diminished in NAC treated mice along with lesser intra-islet collagen deposition. This study determined that efficiency of NAC treatment is beneficial at maintaining healthy beta-cells and quiescent intra-islet PaSCs in HFD-induced obese T2DM mouse model. These findings highlight an adjuvant therapeutic potential in NAC for controlling T2DM progression in humans.
Collapse
Affiliation(s)
- Meg Schuurman
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Madison Wallace
- Children’s Health Research Institute, London, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
| | - Gurleen Sahi
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Malina Barillaro
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Siyi Zhang
- Children’s Health Research Institute, London, ON, Canada
| | - Mushfiqur Rahman
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Cynthia Sawyez
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Nica Borradaile
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Rennian Wang
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
- *Correspondence: Rennian Wang,
| |
Collapse
|
19
|
Ding Q, Guo R, Pei L, Lai S, Li J, Yin Y, Xu T, Yang W, Song Q, Han Q, Dou X, Li S. N-acetylcysteine alleviates high fat diet-induced hepatic steatosis and liver injury via regulating intestinal microecology in mice. Food Funct 2022; 13:3368-3380. [DOI: 10.1039/d1fo03952k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial...
Collapse
|
20
|
Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021; 13:327-343. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has increasingly become a serious public health problem. There is growing evidence that nonylphenol (NP) exposure may cause steatosis, but the underlying mechanism is not fully understood. Curcumin (CUR) improves NAFLD-related lipid metabolism disorders and oxidative stress, but its preventive and therapeutic effects on NP-induced steatosis have not been reported. The objective of this investigation was to determine the capability and potential mechanism of NP to induce steatosis in vitro and the intervention of curcumin. HepG2 cells were treated with 0 μM, 20 μM, 30 μM, 40 μM NP for 24 h. Lipid droplets accumulated significantly in HepG2 cells after NP treatment, and the concentration of triglyceride (TG) and total cholesterol (T-CHO) increased significantly. Simultaneously, lipogenesis gene expression was up-regulated significantly, fatty acid oxidation (FAO) gene expression was significantly down-regulated, and reactive oxygen species (ROS) were overproduced. Meanwhile, the expression of p-AMPK/AMPK in the AMPK/mTOR signaling pathway was significantly down-regulated and the expression of p-mTOR/mTOR was markedly up-regulated. However, blocking ROS production with N-acetyl-L-cysteine (NAC) can reverse these phenomena. In addition, our study found that curcumin effectively ameliorated the effects of NP-induced steatosis. Our study indicates that NP can induce steatosis in HepG2 cells, and may be implicated in inhibiting the ROS-dependent AMPK/mTOR pathway, and that curcumin ameliorates the NAFLD-like changes induced by NP in HepG2 cells.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Jinming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
21
|
Ding L, Sun W, Balaz M, He A, Klug M, Wieland S, Caiazzo R, Raverdy V, Pattou F, Lefebvre P, Lodhi IJ, Staels B, Heim M, Wolfrum C. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab 2021; 3:1648-1661. [PMID: 34903883 PMCID: PMC8688145 DOI: 10.1038/s42255-021-00489-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal β-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders.
Collapse
Affiliation(s)
- Lianggong Ding
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Anyuan He
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Manuel Klug
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Stefan Wieland
- Hepatology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Robert Caiazzo
- University Lille, CHU Lille, Institut Pasteur Lille, Inserm, UMR1190 Translational Research in Diabetes, Lille, France
| | - Violeta Raverdy
- University Lille, CHU Lille, Institut Pasteur Lille, Inserm, UMR1190 Translational Research in Diabetes, Lille, France
| | - Francois Pattou
- University Lille, CHU Lille, Institut Pasteur Lille, Inserm, UMR1190 Translational Research in Diabetes, Lille, France
| | - Philippe Lefebvre
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Markus Heim
- Hepatology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| |
Collapse
|
22
|
Antioxidants Supplementation Reduces Ceramide Synthesis Improving the Cardiac Insulin Transduction Pathway in a Rodent Model of Obesity. Nutrients 2021; 13:nu13103413. [PMID: 34684414 PMCID: PMC8541644 DOI: 10.3390/nu13103413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity-related disruption in lipid metabolism contributes to cardiovascular dysfunction. Despite numerous studies on lipid metabolism in the left ventricle, there is no data describing the influence of n-acetylcysteine (NAC) and α-lipoic acid (ALA), as glutathione precursors, on sphingolipid metabolism, and insulin resistance (IR) occurrence. The aim of our experiment was to evaluate the influence of chronic antioxidants administration on myocardial sphingolipid state and intracellular insulin signaling as a potential therapeutic strategy for obesity-related cardiovascular IR. The experiment was conducted on male Wistar rats fed a standard rodent chow or a high-fat diet with intragastric administration of NAC or ALA for eight weeks. Cardiac and plasma sphingolipid species were assessed by high-performance liquid chromatography (HPLC). The proteins expressed from sphingolipid and insulin signaling pathways were determined by Western blot. Antioxidant supplementation markedly reduced ceramide accumulation by lowering the expression of selected proteins from the sphingolipid pathway and simultaneously increased the myocardial sphingosine-1-phosphate level. Moreover, NAC and ALA augmented the expression of GLUT4 and the phosphorylation state of Akt (Ser473) and GSK3β (Ser9), which improved the intracellular insulin transduction pathway. Based on our results, we may postulate that NAC and ALA have a beneficial influence on the cardiac ceramidose under IR conditions.
