1
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
Mishra S, Ganapathi TR, Pandey GK, Foyer CH, Srivastava AK. Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants. Antioxid Redox Signal 2024; 41:42-55. [PMID: 37597205 DOI: 10.1089/ars.2023.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Girdhar Kumar Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Du Y, Zhao H, Feng N, Zheng D, Khan A, Zhou H, Deng P, Wang Y, Lu X, Jiang W. Alginate Oligosaccharides Alleviate Salt Stress in Rice Seedlings by Regulating Cell Wall Metabolism to Maintain Cell Wall Structure and Improve Lodging Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1215. [PMID: 38732430 PMCID: PMC11085217 DOI: 10.3390/plants13091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased β-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and β-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS.
Collapse
Affiliation(s)
- Youwei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Huimin Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yaxing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Xutong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wenxin Jiang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.D.); (H.Z.); (A.K.); (H.Z.); (P.D.); (Y.W.); (X.L.); (W.J.)
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
4
|
Gieniec M, Miszalski Z, Rozpądek P, Jędrzejczyk RJ, Czernicka M, Nosek M. How the Ethylene Biosynthesis Pathway of Semi-Halophytes Is Modified with Prolonged Salinity Stress Occurrence? Int J Mol Sci 2024; 25:4777. [PMID: 38731994 PMCID: PMC11083548 DOI: 10.3390/ijms25094777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.
Collapse
Affiliation(s)
- Miron Gieniec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (M.G.); (Z.M.)
| | - Zbigniew Miszalski
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (M.G.); (Z.M.)
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland; (P.R.); (R.J.J.)
| | - Roman J. Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland; (P.R.); (R.J.J.)
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Michał Nosek
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
5
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
6
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
7
|
Li Q, Fu H, Yu X, Wen X, Guo H, Guo Y, Li J. The SALT OVERLY SENSITIVE 2-CONSTITUTIVE TRIPLE RESPONSE1 module coordinates plant growth and salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:391-404. [PMID: 37721807 DOI: 10.1093/jxb/erad368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
High salinity stress promotes plant ethylene biosynthesis and triggers the ethylene signalling response. However, the precise mechanism underlying how plants transduce ethylene signalling in response to salt stress remains largely unknown. In this study, we discovered that SALT OVERLY SENSITIVE 2 (SOS2) inhibits the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) by phosphorylating the 87th serine (S87). This phosphorylation event activates the ethylene signalling response, leading to enhanced plant salt resistance. Furthermore, through genetic analysis, we determined that the loss of CTR1 or the gain of SOS2-mediated CTR1 phosphorylation both contribute to improved plant salt tolerance. Additionally, in the sos2 mutant, we observed compromised proteolytic processing of ETHYLENE INSENSITIVE 2 (EIN2) and reduced nuclear localization of EIN2 C-terminal fragments (EIN2-C), which correlate with decreased accumulation of ETHYLENE INSENSITIVE 3 (EIN3). Collectively, our findings unveil the role of the SOS2-CTR1 regulatory module in promoting the activation of the ethylene signalling pathway and enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Qinpei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xing Wen
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Zhang S, Zhang Q, Li C, Xing N, Zhou P, Jiao Y. A zinc-modified Anemarrhena asphodeloides polysaccharide complex enhances immune activity via the NF-κB and MAPK signaling pathways. Int J Biol Macromol 2023; 249:126017. [PMID: 37517752 DOI: 10.1016/j.ijbiomac.2023.126017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Anemarrhena asphodeloides polysaccharide (AAP70-1) was reported to have immunomodulatory effects in our previous report. To further improve the immunomodulatory effects of AAP70-1, an A. asphodeloides polysaccharide-zinc complex (AAP-Zn) was synthesized using a ZnCl2 modification method, and the potential mechanisms by which AAP-Zn activates macrophages were investigated. The results showed that the structural features of AAP-Zn were similar to those of AAP70-1 with a Zn content of 0.2 %, confirming that Zn mainly interacted with AAP70-1 by forming ZnO coordination bonds and Zn…OH bonds. In addition, the administration of AAP70-1 and AAP-Zn effectively improved the immunomodulatory effects by enhancing phagocytosis and upregulating the mRNA expression of cytokines (TNF-α, IL-6, IL-1β, and IL-18), as well as increasing the production levels of nitric oxide (NO) and reactive oxygen species (ROS) in zebrafish embryos. The intracellular mechanism by which AAP-Zn activates macrophages was found to involve activation of the NF-κB and MAPK signaling pathways. Our findings suggested that AAP-Zn may be a potential immunopotentiator in the field of biomedicine or functional foods.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Pengfei Zhou
- School of Basic Medical Science, Guangdong Medical University, Dongguan 523808, China
| | - Yukun Jiao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
9
|
Dong Y, Gupta S, Wargent JJ, Putterill J, Macknight RC, Gechev TS, Mueller-Roeber B, Dijkwel PP. Comparative Transcriptomics of Multi-Stress Responses in Pachycladon cheesemanii and Arabidopsis thaliana. Int J Mol Sci 2023; 24:11323. [PMID: 37511083 PMCID: PMC10379395 DOI: 10.3390/ijms241411323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The environment is seldom optimal for plant growth and changes in abiotic and biotic signals, including temperature, water availability, radiation and pests, induce plant responses to optimise survival. The New Zealand native plant species and close relative to Arabidopsis thaliana, Pachycladon cheesemanii, grows under environmental conditions that are unsustainable for many plant species. Here, we compare the responses of both species to different stressors (low temperature, salt and UV-B radiation) to help understand how P. cheesemanii can grow in such harsh environments. The stress transcriptomes were determined and comparative transcriptome and network analyses discovered similar and unique responses within species, and between the two plant species. A number of widely studied plant stress processes were highly conserved in A. thaliana and P. cheesemanii. However, in response to cold stress, Gene Ontology terms related to glycosinolate metabolism were only enriched in P. cheesemanii. Salt stress was associated with alteration of the cuticle and proline biosynthesis in A. thaliana and P. cheesemanii, respectively. Anthocyanin production may be a more important strategy to contribute to the UV-B radiation tolerance in P. cheesemanii. These results allowed us to define broad stress response pathways in A. thaliana and P. cheesemanii and suggested that regulation of glycosinolate, proline and anthocyanin metabolism are strategies that help mitigate environmental stress.
