1
|
Li Z, Jiang L, Long P, Wang C, Liu P, Hou F, Zhang M, Zou C, Huang Y, Ma L, Shen Y. A phased small interfering RNA-derived pathway mediates lead stress tolerance in maize. PLANT PHYSIOLOGY 2024; 196:1163-1179. [PMID: 39074204 DOI: 10.1093/plphys/kiae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
3
|
Waliat S, Arshad MS, Hanif H, Ejaz A, Khalid W, Kauser S, Al-Farga A. A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2176001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Sadaf Waliat
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hadia Hanif
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| |
Collapse
|
4
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
5
|
Ejaz U, Khan SM, Khalid N, Ahmad Z, Jehangir S, Fatima Rizvi Z, Lho LH, Han H, Raposo A. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1154571. [PMID: 37251771 PMCID: PMC10215007 DOI: 10.3389/fpls.2023.1154571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Heavy metal concentrations exceeding permissible limits threaten human life, plant life, and all other life forms. Different natural and anthropogenic activities emit toxic heavy metals in the soil, air, and water. Plants consume toxic heavy metals from their roots and foliar part inside the plant. Heavy metals may interfere with various aspects of the plants, such as biochemistry, bio-molecules, and physiological processes, which usually translate into morphological and anatomical changes. They use various strategies to deal with the toxic effects of heavy metal contamination. Some of these strategies include restricting heavy metals to the cell wall, vascular sequestration, and synthesis of various biochemical compounds, such as phyto-chelators and organic acids, to bind the free moving heavy metal ions so that the toxic effects are minimized. This review focuses on several aspects of genetics, molecular, and cell signaling levels, which integrate to produce a coordinated response to heavy metal toxicity and interpret the exact strategies behind the tolerance of heavy metals stress. It is suggested that various aspects of some model plant species must be thoroughly studied to comprehend the approaches of heavy metal tolerance to put that knowledge into practical use.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Member Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadia Jehangir
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
6
|
Adhikari A, Roy D, Adhikari S, Saha S, Ghosh PK, Shaw AK, Hossain Z. microRNAomic profiling of maize root reveals multifaceted mechanisms to cope with Cr (VI) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107693. [PMID: 37060869 DOI: 10.1016/j.plaphy.2023.107693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Chromium (Cr) contamination of soil and water poses serious threats to agricultural crop production. MicroRNAs (miRNAs) are conserved, non-coding small RNAs that play pivotal roles in plant growth, development and stress responses through fine-tuning of post-transcriptional gene expression. To better understand the molecular circuit of Cr-responsive miRNAs, two sRNA libraries were prepared from control and Cr (VI) [100 ppm] exposed maize roots. Using deep sequencing, we identified 80 known (1 up and 79 down) and 18 downregulated novel miRNAs from Cr (VI) challenged roots. Gene ontology (GO) analysis reveals that predicted target genes of Cr (VI) responsive miRNAs are potentially involved in diverse cellular and biological processes including plant growth and development (miR159c, miR164d, miR319b-3p and zma_25.145), redox homeostasis (miR528-5p, miR396a-5p and zma_9.132), heavy metal uptake and detoxification (miR159f-5p, 164e-5p, miR408a, miR444f and zma_2.127), signal transduction (miR159f, miR160a-5p, miR393a-5p, miR408-5p and zma_43.158), cell signalling (miR156j, 159c-5p, miR166c-5p and miR398b). Higher accumulation of Cr in maize roots might be due to upregulation of ABC transporter G family member 29 targeted by miR444f. Instead of isolated increase in SOD expression, significant decline in GSH:GSSH ratio and histochemical staining strongly suggest Cr (VI) stress mediated disruption of ROS scavenging machinery thus unbalancing normal cellular homeostasis. Moreover, miR159c-mediated enhanced expression of GAMYB might be a reason for impaired root growth under Cr (VI) stress. In a nutshell, the present microRNAomic study sheds light on the miRNA-target gene regulatory network involved in adaptive responses of maize seedlings to Cr (VI) stress.
Collapse
Affiliation(s)
- Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
7
|
Wan X, Wang Z, Duan W, Huang T, Song H, Xu X. Knockdown of Sly-miR164a Enhanced Plant Salt Tolerance and Improved Preharvest and Postharvest Fruit Nutrition of Tomato. Int J Mol Sci 2023; 24:ijms24054639. [PMID: 36902070 PMCID: PMC10003209 DOI: 10.3390/ijms24054639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Salinity stress is a serious limitation to tomato growth and development. The aim of this study was to investigate the effects of Sly-miR164a on tomato growth and fruit nutritional quality under salt stress. The results showed that the root length, fresh weight, plant height, stem diameter and ABA content of miR164a#STTM (knockdown of Sly-miR164a) lines were higher than those of WT and miR164a#OE (overexpression of Sly-miR164a) lines under salt stress. Compared with WT, miR164a#STTM tomato lines exhibited lower ROS accumulation under salt stress. In addition, the fruits of miR164a#STTM tomato lines had higher soluble solids, lycopene, ascorbic acid (ASA) and carotenoid content compared with WT. The study indicated that tomato plants were more sensitive to salt when Sly-miR164a was overexpressed, while knockdown of Sly-miR164a enhanced plant salt tolerance and improved fruit nutritional value.
Collapse
|
8
|
Cavé-Radet A, Salmon A, Tran Van Canh L, Moyle RL, Pretorius LS, Lima O, Ainouche ML, El Amrani A. Recent allopolyploidy alters Spartina microRNA expression in response to xenobiotic-induced stress. PLANT MOLECULAR BIOLOGY 2023; 111:309-328. [PMID: 36581792 DOI: 10.1007/s11103-022-01328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination by xenobiotics represents a major threat for natural ecosystems and public health. In response, xenobiotic detoxification is a fundamental trait of organisms for developmental plasticity and stress tolerance, but the underlying molecular mechanisms remain poorly understood in plants. To decipher this process, we explored the consequences of allopolyploidy on xenobiotic tolerance in the genus Spartina Schreb. Specifically, we focused on microRNAs (miRNAs) owing to their central function in the regulation of gene expression patterns, including responses to stress. Small RNA-Seq was conducted on the parents S. alterniflora and S. maritima, their F1 hybrid S. x townsendii and the allopolyploid S. anglica under phenanthrene-induced stress (phe), a model Polycyclic Aromatic Hydrocarbon (PAH) compound. Differentially expressed miRNAs in response to phe were specifically identified within species. In complement, the respective impacts of hybridization and genome doubling were detected, through changes in miRNA expression patterns between S. x townsendii, S. anglica and the parents. The results support the impact of allopolyploidy in miRNA-guided regulation of plant response to phe. In total, we identified 17 phe-responsive miRNAs in Spartina among up-regulated MIR156 and down-regulated MIR159. We also describe novel phe-responsive miRNAs as putative Spartina-specific gene expression regulators in response to stress. Functional validation using Arabidopsis (L.) Heynh. T-DNA lines inserted in homologous MIR genes was performed, and the divergence of phe-responsive miRNA regulatory networks between Arabidopsis and Spartina was discussed.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| | - Armel Salmon
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Loup Tran Van Canh
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Richard L Moyle
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lara-Simone Pretorius
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Oscar Lima
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Malika L Ainouche
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| |
Collapse
|
9
|