Collapse
|
23
|
Mahata T, Sengar AS, Basak M, Das K, Pramanick A, Verma SK, Singh PK, Biswas S, Sarkar S, Saha S, Chatterjee S, Das M, Stewart A, Maity B. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol 2021; 46:102105. [PMID: 34534913 PMCID: PMC8446788 DOI: 10.1016/j.redox.2021.102105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
The pathophysiological mechanism(s) driving non-alcoholic fatty liver disease, the most prevalent chronic liver disease globally, have yet to be fully elucidated. Here, we identify regulator of G protein signaling 6 (RGS6), up-regulated in the livers of NAFLD patients, as a critical mediator of hepatic steatosis, fibrosis, inflammation, and cell death. Human patients with high hepatic RGS6 expression exhibited a corresponding high inflammatory burden, pronounced insulin resistance, and poor liver function. In mice, liver-specific RGS6 knockdown largely ameliorated high fat diet (HFD)-driven oxidative stress, fibrotic remodeling, inflammation, lipid deposition and cell death. RGS6 depletion allowed for maintenance of mitochondrial integrity restoring redox balance, improving fatty acid oxidation, and preventing loss of insulin receptor sensitivity in hepatocytes. RGS6 is both induced by ROS and increases ROS generation acting as a key amplification node to exacerbate oxidative stress. In liver, RGS6 forms a direct complex with ATM kinase supported by key aspartate residues in the RGS domain and is both necessary and sufficient to drive hyperlipidemia-dependent ATM phosphorylation. pATM and markers of DNA damage (γH2AX) were also elevated in livers from NAFLD patients particularly in samples with high RGS6 protein content. Unsurprisingly, RGS6 knockdown prevented ATM phosphorylation in livers from HFD-fed mice. Further, RGS6 mutants lacking the capacity for ATM binding fail to facilitate palmitic acid-dependent hepatocyte apoptosis underscoring the importance of the RGS6-ATM complex in hyperlipidemia-dependent cell death. Inhibition of RGS6, then, may provide a viable means to prevent or reverse liver damage by mitigating oxidative liver damage.
Collapse
Affiliation(s)
- Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Abhishek Singh Sengar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Arnab Pramanick
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sumit Kumar Verma
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Praveen Kumar Singh
- Department of Surgery, Millers School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | - Subhasish Sarkar
- Department of Surgery, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University and Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai, 600044, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
24
|
Abdelhaffez AS, Abd El-Aziz EA, Tohamy MB, Ahmed AM. N-acetyl cysteine can blunt metabolic and cardiovascular effects via down-regulation of cardiotrophin-1 in rat model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021:1-16. [PMID: 33507837 DOI: 10.1080/13813455.2021.1876735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the ability of N-acetyl cysteine (NAC) to alleviate the metabolic disorders in fructose-induced metabolic syndrome (MS) in male rats and to examine its protective effect on aortic and cardiac tissues via its influence on cardiotrophin-1 (CT-1) expression. NAC (20 mg/kg b.w./day) was administered to fructose induced MS animals for 12 weeks. Chronic fructose consumption (20% w/v) increased body weight gain, relative heart weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), insulin resistance (IR), and associated with metabolic alterations. Histological and immunohistochemical examination revealed aortic stiffness and myocardial degeneration and fibrosis together with increased CT-1 expression. Treatment with NAC improved IR, SBP, DBP, and mitigated dyslipidaemia and oxidative stress. Additionally, NAC down-regulated CT-1 expression in the heart and aorta. These findings demonstrated the protective effect of NAC against aortic and myocardial degeneration and fibrosis through down-regulation of CT-1 in fructose induced MS animal model.
