1
|
Du Y, Li J, Chen S, Xia Y, Jin K. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. PEST MANAGEMENT SCIENCE 2024; 80:820-836. [PMID: 37794279 DOI: 10.1002/ps.7812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The fungal genera Metarhizium contain many important multiple species that are used as biocontrol agents and as model organisms for exploring insect-fungal interactions. Metarhizium spp. exhibit different traits of pathogenicity, suggesting that the pathogenesis can be quite distinctive. However, the underlying differences in their pathogenesis remain poorly understood. RESULTS Pathogenicity analysis showed that Metarhizium anisopliae (strain CQMa421) displayed higher virulence against oriental migratory locusts, Locusta migratoria manilensis (Meyen), than the acridid-specific specie Metarhizium acridum (strain CQMa102). Relative to M. acridum, M. anisopliae possessed a higher conidial hydrophobicity, increased ability to penetrate the host, accelerated growth under hypoxia and enhanced ability for the utilization of different carbon sources. Different distributions of carbohydrate epitopes at cell wall surface of M. anisopliae might also contribute to successful evasion of host immune defenses. Comparative genomics showed that M. anisopliae has 98 more virulence-related secreted proteins (133) than M. acridum (35), which can be functionally classified as hydrolases, virulence effectors, cell wall degradation and stress tolerance-related proteins, and helpful to the cuticle penetration and host internal environment adaption. In addition, differences in genomic clusters specifically related to secondary metabolites, including the clusters of Indole-NRPS hybrid, T1PKS-NRPS like hybrid, Betalactone, Fungal-Ripp and NRPS-Terpene hybrid, may lead to differences in core virulence-related secondary metabolite genes in M. acridum (18) and M. anisopliae (36). CONCLUSION The comparative study provided new insights into the different infection strategies between M. anisopliae and M. acridum, and further facilitate the identification of virulence-related genes for the improvement of mycoinsecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Jun Li
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Shaopeng Chen
- Tobacco Leaf Branch of Chongqing Tobacco Company of China Tobacco Corporation, Chongqing, P. R. China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| | - Kai Jin
- School of Life Sciences, Chongqing University, Chongqing, P. R. China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, P. R. China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, P. R. China
| |
Collapse
|
2
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
3
|
Zhang Y, Wang X, Wang X, Wang Y, Liu J, Wang S, Li W, Jin Y, Akhter D, Chen J, Hu J, Pan R. Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1180647. [PMID: 37360717 PMCID: PMC10288848 DOI: 10.3389/fpls.2023.1180647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary β-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.
Collapse
Affiliation(s)
- Yuchan Zhang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| | - Xiaowen Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yukang Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jun Liu
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Saisai Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weiran Li
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yijun Jin
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Delara Akhter
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiarong Chen
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, United States
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
4
|
Sun N, Hu J, Li C, Wang X, Gai Y, Jiang X. Fusion gene 4CL-CCR promotes lignification in tobacco suspension cells. PLANT CELL REPORTS 2023; 42:939-952. [PMID: 36964306 DOI: 10.1007/s00299-023-03002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE The fusion gene 4CL-CCR promotes lignification and activates lignin-related MYB expression in tobacco but inhibits auxin-related gene expression and hinders the auxin absorption of cells. Given the importance of lignin polymers in plant growth and their industrial value, it is necessary to investigate how plants synthesize monolignols and regulate the level of lignin in cell walls. In our previous study, expression of the Populus tomentosa fusion gene 4CL-CCR significantly promoted the production of 4-hydroxycinnamyl alcohols. However, the function of 4CL-CCR in organisms remains poorly understood. In this study, the fusion gene 4CL-CCR was heterologously expressed in tobacco suspension cells. We found that the transgenic suspension cells exhibited lignification earlier. Furthermore, 4CL-CCR significantly reduced the content of phenolic acids and increased the content of aldehydes in the medium, which led to an increase in lignin deposition. Moreover, transcriptome results showed that the genes related to lignin synthesis, such as PAL, 4CL, CCoAOMT and CAD, were significantly upregulated in the 4CL-CCR group. The expression of genes related to auxin, such as ARF3, ARF5 and ARF6, was significantly downregulated. The downregulation of auxin affected the expression of transcription factor MYBs. We hypothesize that the upregulated genes MYB306 and MYB315 are involved in the regulation of cell morphogenesis and lignin biosynthesis and eventually enhance lignification in tobacco suspension cells. Our findings provide insight into the function of 4CL-CCR in lignification and how secondary cell walls are formed in plants.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Jiaqi Hu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Can Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Xuechun Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology , Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| |