Kapadia C, Datta R, Mahammad SM, Tomar RS, Kheni JK, Ercisli S. Genome-Wide Identification, Quantification, and Validation of Differentially Expressed miRNAs in Eggplant ( Solanum melongena L.) Based on Their Response to Ralstonia solanacearum Infection. ACS OMEGA 2023; 8:2648-2657. [PMID: 36687045 PMCID: PMC9851032 DOI: 10.1021/acsomega.2c07097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a type of short noncoding RNA molecule (21-23 nucleotides), mediate repressive gene regulation through RNA silencing at the posttranscriptional level and play an important role in the defense response to abiotic and biotic stresses. miRNAs of the plant system have been studied in model crops for their diverse regulatory role while less is known about their significance in other plants whose genome and transcriptome data are scarce in the database, including eggplant (Solanum melongena L.). In the present study, a next-generation sequencing platform was used for the sequencing of miRNA, and real-time quantitative PCR for miRNAs was used to validate the gene expression patterns of miRNAs in Solanum melongena plantlets infected with the bacterial wilt-causing pathogen Ralstonia solanacearum (R. solanacearum). Sequence analyses showed the presence of 375 miRNAs belonging to 29 conserved families. The miR414 is highly conserved miRNA across the plant system while miR5658 and miR5021 were found exclusively in Arabidopsis thaliana surprisingly, these miRNAs were found in eggplants too. The most abundant families were miR5658 and miR414. Ppt-miR414, hvu-miR444b, stu-miR8020, and sly miR5303 were upregulated in Pusa purple long (PPL) (susceptible) at 48 h postinfection, followed by a decline after 96 h postinfection. A similar trend was obtained in ath-miR414, stu-mir5303h, alymiR847-5p, far-miR1134, ath-miR5021, ath-miR5658, osa-miR2873c, lja-miR7530, stu-miR7997c, and gra-miR8741 but at very low levels after infection in the susceptible variety, indicating their negative role in the suppression of host immunity. On the other hand, osa-miR2873c was found to be slightly increased after 96 hpi from 48 hpi. Most of the miRNAs under study showed relatively lower expression in the resistant variety Arka Nidhi after infection than in the susceptible variety. These results shed light on a deeper regulatory role of miRNAs and their targets in regulation of the plant response to bacterial infection. The present experiment and their results suggested that the higher expression of miRNA leads to a decline in host mRNA and thus shows susceptibility.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Saiyed Mufti Mahammad
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rukam Singh Tomar
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Jasmin Kumar Kheni
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
10
|
Jamla M, Joshi S, Patil S, Tripathi BN, Kumar V. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops. PROTOPLASMA 2023; 260:5-19. [PMID: 35657503 DOI: 10.1007/s00709-022-01775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During their lifespan, sessile plants have to cope with bioavailability of the suboptimal nutrient concentration and have to constantly sense/evolve the connecting web of signal cascades for efficient nutrient uptake, storage, and translocation for proper growth and metabolism. However, environmental fluctuations and escalating anthropogenic activities are making it a formidable challenge for plants. This is adding to (micro)nutrient-deficient crops and nutritional insecurity. Biofortification is emerging as a sustainable and efficacious approach which can be utilized to combat the micronutrient malnutrition. A biofortified crop has an enriched level of desired nutrients developed using conventional breeding, agronomic practices, or advanced biotechnological tools. Nutrient homeostasis gets hampered under nutrient stress, which involves disturbance in short-distance and long-distance cell-cell/cell-organ communications involving multiple cellular and molecular components. Advanced sequencing platforms coupled with bioinformatics pipelines and databases have suggested the potential roles of tiny signaling molecules and post-transcriptional regulators, the microRNAs (miRNAs) in key plant phenomena including nutrient homeostasis. miRNAs are seen as emerging targets for biotechnology-based biofortification programs. Thus, understanding the mechanistic insights and regulatory role of miRNAs could open new windows for exploring them in developing nutrient-efficient biofortified crops. This review discusses significance and roles of miRNAs in plant nutrition and nutrient homeostasis and how they play key roles in plant responses to nutrient imbalances/deficiencies/toxicities covering major nutrients-nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), iron (Fe), and zinc (Zn). A perspective view has been given on developing miRNA-engineered biofortified crops with recent success stories. Current challenges and future strategies have also been discussed.
Collapse
Affiliation(s)
- Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
11
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
12
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Yang Y, Huang J, Sun Q, Wang J, Huang L, Fu S, Qin S, Xie X, Ge S, Li X, Cheng Z, Wang X, Chen H, Zheng B, He Y. microRNAs: Key Players in Plant Response to Metal Toxicity. Int J Mol Sci 2022; 23:ijms23158642. [PMID: 35955772 PMCID: PMC9369385 DOI: 10.3390/ijms23158642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jiu Huang
- School of Environment Science and Spatial Informaftics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sisi Ge
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiang Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Zhuo Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Houming Chen
- Max Planck Institute for Biology, Max Planck Ring 5, 72076 Tübingen, Germany;
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| |
Collapse
|
14
|
Genome-wide in silico analysis indicates the involvement of OsSWEET transporters in abiotic and heavy metal (loid) stress responses in rice. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Genome-Wide Analysis of the ATP-Binding Cassette (ABC) Transporter Family in Zea mays L. and Its Response to Heavy Metal Stresses. Int J Mol Sci 2022; 23:ijms23042109. [PMID: 35216220 PMCID: PMC8879807 DOI: 10.3390/ijms23042109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter family is one of the largest eukaryotic protein families. Its members play roles in numerous metabolic processes in plants by releasing energy for substrate transport across membranes through hydrolysis of ATP. Maize belongs to the monocotyledonous plant family, Gramineae, and is one of the most important food crops in the world. We constructed a phylogenetic tree with individual ABC genes from maize, rice, sorghum, Arabidopsis, and poplar. This revealed eight families, each containing ABC genes from both monocotyledonous and dicotyledonous plants, indicating that the amplification events of ABC gene families predate the divergence of plant monocotyledons. To further understand the functions of ABC genes in maize growth and development, we analyzed the expression patterns of maize ABC family genes in eight tissues and organs based on the transcriptome database on the Genevestigator website. We identified 133 ABC genes expressed in most of the eight tissues and organs examined, especially during root and leaf development. Furthermore, transcriptome analysis of ZmABC genes showed that exposure to metallic lead induced differential expression of many maize ABC genes, mainly including ZmABC 012, 013, 015, 031, 040, 043, 065, 078, 080, 085, 088, 102, 107, 111, 130 and 131 genes, etc. These results indicated that ZmABC genes play an important role in the response to heavy metal stress. The comprehensive analysis of this study provides a foundation for further studies into the roles of ABC genes in maize.
Collapse
|
16
|
He Q, Zhou T, Sun J, Wang P, Yang C, Bai L, Liu Z. Transcriptome Profiles of Leaves and Roots of Goldenrain Tree ( Koelreuteria paniculata Laxm.) in Response to Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12046. [PMID: 34831798 PMCID: PMC8621797 DOI: 10.3390/ijerph182212046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) pollution is a widespread environmental problem. In this study, we explored the transcriptome and biochemical responses of goldenrain tree (Koelreuteria paniculata Laxm.) leaves and roots to Cd stress. Leaf and root growth decreased substantially under Cd stress (50 mg/L CdCl2), but leaf and root antioxidant mechanisms were significantly activated. In RNA-seq analysis, roots treated with 25 mg/L CdCl2 featured enriched GO terms in cellular components related to intracellular ribonucleoprotein complex, ribonucleoprotein complex, and macromolecular complex. In leaves under Cd stress, most differentially expressed genes were enriched in the cellular component terms intrinsic component of membrane and membrane part. Weighted gene co-expression network analysis and analysis of module-trait relations revealed candidate genes associated with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA). Ten transcription factors responded to Cd stress expression, including those in C2H2, MYB, WRKY, and bZIP families. Transcriptomic analysis of goldenrain tree revealed that Cd stress rapidly induced the intracellular ribonucleoprotein complex in the roots and the intrinsic component of membrane in the leaves. The results also indicate directions for further analyses of molecular mechanisms of Cd tolerance and accumulation in goldenrain tree.