Collapse
Affiliation(s)
- Yanni Dong
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Jason J Wargent
- School of Agriculture & Environment, Massey University, Palmerston North 4442, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Macknight
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| | - Bernd Mueller-Roeber
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paul P Dijkwel
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
10
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
11
|
Xie L, Liu G, Huang Z, Zhu Z, Yang K, Liang Y, Xu Y, Zhang L, Du Z. Tremella fuciformis Polysaccharide Induces Apoptosis of B16 Melanoma Cells via Promoting the M1 Polarization of Macrophages. Molecules 2023; 28:molecules28104018. [PMID: 37241759 DOI: 10.3390/molecules28104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-tumor activity of Tremella fuciformis polysaccharides (TFPS) has been widely reported, but its mechanism remains poorly understood. In this study, we established an in vitro co-culture system (B16 melanoma cells and RAW 264.7 macrophage-like cells) to explore the potential anti-tumor mechanism of TFPS. Based on our results, TFPS exhibited no inhibition on the cell viability of B16 cells. However, significant apoptosis was observed when B16 cells were co-cultured with TFPS-treated RAW 264.7 cells. We further found that mRNA levels of M1 macrophage markers including iNOS and CD80 were significantly upregulated in TFPS-treated RAW 264.7 cells, while M2 macrophage markers such as Arg-1 and CD 206 remained unchanged. Besides, the migration, phagocytosis, production of inflammatory mediators (NO, IL-6 and TNF-α), and protein expression of iNOS and COX-2 were markedly enhanced in TFPS-treated RAW 264.7 cells. Network pharmacology analysis indicated that MAPK and NF-κB signaling pathways may be involved in M1 polarization of macrophages, and this hypothesis was verified by Western blot. In conclusion, our research demonstrated that TFPS induced apoptosis of melanoma cells by promoting M1 polarization of macrophages, and suggested TFPS may be applied as an immunomodulatory for cancer therapy.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangrong Liu
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Zebin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaiye Yang
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Yiheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yani Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Augstein F, Carlsbecker A. Salinity induces discontinuous protoxylem via a DELLA-dependent mechanism promoting salt tolerance in Arabidopsis seedlings. THE NEW PHYTOLOGIST 2022; 236:195-209. [PMID: 35746821 PMCID: PMC9545557 DOI: 10.1111/nph.18339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Salinity is detrimental to plants and developmental adjustments limiting salt uptake and transport is therefore important for acclimation to high salt. These parameters may be influenced by xylem morphology, however how plant root xylem development is affected by salt stress remains unclear. Using molecular and genetic techniques and detailed phenotypic analyses, we demonstrate that salt causes distinct effects on Arabidopsis seedling root xylem and reveal underlying molecular mechanisms. Salinity causes intermittent inhibition of protoxylem cell differentiation, generating protoxylem gaps, in Arabidopsis and several other eudicot seedlings. The extent of protoxylem gaps in seedlings positively correlates with salt tolerance. Reduced gibberellin signalling is required for protoxylem gap formation. Mutant analyses reveal that the xylem differentiation regulator VASCULAR RELATED NAC DOMAIN 6 (VND6), along with secondary cell wall producing and cell wall modifying enzymes, including EXPANSIN A1 (EXP1), are involved in protoxylem gap formation, in a DELLA-dependent manner. Salt stress is likely to reduce levels of bioactive gibberellins, stabilising DELLAs, which in turn activates multiple factors modifying protoxylem differentiation. Salt stress impacts seedling survival and formation of protoxylem gaps may be a measure to enhance salt tolerance.
Collapse
Affiliation(s)
- Frauke Augstein
- Department of Organismal Biology, Physiological Botany, and Linnean Centre for Plant BiologyUppsala UniversityUllsv. 24ESE‐756 51UppsalaSweden
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, and Linnean Centre for Plant BiologyUppsala UniversityUllsv. 24ESE‐756 51UppsalaSweden
| |
Collapse
|
13
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
14
|
Chen Y, Xiang Y, Hu Z, Gao Y, Zhang Y, Chen M, Khaldun ABM, Yan X, Fan J. Transcriptomic profiling revealed the role of 24-epibrassinolide in alleviating salt stress damage in tall fescue ( Festuca arundinacea). FRONTIERS IN PLANT SCIENCE 2022; 13:976341. [PMID: 36212305 PMCID: PMC9540362 DOI: 10.3389/fpls.2022.976341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Soil salinization is a major problem all over the world. The accumulation of salt in soil reduces the root water uptake and directly affects plant growth and metabolic activities. Brassinosteroid is a plant hormone that plays an important role in regulation of plant growth and physiological process, including promotion of cell expansion and elongation, signal transduction and stress response. Exogenous 24-epibrassinolide (EBL) has been proved to alleviate various environmental stress in plants. However, the role that EBL plays in salt stress response is still unknown in tall fescue (Festuca arundinacea). In this study, the physiology and molecular mechanisms regulated by exogenous EBL of salt stress response in tall fescue was investigated. Tall fescue plants were divided into four groups, including control (CK), NaCl solution (SALT), 24-epibrassinolide (EBL), NaCl solution + 24-epibrassinolide (SE). During the growth period of tall fescue, we found that electrolyte leakage (EL) and malondialdehyde (MDA) were decreased, chlorophyll (Chl) content and antioxidant enzyme activity were increased in leaves of tall fescue in SE group compared with SALT group, indicating that EBL improved the salt tolerance in grasses. Transcriptomic profiling analysis showed that after 12 h of treatments, 10,265, 13,830 and 10,537 differential genes were expressed in EBL, SALT, and SE groups compared with control, respectively. These differentially expressed genes (DEGs) mainly focused on binding, catalytic activity, cellular process, metabolic process, cellular anatomical entity. Moreover, most of the differential genes were expressed in the plant hormone signal transduction pathway. These results helped us to better understand the mechanism of exogenous 24-epibrassinolide to improve the salt tolerance of tall fescue.
