1
|
Komatsu S, Koh R, Yamaguchi H, Hitachi K, Tsuchida K. Protein-Based Mechanism of Wheat Growth Under Salt Stress in Seeds Irradiated with Millimeter Waves. Int J Mol Sci 2024; 26:253. [PMID: 39796108 PMCID: PMC11720253 DOI: 10.3390/ijms26010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.6% of the control level under salt stress, was recovered to the control level by MMW irradiation. To reveal the salt-stress tolerance mechanism of MMW irradiation on wheat, a proteomic analysis was conducted. Proteins related to cell cycle, proliferation, and transport in biological processes, as well as proteins related to the nucleus, cytoskeleton, and cytoplasm within cellular components, were inversely correlated with the number of proteins. The results of the proteomic analysis were verified by immunoblot and other analyses. Among the proteins related to the scavenging reactive-oxygen species, superoxide dismutase and glutathione reductase accumulated under salt stress and further increased in the MMW-irradiated wheat. Among pathogen-related proteins, pathogenesis-related protein 1 and the Bowman-Birk proteinase inhibitor decreased under salt stress and recovered to the control level in the MMW-irradiated wheat. The present results indicate that MMW irradiation of wheat seeds improves plant-growth recovery from salt stress through regulating the reactive oxygen species-scavenging system and the pathogen-related proteins. These genes may contribute to the development of salt-stress-tolerant wheat through marker-assisted breeding and genome editing.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Rachel Koh
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| |
Collapse
|
2
|
Liang S, Zang Y, Wang H, Xue S, Xin J, Li X, Tang X, Chen J. Combined transcriptomics and metabolomics analysis reveals salinity stress specific signaling and tolerance responses in the seagrass Zostera japonica. PLANT CELL REPORTS 2024; 43:203. [PMID: 39080075 DOI: 10.1007/s00299-024-03292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
KEY MESSAGE Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.
Collapse
Affiliation(s)
- Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Grugliasco, Turin, Italy
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Hongzhen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi Xin
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinqi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Li J, Zhou X, Wang Y, Song S, Ma L, He Q, Lu M, Zhang K, Yang Y, Zhao Q, Jin W, Jiang C, Guo Y. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J Genet Genomics 2023; 50:960-970. [PMID: 37127254 DOI: 10.1016/j.jgg.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shu Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian He
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
6
|
Zhou X, Li J, Wang Y, Liang X, Zhang M, Lu M, Guo Y, Qin F, Jiang C. The classical SOS pathway confers natural variation of salt tolerance in maize. THE NEW PHYTOLOGIST 2022; 236:479-494. [PMID: 35633114 DOI: 10.1111/nph.18278] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Sodium (Na+ ) is the major cation damaging crops in the salinised farmland. Previous studies have shown that the Salt Overly Sensitive (SOS) pathway is important for salt tolerance in Arabidopsis. Nevertheless, the SOS pathway remains poorly investigated in most crops. This study addresses the function of the SOS pathway and its association with the natural variation of salt tolerance in maize. First, we showed that a naturally occurring 4-bp frame-shifting deletion in ZmSOS1 caused the salt hypersensitive phenotype of the maize inbred line LH65. Accordingly, mutants lacking ZmSOS1 also displayed a salt hypersensitive phenotype, due to an impaired root-to-rhizosphere Na+ efflux and an increased shoot Na+ concentration. We next showed that the maize SOS3/SOS2 complex (ZmCBL4/ZmCIPK24a and ZmCBL8/ZmCIPK24a) phosphorylates ZmSOS1 therefore activating its Na+ -transporting activity, with their loss-of-function mutants displaying salt hypersensitive phenotypes. Moreover, we observed that a LTR/Gypsy insertion decreased the expression of ZmCBL8, thereby increasing shoot Na+ concentration in natural maize population. Taken together, our study demonstrated that the maize SOS pathway confers a conservative salt-tolerant role, and the components of SOS pathway (ZmSOS1 and ZmCBL8) confer the natural variations of Na+ regulation and salt tolerance in maize, therefore providing important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Xueyan Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Yiqiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
7
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
8
|
Shahzad B, Yun P, Shabala L, Zhou M, Sellamuthu G, Venkataraman G, Chen ZH, Shabala S. Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:351-364. [PMID: 35189073 DOI: 10.1071/fp21336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P <0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India; and Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
9
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
10
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
11
|
RsSOS1 Responding to Salt Stress Might Be Involved in Regulating Salt Tolerance by Maintaining Na+ Homeostasis in Radish (Raphanus sativus L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radish is a kind of moderately salt-sensitive vegetable. Salt stress seriously decreases the yield and quality of radish. The plasma membrane Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1) plays a crucial role in protecting plant cells against salt stress, but the biological function of the RsSOS1 gene in radish remains to be elucidated. In this study, the RsSOS1 gene was isolated from radish genotype ‘NAU-TR17’, and contains an open reading frame of 3414 bp encoding 1137 amino acids. Phylogenetic analysis showed that RsSOS1 had a high homology with BnSOS1, and clustered together with Arabidopsis plasma membrane Na+/H+ antiporter (AtNHX7). The result of subcellular localization indicated that the RsSOS1 was localized in the plasma membrane. Furthermore, RsSOS1 was strongly induced in roots of radish under 150 mmol/L NaCl treatment, and its expression level in salt-tolerant genotypes was significantly higher than that in salt-sensitive ones. In addition, overexpression of RsSOS1 in Arabidopsis could significantly improve the salt tolerance of transgenic plants. Meanwhile, the transformation of RsSOS1△999 could rescue Na+ efflux function of AXT3 yeast. In summary, the plasma membrane Na+/H+ antiporter RsSOS1 plays a vital role in regulating salt-tolerance of radish by controlling Na+ homeostasis. These results provided useful information for further functional characterization of RsSOS1 and facilitate clarifying the molecular mechanism underlying salt stress response in radish.
