1
|
van Stokkum IHM, Akhtar P, Biswas A, Lambrev PH. Energy transfer from phycobilisomes to photosystem I at 77 K. FRONTIERS IN PLANT SCIENCE 2023; 14:1293813. [PMID: 38078099 PMCID: PMC10702739 DOI: 10.3389/fpls.2023.1293813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 04/14/2024]
Abstract
Phycobilisomes serve as a light-harvesting antenna of both photosystem I (PSI) and II (PSII) in cyanobacteria, yet direct energy transfer from phycobilisomes to PSI is not well documented. Here we recorded picosecond time-resolved fluorescence at wavelengths of 605-760 nm in isolated photosystem I (PSI), phycobilisomes and intact cells of a PSII-deficient mutant of Synechocystis sp. PCC 6803 at 77 K to study excitation energy transfer and trapping. By means of a simultaneous target analysis of the kinetics of isolated complexes and whole cells, the pathways and dynamics of energy transfer in vitro and in vivo were established. We establish that the timescale of the slowest equilibration between different terminal emitters in the phycobilisome is ≈800 ps. It was estimated that the terminal emitter in about 40% of the phycobilisomes transfers its energy with a rate constant of 42 ns-1 to PSI. This energy transfer rate is higher than the rates of equilibration within the phycobilisome - between the rods and the core or between the core cylinders - and is evidence for the existence of specific phycobilisome-PSI interactions. The rest of the phycobilisomes remain unconnected or slowly transferring energy to PSI.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Parveen Akhtar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Petar H. Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
2
|
Moore RA, Azua-Bustos A, González-Silva C, Carr CE. Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci Rep 2023; 13:15767. [PMID: 37737281 PMCID: PMC10516996 DOI: 10.1038/s41598-023-41879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Gloeocapsopsis dulcis strain AAB1 is an extremely xerotolerant cyanobacterium isolated from the Atacama Desert (i.e., the driest and oldest desert on Earth) that holds astrobiological significance due to its ability to biosynthesize compatible solutes at ultra-low water activities. We sequenced and assembled the G. dulcis genome de novo using a combination of long- and short-read sequencing, which resulted in high-quality consensus sequences of the chromosome and two plasmids. We leveraged the G. dulcis genome to generate a genome-scale metabolic model (iGd895) to simulate growth in silico. iGd895 represents, to our knowledge, the first genome-scale metabolic reconstruction developed for an extremely xerotolerant cyanobacterium. The model's predictive capability was assessed by comparing the in silico growth rate with in vitro growth rates of G. dulcis, in addition to the synthesis of trehalose. iGd895 allowed us to explore simulations of key metabolic processes such as essential pathways for water-stress tolerance, and significant alterations to reaction flux distribution and metabolic network reorganization resulting from water limitation. Our study provides insights into the potential metabolic strategies employed by G. dulcis, emphasizing the crucial roles of compatible solutes, metabolic water, energy conservation, and the precise regulation of reaction rates in their adaptation to water stress.
Collapse
Affiliation(s)
- Rachel A Moore
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
4
|
Yang YW, Liu K, Huang D, Yu C, Chen SZ, Chen M, Qiu BS. Functional specialization of expanded orange carotenoid protein paralogs in subaerial Nostoc species. PLANT PHYSIOLOGY 2023:kiad234. [PMID: 37070859 DOI: 10.1093/plphys/kiad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Orange carotenoid protein (OCP) is a photoactive protein that participates in the photoprotection of cyanobacteria. There are two full-length OCP proteins, four N-terminal paralogs (helical carotenoid protein, HCP), and one C-terminal domain-like carotenoid protein (CCP) found in Nostoc flagelliforme, a desert cyanobacterium. All HCPs (HCP1-3 and HCP6) from N. flagelliforme demonstrated their excellent singlet oxygen quenching activities, in which HCP2 was the strongest singlet oxygen quencher compared with others. Two OCPs, OCPx1 and OCPx2, were not involved in singlet oxygen scavenging; instead, they functioned as phycobilisome fluorescence quenchers. The fast-acting OCPx1 showed more effective photoactivation and stronger phycobilisome fluorescence quenching compared to OCPx2, which behaved differently from all reported OCP paralogs. The resolved crystal structure and mutant analysis revealed that Trp111 and Met125 play essential roles in OCPx2, which is dominant and long-acting. The resolved crystal structure of OCPx2 is maintained in a monomer state and showed more flexible regulation in energy quenching activities compared with the packed oligomer of OCPx1. The recombinant apo-CCP obtained the carotenoid pigment from holo-HCPs and holo-OCPx1 of N. flagelliforme. No such carotenoid transferring processes were observed between apo-CCP and holo-OCPx2. The close phylogenetic relationship of OCP paralogs from subaerial Nostoc species indicates an adaptive evolution toward development of photoprotection: protecting cellular metabolism against singlet oxygen damage using HCPs and against excess energy captured by active phycobilisomes using two different working modes of OCPx.