Collapse
Affiliation(s)
- Qihao He
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemcial Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lei Bai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| |
Collapse
|
17
|
Ma Y, Liu K, Zhang C, Lin F, Hu W, Jiang Y, Tao X, Han Y, Han L, Liu C. Comparative root transcriptome analysis of two soybean cultivars with different cadmium sensitivities reveals the underlying tolerance mechanisms. Genome 2021; 65:1-16. [PMID: 34648728 DOI: 10.1139/gen-2021-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soybean can provide rich protein and fat and has great economic value worldwide. Cadmium (Cd) is a toxic heavy metal to organisms. It can accumulate in plants and be transmitted to the human body via the food chain. Cd is a serious threat to soybean development, particularly root growth. Some soybean cultivars present tolerant symptoms under Cd stress; however, the potential mechanisms are not fully understood. Here, we optimized RNA-seq to identify the differentially expressed genes (DEGs) in Cd-sensitive (KUAI) and Cd-tolerant (KAIYU) soybean roots and compared the DEGs between KAIYU and KUAI. A total of 1506 and 1870 DEGs were identified in the roots of KUAI and KAIYU, respectively. Through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and gene function analyses, we found that genes related to antioxidants and sequestration were responsible for Cd tolerance in KAIYU. In addition, overexpression of Glyma11g02661, which encodes a heavy metal-transporting ATPase, significantly improved Cd tolerance in transgenic hairy roots. These results provide a preliminary understanding of the tolerance mechanisms in response to Cd stress in soybean root development and are of great importance in developing Cd-resistant soybean cultivars by using the identified DEGs through genetic modification.
Collapse
Affiliation(s)
- Yuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Kuichen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wenbo Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xianliang Tao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yulin Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Litao Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Srivastava S, Suprasanna P. MicroRNAs: Tiny, powerful players of metal stress responses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:928-938. [PMID: 34246107 DOI: 10.1016/j.plaphy.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Metal contamination of the environment is a widespread problem threatening sustainable and safe crop production. Physio-biochemical and molecular mechanisms of plant responses to metal exposure have been studied to establish the best possible agronomical or biotechnological methods to tackle metal contamination. Metal stress tolerance is regulated by several molecular effectors among which microRNAs are one of the key master regulators of plant growth and stress responses in plants. MicroRNAs are known to coordinate multitude of plant responses to metal stress through antioxidant functions, root growth, hormonal signalling, transcription factors and metal transporters. The present review discusses integrative functions of microRNAs in the regulation of metal stress in plants, which will be useful for engineering stress tolerance traits for improved plant growth and productivity in metal stressed situations.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, Maharashtra, India
| |
Collapse
|
19
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Gupta OP, Pandey V, Saini R, Khandale T, Singh A, Malik VK, Narwal S, Ram S, Singh GP. Comparative physiological, biochemical and transcriptomic analysis of hexaploid wheat (T. aestivum L.) roots and shoots identifies potential pathways and their molecular regulatory network during Fe and Zn starvation. Genomics 2021; 113:3357-3372. [PMID: 34339815 DOI: 10.1016/j.ygeno.2021.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
The combined effect of iron (Fe) and zinc (Zn) starvation on their uptake and transportation and the molecular regulatory networks is poorly understood in wheat. To fill this gap, we performed a comprehensive physiological, biochemical and transcriptome analysis in two bread wheat genotypes, i.e. Narmada 195 and PBW 502, differing in inherent Fe and Zn content. Compared to PBW 502, Narmada 195 exhibited increased tolerance to Fe and Zn withdrawal by significantly modulating the critical physiological and biochemical parameters. We identified 25 core genes associated with four key pathways, i.e. methionine cycle, phytosiderophore biosynthesis, antioxidant and transport system, that exhibited significant up-regulation in both the genotypes with a maximum in Narmada 195. We also identified 26 microRNAs targeting 14 core genes across the four pathways. Together, core genes identified can serve as valuable resources for further functional research for genetic improvement of Fe and Zn content in wheat grain.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ritu Saini
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Tushar Khandale
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Vipin Kumar Malik
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Sneh Narwal
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India; Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| |
Collapse
|
21
|
Jia W, Lin K, Lou T, Feng J, Lv S, Jiang P, Yi Z, Zhang X, Wang D, Guo Z, Tang Y, Qiu R, Li Y. Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. PLANTA 2021; 254:16. [PMID: 34185181 DOI: 10.1007/s00425-021-03669-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Key miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress. In this study, comparative analysis of sRNAs, degradome and transcriptomics was conducted in high-Cd accumulation (H18) and low-Cd accumulation (L69) genotypes of sweet sorghum. A total of 38 conserved and 23 novel miRNAs with differential expressions were identified under Cd stress or between H18 and L69, and 114 target genes of 41 miRNAs were validated. Furthermore, 25 miRNA-mRNA pairs exhibited negatively correlated expression profiles and sbi-miR172e together with its target might participate in the distinct Cd tolerance between H18 and L69 as well as sbi-miR172a/c/d. Additionally, two groups of them: miR169p/q-nov_23 and miR408 were focused through the co-expression analysis, which might be involved in Cd uptake and tolerance by regulating their targets associated with transmembrane transportation, cytoskeleton activity, cell wall construction and ROS (reactive oxygen species) homeostasis. Further experiments exhibited that cell wall components of H18 and L69 were different when exposed to cadmium, which might be regulated by miR169p/q, miR171g/j, miR319a/b, miR396a/b, miR5384 and miR5565e through their targets. Through this study, we aim to reveal the potential miRNAs involved in sweet sorghum in response to Cd stress and provide references for developing high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum that can be used in phytoremediation.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yetao Tang
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
22
|
Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. miRNA regulation and stress adaptation in plants. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021. [PMID: 0 DOI: 10.1016/j.envexpbot.2020.104369] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
23
|
Bicho RC, Faustino AMR, Rêma A, Scott-Fordsmand JJ, Amorim MJB. Confirmatory assays for transient changes of omics in soil invertebrates - Copper materials in a multigenerational exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123500. [PMID: 32712356 DOI: 10.1016/j.jhazmat.2020.123500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental risk assessment (ERA) based on effects caused by chronic and longer term exposure is highly relevant. Further, if mechanistic based approaches (e.g. omics) can be included, beyond apical endpoints (e.g. reproduction), the prediction of effects increases. For Cu NMs (and CuCl2) this has been studied in detail, covering multi-omics and apical effects using the soil standard species Enchytraeus crypticus. The intermediate level effects like cell/tissue and organ alterations represent a missing link. In the present study we aimed to: 1) perform long term exposure to Cu materials (full life cycle and multigeneration, 46 and 224 days) to collect samples; 2) perform histology and immunohistochemistry on collected samples at 12 time points and 17 treatments; 3) integrate all levels of biological organization onto an adverse outcome pathway (AOP) framework. CuO NMs and CuCl2 caused both similar and different stress response, either at molecular initiating events (MIE) or key events (KEs) of higher level of biological organization. Cell/Tissue and organ level, post-transcriptional and transcriptional mechanisms, through histone modifications and microRNA related protein, were similarly affected. While both Cu forms affected the Notch signalling pathway, CuCl2 also caused oxidative stress. Different mechanisms of DNA methylation (epigenetics) were activated by CuO NMs and CuCl2 at the MIE.
Collapse
Affiliation(s)
- Rita C Bicho
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M R Faustino
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute of Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - A Rêma
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute of Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley ( Hordeum vulgare L.) Seedlings. ScientificWorldJournal 2020; 2020:6649746. [PMID: 33343237 PMCID: PMC7725555 DOI: 10.1155/2020/6649746] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.