Collapse
|
12
|
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S. Root vacuolar Na + sequestration but not exclusion from uptake correlates with barley salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:55-67. [PMID: 31148333 DOI: 10.1111/tpj.14424] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/24/2023]
Abstract
Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.
Collapse
Affiliation(s)
- Honghong Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Nana Su
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Qi Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Tanveer Ul-Haq
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Juan Zhu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
13
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
14
|
Fan Y, Yin X, Xie Q, Xia Y, Wang Z, Song J, Zhou Y, Jiang X. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC PLANT BIOLOGY 2019; 19:74. [PMID: 30764771 PMCID: PMC6376693 DOI: 10.1186/s12870-019-1680-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Na+ extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na+/H+ antiporter located in the plasma membrane (PM), functions in toxic Na+ extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H+-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress. RESULTS In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na+ and H+ in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na+ and H+ efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na+ than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K+ level was the highest. CONCLUSION These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na+ extrusion to maintain K+ homeostasis and protect the PM from oxidative damage induced by salt stress.
Collapse
Affiliation(s)
- Yafei Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| |
Collapse
|
15
|
Wang H, Shabala L, Zhou M, Shabala S. Hydrogen Peroxide-Induced Root Ca 2+ and K⁺ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. Int J Mol Sci 2018; 19:E702. [PMID: 29494514 PMCID: PMC5877563 DOI: 10.3390/ijms19030702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops-barley (Hordeum vulgare) and wheat (Triticum aestivum)-was investigated by measuring the magnitude of ROS-induced net K⁺ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H₂O₂ treatment, a significant positive correlation was found for the magnitude of ROS-induced K⁺ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H₂O₂-induced net K⁺ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
16
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt S. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods Mol Biol 2018; 1822:291-314. [PMID: 30043311 DOI: 10.1007/978-1-4939-8633-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.
Collapse
Affiliation(s)
- Adel M Elmaghrabi
- Biotechnology Research Center (BTRC), Tripoli, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | - Sergio Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
17
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt SJ. PEG Induces High Expression of the Cell Cycle Checkpoint Gene WEE1 in Embryogenic Callus of Medicago truncatula: Potential Link between Cell Cycle Checkpoint Regulation and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1479. [PMID: 28928753 PMCID: PMC5591835 DOI: 10.3389/fpls.2017.01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Polyethylene glycol (PEG) can be used to mimic osmotic stress in plant tissue cultures to study mechanisms of tolerance. The aim of this experiment was to investigate the effects of PEG (M.W. 6000) on embryogenic callus of Medicago truncatula. Leaf explants were cultured on MS medium with 2 mg L-1 NAA and 0.5 mg L-1 BAP for 5 months. Then, calli were transferred to the same medium further supplemented with 10% (w/v) 6000 PEG for 6 months in order to study physiological and putative molecular markers of water stress. There were no significant differences in growth rate of callus or mitotic index ± PEG although embryogenic potential of PEG treated callus was morphologically enhanced. Cells were rounder on PEG medium and cell size, nuclear size and endoreduplication increased in response to the PEG treatment. Significant increases in soluble sugar and proline accumulation occurred under PEG treatment compared with the control. Significantly, high MtWEE1 and MtCCS52 expression resulted from 6 months of PEG treatment with no significant differences in MtSERK1 or MtP5CS expression but down regulation of MtSOS expression. The results are consistent in showing elevated expression of a cell cycle checkpoint gene, WEE1. It is likely that the cell cycle checkpoint surveillance machinery, that would include WEE1 expression, is ameliorating the effects of the stress imposed by PEG.