Collapse
|
5
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. The Shared Proteome of the Apomictic Fern Dryopteris affinis ssp. affinis and Its Sexual Relative Dryopteris oreades. Int J Mol Sci 2022; 23:ijms232214027. [PMID: 36430514 PMCID: PMC9693225 DOI: 10.3390/ijms232214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3'-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein-protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-104-811
| |
Collapse
|
6
|
Wan S, Qin Z, Jiang X, Yang M, Chen W, Wang Y, Ni F, Guan Y, Guan R. Identification and Fine Mapping of a Locus Related to Leaf Up-Curling Trait (Bnuc3) in Brassica napus. Int J Mol Sci 2021; 22:ijms222111693. [PMID: 34769127 PMCID: PMC8583815 DOI: 10.3390/ijms222111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022] Open
Abstract
Leaf trait is an important target trait in crop breeding programs. Moderate leaf curling may be a help for improving crop yield by minimizing the shadowing by leaves. Mining locus for leaf curling trait is of significance for plant genetics and breeding researches. The present study identified a novel rapeseed accession with up-curling leaf, analyzed the up-curling leaf trait inheritance, and fine mapped the locus for up-curling leaf property (Bnuc3) in Brassica napus. Genetic analysis revealed that the up-curling leaf trait is controlled by a single dominant locus, named BnUC3. We performed an association study of BnUC3 with single nucleotide polymorphism (SNP) markers using a backcross population derived from the homozygous up-curling leaf line NJAU-M1295 and the canola variety ‘zhongshuang11’ with typical flat leaves, and mapped the BnUC3 locus in a 1.92 Mb interval of chromosome A02 of B. napus. To further map BnUC3, 232 simple sequence repeat (SSR) primers and four pairs of Insertion/Deletion (InDel) primers were developed for the mapping interval. Among them, five SSR markers and two InDel markers were polymorphic. By these markers, the mapping interval was narrowed to 92.0 kb using another F2 population. This fine mapping interval has 11 annotated genes among which BnaA02T0157000ZS were inferred to be candidate casual genes for up-curling leaf based on the cloned sequence analysis, gene functionality, and gene expression analysis. The current study laid a foundational basis for further elucidating the mechanism of BnUC3 and breeding of variety with up-curling leaf.
Collapse
Affiliation(s)
- Shubei Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Zongping Qin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Xiaomei Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Mao Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Wenjing Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Yangming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Fei Ni
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Yijian Guan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
| | - Rongzhan Guan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (Z.Q.); (X.J.); (M.Y.); (W.C.); (Y.W.); (F.N.); (Y.G.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
7
|
Jawahir V, Zolman BK. Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion. PLANT PHYSIOLOGY 2021; 185:120-136. [PMID: 33631795 PMCID: PMC8133310 DOI: 10.1093/plphys/kiaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Indole-3-butyric acid (IBA) is an endogenous storage auxin important for maintaining appropriate indole-3-acetic acid (IAA) levels, thereby influencingprimary root elongation and lateral root development. IBA is metabolized into free IAA in peroxisomes in a multistep process similar to fatty acid β-oxidation. We identified LONG CHAIN ACYL-COA SYNTHETASE 4 (LACS4) in a screen for enhanced IBA resistance in primary root elongation in Arabidopsis thaliana. LACSs activate substrates by catalyzing the addition of CoA, the necessary first step for fatty acids to participate in β-oxidation or other metabolic pathways. Here, we describe the novel role of LACS4 in hormone metabolism and postulate that LACS4 catalyzes the addition of CoA onto IBA, the first step in its β-oxidation. lacs4 is resistant to the effects of IBA in primary root elongation and dark-grown hypocotyl elongation, and has reduced lateral root density. lacs6 also is resistant to IBA, although both lacs4 and lacs6 remain sensitive to IAA in primary root elongation, demonstrating that auxin responses are intact. LACS4 has in vitro enzymatic activity on IBA, but not IAA or IAA conjugates, and disruption of LACS4 activity reduces the amount of IBA-derived IAA in planta. We conclude that, in addition to activity on fatty acids, LACS4 and LACS6 also catalyze the addition of CoA onto IBA, the first step in IBA metabolism and a necessary step in generating IBA-derived IAA.