Collapse
|
25
|
Pyo Y, Kim GM, Choi SW, Song CY, Yang SW, Jung IL. Strontium stress disrupts miRNA biogenesis by reducing HYL1 protein levels in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111056. [PMID: 32763566 DOI: 10.1016/j.ecoenv.2020.111056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 05/20/2023]
Abstract
Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals. In this study, we examined the global expression profile of miRNAs under Sr stress using small RNA sequencing analysis in Arabidopsis to better understand the molecular basis of plant responses to Sr stress. To identify specific Sr-responsive miRNAs, we performed comparative miRNA expression profiling analysis using control, CaCl2-, and SrCl2-treated seedlings. Compared to the control treatment, the expressions of most miRNAs were considerably decreased in the Sr-treated seedlings. However, under Sr stress, the expressions of primary miRNAs (pri-miRNAs) and their target genes were significantly increased; the protein levels of HYPONASTIC LEAVES 1 (HYL1), one of the core components of the microprocessor complex, were strongly reduced despite the increased HYL1 mRNA expression. In addition, hyl1-2 mutant plants were shown to be more sensitive to Sr stress than wild-type plants. Collectively, our results strongly suggested that Sr stress may be associated with the disruption of miRNA biogenesis by reducing the protein level of HYL1, which is required to maintain proper growth and development for plants. Our findings further indicated that some miRNAs may play important roles in plant responses to Sr stress.
Collapse
Affiliation(s)
- Youngjae Pyo
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Gu Min Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suk Won Choi
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang Yeob Song
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 2000, Frederiksberg, Copenhagen, Denmark.
| | - Il Lae Jung
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Amir W, Farid M, Ishaq HK, Farid S, Zubair M, Alharby HF, Bamagoos AA, Rizwan M, Raza N, Hakeem KR, Ali S. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. CHEMOSPHERE 2020; 257:127247. [PMID: 32534296 DOI: 10.1016/j.chemosphere.2020.127247] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Chelate-assisted phytoextraction by high biomass producing macrophyte plant Typha latifolia L. commonly known as cattail, is gaining much attention worldwide. The present study investigated the effects of Lead (Pb) and Mercury (Hg) on physiology and biochemistry of plant, Pb and Hg uptake in T. latifolia with and without citric acid (CA) amendment. The uniform seedlings of T. latifolia were treated with various concentrations in the hydroponics as: Pb and Hg (1, 2.5, 5 mM) each alone and/or with CA (5 mM). After four weeks of treatments, the results revealed that Pb and Hg significantly reduced the plant agronomic traits as compare to non-treated plants. The addition of CA improved the plant physiology and enhanced the antioxidant enzymes activities to overcome Pb and Hg induced oxidative damage and electrolyte leakage. Our results depicted that Pb and Hg uptake and accumulation by T. latifolia was dose depend whereas, the addition of CA further increased the concentration and accumulation of Pb and Hg by up to 22 & 35% Pb and 72 & 40% Hg in roots, 25 & 26% Pb and 85 & 60% Hg in stems and 22 & 15 Pb and 100 & 58% Hg in leaves respectively compared to Pb and Hg treated only plants. On other hand, the root-shoot translocation factor was ≥1 and bioconcentration factor was also ≥2 for both Pb & Hg. The results also revealed that T. latifolia showed greater tolerance towards Hg and accumulated higher Hg in all parts compared with Pb.
Collapse
Affiliation(s)
- Waqas Amir
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Hafiz Khuzama Ishaq
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Sheharyaar Farid
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Nighat Raza
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, 60000, Pakistan
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
27
|
Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020; 69:e12659. [PMID: 32323337 DOI: 10.1111/jpi.12659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA's Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Bing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Figueredo MS, Formey D, Rodríguez J, Ibáñez F, Hernández G, Fabra A. Identification of miRNAs linked to peanut nodule functional processes. J Biosci 2020. [DOI: 10.1007/s12038-020-00034-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Gupta OP, Pandey V, Saini R, Narwal S, Malik VK, Khandale T, Ram S, Singh GP. Identifying transcripts associated with efficient transport and accumulation of Fe and Zn in hexaploid wheat (T. aestivum L.). J Biotechnol 2020; 316:46-55. [PMID: 32305628 DOI: 10.1016/j.jbiotec.2020.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 11/26/2022]
Abstract
Wheat (T. aestivum L.) is the second most important staple food crop consumed in the form of various end-use products across the world. However, it contains lower concentrations of Fe and Zn leading to micronutrient deficiency in human beings where wheat is the sole diet. Therefore, increasing grain Fe/Zn content in wheat has become priority in wheat breeding programmes across the world. Understanding the molecular mechanism of Fe/Zn transport and accumulation in grains is required to expedite the breeding process. For this purpose, whole seedling transcriptome analysis was conducted in four wheat genotypes (CRP 1660, Sonora 64, Vinata, : high, and DBW17: low) differing in grain Fe/Zn content under controlled and Fe/Zn deficient conditions. Twenty eight key transcripts involved in phytosiderophore biosynthesis, Fe/Zn uptake and transport were identified. Expression analysis of 12 of the transcripts using qPCR was conducted in seedling stage and flag leaf which exhibited greater differential accumulation in CRP 1660 followed by Vinata, Sonora 64 and DBW 17 in both flag leaf and seedling. However, there was significantly higher differential accumulation of the transcripts in flag leaf as compared to seedling. In CRP 1660, transcripts pertaining to phytosiderophore biosynthesis like DMAS1-B, NRAMP2 and NAAT2-D showed greater accumulation. Additionally, corresponding miRNAs were also identified for these 28 transcripts. The findings will help in better understanding of molecular basis of Fe/Zn transport and accumulation in grain and subsequent utilization in breeding to improve Fe/Zn content in wheat grain.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Ritu Saini
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Sneh Narwal
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Vipin Kumar Malik
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Tushar Khandale
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Gyanendra Pratap Singh
- Director, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| |
Collapse
|
30
|
Wallace DR, Taalab YM, Heinze S, Tariba Lovaković B, Pizent A, Renieri E, Tsatsakis A, Farooqi AA, Javorac D, Andjelkovic M, Bulat Z, Antonijević B, Buha Djordjevic A. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020; 9:cells9040901. [PMID: 32272672 PMCID: PMC7226740 DOI: 10.3390/cells9040901] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)—short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain—a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
Collapse
Affiliation(s)
- David R. Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| | - Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt or
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Elisavet Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | | | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Milena Andjelkovic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
- Correspondence:
| |
Collapse
|
31
|
Casarrubia S, Martino E, Daghino S, Kohler A, Morin E, Khouja HR, Murat C, Barry KW, Lindquist EA, Martin FM, Perotto S. Modulation of Plant and Fungal Gene Expression Upon Cd Exposure and Symbiosis in Ericoid Mycorrhizal Vaccinium myrtillus. Front Microbiol 2020; 11:341. [PMID: 32210940 PMCID: PMC7075258 DOI: 10.3389/fmicb.2020.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
The success of Ericaceae in stressful habitats enriched in heavy metals has been ascribed to the distinctive abilities of their mycorrhizal fungal partners to withstand heavy metal stress and to enhance metal tolerance in the host plant. Whereas heavy metal tolerance has been extensively investigated in some ericoid mycorrhizal (ERM) fungi, the molecular and cellular mechanisms that extend tolerance to the host plant are currently unknown. Here, we show a reduced Cd content in Cd-exposed mycorrhizal roots of Vaccinium myrtillus colonized by a metal tolerant isolate of the fungus Oidiodendron maius as compared to non-mycorrhizal roots. To better understand this phenotype, we applied Next Generation Sequencing technologies to analyze gene expression in V. myrtillus and O. maius Zn grown under normal and Cd-stressed conditions, in the free living and in the mycorrhizal status. The results clearly showed that Cd had a stronger impact on plant gene expression than symbiosis, whereas fungal gene expression was mainly regulated by symbiosis. The higher abundance of transcripts coding for stress related proteins in non-mycorrhizal roots may be related to the higher Cd content. Regulated plant metal transporters have been identified that may play a role in reducing Cd content in mycorrhizal roots exposed to this metal.