Collapse
Affiliation(s)
- Azza S Abdelhaffez
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ebtihal A Abd El-Aziz
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Maha B Tohamy
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Faculty of Medicine, Department of Pathology, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
26
|
Chunchai T, Keawtep P, Arinno A, Saiyasit N, Prus D, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. A combination of an antioxidant with a prebiotic exerts greater efficacy than either as a monotherapy on cognitive improvement in castrated-obese male rats. Metab Brain Dis 2020; 35:1263-1278. [PMID: 32676884 DOI: 10.1007/s11011-020-00603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
Previous studies by ourselves and others have demonstrated that both obesity and testosterone deprivation have been related to cognitive decline. We have also shown that a prebiotic and n-acetyl cysteine (NAC) improved cognitive dysfunction in obese rats and castrated-male rats. However, the effects of NAC, a prebiotic (inulin), and a combination of the two on cognition in castrated-obese rats has never been investigated. The hypothesis was that NAC and inulin attenuated cognitive decline in castrated-obese rats by improving gut dysbiosis, and decreasing oxidative stress, glial activation and apoptosis. Male Wistar rats (n = 36) were fed with either a normal diet (ND: n = 6) or a high-fat diet (HFD: n = 30) for twenty-eight weeks. The resultant obese rats had a bilateral orchiectomy (ORX) and were randomly divided into five subgroups (n = 6/ subgroup). Each subgroup was treated with one of five therapies: a vehicle; testosterone replacement (2 mg/kg/day); NAC (100 mg/kg); inulin (10%, w/w), or a combination of the NAC and inulin for four weeks. The results demonstrated that castrated-obese rats developed gut dysbiosis, metabolic disturbance, brain pathologies, and cognitive decline. All of the pathological conditions in the brain were ameliorated to an equal extent by testosterone replacement, NAC, and inulin supplementation. Interestingly, a combination of NAC and inulin had the greatest beneficial effect on cognitive function by synergistically reducing hippocampal inflammation and ameliorating glial dysmorphology. These findings suggest that a combination of NAC and inulin may confer the greatest benefits in improving cognitive function in castrated-obese male rats.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dillon Prus
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
27
|
Machado RCBR, Vargas HO, Baracat MM, Urbano MR, Verri WA, Porcu M, Nunes SOV. N-acetylcysteine as an adjunctive treatment for smoking cessation: a randomized clinical trial. ACTA ACUST UNITED AC 2020; 42:519-526. [PMID: 32725102 PMCID: PMC7524413 DOI: 10.1590/1516-4446-2019-0753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/21/2020] [Indexed: 02/05/2023]
Abstract
Objective: This randomized controlled trial examined the efficacy and safety of N-acetylcysteine as an adjunctive treatment for smoking cessation. Methods: Heavy smokers were recruited from smoking cessation treatment for this 12- week randomized controlled trial. Eligible tobacco use disorder outpatients (n=34) were randomized to N-acetylcysteine or placebo plus first-line treatment. Abstinence was verified by exhaled carbon monoxide (COexh). The assessment scales included the Fagerström Test for Nicotine Dependence, the Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, the Minnesota Nicotine Withdrawal Scale, and the Medication Adherence Rating Scale. We also assessed anthropometrics, blood pressure, lipid profile, and soluble tumor necrosis factor receptor (sTNF-R) levels 1 and 2. Results: First-line treatment for smoking cessation plus adjunctive N-acetylcysteine or placebo significantly reduced COexh (p < 0.01). In the N-acetylcysteine group, no significant changes were found in nicotine withdrawal symptoms, depressive and anxiety symptoms, anthropometric measures, blood pressure, or glucose compared to placebo. However, there was a significant reduction in sTNF-R2 levels between baseline and week 12 in the N-acetylcysteine group. Conclusions: These findings highlight the need to associate N-acetylcysteine with first-line treatment for smoking cessation, since combined treatment may affect inflammation and metabolism components. Clinical trial registration: NCT02420418
Collapse
Affiliation(s)
- Regina C B R Machado
- Centro de Referência de Abordagem e Tratamento do Tabagismo, Hospital Universitário, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil
| | - Heber O Vargas
- Centro de Referência de Abordagem e Tratamento do Tabagismo, Hospital Universitário, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil.,Departamento de Medicina Clínica, Unidade de Psiquiatria, Hospital Universitário, CCS, UEL, Londrina, PR, Brazil
| | - Marcela M Baracat
- Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil
| | - Mariana R Urbano
- Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil.,Departamento de Estatística, Centro de Ciências Exatas, UEL, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil.,Departamento de Patologia, Centro de Ciências Biológicas, UEL, Londrina, PR, Brazil
| | - Mauro Porcu
- Centro de Referência de Abordagem e Tratamento do Tabagismo, Hospital Universitário, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil
| | - Sandra O V Nunes