Collapse
Affiliation(s)
- Yi-Wen Yang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Da Huang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Si-Zhuo Chen
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| |
Collapse
|
5
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Liu H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023; 62:1307-1320. [PMID: 36943676 DOI: 10.1021/acs.biochem.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem Sci 2023; 14:1696-1708. [PMID: 36819875 PMCID: PMC9930989 DOI: 10.1039/d2sc05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 μm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 μA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 μA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany .,Biophysics of Photosynthesis, Humboldt University of Berlin Philippstraße 13 10099 Berlin Germany
| | - Senthil K. Subramanian
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Athina Zouni
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Fred Lisdat
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
8
|
Liu H. AlphaFold and Structural Mass Spectrometry Enable Interrogations on the Intrinsically Disordered Regions in Cyanobacterial Light-harvesting Complex Phycobilisome. J Mol Biol 2022; 434:167831. [PMID: 36116541 DOI: 10.1016/j.jmb.2022.167831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins/regions (IDPRs) are a very large and functionally important class of proteins that participate in weak multivalent interactions in protein complexes. They are recalcitrant for interrogations using X-ray crystallography and cryo-EM. The IDPRs observed at the interface of the photosynthetic pigment protein complexes (PPCs) remain much less clear, e.g., the major cyanobacterial light-harvesting complex (PBS) contains an unstructured PB-loop insertion in the phycocyanobilin domain (PB domain) of ApcE (the largest polypeptide in PBS). Here, a joint platform is built to probe such structural domains. This platform is characterized by two-round progressive justifications of in silico models by using the structural mass spectrometry data. First, the AlphaFold-generated 3D structure of the PB domain (containing PB-loop) was justified in the context of PBS. Second, docking the AlphaFold-generated ApcG (a ligand) into the first-step justified structure (a receptor). The final ligand-receptor complex was then subjected to a second-round justification, again, by using unequivocal isotopically-encoded cross-links identified in LC-MS/MS. This work reveals a full-length PB-loop structure modelled in the PBS basal cylinder, free from any spatial conflicts against the other subunits in PBS. The structure of PB domain highlights the close associations of the intrinsically disordered PB-loop with its binding partners in PBS, including ApcG, another IDPR. The PB-loop region involved in the binding of photosystem II (PSII) is also discussed in the context of excitation energy transfer regulation. This work calls attention to the highly disordered, yet interrogatable interface between the light-harvesting antenna complexes and the reaction centers.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
9
|
Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022; 609:835-845. [PMID: 36045294 DOI: 10.1038/s41586-022-05156-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Collapse
|
10
|
Soni B, Menon D, Vijaykumar V, Ghadge R, Dasgupta S. Phycocyanin Extraction and Production of Crude Bio-Oil from Residual Biomass. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Badrish Soni
- Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai, India
| | - Deepthi Menon
- Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai, India
| | - Vinodhkumar Vijaykumar
- Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai, India
| | - Rajaram Ghadge
- Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai, India
| | - Santanu Dasgupta
- Reliance Research and Development Center, Reliance Industries Limited, Navi Mumbai, India
| |
Collapse
|
11
|
Akhtar P, Biswas A, Balog-Vig F, Domonkos I, Kovács L, Lambrev PH. Trimeric photosystem I facilitates energy transfer from phycobilisomes in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2022; 189:827-838. [PMID: 35302607 PMCID: PMC9157137 DOI: 10.1093/plphys/kiac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 05/31/2023]
Abstract
In cyanobacteria, phycobilisomes (PBS) serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of PBS, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. PBS are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here, we compared the composition and light-harvesting function of PBS in cells of Synechocystis sp. PCC 6803, which has primarily trimeric PSI, and the ΔpsaL mutant, which lacks the PsaL subunit of PSI and is unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI. Both strains with monomeric PSI accumulated significantly more allophycocyanin per chlorophyll, indicating higher abundance of PBS. On the other hand, a higher phycocyanin:allophycocyanin ratio in the wild type suggests larger PBS or the presence of APC-less PBS (CpcL-type) that are not assembled in cells with monomeric PSI. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the PBS at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the oligomeric state of PSI impacts the excitation energy flow in Synechocystis.