Collapse
Affiliation(s)
- Yao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuanhang Xiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Yang Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Youxin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Minghui Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
17
|
Dong Y, Zhang W, Li J, Wang D, Bai H, Li H, Shi L. The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:289. [PMID: 35698036 PMCID: PMC9190104 DOI: 10.1186/s12870-022-03660-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, are essential regulators of plant terpenoid biosynthesis and response to stresses. Lavender has more than 75 volatile terpenoids, yet few TFs have been identified to be involved in the terpenoid biosynthesis. RESULTS Based on RNA-Seq, reverse transcription-quantitative polymerase chain reaction, and transgenic technology, this study characterized the stress-responsive transcription factor LaMYC4 regulates terpenoid biosynthesis. Methyl jasmonate (MeJA) treatment increased volatile terpenoid emission, and the differentially expressed gene LaMYC4 was isolated. LaMYC4 expression level was higher in leaf than in other tissues. The expression of LaMYC4 decreased during flower development. The promoter of LaMYC4 contained hormone and stress-responsive regulatory elements and was responsive to various treatments, including UV, MeJA treatment, drought, low temperature, Pseudomonas syringae infection, and NaCl treatment. LaMYC4 overexpression increased the levels of sesquiterpenoids, including caryophyllenes, in Arabidopsis and tobacco plants. Furthermore, the expression of crucial node genes involved in terpenoid biosynthesis and glandular trichome number and size increased in transgenic tobacco. CONCLUSIONS We have shown that the stress-responsive MYC TF LaMYC4 from 'Jingxun 2' lavender regulates volatile terpenoid synthesis. This study is the first to describe the cloning of LaMYC4, and the results help understand the role of LaMYC4 in terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Wenying Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| |
Collapse
|
18
|
Riyazuddin R, Bela K, Poór P, Szepesi Á, Horváth E, Rigó G, Szabados L, Fehér A, Csiszár J. Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene. Int J Mol Sci 2022; 23:ijms23105749. [PMID: 35628560 PMCID: PMC9171577 DOI: 10.3390/ijms23105749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which-in contrast to GPXs-contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Gábor Rigó
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Correspondence:
| |
Collapse
|
19
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Eljebbawi A, Savelli B, Libourel C, Estevez JM, Dunand C. Class III Peroxidases in Response to Multiple Abiotic Stresses in Arabidopsis thaliana Pyrenean Populations. Int J Mol Sci 2022; 23:ijms23073960. [PMID: 35409333 PMCID: PMC8999671 DOI: 10.3390/ijms23073960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Class III peroxidases constitute a plant-specific multigene family, where 73 genes have been identified in Arabidopsis thaliana. These genes are members of the reactive oxygen species (ROS) regulatory network in the whole plant, but more importantly, at the root level. In response to abiotic stresses such as cold, heat, and salinity, their expression is significantly modified. To learn more about their transcriptional regulation, an integrative phenotypic, genomic, and transcriptomic study was executed on the roots of A. thaliana Pyrenean populations. Initially, the root phenotyping highlighted 3 Pyrenean populations to be tolerant to cold (Eaux), heat (Herr), and salt (Grip) stresses. Then, the RNA-seq analyses on these three populations, in addition to Col-0, displayed variations in CIII Prxs expression under stressful treatments and between different genotypes. Consequently, several CIII Prxs were particularly upregulated in the tolerant populations, suggesting novel and specific roles of these genes in plant tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago CP 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago CP 8370146, Chile
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
- Correspondence:
| |
Collapse
|
21
|
Yung WS, Wang Q, Huang M, Wong FL, Liu A, Ng MS, Li KP, Sze CC, Li MW, Lam HM. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1575-1590. [PMID: 34961994 DOI: 10.1111/tpj.15652] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants that have experienced certain abiotic stress may gain tolerance to a similar stress in subsequent exposure. This phenomenon, called priming, was observed here in soybean (Glycine max) seedlings exposed to salt stress. Time-course transcriptomic profiles revealed distinctively different transcriptional responses in the primed seedlings from those in the non-primed seedlings under high salinity stress, indicating a stress response strategy of repressing unhelpful biotic stress responses and focusing on the promotion of those responses important for salt tolerance. To identify histone marks altered by the priming salinity treatment, a genome-wide profiling of histone 3 lysine 4 dimethylation (H3K4me2), H3K4me3, and histone 3 lysine 9 acetylation (H3K9ac) was performed. Our integrative analyses revealed that priming induced drastic alterations in these histone marks, which coordinately modified the stress response, ion homeostasis, and cell wall modification. Furthermore, transcriptional network analyses unveiled epigenetically modified networks which mediate the strategic downregulation of defense responses. Altering the histone acetylation status using a chemical inhibitor could elicit the priming-like transcriptional responses in non-primed seedlings, confirming the importance of histone marks in forming the priming response.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwan-Pok Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
22
|
Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia. FRONTIERS IN PLANT SCIENCE 2022; 13:844449. [PMID: 35283920 PMCID: PMC8906779 DOI: 10.3389/fpls.2022.844449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Jova Riza Campol
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
24
|
Wang Z, Li N, Yu Q, Wang H. Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes. Int J Mol Sci 2021; 22:12238. [PMID: 34830118 PMCID: PMC8625345 DOI: 10.3390/ijms222212238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Soil salinization is a major environmental stress that causes crop yield reductions worldwide. Therefore, the cultivation of salt-tolerant crops is an effective way to sustain crop yield. Tomatoes are one of the vegetable crops that are moderately sensitive to salt stress. Global market demand for tomatoes is huge and growing. In recent years, the mechanisms of salt tolerance in tomatoes have been extensively investigated; however, the molecular mechanism through which non-coding RNAs (ncRNAs) respond to salt stress is not well understood. In this study, we utilized small RNA sequencing and whole transcriptome sequencing technology to identify salt-responsive microRNAs (miRNAs), messenger RNAs (mRNAs), and circular RNAs (circRNAs) in roots of M82 cultivated tomato and Solanum pennellii (S. pennellii) wild tomato under salt stress. Based on the theory of competitive endogenous RNA (ceRNA), we also established several salt-responsive ceRNA networks. The results showed that circRNAs could act as miRNA sponges in the regulation of target mRNAs of miRNAs, thus participating in the response to salt stress. This study provides insights into the mechanisms of salt tolerance in tomatoes and serves as an effective reference for improving the salt tolerance of salt-sensitive cultivars.