- Centro de Referência de Abordagem e Tratamento do Tabagismo, Hospital Universitário, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde (CCS), UEL, Londrina, PR, Brazil.,Departamento de Medicina Clínica, Unidade de Psiquiatria, Hospital Universitário, CCS, UEL, Londrina, PR, Brazil
| |
Collapse
|
28
|
Ghafarizadeh A, Malmir M, Naderi Noreini S, Faraji T. Antioxidant effects of N-acetylcysteine on the male reproductive system: A systematic review. Andrologia 2020; 53:e13898. [PMID: 33167060 DOI: 10.1111/and.13898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to evaluate the effect of N-acetyl cysteine on the male reproductive system and consensus and classification of data found from previous studies. It is undeniable that N-acetyl cysteine as a powerful antioxidant compound can medicate many diseases such as cardiovascular, kidney, liver and reproductive system disorders. With the increasing environmental pollution that has a direct adverse effect on male fertility, the use of this compound is able to positively function on human fertility health. In this study, we have been collected the main data of scientific articles (1994-2020) about N-acetyl cysteine effects. By searching in the scientific databases of PubMed, Google Scholar, Science Direct, Wiley and Web of Science, related articles were extracted. As a result, all observations have confirmed that N-acetyl cysteine can improve and normalise the spermatogenesis in the male reproduction system.
Collapse
Affiliation(s)
| | - Mahdi Malmir
- Department of Midwifery, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | | | - Tayebeh Faraji
- Department of Midwifery, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| |
Collapse
|
29
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
30
|
Charron MJ, Williams L, Seki Y, Du XQ, Chaurasia B, Saghatelian A, Summers SA, Katz EB, Vuguin PM, Reznik SE. Antioxidant Effects of N-Acetylcysteine Prevent Programmed Metabolic Disease in Mice. Diabetes 2020; 69:1650-1661. [PMID: 32444367 PMCID: PMC7372077 DOI: 10.2337/db19-1129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
An adverse maternal in utero and lactation environment can program offspring for increased risk for metabolic disease. The aim of this study was to determine whether N-acetylcysteine (NAC), an anti-inflammatory antioxidant, attenuates programmed susceptibility to obesity and insulin resistance in offspring of mothers on a high-fat diet (HFD) during pregnancy. CD1 female mice were acutely fed a standard breeding chow or HFD. NAC was added to the drinking water (1 g/kg) of the treatment cohorts from embryonic day 0.5 until the end of lactation. NAC treatment normalized HFD-induced maternal weight gain and oxidative stress, improved the maternal lipidome, and prevented maternal leptin resistance. These favorable changes in the in utero environment normalized postnatal growth, decreased white adipose tissue (WAT) and hepatic fat, improved glucose and insulin tolerance and antioxidant capacity, reduced leptin and insulin, and increased adiponectin in HFD offspring. The lifelong metabolic improvements in the offspring were accompanied by reductions in proinflammatory gene expression in liver and WAT and increased thermogenic gene expression in brown adipose tissue. These results, for the first time, provide a mechanistic rationale for how NAC can prevent the onset of metabolic disease in the offspring of mothers who consume a typical Western HFD.
Collapse
Affiliation(s)
- Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
- Department of Medicine and Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY
| | - Lyda Williams
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT
| | - Ellen B Katz
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Patricia M Vuguin
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Sandra E Reznik
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY
- Department of Pathology, Albert Einstein College of Medicine, New York, NY
- Department of Pharmaceutical Sciences, St. John's University, New York, NY
| |
Collapse
|
31
|
N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice. Int J Mol Sci 2020; 21:ijms21124293. [PMID: 32560255 PMCID: PMC7352960 DOI: 10.3390/ijms21124293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Dysferlinopathy is an autosomal recessive muscular dystrophy resulting from mutations in the dysferlin gene. Absence of dysferlin in the sarcolemma and progressive muscle wasting are hallmarks of this disease. Signs of oxidative stress have been observed in skeletal muscles of dysferlinopathy patients, as well as in dysferlin-deficient mice. However, the contribution of the redox imbalance to this pathology and the efficacy of antioxidant therapy remain unclear. Here, we evaluated the effect of 10 weeks diet supplementation with the antioxidant agent N-acetylcysteine (NAC, 1%) on measurements of oxidative damage, antioxidant enzymes, grip strength and body mass in 6 months-old dysferlin-deficient Bla/J mice and wild-type (WT) C57 BL/6 mice. We found that quadriceps and gastrocnemius muscles of Bla/J mice exhibit high levels of lipid peroxidation, protein carbonyls and superoxide dismutase and catalase activities, which were significantly reduced by NAC supplementation. By using the Kondziela’s inverted screen test, we further demonstrated that NAC improved grip strength in dysferlin deficient animals, as compared with non-treated Bla/J mice, without affecting body mass. Together, these results indicate that this antioxidant agent improves skeletal muscle oxidative balance, as well as muscle strength and/or resistance to fatigue in dysferlin-deficient animals.