Collapse
Affiliation(s)
- Adel M. Elmaghrabi
- Biotechnology Research CenterTripoli, Libya
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Dennis Francis
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Sergio J. Ochatt
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), University of Bourgogne Franche-ComtéDijon, France
| |
Collapse
|
18
|
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. The Role of Na + and K + Transporters in Salt Stress Adaptation in Glycophytes. Front Physiol 2017; 8:509. [PMID: 28769821 PMCID: PMC5513949 DOI: 10.3389/fphys.2017.00509] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity) and post-translational modifications (phosphorylation) account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM) potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1 expression and activity in the stele, and haem oxygenase involvement in stabilizing membrane potential by activating H+-ATPase activity, favorable for K+ uptake through HAK/AKT1, have been shown and are discussed.
Collapse
Affiliation(s)
- Dekoum V. M. Assaha
- Department of Biology, College of Science, Sultan Qaboos UniversityMuscat, Oman
| | - Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima UniversityHiroshima, Japan
| | - Hirofumi Saneoka
- Graduate School of Biosphere Science, Hiroshima UniversityHiroshima, Japan
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos UniversityMuscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos UniversityMuscat, Oman
| |
Collapse
|
19
|
Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:517-528. [PMID: 28878491 PMCID: PMC5567718 DOI: 10.1007/s12298-017-0457-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/30/2023]
Abstract
Salt stress responses implicate a complex mechanism and differ from plant species to another. In this study, we analyzed the physiological, biochemical and molecular responses to salt stress of the diploid wheat (T. monococcum) and compared to the tetraploid wheat (T. durum). Our results showed that the diploid wheat cultivar (cv. Turkey) is relatively tolerant to different salt stress conditions than the tetraploid wheat cultivar (cv. Om Rabia3). This tolerance was manifested by significant germination, plant growth and uptake of water generating cell turgor and development. Moreover, total chlorophyll content was higher in the diploid wheat than that in the tetraploid wheat. The Na+ content in leaf blade of the cv. Om Rabia3 was significantly higher than that of the cv. Turkey, suggesting that the diploid cultivar accumulates less toxic sodium in the photosynthetic tissues. This mechanism could be explained by the recirculation of the toxic ions Na+ into the xylem sap by SOS1 protein, which coordinates with HKT-like proteins to reduce the accumulation of Na+ ions in leaf blade. Interestingly, the expression of the three genes SOS1, HKT and NHX was enhanced under salinity especially in leaf blade of the cv. Turkey. Moreover, this wheat cultivar induced the antioxidative enzymes CAT and SOD activity more efficiently than the other cultivar.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
| | - Kaouthar Feki
- Laboratoire Des Légumineuses, Centre de Biotechnologie de Bordj Cedria, BP901, CP2050 Hammam-Lif, Tunisia
| | - Dorsaf Hmidi
- Laboratoire Des Plantes Extrêmophiles (LPE), Centre de Biotechnologie de Bordj Cedria, BP901, CP2050 Hammam-Lif, Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
- Arid Land Department, College of Food and Agriculture, Present Address: United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, BP “1177”, 3018 Sfax, Tunisia
| |
Collapse
|
20
|
Zhu M, Zhou M, Shabala L, Shabala S. Physiological and molecular mechanisms mediating xylem Na + loading in barley in the context of salinity stress tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:1009-1020. [PMID: 26881809 DOI: 10.1111/pce.12727] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/17/2016] [Accepted: 01/23/2016] [Indexed: 05/18/2023]
Abstract
Time-dependent kinetics of xylem Na+ loading was investigated using a large number of barley genotypes contrasting in their salinity tolerance. Salt-sensitive varieties were less efficient in controlling xylem Na+ loading and showed a gradual increase in the xylem Na+ content over the time. To understand underlying ionic and molecular mechanisms, net fluxes of Ca2+ , K+ and Na+ were measured from the xylem parenchyma tissue in response to H2 O2 and ABA; both of them associated with salinity stress signalling. Our results indicate that NADPH oxidase-mediated apoplastic H2 O2 production acts upstream of the xylem Na+ loading and is causally related to ROS-inducible Ca2+ uptake systems in the root stelar tissue. It was also found that ABA regulates (directly or indirectly) the process of Na+ retrieval from the xylem and the significant reduction of Na+ and K+ fluxes induced by bumetanide are indicative of a major role of chloride cation co-transporter (CCC) on xylem ion loading. Transcript levels of HvHKT1;5_like and HvSOS1_like genes in the root stele were observed to decrease after salt stress, while there was an increase in HvSKOR_like gene, indicating that these ion transporters are involved in primary Na+ /K+ movement into/out of xylem.