Collapse
Affiliation(s)
- Vanessica Jawahir
- Department of Biology, University of Missouri – St Louis, St Louis, Missouri 63121, USA
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri – St Louis, St Louis, Missouri 63121, USA
| |
Collapse
|
8
|
Wang DD, Li P, Chen QY, Chen XY, Yan ZW, Wang MY, Mao YB. Differential Contributions of MYCs to Insect Defense Reveals Flavonoids Alleviating Growth Inhibition Caused by Wounding in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:700555. [PMID: 34326858 PMCID: PMC8313826 DOI: 10.3389/fpls.2021.700555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 are involved in many biological processes, such as defense against insects. We found that despite functional redundancy, MYC-related mutants displayed different resistance to cotton bollworm (Helicoverpa armigera). To screen out the most likely genes involved in defense against insects, we analyzed the correlation of gene expression with cotton bollworm resistance in wild-type (WT) and MYC-related mutants. In total, the expression of 94 genes in untreated plants and 545 genes in wounded plants were strongly correlated with insect resistance, and these genes were defined as MGAIs (MYC-related genes against insects). MYC3 had the greatest impact on the total expression of MGAIs. Gene ontology (GO) analysis revealed that besides the biosynthesis pathway of glucosinolates (GLSs), MGAIs, which are well-known defense compounds, were also enriched in flavonoid biosynthesis. Moreover, MYC3 dominantly affected the gene expression of flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) revealed that AAE18, which is involved in activating auxin precursor 2,4-dichlorophenoxybutyric acid (2,4-DB) and two other auxin response genes, was highly co-expressed with flavonoid biosynthesis genes. With wounding treatment, the WT plants exhibited better growth performance than chalcone synthase (CHS), which was defective in flavonoid biosynthesis. The data demonstrated dominant contributions of MYC3 to cotton bollworm resistance and imply that flavonoids might alleviate the growth inhibition caused by wounding in Arabidopsis.
Collapse
Affiliation(s)
- Dan-Dan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Pai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Yi Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Ying Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Ying-Bo Mao,
| |
Collapse
|
9
|
Ebeed HT, Stevenson SR, Cuming AC, Baker A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4971-4985. [PMID: 30032264 PMCID: PMC6137984 DOI: 10.1093/jxb/ery266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/09/2018] [Indexed: 05/06/2023]
Abstract
Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of β-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.
Collapse
Affiliation(s)
- Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Sean R Stevenson
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Reumann S, Bartel B. Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:17-26. [PMID: 27500947 PMCID: PMC5161562 DOI: 10.1016/j.pbi.2016.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 05/20/2023]
Abstract
Peroxisomes are essential for life in plants. These organelles house a variety of metabolic processes that generate and inactivate reactive oxygen species. Our knowledge of pathways and mechanisms that depend on peroxisomes and their constituent enzymes continues to grow, and in this review we highlight recent advances in understanding the identity and biological functions of peroxisomal enzymes and metabolic processes. We also review how peroxisomal matrix and membrane proteins enter the organelle from their sites of synthesis. Peroxisome homeostasis is regulated by specific degradation mechanisms, and we discuss the contributions of specialized autophagy and a peroxisomal protease to the degradation of entire peroxisomes and peroxisomal enzymes that are damaged or superfluous. Finally, we review how peroxisomes can flexibly change their morphology to facilitate inter-organellar contacts.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
11
|
Identification of Differentially Expressed Genes between “Honeycrisp” and “Golden Delicious” Apple Fruit Tissues Reveal Candidates for Crop Improvement. HORTICULTURAE 2016. [DOI: 10.3390/horticulturae2030011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Fernández-Fernández ÁD, Corpas FJ. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase. SCIENTIFICA 2016; 2016:3482760. [PMID: 27034898 PMCID: PMC4789532 DOI: 10.1155/2016/3482760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/08/2016] [Indexed: 05/21/2023]
Abstract
NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.