Collapse
|
32
|
Zhou H, Sun Y, Wang Q, Li Z, Zhong W, Wang X, Dai X, Kong L. N-acetylcysteine alleviates liver injury by suppressing macrophage-mediated inflammatory response post microwave ablation. Int Immunopharmacol 2020; 85:106580. [PMID: 32438077 DOI: 10.1016/j.intimp.2020.106580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
OBJECT To investigate N-acetyl-cysteine (NAC) would able to alleviate liver injury and systemic inflammatory response caused by microwave ablation (MWA) in rats. MATERIALS AND METHODS Male Sprague-Dawley rats weighing 150-200 g were randomly divided into sham group (only anesthesia and laparotomy except MWA but with intraperitoneal PBS or NAC solution injection according to different situations), control group (intraperitoneal PBS injection for comparation 2 h prior to MWA), and NAC-treated group (intraperitoneal N-acetyl-cysteine (300 mg/kg) injection 2 h prior to MWA). Experimental rats were sacrificed at 4 h following operation in line with the liver injury severity curve. Liver tissue and serum samples were collected for determination of pathology, apoptosis, macrophages contents and protein expression. RESULTS The elevated serum level of liver enzymes, Myeloperoxidase (MPO) and inflammatory factors (TNF-α and CXCL1) in MWA-treated rats revealed injurious and pro- inflammatory effect of MVA. Macrophages aggregation was detected in MWA exposure rats similarly. and NAC pre-conditioning mitigate liver damage and hepatocyte apoptosis, besides macrophages accumulation and following inflammatory response in liver tissue. CONCLUSION Our results demonstrated that N-acetyl-cysteine application alleviate macrophages aggregation and inflammatory response in liver suffering microwave ablation, and mitigating liver injury and cell apoptosis.
Collapse
Affiliation(s)
- Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qingyuan Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weizhe Zhong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinzheng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
33
|
Rodrigues MS, Pieri BLDS, Silveira GDB, Zaccaron RP, Venturini LM, Comin VH, Luiz KD, Silveira PCL. Reduction of oxidative stress improves insulin signaling in cardiac tissue of obese mice. EINSTEIN-SAO PAULO 2020; 18:eAO5022. [PMID: 32215468 PMCID: PMC7069732 DOI: 10.31744/einstein_journal/2020ao5022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023] Open
Abstract
Objective To evaluate the effects of oxidative stress on insulin signaling in cardiac tissue of obese mice. Methods Thirty Swiss mice were equally divided (n=10) into three groups: Control Group, Obese Group, and Obese Group Treated with N-acetylcysteine. After obesity and insulin resistance were established, the obese mice were treated with N-acetylcysteine at a dose of 50mg/kg daily for 15 days via oral gavage. Results Higher blood glucose levels and nitrite and carbonyl contents, and lower protein levels of glutathione peroxidase and phosphorylated protein kinase B were observed in the obese group when compared with their respective control. On the other hand, treatment with N-acetylcysteine was effective in reducing blood glucose levels and nitrite and carbonyl contents, and significantly increased protein levels of glutathione peroxidase and phosphorylated protein kinase B compared to the Obese Group. Conclusion Obesity and/or a high-lipid diet may result in oxidative stress and insulin resistance in the heart tissue of obese mice, and the use of N-acetylcysteine as a methodological and therapeutic strategy suggested there is a relation between them.