Collapse
Affiliation(s)
- Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
25
|
Nefissi Ouertani R, Arasappan D, Abid G, Ben Chikha M, Jardak R, Mahmoudi H, Mejri S, Ghorbel A, Ruhlman TA, Jansen RK. Transcriptomic Analysis of Salt-Stress-Responsive Genes in Barley Roots and Leaves. Int J Mol Sci 2021; 22:8155. [PMID: 34360920 PMCID: PMC8348758 DOI: 10.3390/ijms22158155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
Barley is characterized by a rich genetic diversity, making it an important model for studies of salinity response with great potential for crop improvement. Moreover, salt stress severely affects barley growth and development, leading to substantial yield loss. Leaf and root transcriptomes of a salt-tolerant Tunisian landrace (Boulifa) exposed to 2, 8, and 24 h salt stress were compared with pre-exposure plants to identify candidate genes and pathways underlying barley's response. Expression of 3585 genes was upregulated and 5586 downregulated in leaves, while expression of 13,200 genes was upregulated and 10,575 downregulated in roots. Regulation of gene expression was severely impacted in roots, highlighting the complexity of salt stress response mechanisms in this tissue. Functional analyses in both tissues indicated that response to salt stress is mainly achieved through sensing and signaling pathways, strong transcriptional reprograming, hormone osmolyte and ion homeostasis stabilization, increased reactive oxygen scavenging, and activation of transport and photosynthesis systems. A number of candidate genes involved in hormone and kinase signaling pathways, as well as several transcription factor families and transporters, were identified. This study provides valuable information on early salt-stress-responsive genes in roots and leaves of barley and identifies several important players in salt tolerance.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; (R.N.O.); (M.B.C.); (R.J.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; (R.N.O.); (M.B.C.); (R.J.); (S.M.); (A.G.)
| | - Rahma Jardak
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; (R.N.O.); (M.B.C.); (R.J.); (S.M.); (A.G.)
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Dubai 00000, United Arab Emirates;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; (R.N.O.); (M.B.C.); (R.J.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; (R.N.O.); (M.B.C.); (R.J.); (S.M.); (A.G.)
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Sehar Z, Iqbal N, Khan MIR, Masood A, Rehman MT, Hussain A, AlAjmi MF, Ahmad A, Khan NA. Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Sci Rep 2021; 11:12650. [PMID: 34135422 PMCID: PMC8209215 DOI: 10.1038/s41598-021-92086-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ethylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L-1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.
Collapse
Affiliation(s)
- Zebus Sehar
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Noushina Iqbal
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - M. Iqbal R. Khan
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Asim Masood
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Md. Tabish Rehman
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Afzal Hussain
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Mohamed F. AlAjmi
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Altaf Ahmad
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Nafees A. Khan
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
27
|
Heydarian Z, Gruber M, Coutu C, Glick BR, Hegedus DD. Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Sci Rep 2021; 11:4260. [PMID: 33608579 PMCID: PMC7895925 DOI: 10.1038/s41598-021-83629-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Growth of plants in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase or expression of the corresponding acdS gene in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of ethylene attenuated the salt stress response as inferred from decreases in the expression of genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to levels that may otherwise have a negative effect on plant growth and productivity. Growing plants in soil treated with Pseudomonas migulae 8R6 negatively affected ethylene signaling, auxin and JA biosynthesis and signalling, but had a positive effect on the regulation of genes involved in GA signaling. In plants expressing acdS, the expression of the genes involved in auxin signalling was positively affected, while the expression of genes involved in cytokinin degradation and ethylene biosynthesis were negatively affected. Moreover, fine-tuning of ABA signaling appears to result from the application of ACC deaminase in response to salt treatment. Moderate expression of acdS under the control of the root specific rolD promoter or growing plants in soil treated with P. migulae 8R6 were more effective in reducing the expression of the genes involved in ethylene production and/or signaling than expression of acdS under the more active Cauliflower Mosaic Virus 35S promoter.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
28
|
Mhiri W, Ceylan M, Turgut-Kara N, Nalbantoğlu B, Çakır Ö. Transcriptomic analysis reveals responses to Cycloastragenol in Arabidopsis thaliana. PLoS One 2020; 15:e0242986. [PMID: 33301486 PMCID: PMC7728452 DOI: 10.1371/journal.pone.0242986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022] Open
Abstract
Cycloastragenol (CAG), a molecule isolated from ‘Astragalus membranaceus’, stimulates the telomerase activity and cell proliferation significantly. It has been proven that CAG has the ability to prevent some diseases in humans. In this study, we aimed to figure out the CAG effects on the different signaling mechanisms in plants and to broadly analyze the genome-wide transcriptional responses in order to demonstrate CAG as a new key molecule that can potentially help plants to overcome different environmental stresses. RNA-seq strategy was employed to assess the transcriptional profiles in A. thaliana calli. Our work primarily focused on an overall study on the transcriptomic responses of A. thaliana to CAG. A total of 22593 unigenes have been detected, among which 1045 unigenes associated with 213 GO terms were differentially expressed and were assigned to 118 KEGG pathways. The up-regulated genes are principally involved in cellular and metabolic processes in addition to the response to a stimulus. The data analysis revealed genes associated with defense signaling pathways such as cytochrome P450s transporter, antioxidant system genes, and stress-responsive protein families were significantly upregulated. The obtained results can potentially help in better understanding biotic and/or abiotic tolerance mechanisms in response to CAG.