Collapse
Affiliation(s)
- Salvatore Casarrubia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | | | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Kerrie W. Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Erika A. Lindquist
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Singh S, Kumar A, Panda D, Modi MK, Sen P. Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2019.100213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Discovery and Profiling of microRNAs at the Critical Period of Sex Differentiation in Xanthoceras sorbifolium Bunge. FORESTS 2019. [DOI: 10.3390/f10121141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research Highlights: The critical period of sex differentiation in Xanthoceras sorbifolium was investigated. Multiple microRNAs (miRNAs) were identified to influence female and male flower development, with some complementary functions. Background and Objectives: Xanthoceras sorbifolium Bunge is widely cultivated owing to its multipurpose usefulness. However, as a monoecious plant, the low female–male flowers ratio and consequent low seed yield are the main bottlenecks for industrial-scale development of seed utilization. MiRNAs play crucial regulatory roles in flower development and sex differentiation; therefore, we evaluated the roles of miRNAs in the critical period of sex differentiation in X. sorbifolium. Materials and Methods: Four small RNA libraries for female and male flower buds of the critical period of sex differentiation were constructed from paraffin-embedded sections. The miRNAs were characterized by high-throughput sequencing, and differentially expressed miRNAs were validated by reverse transcription-quantitative polymerase chain reaction. Results: There were obvious differences in male and female pistil and stamen flower buds, with elongated inflorescence and clear separation of flower buds marking the critical period of sex differentiation. A total of 1619 conserved miRNAs (belonging to 34 families) and 219 novel miRNAs were identified. Among these, 162 conserved and 14 novel miRNAs exhibited significant differential expression in the four libraries, and 1677 putative target genes of 112 differentially expressed miRNAs were predicted. These target genes were involved in diverse developmental and metabolic processes, including 17 miRNAs directly associated with flower and gametophyte development, mainly associated with carbohydrate metabolism and glycan biosynthesis and metabolism pathways. Some miRNA functions were confirmed, and others were found to be complemented. Conclusions: Multiple miRNAs closely related to sex differentiation in X. sorbifolium were identified. The theoretical framework presented herein might guide sex ratio regulation to enhance seed yield.
Collapse
|
34
|
Gong S, Ding Y, Hu S, Ding L, Chen Z, Zhu C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses. PHYSIOLOGIA PLANTARUM 2019; 167:516-525. [PMID: 30851063 DOI: 10.1111/ppl.12965] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 05/27/2023]
Abstract
Abiotic stresses usually affect plant growth and development, indirectly or directly causing crop production reduction and even plant death. To survive, plants utilize different mechanisms to adapt themselves to continuously changing surrounding environmental stresses. Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom and divided into four different subfamilies (HD-Zip I∼IV). Many HD-Zip I members have been shown to play critical roles in the regulation of plant developmental processes, signaling networks and responses to environmental stresses. This review focuses on the role of HD-Zip I transcription factors in plant responses to various abiotic stresses, including abscisic acid-mediated stress, drought and cold stress, oxidative stress, helping to identify the potential regulatory mechanisms that alleviate abiotic stress in plants.
Collapse
Affiliation(s)
- Shaohua Gong
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Shanshan Hu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Lihong Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhixiang Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
35
|
Fu XZ, Zhang XY, Qiu JY, Zhou X, Yuan M, He YZ, Chun CP, Cao L, Ling LL, Peng LZ. Whole-transcriptome RNA sequencing reveals the global molecular responses and ceRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to copper toxicity in Ziyang Xiangcheng (Citrus junos Sieb. Ex Tanaka). BMC PLANT BIOLOGY 2019; 19:509. [PMID: 31752684 PMCID: PMC6873749 DOI: 10.1186/s12870-019-2087-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/20/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Copper (Cu) toxicity has become a potential threat for citrus production, but little is known about related mechanisms. This study aims to uncover the global landscape of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in response to Cu toxicity so as to construct a regulatory network of competing endogenous RNAs (ceRNAs) and to provide valuable knowledge pertinent to Cu response in citrus. RESULTS Tolerance of four commonly used rootstocks to Cu toxicity was evaluated, and 'Ziyang Xiangcheng' (Citrus junos) was found to be the most tolerant genotype. Then the roots and leaves sampled from 'Ziyang Xiangcheng' with or without Cu treatment were used for whole-transcriptome sequencing. In total, 5734 and 222 mRNAs, 164 and 5 lncRNAs, 45 and 17 circRNAs, and 147 and 130 miRNAs were identified to be differentially expressed (DE) in Cu-treated roots and leaves, respectively, in comparison with the control. Gene ontology enrichment analysis showed that most of the DEmRNAs and targets of DElncRNAs and DEmiRNAs were annotated to the categories of 'oxidation-reduction', 'phosphorylation', 'membrane', and 'ion binding'. The ceRNA network was then constructed with the predicted pairs of DEmRNAs-DEmiRNAs and DElncRNAs-DEmiRNAs, which further revealed regulatory roles of these DERNAs in Cu toxicity. CONCLUSIONS A large number of mRNAs, lncRNAs, circRNAs, and miRNAs in 'Ziyang Xiangcheng' were altered in response to Cu toxicity, which may play crucial roles in mitigation of Cu toxicity through the ceRNA regulatory network in this Cu-tolerant rootstock.
Collapse
Affiliation(s)
- Xing-Zheng Fu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Xiao-Yong Zhang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jie-Ya Qiu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Xue Zhou
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Meng Yuan
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Yi-Zhong He
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Chang-Pin Chun
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Li Cao
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Li-Li Ling
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Liang-Zhi Peng
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| |
Collapse
|
36
|
da Silva RG, Rosa-Santos TM, França SDC, Kottapalli P, Kottapalli KR, Zingaretti SM. Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress. PLoS One 2019; 14:e0217806. [PMID: 31697688 PMCID: PMC6837492 DOI: 10.1371/journal.pone.0217806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Although several metallic elements are required for plant growth, excessive amounts of aluminum ions (Al3+) can result in the inhibition of root growth, thus triggering water and nutrient deficiencies. Plants under stress undergo gene expression changes in specific genes or post-transcriptional gene regulators, such as miRNAs, that can lead to stress tolerance. In this study, we investigated the miRNAs involved in the response of sugarcane to aluminum stress. Four miRNA libraries were generated using sugarcane roots of one tolerant and one sensitive sugarcane cultivar grown under aluminum stress and used to identify the miRNAs involved in the sugarcane aluminum toxicity response. The contrast in field phenotypes of sugarcane cultivars in the field during aluminum stress was reflected in the micro-transcriptome expression profiles. We identified 394 differentially expressed miRNAs in both cultivars, 104 of which were tolerant cultivar-specific, 116 were sensitive cultivar-specific, and 87 of which were common among cultivars. In addition, 52% of differentially expressed miRNAs were upregulated in the tolerant cultivar while the majority of differentially expressed miRNAs in the sensitive cultivar were downregulated. Real-time quantitative polymerase chain reaction was used to validate the expression levels of differentially expressed miRNAs. We also attempted to identify target genes of miRNAs of interest. Our results show that selected differentially expressed miRNAs of aluminum-stressed sugarcane cultivars play roles in signaling, root development, and lateral root formation. These genes thus may be important for aluminum tolerance in sugarcane and could be used in breeding programs to develop tolerant cultivars.