Collapse
Affiliation(s)
| | | | | | | | | | - Vitor Hugo Comin
- Universidade do Extremo Sul Catarinense , Criciúma , SC , Brazil
| | | | | |
Collapse
|
34
|
Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys 2019; 680:108227. [PMID: 31838118 DOI: 10.1016/j.abb.2019.108227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Adequate dietary intake has a crucial effect on brain health. High fat diet (HFD) rich in saturated fatty acids is linked to obesity and its complications as neurodegeneration via inducing oxidative stress and inflammation. The present study aimed to evaluate the effect of HFD on cerebral cortex in addition to shedding the light on the modulatory role of N-acetylcytsteine (NAC) and its possible underlying biochemical and molecular mechanisms. Twenty eight male Wistar rats were equally and randomly divided into four groups. Group III, and group IV were fed on HFD (45% kcal from fat) for 10 weeks. Group II and group IV were treated with NAC in a dose of 150 mg/kg body weight via intraperitoneal route. Body weight, blood glucose, serum insulin, insulin resistance index, cerebral cortex redox and inflammatory status were evaluated. Cerebral cortex receptor-interacting serine/threonine-protein kinase3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), nod like receptor protein 3 (NLRP3), interleukin (IL)-18 levels were determined by immunoassay. In addition, apoptosis-associated speck-like proteins (ASC) expression by real-time PCR; inducible nitric oxide synthase (iNOS), glial fibrillary activating protein (GFAP) and matrix metalloproteinase-9 (MMP-9) expression by immunohistochemistry were evaluated. NAC supplementation protected against HFD-induced gain of weights, hyperglycemia, and insulin resistance. Furthermore, NAC improved redox and inflammatory status; decreased levels of RIPK3, MLKL, NLRP3, IL-18; down-regulated ASC, iNOS, GFAP and MMP-9 expression; and decreased myeloperoxidase activity in cerebral cortex. NAC could protect against HFD-induced neurodegeneration via improving glycemic status and peripheral insulin resistance, disrupting oxidative stress/neuroinflammation/necroptosis/inflammasome activation axis in cerebral cortex. NAC may represent a promising strategy for conserving brain health against metabolic diseases-induced neurodegeneration.
Collapse
Affiliation(s)
- Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt.
| | - Marwa A Ibrahim
- Department of Histology & Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | - Shahinaz M Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Zeinab A Zalat
- Department of Clinical Pharmacy, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | - Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
35
|
Townsend LK, Weber AJ, Barbeau PA, Holloway GP, Wright DC. Reactive oxygen species-dependent regulation of pyruvate dehydrogenase kinase-4 in white adipose tissue. Am J Physiol Cell Physiol 2019; 318:C137-C149. [PMID: 31721616 DOI: 10.1152/ajpcell.00313.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules mediating the exercise-induced adaptations in skeletal muscle. Acute exercise also drives the expression of genes involved in reesterification and glyceroneogenesis in white adipose tissue (WAT), but whether ROS play any role in this effect has not been explored. We speculated that exercise-induced ROS would regulate acute exercise-induced responses in WAT. To address this question, we utilized various models to alter redox signaling in WAT. We examined basal and exercise-induced gene expression in a genetically modified mouse model of reduced mitochondrial ROS emission [mitochondrial catalase overexpression (MCAT)]. Additionally, H2O2, various antioxidants, and the β3-adrenergic receptor agonist CL316243 were used to assess gene expression in white adipose tissue culture. MCAT mice have reduced ROS emission from WAT, enlarged WAT depots and adipocytes, and greater pyruvate dehydrogenase kinase-4 (Pdk4) gene expression. In WAT culture, H2O2 reduced glyceroneogenic gene expression. In wild-type mice, acute exercise induced dramatic but transient increases in Pdk4 and phosphoenolpyruvate carboxykinase (Pck1) mRNA in both subcutaneous inguinal WAT and epididymal WAT depots, which was almost completely absent in MCAT mice. Furthermore, the induction of Pdk4 and Pck1 in WAT culture by CL316243 was markedly reduced in the presence of antioxidants N-acetyl-cysteine or vitamin E. Genetic and nutritional approaches that attenuate redox signaling prevent exercise- and β-agonist-induced gene expression within WAT. Combined, these data suggest that ROS represent important mediators of gene expression within WAT.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alyssa J Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
36
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
37
|
Kanikarla-Marie P, Micinski D, Jain SK. Hyperglycemia (high-glucose) decreases L-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Mol Cell Biochem 2019; 459:151-156. [PMID: 31172369 DOI: 10.1007/s11010-019-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