Collapse
Affiliation(s)
- Álvaro D. Fernández-Fernández
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
- *Francisco J. Corpas:
| |
Collapse
|
13
|
Wiszniewski AAG, Bussell JD, Long RL, Smith SM. Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6723-33. [PMID: 25297549 PMCID: PMC4246196 DOI: 10.1093/jxb/eru397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A specific function for peroxisomal β-oxidation in inflorescence development in Arabidopsis thaliana is suggested by the mutation of the abnormal inflorescence meristem 1 gene, which encodes one of two peroxisomal multifunctional proteins. Therefore, it should be possible to identify other β-oxidation mutants that recapitulate the aim1 phenotype. Three genes encode peroxisomal 3-ketoacyl-CoA thiolase (KAT) in Arabidopsis. KAT2 and KAT5 are present throughout angiosperms whereas KAT1 is a Brassicaceae-specific duplication of KAT2 expressed at low levels in Arabidopsis. KAT2 plays a dominant role in all known aspects of peroxisomal β-oxidation, including that of fatty acids, pro-auxins, jasmonate precursor oxophytodienoic acid, and trans-cinnamic acid. The functions of KAT1 and KAT5 are unknown. Since KAT5 is conserved throughout vascular plants and expressed strongly in flowers, kat2 kat5 double mutants were generated. These were slow growing, had abnormally branched inflorescences, and ectopic organ growth. They made viable pollen, but produced no seed indicating that infertility was due to defective gynaecium function. These phenotypes are strikingly similar to those of aim1. KAT5 in the Brassicaceae encodes both cytosolic and peroxisomal proteins and kat2 kat5 defects could be complemented by the re-introduction of peroxisomal (but not cytosolic) KAT5. It is concluded that peroxisomal KAT2 and KAT5 have partially redundant functions and operate downstream of AIM1 to provide β-oxidation functions essential for inflorescence development and fertility.
Collapse
Affiliation(s)
- Andrew A G Wiszniewski
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Max-Planck Institute for Molecular Plant Physiology, Wissenschaftpark Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - John D Bussell
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rowena L Long
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Steven M Smith
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
14
|
Eshraghi L, Anderson JP, Aryamanesh N, McComb JA, Shearer B, Hardy GSJE. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway. BMC PLANT BIOLOGY 2014; 14:68. [PMID: 24649892 PMCID: PMC3999932 DOI: 10.1186/1471-2229-14-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/14/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. RESULTS Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 - Cullin - F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root elongation, and increased root hair formation in plants with sufficient Pi. CONCLUSIONS The auxin response pathway, particularly auxin sensitivity and transport, plays an important role in resistance to P. cinnamomi in Arabidopsis, and phosphite-mediated resistance may in some part be through its effect on the stimulation of the PSR and auxin response pathways.
Collapse
Affiliation(s)
- Leila Eshraghi
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
- The University of Western Australia, Institute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nader Aryamanesh
- School of Plant Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The University of Western Australia, Institute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jen A McComb
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Bryan Shearer
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
- Science Division, Department of Environment and conservation, Kensington, WA 6983, Australia
| | - Giles St J E Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
15
|
Brown LA, Larson TR, Graham IA, Hawes C, Paudyal R, Warriner SL, Baker A. An inhibitor of oil body mobilization in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:641-649. [PMID: 24033128 DOI: 10.1111/nph.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 05/12/2023]
Abstract
Fatty acid β-oxidation is an essential process in many aspects of plant development, and storage oil in the form of triacylglycerol (TAG) is an important food source for humans and animals, for biofuel and for industrial feedstocks. In this study we characterize the effects of a small molecule, diphenyl methylphosphonate, on oil mobilization in Arabidopsis thaliana. Confocal laser scanning microscopy, transmission electron microscopy and quantitative lipid profiling were used to examine the effects of diphenyl methylphosphonate treatment on seedlings. Diphenyl methylphosphonate causes peroxisome clustering around oil bodies but does not affect morphology of other cellular organelles. We show that this molecule blocks the breakdown of pre-existing oil bodies resulting in retention of TAG and accumulation of acyl CoAs. The biochemical and phenotypic effects are consistent with a block in the early part of the β-oxidation pathway. Diphenyl methylphosphonate appears to be a fairly specific inhibitor of TAG mobilization in plants and whilst further work is required to identify the molecular target of the compound it should prove a useful tool to interrogate and manipulate these pathways in a controlled and reproducible manner.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tony R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Rupesh Paudyal
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison Baker
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. THE NEW PHYTOLOGIST 2013; 200:473-482. [PMID: 23795714 DOI: 10.1111/nph.12377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/20/2013] [Indexed: 05/18/2023]
Abstract
Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA.