Collapse
Affiliation(s)
- Wissem Mhiri
- Chemistry Department, Faculty of Art & Science, Yıldız Technical University, Istanbul, Turkey
- * E-mail: (WM); (ÖÇ)
| | - Merve Ceylan
- Program of Molecular Biology and Genetics, Istanbul University, Institute of Science, Istanbul, Turkey
| | - Neslihan Turgut-Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Barbaros Nalbantoğlu
- Chemistry Department, Faculty of Art & Science, Yıldız Technical University, Istanbul, Turkey
| | - Özgür Çakır
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
- * E-mail: (WM); (ÖÇ)
| |
Collapse
|
29
|
An M, Wang X, Chang D, Wang S, Hong D, Fan H, Wang K. Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. BMC PLANT BIOLOGY 2020; 20:462. [PMID: 33032521 PMCID: PMC7542905 DOI: 10.1186/s12870-020-02649-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/14/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization and alkalinization are the main factors that affect the agricultural productivity. Evaluating the persistence of the compound material applied in field soils is an important part of the regulation of the responses of cotton to saline and alkaline stresses. RESULT To determine the molecular effects of compound material on the cotton's responses to saline stress and alkaline stress, cotton was planted in the salinized soil (NaCl 8 g kg- 1) and alkalized soil (Na2CO3 8 g kg- 1) after application of the compound material, and ion content, physiological characteristics, and transcription of new cotton leaves at flowering and boll-forming stage were analyzed. The results showed that compared with saline stress, alkaline stress increased the contents of Na+, K+, SOD, and MDA in leaves. The application of the compound material reduced the content of Na+ but increased the K+/Na+ ratio, the activities of SOD, POD, and CAT, and REC. Transcriptome analysis revealed that after the application of the compound material, the Na+/H+ exchanger gene in cotton leaves was down-regulated, while the K+ transporter, K+ channel, and POD genes were up-regulated. Besides, the down-regulation of genes related to lignin synthesis in phenylalanine biosynthesis pathway had a close relationship with the ion content and physiological characteristics in leaves. The quantitative analysis with PCR proved the reliability of the results of RNA sequencing. CONCLUSION These findings suggest that the compound material alleviated saline stress and alkaline stress on cotton leaves by regulating candidate genes in key biological pathways, which improves our understanding of the molecular mechanism of the compound material regulating the responses of cotton to saline stress and alkaline stress.
Collapse
Affiliation(s)
- Mengjie An
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaoli Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Doudou Chang
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Shuai Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Dashuang Hong
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Hua Fan
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Kaiyong Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
30
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
31
|
Li H, Wang H, Wen W, Yang G. The antioxidant system in Suaeda salsa under salt stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1771939. [PMID: 32463323 PMCID: PMC8570744 DOI: 10.1080/15592324.2020.1771939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
L. is a typical euhalophyte and is widely distributed throughout the world. Suaeda plants are important halophyte resources, and the physiological and biochemical characteristics of their various organsand their response to salt stress have been intensively studied. Leaf succulence, intracellular ion localization, increased osmotic regulation and enhanced antioxidant capacities are important responses for Suaeda plants to adapt to salt stress. Among these responses, scavenging of reactive oxygen species (ROS) is an important mechanism for plants to withstand oxidative stress and improve salt tolerance. The generation and scavenging pathways of ROS, as well as the expression of scavenging enzymes change under salt stress. This article reviews the antioxidant system constitute of S. salsa, and the mechanisms by which S. salsaantioxidant capacity is improved for salt tolerance. In addition, the differences between types of antioxidant mechanisms in S. salsaare reviewed, thereby revealing the adaptation mechanisms of Suaeda to different habitats. The review provides important clues for the comprehensive understanding of the salt tolerance mechanisms of halophytes.
Collapse
Affiliation(s)
- Hua Li
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wujun Wen
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
32
|
Huang CL, Sarkar R, Hsu TW, Yang CF, Chien CH, Chang WC, Chiang TY. Endophytic Microbiome of Biofuel Plant Miscanthus sinensis (Poaceae) Interacts with Environmental Gradients. MICROBIAL ECOLOGY 2020; 80:133-144. [PMID: 31832698 DOI: 10.1007/s00248-019-01467-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Miscanthus in Taiwan occupies a cline along altitude and adapts to diverse environments, e.g., habitats of high salinity and volcanoes. Rhizospheric and endophytic bacteria may help Miscanthus acclimate to those stresses. The relative contributions of rhizosphere vs. endosphere compartments to the adaptation remain unknown. Here, we used targeted metagenomics to compare the microbial communities in the rhizosphere and endosphere among ecotypes of M. sinensis that dwell habitats under different stresses. Proteobacteria and Actinobacteria predominated in the endosphere. Diverse phyla constituted the rhizosphere microbiome, including a core microbiome found consistently across habitats. In endosphere, the predominance of the bacteria colonizing from the surrounding soil suggests that soil recruitment must have subsequently determined the endophytic microbiome in Miscanthus roots. In endosphere, the bacterial diversity decreased with the altitude, likely corresponding to rising limitation to microorganisms according to the species-energy theory. Specific endophytes were associated with different environmental stresses, e.g., Pseudomonas spp. for alpine and Agrobacterium spp. for coastal habitats. This suggests Miscanthus actively recruits an endosphere microbiome from the rhizosphere it influences.