L-Cysteine (LC) is an essential precursor of GSH biosynthesis. GSH is a major physiological antioxidant, and its depletion increases oxidative stress. Diabetes is associated with lower blood levels of LC and GSH. The mechanisms leading to a decrease in LC in diabetes are not entirely known. This study reports a significant decrease in LC in human monocytes exposed to high glucose (HG) concentrations as well as in the blood of type 2 diabetic rats. Thus, a significant decrease in the level of LC in response to exposure to HG supports the assertion that uncontrolled hyperglycemia contributes to a reduction of blood levels of LC and GSH seen in diabetic patients. Increased requirement of LC to replace GSH needed to scavenge excess ROS generated by hyperglycemia can result in lower levels of LC and GSH. Animal and human studies report that LC supplementation improves GSH biosynthesis and is beneficial in lowering oxidative stress and insulin resistance. This suggests that hyperglycemia has a direct role in the impairment of LC and GSH homeostasis in diabetes.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - David Micinski
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
38
|
Kahraman C, Alver A, Bodur A, İnce Akça İ, Us Altay D, Canpolat S. Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2019. [DOI: 10.30934/kusbed.498189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Botta A, Liu Y, Wannaiampikul S, Tungtrongchitr R, Dadson K, Park TS, Sweeney G. An adiponectin-S1P axis protects against lipid induced insulin resistance and cardiomyocyte cell death via reduction of oxidative stress. Nutr Metab (Lond) 2019; 16:14. [PMID: 30828353 PMCID: PMC6385438 DOI: 10.1186/s12986-019-0342-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adiponectin exerts several beneficial cardiovascular effects, however their specific molecular mechanisms require additional understanding. This study investigated the mechanisms of adiponectin action in the heart during high fat diet (HFD) feeding or in palmitate (PA) treated H9c2 cardiomyoblasts. METHODS 6-week-old male adiponectin knock out (Ad-KO) mice were fed chow or 60% HFD for 6 weeks then received saline or recombinant adiponectin (3μg/g body weight) for an additional 2 weeks. After acute insulin stimulation (4 U/kg), tissue and serum samples were collected for analysis. H9c2 cardiomyocytes were treated ±0.1 mM PA, the adiponectin receptor agonist AdipoRon, or the antioxidant MnTBAP then assays to analyze reactive oxygen species (ROS) production and cell death were conducted. To specifically determine the mechanistic role of S1P, gain and loss of function studies were conducted with adding S1P to cells or the inhibitors THI and SKI-II, respectively. RESULTS HFD feeding induced cardiac insulin resistance in Ad-KO mice, which was reversed following replenishment of normal circulating adiponectin levels. In addition, myocardial total triglyceride was elevated by HFD and lipidomic analysis showed increased levels of ceramides and sphingosine-1-phosphate (S1P), with only the latter being corrected by adiponectin administration. Similarly, treatment of H9C2 cardiomyoblasts with PA led to a significant increase of intracellular S1P but not in conditioned media whereas AdipoRon significantly increased S1P production and secretion from cells. AdipoRon or the antioxidant MnTBAP significantly reduced PA-induced cell death. Gain and loss of function studies suggested S1P secretion and autocrine receptor activation mediated the effect of AdipoRon to attenuate PA-induced ROS production and cell death. CONCLUSION Our data establish adiponectin signaling-mediated increase in S1P secretion as a mechanism via which HFD or PA induced cardiomyocyte lipotoxicity, leading to insulin resistance and cell death, is attenuated.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Ying Liu
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Sivaporn Wannaiampikul
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, South Korea
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
40
|
Raffaele M, Barbagallo I, Licari M, Carota G, Sferrazzo G, Spampinato M, Sorrenti V, Vanella L. N-Acetylcysteine (NAC) Ameliorates Lipid-Related Metabolic Dysfunction in Bone Marrow Stromal Cells-Derived Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5310961. [PMID: 30416532 PMCID: PMC6207898 DOI: 10.1155/2018/5310961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Recent experimental data suggest that fatty acids and lipotoxicity could play a role in the initiation and evolution of metabolic bone diseases such as osteoporosis. A functional bone marrow adipose tissue (BMAT) may provide support to surrounding cells and tissues or may serve as a lipid reservoir that protects skeletal osteoblasts from lipotoxicity. The present study examined the effect of N-acetylcysteine (NAC), a powerful antioxidant and precursor of glutathione, commonly used to treat chronic obstructive pulmonary disease, on triglycerides accumulation in bone marrow stromal cells-derived adipocytes. Quantification of Oil Red O stained cells showed that lipid droplets decreased following NAC treatment. Additionally, exposure of bone marrow stromal cells (HS-5) to NAC increased adiponectin, PPARγ, HO-1, and SIRT-1 and increased beta-oxidation markers such as PPARα and PPARδ mRNA levels. As there is now substantial interest in alternative medicine, the observed therapeutic value of NAC should be taken into consideration in diabetic patients.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mariarita Spampinato