Collapse
Affiliation(s)
- Min Zhu
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
21
|
Feki K, Tounsi S, Masmoudi K, Brini F. The durum wheat plasma membrane Na +/H + antiporter SOS1 is involved in oxidative stress response. PROTOPLASMA 2017; 254:1725-1734. [PMID: 28013410 DOI: 10.1007/s00709-016-1066-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 05/25/2023]
Abstract
We have shown previously that the durum wheat TdSOS1 excludes Na+ and Li+ ions outside cells. Moreover, this protein is activated by Arabidopsis kinase SOS2 through phosphorylation. The elimination of both SOS2 phosphorylation sites and the auto-inhibitory domain produces a hyperactive TdSOS1∆972 form, which have a maximal activity independent from the regulatory SOS2/SOS3 complex. We demonstrated that the expression of TdSOS1 enhances salt tolerance of the transgenic Arabidopsis plants. In this study, we analyzed the response to H2O2-induced oxidative stress of the transgenic Arabidopsis expressing one of the two TdSOS1 forms. Firstly, we showed that the exogenous H2O2 treatment leads to an accumulation of SOS1 transcripts in leaves and roots of the durum wheat and also in the transgenic plants. These transgenic plants showed significant oxidative stress tolerance compared to control plants, especially the plants expressing the hyperactive form. This tolerance was manifested by high proline accumulation and low malonyldialdehyde (MDA), O2˙- and H2O2 contents. Furthermore, the activities of three essential ROS scavenging enzymes (SOD, CAT, and POD) were higher in the transgenic plants under oxidative stress, as compared to control plants. Taken together, these data suggested that TdSOS1 plays a crucial role in response to oxidative stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
- International center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, UAE
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
22
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
23
|
Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X. Hyperactive mutant of a wheat plasma membrane Na +/H + antiporter improves the growth and salt tolerance of transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:176-186. [PMID: 27968986 DOI: 10.1016/j.plantsci.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/04/2023]
Abstract
Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na+ transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na+ efflux and K+ influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na+ efflux and K+ influx, resulting in less Na+ and more K+ accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions.
Collapse
Affiliation(s)
- Yang Zhou
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Zesen Lai
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaochang Yin
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Shan Yu
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuanyuan Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinli Cong
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuehua Luo
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Haixia Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xingyu Jiang
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Kawano-Kawada M, Chardwiriyapreecha S, Manabe K, Sekito T, Akiyama K, Takegawa K, Kakinuma Y. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2016; 80:2291-2297. [PMID: 27555098 DOI: 10.1080/09168451.2016.1220819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3(∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3+ but was not completely rescued by the expression of avt3(∆1-270). The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- a Faculty of Agriculture , Ehime University , Matsuyama , Japan.,b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | | | - Kunio Manabe
- b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Takayuki Sekito
- b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Koichi Akiyama
- a Faculty of Agriculture , Ehime University , Matsuyama , Japan.,b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Kaoru Takegawa
- c Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | | |
Collapse
|
25
|
Jin X, Sun T, Wang X, Su P, Ma J, He G, Yang G. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat. Sci Rep 2016; 6:28884. [PMID: 27358166 PMCID: PMC4928124 DOI: 10.1038/srep28884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/10/2016] [Indexed: 11/09/2022] Open
Abstract
CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na(+) and superfluous accumulation of Na(+) in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na(+)/H(+) exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9.
Collapse
Affiliation(s)
- Xia Jin
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Tao Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xiatian Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Peipei Su
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jingfei Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J. Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC PLANT BIOLOGY 2016; 16:98. [PMID: 27098270 PMCID: PMC4839091 DOI: 10.1186/s12870-016-0781-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peipei Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
27
|
Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:835-44. [PMID: 26585227 PMCID: PMC4737075 DOI: 10.1093/jxb/erv493] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot.
Collapse
Affiliation(s)
- Min Zhu
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Tracey A Cuin
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | - Xin Huang
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Rana Munns
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA 6009, Australia CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
28
|
Britto DT, Kronzucker HJ. Sodium efflux in plant roots: what do we really know? JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:1-12. [PMID: 26318642 DOI: 10.1016/j.jplph.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.