Collapse
Affiliation(s)
- Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Rakesh Sarkar
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsai-Wen Hsu
- Endemic Species Research Institute, Nantou, 55244, Taiwan
| | - Chia-Fen Yang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chia-Hung Chien
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
33
|
|
34
|
Zheng H, Yang Z, Wang W, Guo S, Li Z, Liu K, Sui N. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:11-26. [PMID: 32035249 DOI: 10.1016/j.plaphy.2020.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays) is an important food and forage crop, as well as an industrial raw material, that plays important roles in agriculture and national economies. Drought stress has negative effects on seed germination and seedling growth, and it decreases crop production. In this study, we selected two maize inbred lines with different drought-tolerance levels: drought-tolerant 287M and drought-sensitive 753F. The physiological results showed that drought stress resulted in a large accumulation of reactive oxygen species (ROS) in maize root cells. However, in 287M, the activity levels of the ROS scavenging enzymes superoxide dismutase and ascorbate peroxidase also increased, resulting in a higher ROS scavenging ability than 753F. We used Illumina RNA sequencing to obtain the gene expression profiles of the two maize inbred lines at the seedling stage in response to drought stress. The transcriptome data were analyzed to reveal the mechanisms underlying the drought tolerance of 287M at the gene regulatory level. The differences in drought tolerance between 287M and 753F may be associated with different ROS scavenging capabilities, signal interaction networks, and some transcription factors. Our results will aid in understanding the molecular mechanisms involved in plant responses to drought stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Wenqing Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Zongxin Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kaichang Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
35
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
36
|
Sun H, Sun X, Wang H, Ma X. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas 2020; 157:5. [PMID: 32093781 PMCID: PMC7041081 DOI: 10.1186/s41065-020-00118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tobacco, an economic crop and important model plant, has received more progress in salt tolerance with the aid of transgenic technique. Salt stress has become a key research field in abiotic stress. The study of tobacco promotes the understanding about the important adjustment for survival in high salinity environments, including cellular ion transport, osmotic regulation, antioxidation, signal transduction and expression regulation, and protection of cells from stress damage. Genes, which response to salt, have been studied using targeted transgenic technologies in tobacco plants to investigate the molecular mechanisms. The transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under salt stress treatments. Transgenic approach could be the promising option for enhancing tobacco production under saline condition. This review highlighted the salt tolerance molecular mechanisms of tobacco.
Collapse
Affiliation(s)
- Haiji Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaowen Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Hui Wang
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaoli Ma
- Central laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 China
| |
Collapse
|
37
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
38
|
Qi F, Zhang F. Cell Cycle Regulation in the Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2020; 10:1765. [PMID: 32082337 PMCID: PMC7002440 DOI: 10.3389/fpls.2019.01765] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants face a variety of environmental challenges. Their reproduction and survival depend on their ability to adapt to these stressors, which include water, heat stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in programmed cell death and decreased viability, as well as reduced productivity in the case of crop plants. The growth and development of plants are maintained by meiosis and mitosis as well as endoreduplication, during which DNA replicates without cytokinesis, leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages (G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M check point, that ensure normal cell division. Progression through these checkpoints involves the activity of cyclin-dependent kinases and their regulatory subunits known as cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to dynamic environmental conditions. In this review, we summarize recent advances in our understanding of cell cycle regulation in plants, with a focus on the molecular interactions of cell cycle machinery in the context of stress tolerance.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | | |
Collapse
|
39
|
Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:164. [PMID: 32184795 PMCID: PMC7058704 DOI: 10.3389/fpls.2020.00164] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Changle Ma
- *Correspondence: Changle Ma, ; Pingping Wang,
| | | |
Collapse
|
40
|
Fan C. Genetic mechanisms of salt stress responses in halophytes. PLANT SIGNALING & BEHAVIOR 2019; 15:1704528. [PMID: 31868075 PMCID: PMC7012083 DOI: 10.1080/15592324.2019.1704528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 05/08/2023]
Abstract
Abiotic stress is a major threat to plant growth and development, resulting in extensive crop loss worldwide. Plants react to abiotic stresses through physiological, biochemical, molecular, and genetic adaptations that promote survival. Exploring the molecular mechanisms involved in abiotic stress responses across various plant species is essential for improving crop yields in unfavorable environments. Halophytes are characterized as plants that survive to reproduce in soils containing high salt concentrations, and thus act as an ideal model to comprehend complicated genetic and physiological mechanisms of salinity stress tolerance. Plant ecologists classify halophytes into three main groups: euhalophytes, recretohalophytes, and pseudo-halophytes. Recent genetic and molecular research has showed complicated regulatory networks by which halophytes coordinate stress adaptation and tolerance. Furthermore, investigation of natural variations in these stress responses has supplied new perspectives on the evolution of mechanisms that regulate tolerance and adaptation. This review discusses the current understanding of the genetic mechanisms that contribute to salt-stress tolerance among different classes of halophytes.