Collapse
Affiliation(s)
- Renan Gonçalves da Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Thiago Mateus Rosa-Santos
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kameswara Rao Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, United States of America
| | - Sonia Marli Zingaretti
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
37
|
Ahmed W, Xia Y, Li R, Bai G, Siddique KHM, Guo P. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics 2019; 112:1419-1424. [PMID: 31430515 DOI: 10.1016/j.ygeno.2019.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/03/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Brassica crops face a combination of different abiotic and biotic stresses in the field that can reduce plant growth and development by affecting biochemical and morpho-physiological processes. Emerging evidence suggests that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), play a significant role in the modulation of gene expression in response to plant stresses. Recent advances in computational and experimental approaches are of great interest for identifying and functionally characterizing ncRNAs. While progress in this field is limited, numerous ncRNAs involved in the regulation of gene expression in response to stress have been reported in Brassica. In this review, we summarize the modes of action and functions of stress-related miRNAs and lncRNAs in Brassica as well as the approaches used to identify ncRNAs.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guihua Bai
- United States Department of Agriculture - Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66506, United States
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA 6001, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
38
|
Hunt M, Banerjee S, Surana P, Liu M, Fuerst G, Mathioni S, Meyers BC, Nettleton D, Wise RP. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics 2019; 20:610. [PMID: 31345162 PMCID: PMC6657096 DOI: 10.1186/s12864-019-5947-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Plants encounter pathogenic and non-pathogenic microorganisms on a nearly constant basis. Small RNAs such as siRNAs and miRNAs/milRNAs influence pathogen virulence and host defense responses. We exploited the biotrophic interaction between the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh), and its diploid host plant, barley (Hordeum vulgare) to explore fungal and plant sRNAs expressed during Bgh infection of barley leaf epidermal cells. Results RNA was isolated from four fast-neutron immune-signaling mutants and their progenitor over a time course representing key stages of Bgh infection, including appressorium formation, penetration of epidermal cells, and development of haustorial feeding structures. The Cereal Introduction (CI) 16151 progenitor carries the resistance allele Mla6, while Bgh isolate 5874 harbors the AVRa6 avirulence effector, resulting in an incompatible interaction. Parallel Analysis of RNA Ends (PARE) was used to verify sRNAs with likely transcript targets in both barley and Bgh. Bgh sRNAs are predicted to regulate effectors, metabolic genes, and translation-related genes. Barley sRNAs are predicted to influence the accumulation of transcripts that encode auxin response factors, NAC transcription factors, homeodomain transcription factors, and several splicing factors. We also identified phasing small interfering RNAs (phasiRNAs) in barley that overlap transcripts that encode receptor-like kinases (RLKs) and nucleotide-binding, leucine-rich domain proteins (NLRs). Conclusions These data suggest that Bgh sRNAs regulate gene expression in metabolism, translation-related, and pathogen effectors. PARE-validated targets of predicted Bgh milRNAs include both EKA (effectors homologous to AVRk1 and AVRa10) and CSEP (candidate secreted effector protein) families. We also identified barley phasiRNAs and miRNAs in response to Bgh infection. These include phasiRNA loci that overlap with a significant proportion of receptor-like kinases, suggesting an additional sRNA control mechanism may be active in barley leaves as opposed to predominant R-gene phasiRNA overlap in many eudicots. In addition, we identified conserved miRNAs, novel miRNA candidates, and barley genome mapped sRNAs that have PARE validated transcript targets in barley. The miRNA target transcripts are enriched in transcription factors, signaling-related proteins, and photosynthesis-related proteins. Together these results suggest both barley and Bgh control metabolism and infection-related responses via the specific accumulation and targeting of genes via sRNAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5947-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matt Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Sagnik Banerjee
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Meiling Liu
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Greg Fuerst
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA
| | - Sandra Mathioni
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.,Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Dan Nettleton
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA. .,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA. .,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA. .,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
39
|
Han M, Lu X, Yu J, Chen X, Wang X, Malik WA, Wang J, Wang D, Wang S, Guo L, Chen C, Cui R, Yang X, Ye W. Transcriptome Analysis Reveals Cotton ( Gossypium hirsutum) Genes That Are Differentially Expressed in Cadmium Stress Tolerance. Int J Mol Sci 2019; 20:ijms20061479. [PMID: 30909634 PMCID: PMC6470502 DOI: 10.3390/ijms20061479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
High concentrations of heavy metals in the soil should be removed for environmental safety. Cadmium (Cd) is a heavy metal that pollutes the soil when its concentration exceeds 3.4 mg/kg. Although the potential use of cotton to remediate heavy Cd-polluted soils is known, little is understood about the molecular mechanisms of Cd tolerance. In this study, transcriptome analysis was used to identify Cd tolerance genes and their potential mechanisms in cotton. We exposed cotton plants to excess Cd and identified 4627 differentially expressed genes (DEGs) in the root, 3022 DEGs in the stem and 3854 DEGs in the leaves through RNA-Seq analysis. Among these genes were heavy metal transporter coding genes (ABC, CDF, HMA, etc.), annexin genes and heat shock genes (HSP), amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation–reduction process and metal ion binding. The DEGs were mainly enriched in two pathways, the influenza A and pyruvate pathway. GhHMAD5, a protein containing a heavy-metal binding domain, was identified in the pathway to transport or to detoxify heavy metal ions. We constructed a GhHMAD5 overexpression system in Arabidopsis thaliana that showed longer roots compared to control plants. GhHMAD5-silenced cotton plants showed more sensitivity to Cd stress. The results indicate that GhHMAD5 is involved in Cd tolerance, which gives a preliminary understanding of the Cd tolerance mechanism in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate soils polluted with Cd and potentially other heavy metals.
Collapse
Affiliation(s)
- Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - John Yu
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xiaoge Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xiaoming Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| |
Collapse
|
40
|
Xu J, Hou QM, Khare T, Verma SK, Kumar V. Exploring miRNAs for developing climate-resilient crops: A perspective review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:91-104. [PMID: 30408672 DOI: 10.1016/j.scitotenv.2018.10.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
Climate changes and environmental stresses have significant implications on global crop production and necessitate developing crops that can withstand an array of climate changes and environmental perturbations such as irregular water-supplies leading to drought or water-logging, hyper soil-salinity, extreme and variable temperatures, ultraviolet radiations and metal stress. Plants have intricate molecular mechanisms to cope with these dynamic environmental changes, one of the most common and effective being the reprogramming of expression of stress-responsive genes. Plant microRNAs (miRNAs) have emerged as key post-transcriptional and translational regulators of gene-expression for modulation of stress implications. Recent reports are establishing their key roles in epigenetic regulations of stress/adaptive responses as well as in providing plants genome-stability. Several stress responsive miRNAs are being identified from different crop plants and miRNA-driven RNA-interference (RNAi) is turning into a technology of choice for improving crop traits and providing phenotypic plasticity in challenging environments. Here we presents a perspective review on exploration of miRNAs as potent targets for engineering crops that can withstand multi-stress environments via loss-/gain-of-function approaches. This review also shed a light on potential roles plant miRNAs play in genome-stability and their emergence as potent target for genome-editing. Current knowledge on plant miRNAs, their biogenesis, function, their targets, and latest developments in bioinformatics approaches for plant miRNAs are discussed. Though there are recent reviews discussing primarily the individual miRNAs responsive to single stress factors, however, considering practical limitation of this approach, special emphasis is given in this review on miRNAs involved in responses and adaptation of plants to multi-stress environments including at epigenetic and/or epigenomic levels.
Collapse
Affiliation(s)
- Jin Xu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qin-Min Hou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India
| | - Sandeep Kumar Verma
- Biotechnology Laboratory (TUBITAK Fellow), Department of Biology, Bolu Abant Izeet Baysal University, 14030 Bolu, Turkey
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
41
|
Pirzadah TB, Malik B, Tahir I, Irfan QM, Rehman RU. Characterization of mercury-induced stress biomarkers in Fagopyrum tataricum plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:225-236. [PMID: 29172663 DOI: 10.1080/15226514.2017.1374332] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of mercury stress on antioxidant enzymes, lipid peroxidation, photosynthetic pigments, hydrogen peroxide content, osmolytes, and growth parameters in Tartary buckwheat were investigated. The effect of Hg-exposure was found to be time (15 and 30 days) and concentration (0, 25, 50, and 75 μM) dependent. Hg was readily absorbed by seedlings with higher content in roots and it resulted in reduction of root and shoot length. The root and shoot Hg uptakes were significantly and directly correlated with each other. However, the fresh mass and biomass increased up to 50 μM Hg-treatment at both time periods. A significant positive correlation was observed between biomass accumulation with relative water content. Hg levels were positively correlated with the production of hydrogen peroxide in leaves as evidenced by 3, 3-diaminobenzidine (DAB)-mediated tissue fingerprinting. The osmolyte levels in general were elevated except for proline and protein which showed a decline at 75 μM Hg-treatment at 30-days. Amongst the photosynthetic pigments, chlorophyll showed a decline while as carotenoid and anthocyanin levels were elevated. The activity of antioxidant enzymes such as ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), Glutathione-s-transferase (GST) and superoxide dismutase (SOD) were positively correlated with Hg-treatment except SOD, which declined at 75 μM Hg-treatment in 30-days old seedlings. Catalase (CAT) activity showed a positive correlation up to 50 μM Hg-treatment but at 75 μM Hg-stress it decreases at both 15 and 30 days.