Collapse
Affiliation(s)
- Markus Schlicht
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christian Burbach
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Dieter Volkmann
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Frantisek Baluska
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
17
|
Bussell JD, Keech O, Fenske R, Smith SM. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:578-91. [PMID: 23621281 DOI: 10.1111/tpj.12222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 05/08/2023]
Abstract
Sugar metabolism and the oxidative pentose phosphate pathway (OPPP) are strongly implicated in N assimilation, although the relationship between them and the roles of the plastidial and cytosolic OPPP have not been established genetically. We studied a knock-down mutant of the plastid-localized OPPP enzyme 6-phosphogluconolactonase 3 (PGL3). pgl3-1 plants exhibited relatively greater resource allocation to roots but were smaller than the wild type. They had a lower content of amino acids and free NO3 - in leaves than the wild type, despite exhibiting comparable photosynthetic rates and efficiency, and normal levels of many other primary metabolites. When N-deprived plants were fed via the roots with 15NO3 -, pgl3-1 exhibited normal induction of OPPP and nitrate assimilation genes in roots, and amino acids in roots and shoots were labeled with (15) N at least as rapidly as in the wild type. However, when N-replete plants were fed via the roots with sucrose, expression of specific OPPP and N assimilation genes in roots increased in the wild type but not in pgl3-1. Thus, sugar-dependent expression of N assimilation genes requires OPPP activity and the specificity of the effect of the pgl3-1 mutation on N assimilation genes establishes that it is not the result of general energy deficiency or accumulation of toxic intermediates. We conclude that expression of specific nitrate assimilation genes in the nucleus of root cells is positively regulated by a signal emanating from OPPP activity in the plastid.
Collapse
Affiliation(s)
- John D Bussell
- Australian Research Council Centre of Excellence in Plant Energy Biology (M316), University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
18
|
Linka N, Theodoulou FL. Metabolite transporters of the plant peroxisomal membrane: known and unknown. Subcell Biochem 2013; 69:169-194. [PMID: 23821149 DOI: 10.1007/978-94-007-6889-5_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tremendous progress in plant peroxisome research has revealed unexpected metabolic functions for plant peroxisomes. Besides photorespiration and lipid metabolism, plant peroxisomes play a key role in many metabolic and signaling pathways, such as biosynthesis of phytohormones, pathogen defense, senescence-associated processes, biosynthesis of biotin and isoprenoids, and metabolism of urate, polyamines, sulfite, phylloquinone, volatile benzenoids, and branched chain amino acids. These peroxisomal pathways require an interplay with other cellular compartments, including plastids, mitochondria, and the cytosol. Consequently, a considerable number of substrates, intermediates, end products, and cofactors have to shuttle across peroxisome membranes. However, our knowledge of their membrane passage is still quite limited. This review describes the solute transport processes required to connect peroxisomes with other cell compartments. Furthermore, we discuss the known and yet-to-be-defined transport proteins that mediate these metabolic exchanges across the peroxisomal bilayer.
Collapse
Affiliation(s)
- Nicole Linka
- Department of Plant Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany,
| | | |
Collapse
|
19
|
Abstract
Peroxisomes house many metabolic processes that allow organisms to safely sequester reactions with potentially damaging byproducts. Peroxisomes also produce signaling molecules; in plants, these include the hormones indole-3-acetic acid (IAA) and jasmonic acid (JA). Indole-3-butyric acid (IBA) is a chain-elongated form of the active auxin IAA and is a key tool for horticulturists and plant breeders for inducing rooting in plant cultures and callus. IBA is both made from and converted to IAA, providing a mechanism to maintain optimal IAA levels. Based on genetic analysis and studies of IBA metabolism, IBA conversion to IAA occurs in peroxisomes, and the timing and activity of peroxisomal import and metabolism thereby contribute to the IAA pool in a plant. Four enzymes have been hypothesized to act specifically in peroxisomal IBA conversion to IAA. Loss of these enzymes results in decreased IAA levels, a reduction in auxin-induced gene expression, and strong disruptions in cell elongation resulting in developmental abnormalities. Additional activity by known fatty acid β-oxidation enzymes also may contribute to IBA β-oxidation via direct activity or indirect effects. This review will discuss the peroxisomal enzymes that have been implicated in auxin homeostasis and the importance of IBA-derived IAA in plant growth and development.