Collapse
Affiliation(s)
- Cunxian Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
RNA-seq Analysis of Salt-Stressed Versus Non Salt-Stressed Transcriptomes of Chenopodium quinoa Landrace R49. Genes (Basel) 2019; 10:genes10121042. [PMID: 31888133 PMCID: PMC6947843 DOI: 10.3390/genes10121042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.), a model halophytic crop species, was used to shed light on salt tolerance mechanisms at the transcriptomic level. An RNA-sequencing analysis of genotype R49 at an early vegetative stage was performed by Illumina paired-ends method comparing high salinity and control conditions in a time-course pot experiment. Genome-wide transcriptional salt-induced changes and expression profiling of relevant salt-responsive genes in plants treated or not with 300 mM NaCl were analyzed after 1 h and 5 days. We obtained up to 49 million pairs of short reads with an average length of 101 bp, identifying a total of 2416 differentially expressed genes (DEGs) based on the treatment and time of sampling. In salt-treated vs. control plants, the total number of up-regulated and down-regulated genes was 945 and 1471, respectively. The number of DEGs was higher at 5 days than at 1 h after salt treatment, as reflected in the number of transcription factors, which increased with time. We report a strong transcriptional reprogramming of genes involved in biological processes like oxidation-reduction, response to stress and response to abscisic acid (ABA), and cell wall organization. Transcript analyses by real-time RT- qPCR supported the RNA-seq results and shed light on the contribution of roots and shoots to the overall transcriptional response. In addition, it revealed a time-dependent response in the expression of the analyzed DEGs, including a quick (within 1 h) response for some genes, suggesting a "stress-anticipatory preparedness" in this highly salt-tolerant genotype.
Collapse
|
42
|
Salinity Tolerance in Fraxinus angustifolia Vahl.: Seed Emergence in Field and Germination Trials. FORESTS 2019. [DOI: 10.3390/f10110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of salinity on seed germination/emergence in narrow-leaved ash (Fraxinus angustifolia) was studied both under field and laboratory conditions, in order to detect critical values to NaCl exposure. Research Highlights: Novel statistical methods in germination ecology has been applied (i) to determine the effects of chilling length and salinity (up to 150 mM NaCl) on Fraxinus angustifolia subsp. oxycarpa seed emergence, and (ii) to estimate threshold limits treating germination response to salinity as a biomarker. Background and Objectives: Salinity cut values at germination stage had relevant interest for conservation and restoration aims of Mediterranean floodplain forests in coastal areas subjected to salt spray exposure and/or saline water introgression. Results: Salinity linearly decreased germination/emergence both in the field and laboratory tests. Absence of germination was observed at 60 mM NaCl in the field (70–84 mM NaCl depending on interpolation model) and at 150 mM NaCl for 4-week (but not for 24-week) chilling. At 50 mM NaCl, germination percentage was 50% (or 80%) of control for 4-week (or 24-week) chilling. Critical values for salinity were estimated between freshwater and 50 (75) mM NaCl for 4-week (24-week) chilling by Bayesian analysis. After 7-week freshwater recovery, critical cut-off values included all tested salinity levels up to 150 mM NaCl, indicating a marked resumption of seedling emergence. Conclusions: Fraxinus angustifolia is able to germinate at low salinity and to tolerate temporarily moderate salinity conditions for about two months. Prolonged chilling widened salinity tolerance.
Collapse
|
43
|
Shen L, Zhuang B, Wu Q, Zhang H, Nie J, Jing W, Yang L, Zhang W. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110190. [PMID: 31481213 DOI: 10.1016/j.plantsci.2019.110190] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Phosphatidic acid (PA) is a lipid secondary messenger involved in intracellular signaling in eukaryotes. It has been confirmed that PA mediates salt stress signaling by promoting activation of Mitogen-activated Protein Kinase 6 (MPK6) which phosphorylates Na+/H+ antiporter SOS1. However, the MPK6-upstream kinases and their relationship to PA remain unclear. Here, we found that, among the six tested Arabidopsis Mitogen-activated Protein Kinase Kinases (MKKs), PA specifically bound to MKK7 and MKK9 which phosphorylate MPK6, and promoted the activation of MKK7/MKK9. Based on phenotypic and physiological analyses, we found that MKK7 and MKK9 positively regulate Arabidopsis salt tolerance and are functionally redundant. NaCl treatment can induce significant increase in MKK7/MKK9 activities, and this depends, in part, on the Phospholipase Dα1 (PLDα1). MKK7 and MKK9 also mediate the NaCl-induced activation of MPK6. Furthermore, PA or NaCl treatment could induce translocation of MKK7/MKK9 to the plasma membrane, whereas this translocation disappeared in pldα1. These results indicate that PA binds to MKK7 and MKK9, increases their kinase activity and plasma membrane localization during Arabidopsis response to salt stress. Together with the PA-MPK6-SOS1 pathway identified previously, this mechanism may maximize the signal transduction efficiency, providing novel insights into the link between lipid signaling and MAPK cascade.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Baocheng Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Jianing Nie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Lele Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
44
|
Tian L, Zhang Y, Kang E, Ma H, Zhao H, Yuan M, Zhu L, Fu Y. Basic-leucine zipper 17 and Hmg-CoA reductase degradation 3A are involved in salt acclimation memory in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1062-1084. [PMID: 30450762 DOI: 10.1111/jipb.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
Salt acclimation, which is induced by previous salt exposure, increases the resistance of plants to future exposure to salt stress. However, little is known about the underlying mechanism, particularly how plants store the "memory" of salt exposure. In this study, we established a system to study salt acclimation in Arabidopsis thaliana. Following treatment with a low concentration of salt, seedlings were allowed to recover to allow transitory salt responses to subside while maintaining the sustainable effects of salt acclimation. We performed transcriptome profiling analysis of these seedlings to identify genes related to salt acclimation memory. Notably, the expression of Basic-leucine zipper 17 (bZIP17) and Hmg-CoA reductase degradation 3A (HRD3A), which are important in the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation (ERAD), respectively, increased following treatment with a low concentration of salt and remained at stably high levels after the stimulus was removed, a treatment which improved plant tolerance to future high-salinity challenge. Our findings suggest that the upregulated expression of important genes involved in the UPR and ERAD represents a "memory" of the history of salt exposure and enables more potent responses to future exposure to salt stress, providing new insights into the mechanisms underlying salt acclimation in plants.