Collapse
Affiliation(s)
| | - Bisma Malik
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| | - Inayatullah Tahir
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| | - Qureshi M Irfan
- b Jamia Millia Islamia (A Central University), Biotechnology, Proteomics & Bioinformatics Lab , Department of Biotechnology , Jamia Millia Islamia , New Delhi , India
| | - Reiaz Ul Rehman
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| |
Collapse
|
42
|
Gu Q, Chen Z, Cui W, Zhang Y, Hu H, Yu X, Wang Q, Shen W. Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:861-871. [PMID: 28968939 DOI: 10.1016/j.ecoenv.2017.09.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Although methane (CH4) generation triggered by some environmental stimuli, displays the protective response against oxidative stress in plants, whether and how CH4 regulates plant tolerance against cadmium stress is largely unknown. Here, we discovered that cadmium (Cd) stimulated the production of CH4 in alfalfa root tissues. The pretreatment with exogenous CH4 could alleviate seedling growth inhibition. Less amounts of Cd accumulation was also observed. Consistently, in comparison with Cd stress alone, miR159 transcript was down-regulated by CH4, and expression levels of its target gene ABC transporter was increased. By contrast, miR167 transcript was up-regulated, showing a relatively negative correlation with its target gene Nramp6. Meanwhile, Cd-triggered redox imbalance was improved by CH4, evidenced by the reduced lipid peroxidation and hydrogen peroxide accumulation, as well as the induction of representative antioxidant genes. Further results showed that Cd-triggered decrease of the ratio of reduced/oxidized (homo)glutathione was rescued by CH4. Additionally, CH4-triggered alleviation of seedling growth was sensitive to a selective inhibitor of glutathione biosynthesis. Overall, above results revealed that CH4-alleviated Cd accumulation at least partially, required the modulation of heavy metal transporters via miR159 and miR167. Finally, the role of glutathione homeostasis elicited by CH4 was preliminarily suggested.
Collapse
Affiliation(s)
- Quan Gu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huali Hu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Jaiswal SK, Naamala J, Dakora FD. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. BIOLOGY AND FERTILITY OF SOILS 2018; 54:309-318. [PMID: 31258230 PMCID: PMC6560468 DOI: 10.1007/s00374-018-1262-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 05/18/2023]
Abstract
Recent findings on the effect of aluminium (Al) on the functioning of legumes and their associated microsymbionts are reviewed here. Al represents 7% of solid matter in the Earth's crust and is an important abiotic factor that alters microbial and plant functioning at very early stages. The trivalent Al (Al3+) dominates at pH < 5 in soils and becomes a constraint to legume productivity through its lethal effect on rhizobia, the host plant and their interaction. Al3+ has lethal effects on many aspects of the rhizobia/legume symbiosis, which include a decrease in root elongation and root hair formation, lowered soil rhizobial population, and suppression of nitrogen metabolism involving nitrate reduction, nitrite reduction, nitrogenase activity and the functioning of uptake of hydrogenases (Hup), ultimately impairing the N2 fixation process. At the molecular level, Al is known to suppress the expression of nodulation genes in symbiotic rhizobia, as well as the induction of genes for the formation of hexokinase, phosphodiesterase, phosphooxidase and acid/alkaline phosphatase. Al toxicity can also induce the accumulation of reactive oxygen species and callose, in addition to lipoperoxidation in the legume root elongation zone. Al tolerance in plants can be achieved through over-expression of citrate synthase gene in roots and/or the synthesis and release of organic acids that reverse Al-induced changes in proteins, as well as metabolic regulation by plant-secreted microRNAs. In contrast, Al tolerance in symbiotic rhizobia is attained via the production of exopolysaccharides, the synthesis of siderophores that reduce Al uptake, induction of efflux pumps resistant to heavy metals and the expression of metal-inducible (dmeRF) gene clusters in symbiotic Rhizobiaceae. In soils, Al toxicity is usually ameliorated through liming, organic matter supply and use of Al-tolerant species. Our current understanding of crop productivity in high Al soils suggests that a much greater future accumulation of Al is likely to occur in agricultural soils globally if crop irrigation is increased under a changing climate.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Judith Naamala
- Department of Crop Sciences, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
44
|
Li J, Yue L, Shen Y, Sheng Y, Zhan X, Xu G, Xing B. Phenanthrene-responsive microRNAs and their targets in wheat roots. CHEMOSPHERE 2017; 186:588-598. [PMID: 28818587 DOI: 10.1016/j.chemosphere.2017.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) play key roles in plant growth, development and responses to abiotic stress. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. However, it is yet unknown how miRNAs work during PAH uptake by plant roots. Thus, in this study we ascertain phenanthrene (a model PAH)-responsive miRNAs using small RNA high-throughput deep sequencing and their target genes in wheat roots. We identified 108 conserved and non-conserved miRNA members belonging to 82 miRNA families and found 11 differentially expressed miRNAs, among which four miRNAs (miR156, miR164, miR171a and miR9678-3p) were up-regulated and the other seven miRNAs (miR398, miR531, miR1121, miR5048-5p, miR9653b, miR9773 and miR9778) were down-regulated. ABC-transporter-related Gene CA704421 and CA697226 did not respond to phenanthrene exposure. miR156 and miR164 might regulate directly the growth and development of wheat roots by targeting SPL and NAC, respectively. miR398 and miR1121 could regulate oxidative reactions to respond to phenanthrene stress. Additionally, miR9773 might involve phenanthrene metabolism through acting on CYP450. Therefore, it is concluded that phenanthrene triggers variation in miRNA expression, which is associated with uptake of and response to phenanthrene. These findings are of significance for further understanding miRNA regulation mechanisms on PAH uptake, and providing guidance for screening of resistant cultivars in crop production and phytoremediation of PAH-contaminated soils or water at genetic level.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Sheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
45
|
Xu D, Cao H, Fang W, Pan J, Chen J, Zhang J, Shen W. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression: A case study on germination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:303-312. [PMID: 28756251 DOI: 10.1016/j.ecoenv.2017.07.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Although previous results showed that exogenous hydrogen (H2) alleviated aluminum (Al) toxicity, the detailed mechanism remains unclear. Here, we reported that the exposure of germinating rice seeds to Al triggered H2 production, followed by a decrease of GA/ABA ratio and seed germination inhibition. Compared to inert gas (argon), H2 pretreatment not only strengthened H2 production and alleviated Al-induced germination inhibition, but also partially reestablished the balance between GA and ABA. By contrast, a GA biosynthesis inhibitor paclobutrazol (PAC) could block the H2-alleviated germination inhibition. The expression of GA biosynthesis genes (GA20ox1 and GA20ox2) and ABA catabolism genes (ABA8ox1 and ABA8ox2), was also induced by H2. Above results indicated that GA/ABA might be partially involved in H2 responses. Subsequent results revealed that compared with Al alone, transcripts of miR398a and miR159a were decreased by H2, and expression levels of their target genes OsSOD2 and OsGAMYB were up-regulated. Whereas, miR528 and miR160a transcripts were increased differentially, and contrasting tendencies were observed in the changes of their target genes (OsAO and OsARF10). The transcripts of Al-tolerant gene OsSTAR1/OsSTAR2 and OsFRDL4 were up-regulated. Above results were consistent with the anti-oxidant defense, decreased Al accumulation, and enhanced citrate efflux. Together, our results provided insight into the mechanism underlying H2-triggered Al tolerance in plants.