Collapse
Affiliation(s)
- Gretchen M Spiess
- Department of Biology, University of Missouri - St. Louis, St. Louis, USA
| | | |
Collapse
|
20
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Hooks KB, Turner JE, Graham IA, Runions J, Hooks MA. GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1631-8. [PMID: 22920973 DOI: 10.1016/j.jplph.2012.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 05/06/2023]
Abstract
Protein sequence analysis of a subfamily of 18 Arabidopsis acyl-activating enzymes (AAE) for organelle targeting signals revealed that eight of them possessed putative peroxisomal targeting signals (PTS1), five of which belonged to Clade VI of the AAE superfamily. Peroxisomal localization was confirmed by confocal microscopy of green fluorescent protein (GFP)-AAE fusion proteins co-localizing with peroxisomal RFP. The sequence analysis also revealed that all enzymes of Clade VI possess N-terminal regions indicative of chloroplast transit peptides (cTP). Among the five Clade VI peroxisomal enzymes tested, masking the PTS1 signal with GFP redirected three to plastids. In addition, three other peroxisomal AAEs appeared to be redirected to plastids in AAE-GFP fusion constructs. Due to the lack of evidence supporting plastid localization, we propose that competition dictates the exclusive localization to peroxisomes. AAE2 of Clade VI was the only enzyme with a putative mitochondrial targeting sequence, and it appeared to be targeted to mitochondria. The remainder of the AAEs appeared to be localized to plastids or cytosol. The AAE9-GFP fusion protein appeared to be located within discreet structures within plastids that may be plastoglobules. AAE15-GFP, but not AAE16-GFP appeared to be located in the chloroplast envelope. The number of examples is increasing whereby proteins located within other compartments contribute to plastid function. We provide an example of this through the light-sensitive phenotype of mutants of AAE2.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Wiszniewski AAG, Smith SM, Bussell JD. Conservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6093-103. [PMID: 23066143 PMCID: PMC3481203 DOI: 10.1093/jxb/ers260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis thaliana has three genes encoding type I 3-ketoacyl-CoA thiolases (KAT1, KAT2, and KAT5), one of which (KAT5) is alternatively transcribed to produce both peroxisomal and cytosolic proteins. To evaluate the potential importance of these four gene products, their evolutionary history in plants and their expression patterns in Arabidopsis were investigated. Land plants as a whole have gene lineages corresponding to KAT2 and KAT5, implying conservation of distinct functions for these two genes. By contrast, analysis of synteny shows that KAT1 arose by duplication of the KAT2 locus. KAT1 is found in the Brassicaceae family, including in the genera Arabidopsis, Capsella, Thellungiella (=Eutrema) and Brassica, but not in the more distantly related Caricaceae (order Brassicales), or other plants. Gene expression analysis using qRT-PCR and β-glucuronidase reporter genes showed strong expression of KAT2 during germination and in many plant tissues throughout the life cycle, consistent with its observed dominant function in fatty acid β-oxidation. KAT1 was expressed very weakly while KAT5 was most strongly expressed during flower development and in seedlings after germination. Isoform-specific qRT-PCR analysis and promoter β-glucuronidase reporters revealed that the two splicing variants of KAT5 have similar expression profiles. Alternative splicing of KAT5 to produce cytosolic and peroxisomal proteins is specific to and ubiquitous in the Brassicaceae, and possibly had an earlier origin in the order Brassicales. This implies that an additional function for KAT5 arose between 43 and 115 mybp. We speculate that this KAT5 mutation was recruited for a cytosolic function in secondary metabolism.