Collapse
Affiliation(s)
- D T Britto
- University of Toronto, Canadian Centre for World Hunger Research, Canada
| | - H J Kronzucker
- University of Toronto, Canadian Centre for World Hunger Research, Canada.
| |
Collapse
|
29
|
Nie WX, Xu L, Yu BJ. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. PROTOPLASMA 2015; 252:127-34. [PMID: 24934653 DOI: 10.1007/s00709-014-0663-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 05/11/2023]
Abstract
The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant.
Collapse
Affiliation(s)
- Wang-Xing Nie
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | |
Collapse
|
30
|
Feki K, Brini F, Ben Amar S, Saibi W, Masmoudi K. Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions. J Appl Genet 2014; 56:15-26. [DOI: 10.1007/s13353-014-0228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
31
|
Jarvis DE, Ryu CH, Beilstein MA, Schumaker KS. Distinct Roles for SOS1 in the Convergent Evolution of Salt Tolerance in Eutrema salsugineum and Schrenkiella parvula. Mol Biol Evol 2014; 31:2094-107. [DOI: 10.1093/molbev/msu152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Sun X, Yang S, Sun M, Wang S, Ding X, Zhu D, Ji W, Cai H, Zhao C, Wang X, Zhu Y. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. PLANT MOLECULAR BIOLOGY 2014; 85:33-48. [PMID: 24407891 DOI: 10.1007/s11103-013-0167-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/13/2013] [Indexed: 05/08/2023]
Abstract
It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.
Collapse
Affiliation(s)
- Xiaoli Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lu W, Guo C, Li X, Duan W, Ma C, Zhao M, Gu J, Du X, Liu Z, Xiao K. Overexpression of TaNHX3, a vacuolar Na⁺/H⁺ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 76:17-28. [PMID: 24448321 DOI: 10.1016/j.plaphy.2013.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/18/2013] [Indexed: 05/10/2023]
Abstract
Salt stress is one of the major abiotic stresses affecting plant growth, development, and productivity. In this study, we functionally characterized a wheat vacuolar Na(+)/H(+) antiporter gene (TaNHX3). TaNHX3 is 78.9% identical with TaNHX2 in nucleic acid level, encoding a polypeptide of 522 amino acids (aa). TaNHX3 is targeted onto tonoplast after ER sorting and can complement the growth under salt stress in a yeast mutant with a defective vacuolar Na(+)/H(+) antiporter exchange. TaNHX3 transcripts were induced by applying salt stress in wheat cultivars. More TaNHX3 were detected in the salt-stress-resistant cultivar Ji 7369 compared with the salt-stress-sensitive cultivar Shimai 12 and Ji-Shi-3, an isogenic line derived from aforementioned cultivars with Shimai 12 genetic background. The ectopic TaNHX3 expression in tobacco significantly enhanced the plant tolerance to salt stress. Compared with control plants, the TaNHX3 overexpressing plants displayed no varied Na(+) contents and accumulated more Na(+) amount in plants. However, they exhibited higher fresh and dry weights, more accumulative nitrogen, phosphorus, and potassium, higher contents of chlorophyll, carotenoid, soluble protein, higher activities of the antioxidant enzymes including superoxide dismutase, catalase, and peroxidase, and lower malondialdehyde and H2O2 amount. Our results indicated that TaNHX3 plays an important role in regulating the cytosolic Na(+) transportation within vacuoles under high salinity, alleviating the Na(+) damage effects. The improved salt stress tolerance in TaNHX3 overexpressing tobacco plants is closely associated with the improvement of the aforementioned physiological processes. TaNHX3 can be used as a candidate gene for molecular breeding of salt-tolerant plants.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Chengjin Guo
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaojuan Li
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Weiwei Duan
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Chunying Ma
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Miao Zhao
- Science & Technology College, North China Electric Power University, Baoding 071051, China
| | - Juntao Gu
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaoming Du
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Zhuling Liu
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
34
|
Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F. A constitutively active form of a durum wheat Na⁺/H⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. PLANT CELL REPORTS 2014; 33:277-88. [PMID: 24150094 DOI: 10.1007/s00299-013-1528-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 05/04/2023]
Abstract
The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.
Collapse
Affiliation(s)
- Kaouthar Feki
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), Route Sidi Mansour Km 6, B.P '1177', 3018, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013; 115:1-22. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
36
|
Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H. QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 2012; 7:e51202. [PMID: 23236455 PMCID: PMC3516561 DOI: 10.1371/journal.pone.0051202] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2:9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.
Collapse
Affiliation(s)
- Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhiwei Chen
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jinping Cheng
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanyan Lai
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianfei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yongmei Bao
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ji Huang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Hongsheng Zhang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|