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
41
|
Morley KC, Baillie A, Van Den Brink W, Chitty KE, Brady K, Back SE, Seth D, Sutherland G, Leggio L, Haber PS. N-acetyl cysteine in the treatment of alcohol use disorder in patients with liver disease: Rationale for further research. Expert Opin Investig Drugs 2018; 27:667-675. [PMID: 30019966 DOI: 10.1080/13543784.2018.1501471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Alcoholic liver disease (ALD) is the leading cause of alcohol-related death and one of the most common forms of liver disease. Abstinence from alcohol is crucial to reducing morbidity and mortality associated with the disease. However, there are few pharmacotherapies for alcohol use disorder suitable for those with significant liver disease. AREAS COVERED This paper presents a rationale for investigating the use of N-acetyl cysteine (NAC) to promote abstinence or reduce heavy alcohol consumption for patients with an alcohol use disorder, particularly in the presence of liver disease. NAC is an antioxidant with glutamatergic modulating and anti-inflammatory properties. Evidence is emerging that oxidative stress, neuro-inflammation and dysregulation of glutamatergic neurotransmission play a key role in alcohol use disorder. Similarly, oxidative stress is known to contribute to ALD. We outline the studies that have investigated NAC to reduce alcohol consumption including preclinical and clinical studies. We also review the evidence for NAC in other addictions as well as psychiatric and physical comorbidities associated with alcohol use disorders. EXPERT OPINION NAC is low cost, well-tolerated and could have promise for the treatment of alcohol use disorder in the presence of liver disease. Clinical trials directly examining efficacy in this population are required.
Collapse
Affiliation(s)
- Kirsten C Morley
- a University of Sydney, Faculty of Medicine and Health, Central Clinical School , NHMRC Centre of Research Excellence in Mental Health and Substance Use , Sydney , NSW , Australia
| | - Andrew Baillie
- b NHMRC Centre of Research Excellence in Mental Health and Substance Use, Faculty of Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Wim Van Den Brink
- c Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Kate E Chitty
- d Faculty of Medicine and Health, Discipline of Pharmacology , University of Sydney, Clinical Pharmacology and Toxicology Research Group , Sydney , NSW , Australia
| | - Kathleen Brady
- e South Carolina Clinical and Translational Research Centre , Medical University of South Carolina , Charleston , United States of America
| | - Sudie E Back
- f Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston
| | - Devanshi Seth
- g The University of Sydney, Centenary Institute , Camperdown , NSW , Australia
| | - Greg Sutherland
- h Faculty of Medicine and Health, Discipline of Pathology , University of Sydney , Sydney , NSW , Australia
| | - Lorenzo Leggio
- i Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse , National Institutes of Health , Bethesda , MD , USA.,j Center for Alcohol and Addiction Studies , Brown University , Providence , RI , USA
| | - Paul S Haber
- a University of Sydney, Faculty of Medicine and Health, Central Clinical School , NHMRC Centre of Research Excellence in Mental Health and Substance Use , Sydney , NSW , Australia.,k Drug Health Services , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| |
Collapse
|
42
|
Villagarcía HG, Castro MC, Arbelaez LG, Schinella G, Massa ML, Spinedi E, Francini F. N-Acetyl-l-Cysteine treatment efficiently prevented pre-diabetes and inflamed-dysmetabolic liver development in hypothalamic obese rats. Life Sci 2018. [PMID: 29522769 DOI: 10.1016/j.lfs.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIM Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. METHODOLOGY We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). KEY FINDINGS Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. SIGNIFICANCE Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS.
Collapse
Affiliation(s)
| | - María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | | | - Guillermo Schinella
- Cátedra Farmacología Básica, Facultad de Ciencias Médicas UNLP and CICPBA, 1900 La Plata, Argentina
| | - María Laura Massa
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | - Eduardo Spinedi
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina
| | - Flavio Francini
- CENEXA (Centro de Endocrinología Experimental y Aplicada; UNLP-CONICET-FCM), CEAS-CICPBA, Argentina.
| |
Collapse
|
43
|
O'Halloran KD, Murphy KH, Burns DP. Antioxidant therapy for muscular dystrophy: caveat lector! J Physiol 2018; 596:737-738. [PMID: 29277904 DOI: 10.1113/jp275598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Kevin H Murphy
- Department of Physiology, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Song JJ, Wang Q, Du M, Chen B, Mao XY. Peptide IPPKKNQDKTE ameliorates insulin resistance in HepG2 cells via blocking ROS-mediated MAPK signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|