Collapse
Affiliation(s)
| | - Steven M Smith
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
23
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
24
|
Linka N, Esser C. Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2012; 3:3. [PMID: 22645564 PMCID: PMC3355763 DOI: 10.3389/fpls.2012.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/03/2012] [Indexed: 05/18/2023]
Abstract
In land plants, peroxisomes play key roles in various metabolic pathways, including the most prominent examples, that is lipid mobilization and photorespiration. Given the large number of substrates that are exchanged across the peroxisomal membrane, a wide spectrum of metabolite and cofactor transporters is required and needs to be efficiently coordinated. These peroxisomal transport proteins are a prerequisite for metabolic reactions inside plant peroxisomes. The entire peroxisomal "permeome" is closely linked to the adaption of photosynthetic organisms during land plant evolution to fulfill and optimize their new metabolic demands in cells, tissues, and organs. This review assesses for the first time the distribution of these peroxisomal transporters within the algal and plant species underlining their evolutionary relevance. Despite the importance of peroxisomal transporters, the majority of these proteins, however, are still unknown at the molecular level in plants as well as in other eukaryotic organisms. Four transport proteins have been recently identified and functionally characterized in Arabidopsis so far: one transporter for the import of fatty acids and three carrier proteins for the uptake of the cofactors ATP and NAD into plant peroxisomes. The transport of the three substrates across the peroxisomal membrane is essential for the degradation of fatty acids and fatty acids-related compounds via β-oxidation. This metabolic pathway plays multiple functions for growth and development in plants that have been crucial in land plant evolution. In this review, we describe the current state of their physiological roles in Arabidopsis and discuss novel features in their putative transport mechanisms.
Collapse
Affiliation(s)
- Nicole Linka
- Department of Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Christian Esser
- Department of Bioinformatics, Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
25
|
Yue J, Hu X, Sun H, Yang Y, Huang J. Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 2012; 3:1152. [PMID: 23093189 PMCID: PMC3493653 DOI: 10.1038/ncomms2148] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022] Open
Abstract
In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants.
Collapse
Affiliation(s)
- Jipei Yue
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Xiangyang Hu
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibet Plateau Research, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Sun
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibet Plateau Research, Chinese Academy of Sciences, Kunming 650201, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
26
|
Reumann S. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics. Proteomics 2011; 11:1764-79. [PMID: 21472859 DOI: 10.1002/pmic.201000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 12/23/2022]
Abstract
In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
27
|
Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA, Bartel B. Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. THE PLANT CELL 2011; 23:984-99. [PMID: 21406624 PMCID: PMC3082277 DOI: 10.1105/tpc.111.083071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 03/05/2011] [Indexed: 05/18/2023]
Abstract
Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels.
Collapse
Affiliation(s)
- Lucia C. Strader
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Dorthea L. Wheeler
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Department of Biology, Harding University, Searcy, Arkansas 72143
| | - Sarah E. Christensen
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Department of Biology, Harding University, Searcy, Arkansas 72143
| | - John C. Berens
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Address correspondence to
| |
Collapse
|
28
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
29
|
Theodoulou FL, Zhang X, De Marcos Lousa C, Nyathi Y, Baker A. Peroxisomal Transport Systems: Roles in Signaling and Metabolism. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Khan BR, Zolman BK. pex5 Mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1602-15. [PMID: 20974890 PMCID: PMC2996013 DOI: 10.1104/pp.110.162479] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/11/2010] [Indexed: 05/21/2023]
Abstract
PEX5 and PEX7 are receptors required for the import of peroxisome-bound proteins containing one of two peroxisomal targeting signals (PTS1 or PTS2). To better understand the role of PEX5 in plant peroxisomal import, we characterized the Arabidopsis (Arabidopsis thaliana) pex5-10 mutant, which has a T-DNA insertion in exon 5 of the PEX5 gene. Sequencing results revealed that exon 5, along with the T-DNA, is removed in this mutant, resulting in a truncated pex5 protein. The pex5-10 mutant has germination defects and is completely dependent on exogenous Suc for early seedling establishment, based on poor utilization of seed-storage fatty acids. This mutant also has delayed development and reduced fertility, although adult pex5-10 plants appear normal. Peroxisomal metabolism of indole-3-butyric acid, propionate, and isobutyrate also is disrupted. The pex5-10 mutant has reduced import of both PTS1 and PTS2 proteins, and enzymatic processes that occur in peroxisomes are disrupted. To specifically study the import and importance of PTS1 proteins, we made a truncated PEX5 construct lacking the PTS1-binding region (PEX5(454)). Transformation of this construct into pex5-10 resulted in the rescue of PTS2 import, thereby creating a line with PTS1-specific import defects. The pex5-10 (PEX5(454)) plants still had developmental defects, although restoring PTS2 import resulted in a less severe mutant phenotype. Comparison of pex5-10 and pex5-10 (PEX5(454)) phenotypes can separate the import mechanisms for enzymes acting in different peroxisomal processes, including indole-3-butyric acid/2,4-dichlorophenoxybutyric acid oxidation, isobutyrate and propionate metabolism, and photorespiration.