Collapse
Affiliation(s)
- Lin Tian
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Erfang Kang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huifang Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huan Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Fu L, Ding Z, Sun X, Zhang J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes (Basel) 2019; 10:genes10100743. [PMID: 31554307 PMCID: PMC6826491 DOI: 10.3390/genes10100743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/14/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023] Open
Abstract
Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Zehong Ding
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| |
Collapse
|
46
|
Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644596. [PMID: 31322479 PMCID: PMC6768271 DOI: 10.1080/15592324.2019.1644596] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. It is a key enzyme regulating malic acid metabolism and can catalyze the reversible reaction of oxidative decarboxylation of malic acid. And it is also one of the important enzymes in plant metabolism and is involved in multiple metabolic processes. ME is widely present in plants and mainly discovered in cytoplasmic stroma, mitochondria, chloroplasts. It is involved in plant growth, development, and stress response. Plants are stressed by various environmental factors such as drought, high salt, and high temperature during plant growth, and the mechanisms of plant response to various environmental stresses are synergistic. Numerous studies have shown that ME participates in the process of coping with the above environmental factors by increasing water use efficiency, improving photosynthesis of plants, providing reducing power, and so on. In this review, we discuss the important role of ME in plant development and plant stress response, and prospects for its application. It provides a theoretical basis for the future use of ME gene for molecular resistance breeding.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
47
|
Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019; 9:E285. [PMID: 31319576 PMCID: PMC6680914 DOI: 10.3390/biom9070285] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
Plants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars. These compounds stabilize the osmotic differences between surroundings of cell and the cytosol. Besides, they also protect the plant cells from oxidative stress by inhibiting the production of harmful ROS like hydroxyl ions, superoxide ions, hydrogen peroxide, and other free radicals. The accumulation of osmolytes is further modulated by phytohormones like abscisic acid, brassinosteroids, cytokinins, ethylene, jasmonates, and salicylic acid. It is thus important to understand the mechanisms regulating the phytohormone-mediated accumulation of osmolytes in plants during abiotic stresses. In this review, we have discussed the underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Vinod Kumar
- Department of Botany, DAV University, Sarmastpur, Jalandhar 144012, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Physiology Laboratory, Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India
| | | | - Neha Handa
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Dhriti Kapoor
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
48
|
Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Arabidopsis Thaliana Inflorescence. Int J Mol Sci 2019; 20:ijms20133167. [PMID: 31261714 PMCID: PMC6651052 DOI: 10.3390/ijms20133167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The regulation of sugar metabolism and partitioning plays an essential role for a plant’s acclimation to its environment, with specific responses in autotrophic and heterotrophic organs. In this work, we analyzed the effects of high salinity on sugar partitioning and vascular anatomy within the floral stem. Stem sucrose and fructose content increased, while starch reduced, in contrast to the response observed in rosette leaves of the same plants. In the stem, the effects were associated with changes in the expression of SWEET and TMT2 genes encoding sugar transporters, SUSY1 encoding a sucrose synthase and several FRK encoding fructokinases. By contrast, the expression of SUC2, SWEET11 and SWEET12, encoding sugar transporters for phloem loading, remained unchanged in the stem. Both the anatomy of vascular tissues and the composition of xylem secondary cell walls were altered, suggesting that high salinity triggered major readjustments of sugar partitioning in this heterotrophic organ. There were changes in the composition of xylem cell walls, associated with the collapse and deformation of xylem vessels. The data are discussed regarding sugar partitioning and homeostasis of sugars in the vascular tissues of the stem.
Collapse
|
49
|
Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep 2019; 46:5603-5608. [PMID: 31098806 DOI: 10.1007/s11033-019-04872-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Stress tolerance pathways are protective mechanisms that have evolved to protect plant growth and increase production under various environmental stress conditions. Enhancing stress tolerance in crop plants has become an area of intense study with aims of increasing crop production and enhancing economic benefits. A growing number of studies suggest that in addition to playing vital roles in mechanical architecture and cell division, microtubules are also involved the adaptation to severe environmental conditions in plants. However, the mechanisms that integrate microtubule regulation, cellular metabolism and cell signaling in plant stress responses remain unclear. Recent studies suggest that microtubules act as sensors for different abiotic stresses and maintain mechanical stability by forming bundles. Characterizing the diverse roles of plant microtubules is vital to furthering our understanding of stress tolerance in plants.
Collapse
Affiliation(s)
- Huixian Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
50
|
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. PLANT SIGNALING & BEHAVIOR 2019; 14:1613131. [PMID: 31084451 PMCID: PMC6619938 DOI: 10.1080/15592324.2019.1613131] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 05/19/2023]
Abstract
Plants face various stresses during the growth and development processes. The specific transcription factors bind to the cis-acting elements upstream of the stress resistance genes, specifically regulating the expression of the gene in plants and increasing the adaptability of plants to environmental stress. The transcription factor-mediated gene expression regulatory networks play an important role in plant stress response pathways. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor is one of the largest members of the transcription factor family in plants. It participates and has a great influence on all aspects of plant growth and development. It plays an important role in plant secondary metabolic regulation, hormone and environmental factor responses, cell differentiation, organ morphogenesis, and cell cycle regulation. This review mainly introduces the characteristics, structure, and classification of MYB transcription factors, as well as the abiotic stress resistance to drought, salt, temperature, and other functions in breeding, and provides a reference for the research and utilization of transcription factors in the future.
Collapse
Affiliation(s)
- Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|