Collapse
Affiliation(s)
- Daokun Xu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Cao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Fang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jincheng Pan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Chen
- Yanggu (Wuhan) Environmental Sci-Tech Corp., Wuhan 430200, China
| | - Jiaofei Zhang
- Wuhan Shizhen Water Structure Research Institute Co., Ltd., Wuhan 430200, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Liu Y, Yu X, Feng Y, Zhang C, Wang C, Zeng J, Huang Z, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Gao S, Chen Q. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings. Sci Rep 2017; 7:14691. [PMID: 29089633 PMCID: PMC5665871 DOI: 10.1038/s41598-017-14407-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/09/2017] [Indexed: 01/24/2023] Open
Abstract
To date, several species of Asteraceae have been considered as Cd-accumulators. However, little information on the Cd tolerance and associated mechanisms of Asteraceae species Cosmos bipinnatus, is known. Presently, several physiological indexes and transcriptome profiling under Cd stress were investigated. C. bipinnatus exhibited strong Cd tolerance and recommended as a Cd-accumulator, although the biomasses were reduced by Cd. Meanwhile, Cd stresses reduced Zn and Ca uptake, but increased Fe uptake. Subcellular distribution indicated that the vacuole sequestration in root mainly detoxified Cd under lower Cd stress. Whilst, cell wall binding and vacuole sequestration in root co-detoxified Cd under high Cd exposure. Meanwhile, 66,407 unigenes were assembled and 41,674 (62.75%) unigenes were annotated in at least one database. 2,658 DEGs including 1,292 up-regulated unigenes and 1,366 down-regulated unigenes were identified under 40 μmol/L Cd stress. Among of these DEGs, ZIPs, HMAs, NRAMPs and ABC transporters might participate in Cd uptake, translocation and accumulation. Many DEGs participating in several processes such as cell wall biosynthesis, GSH metabolism, TCA cycle and antioxidant system probably play critical roles in cell wall binding, vacuole sequestration and detoxification. These results provided a novel insight into the physiological and transcriptome response to Cd in C. bipinnatus seedlings.
Collapse
Affiliation(s)
- Yujing Liu
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaofang Yu
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yimei Feng
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Zhang
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Qingbaijiang, 610300, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhuo Huang
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Suping Gao
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qibing Chen
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| |
Collapse
|
47
|
Khalil SRM, Ibrahim AS, Hussien BA, Hussien EA, Tawfik MS. Cloning of a functional mannose-6-phosphate reductase (M6PR) gene homolog from Egyptian celery plants ( Apium graveolens): overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals. 3 Biotech 2017; 7:341. [PMID: 28955638 PMCID: PMC5608648 DOI: 10.1007/s13205-017-0975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022] Open
Abstract
Salinity is a major limiting factor affecting crops production, survival and distribution worldwide. Engineering dehydration stress tolerance in commercial crops is a trait of economic importance, especially in saline-affected areas. In this work, we are reporting the cloning of the M6PR gene homolog (encoding a key enzyme, mannose-6-phosphate reductase, for mannitol biosynthesis in celery) from Egyptian celery plants. Using RACE technique, the full-length Egyptian-M6PR gene (1333 bp) was cloned into pRI-201AN plant expression vector. Analysis of the cloned gene revealed that both American and Egyptian clones had both start and stop codons in frame and was found to be 930 base long. The newly cloned EM6PR gene was found to be 126 base longer than its American counterpart at the non-coding region. Six differences at nucleotide level between the Egyptian and American sequences were observed, three of which in the coding region resulting in three polymorphic amino acids differences (tryptophan vs. leucine, glutamine vs. histidine and isoleucine vs. leucine). The newly cloned gene was introduced to tobacco via Agrobacterium and PCR analysis of T0 plants indicated the presence of the EM6PR gene into 10 out of 38 tobacco individuals. Moreover, RT-PCR analysis confirmed the presence of EM6PR transcripts in 9 out of the 10 PCR positive plants. GC/MS analysis of some RT positive individuals indicated the accumulation of mannitol in transgenics tobacco, while mannitol was absent in non-transgenic controls.
Collapse
Affiliation(s)
- Shaimaa R. M. Khalil
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| | - Amr S. Ibrahim
- Plant Genomic Laboratory, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| | - Basita A. Hussien
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ebtissam A. Hussien
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed S. Tawfik
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619 Egypt
| |
Collapse
|
48
|
Banerjee S, Sirohi A, Ansari AA, Gill SS. Role of small RNAs in abiotic stress responses in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Xu S, Wang R, Shen W. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:28-37. [PMID: 28554691 DOI: 10.1016/j.plantsci.2017.05.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 05/17/2023]
Abstract
Although melatonin-alleviated cadmium (Cd) toxicity both in animals and plants have been well studied, little is known about its regulatory mechanisms in plants. Here, we discovered that Cd stress stimulated the production of endogenous melatonin in alfalfa seedling root tissues. The pretreatment with exogenous melatonin not only increased melatonin content, but also alleviated Cd-induced seedling growth inhibition. The melatonin-rich transgenic Arabidopsis plants overexpressing alfalfa SNAT (a melatonin synthetic gene) exhibited more tolerance than wild-type plants under Cd conditions. Cd content was also reduced in root tissues. In comparison with Cd stress alone, ABC transporter and PCR2 transcripts in alfalfa seedlings, PDR8 and HMA4 in Arabidopsis, were up-regulated by melatonin. By contrast, Nramp6 transcripts were down-regulated. Changes in above transporters were correlated with the less accumulation of Cd. Additionally Cd-triggered redox imbalance was improved by melatonin. These could be supported by the changes of the Cu/Zn Superoxide Dismutase gene regulated by miR398a and miR398b. Histochemical staining, laser scanning confocal microscope, and H2O2 contents analyses showed the similar tendencies. Taking together, we clearly suggested that melatonin enhanced Cd tolerance via decreasing cadmium accumulation and reestablishing the microRNAs-mediated redox homeostasis.
Collapse
Affiliation(s)
- Quan Gu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jincheng Pan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
50
|
Ding Y, Wang Y, Jiang Z, Wang F, Jiang Q, Sun J, Chen Z, Zhu C. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5860-5867. [PMID: 28657742 DOI: 10.1021/acs.jafc.7b01164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
MicroRNAs (miRNAs) are 21-24-nucleotide-long RNAs that function as ubiquitous post-transcriptional regulators of gene expression in plants and animals. Increasing evidence points to the important role of miRNAs in plant responses to abiotic and biotic stresses. Cadmium (Cd) is a nonessential heavy metal highly toxic to plants. Although many genes encoding metal transporters have been characterized, the mechanisms for the regulation of the expression of the heavy-metal transporter genes are largely unknown. In this study, we found that the expression of miR268 in rice was significantly induced under Cd stress. By contrast, expression of natural resistance-associated macrophage protein 3 (NRAMP3), a target gene of miR268, was dramatically decreased by Cd treatment. Overexpression of miR268 inhibited rice seedling growth under Cd stress. The transgenic miR268-overexpressing plant leaves contained increased levels of hydrogen peroxide and malondialdehyde, and their seedlings accumulated increased levels of Cd when compared to those in wild-type plants. These results indicate that miR268 acts as a negative regulator of rice's tolerance to Cd stress. Thus, miRNA-guided regulation of gene expression plays an important role in plant responses to heavy-metal stress.
Collapse
Affiliation(s)
- Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Yi Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Zhihua Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Feijuan Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Qiong Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Junwei Sun
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| | - Zhixiang Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
- Department of Botany and Plant Pathology, Purdue University , West Lafayette, Indiana 47907-2054 United States
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou 310018, People's Republic of China
| |
Collapse
|