Collapse
|
31
|
Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM. Signaling from the Endoplasmic Reticulum Activates Brassinosteroid Signaling and Promotes Acclimation to Stress in Arabidopsis. Sci Signal 2010; 3:ra69. [DOI: 10.1126/scisignal.2001140] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Carrie C, Giraud E, Duncan O, Xu L, Wang Y, Huang S, Clifton R, Murcha M, Filipovska A, Rackham O, Vrielink A, Whelan J. Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. J Biol Chem 2010; 285:36138-48. [PMID: 20829360 DOI: 10.1074/jbc.m110.121202] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disulfide relay system of the mitochondrial intermembrane space has been extensively characterized in Saccharomyces cerevisiae. It contains two essential components, Mia40 and Erv1. The genome of Arabidopsis thaliana contains a single gene for each of these components. Although insertional inactivation of Erv1 leads to a lethal phenotype, inactivation of Mia40 results in no detectable deleterious phenotype. A. thaliana Mia40 is targeted to and accumulates in mitochondria and peroxisomes. Inactivation of Mia40 results in an alteration of several proteins in mitochondria, an absence of copper/zinc superoxide dismutase (CSD1), the chaperone for superoxide dismutase (Ccs1) that inserts copper into CSD1, and a decrease in capacity and amount of complex I. In peroxisomes the absence of Mia40 leads to an absence of CSD3 and a decrease in abnormal inflorescence meristem 1 (Aim1), a β-oxidation pathway enzyme. Inactivation of Mia40 leads to an alteration of the transcriptome of A. thaliana, with genes encoding peroxisomal proteins, redox functions, and biotic stress significantly changing in abundance. Thus, the mechanistic operation of the mitochondrial disulfide relay system is different in A. thaliana compared with other systems, and Mia40 has taken on new roles in peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S. The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1441-53. [PMID: 20150517 DOI: 10.1093/jxb/erq014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf peroxisomes are fragile, low-abundance plant cell organelles that are difficult to isolate from one of the few plant species whose nuclear genome has been sequenced. Leaf peroxisomes were enriched at high purity from spinach (Spinacia oleracea) and approximately 100 protein spots identified from 2-dimensional gels by a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and de novo sequencing. In addition to the predominant enzymes involved in photorespiration and detoxification, several minor enzymes were detected, underscoring the high sensitivity of the protein identification. The tryptic peptides of three unknown proteins shared high sequence similarity with Arabidopsis proteins that carry putative peroxisomal targeting signals type 1 or 2 (PTS1/2). The apparent Arabidopsis orthologues are a short-chain alcohol dehydrogenase (SDRa/IBR1, At4g05530, SRL>) and two enoyl-CoA hydratases/isomerases (ECHIa, At4g16210, SKL>; NS/ECHId, At1g60550, RLx(5)HL). The peroxisomal localization of the three proteins was confirmed in vivo by tagging with enhanced yellow fluorescent protein (EYFP), and the targeting signals were identified. The single Arabidopsis isoform of naphthoate synthase (NS) is orthologous to MenB from cyanobacteria, which catalyses an essential reaction in phylloquinone biosynthesis, a pathway previously assumed to be entirely compartmentalized in plastids in higher plants. In an extension of a previous study, the present in vivo targeting data furthermore demonstrate that the enzyme upstream of NS, chloroplastic acyl-CoA activating enzyme isoform 14 (AAE14, SSL>), is dually targeted to both plastids and peroxisomes. This proteomic study, extended by in vivo subcellular localization analyses, indicates a novel function for plant peroxisomes in phylloquinone biosynthesis.
Collapse
Affiliation(s)
- Lavanya Babujee
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|