Collapse
Affiliation(s)
- Parveen Akhtar
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Avratanu Biswas
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged 6726, Hungary
| | - Fanny Balog-Vig
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Ildikó Domonkos
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - László Kovács
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Petar H Lambrev
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
12
|
Tong X, Kim EJ, Lee JK. Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microb Cell Fact 2022; 21:94. [PMID: 35643504 PMCID: PMC9148488 DOI: 10.1186/s12934-022-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND NADPH is used as a reductant in various biosynthetic reactions. Cell-free bio-systems have gained considerable attention owing to their high energy utilization and time efficiency. Efforts have been made to continuously supply reducing power to the reaction mixture in a cyclical manner. The thylakoid membrane (TM) is a promising molecular energy generator, producing NADPH under light. Thus, TM sustainability is of major relevance for its in vitro utilization. RESULTS Over 70% of TMs prepared from Synechocystis sp. PCC6803 existed in a sealed vesicular structure, with the F1 complex of ATP synthase facing outward (right-side-out), producing NADPH and ATP under light. The NADPH generation activity of TM increased approximately two-fold with the addition of carbonyl cyanide-p-(trifluoromethoxy) phenylhydrazone (FCCP) or removal of the F1 complex using EDTA. Thus, the uncoupling of proton translocation from the electron transport chain or proton leakage through the Fo complex resulted in greater NADPH generation. Biosilicified TM retained more than 80% of its NADPH generation activity after a week at 30°C in the dark. However, activity declined sharply to below 30% after two days in light. The introduction of engineered water-forming NADPH oxidase (Noxm) to keep the electron transport chain of TM working resulted in the improved sustainability of NADPH generation activity in a ratio (Noxm to TM)-dependent manner, which correlated with the decrease of singlet oxygen generation. Removal of reactive oxygen species (ROS) by catalase further highlighted the sustainable NADPH generation activity of up to 80% in two days under light. CONCLUSION Reducing power generated by light energy has to be consumed for TM sustainability. Otherwise, TM can generate singlet oxygen, causing oxidative damage. Thus, TMs should be kept in the dark when not in use. Although NADPH generation activity by TM can be extended via silica encapsulation, further removal of hydrogen peroxide results in an improvement of TM sustainability. Therefore, as long as ROS formation by TM in light is properly handled, it can be used as a promising source of reducing power for in vitro biochemical reactions.
Collapse
Affiliation(s)
- Xiaomeng Tong
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea
| | - Eui-Jin Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Sangju-si, 37242, Korea.
| | - Jeong K Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea.
| |
Collapse
|
13
|
Callieri C, Cabello-Yeves PJ, Bertoni F. The "Dark Side" of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms 2022; 10:546. [PMID: 35336120 PMCID: PMC8955281 DOI: 10.3390/microorganisms10030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus (together with Cyanobium and Prochlorococcus) have captured the attention of microbial ecologists since their description in the 1970s. These pico-sized microorganisms are ubiquitous in aquatic environments and are known to be some of the most ancient and adaptable primary producers. Yet, it was only recently, and thanks to developments in molecular biology and in the understanding of gene sequences and genomes, that we could shed light on the depth of the connection between their evolution and the history of life on the planet. Here, we briefly review the current understanding of these small prokaryotic cells, from their physiological features to their role and dynamics in different aquatic environments, focussing particularly on the still poorly understood ability of picocyanobacteria to adapt to dark conditions. While the recent discovery of Synechococcus strains able to survive in the deep Black Sea highlights how adaptable picocyanobacteria can be, it also raises more questions-showing how much we still do not know about microbial life. Using available information from brackish Black Sea strains able to perform and survive in dark (anoxic) conditions, we illustrate how adaptation to narrow ecological niches interacts with gene evolution and metabolic capacity.
Collapse
Affiliation(s)
- Cristiana Callieri
- National Research Council (CNR), Water Research Institute (IRSA), 28922 Verbania, Italy
| | - Pedro J. Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain;
| | | |
Collapse
|
14
|
Chen J, Li Y, Jing H, Zhang X, Xu Z, Xu J, Liu H. Genomic and transcriptomic evidence for the diverse adaptations of Synechococcus subclusters 5.2 and 5.3 to mesoscale eddies. THE NEW PHYTOLOGIST 2022; 233:1828-1842. [PMID: 34870848 DOI: 10.1111/nph.17903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Mesoscale eddies are ubiquitous oceanographic features that influence the metabolism and community structure of Synechococcus. However, the metabolic adaptations of this genus to eddy-associated environmental changes have rarely been studied. We recovered two high-quality Synechococcus metagenome-assembled genomes (MAGs) from eddies in the South China Sea and compared their metabolic variations using metatranscriptomic samples obtained at the same time. The two MAGs (syn-bin1 and syn-bin2) are affiliated with marine Synechococcus subclusters 5.2 (S5.2) and 5.3 (S5.3), respectively. The former exhibited a higher abundance at the surface layer, whereas the latter was more abundant in the deep euphotic layer. Further analysis indicated that syn-bin1 had a strong ability to utilize organic nutrients, which could help it to thrive in the nutrient-deprived surface water. By contrast, syn-bin2 had the genetic potential to perform chromatic acclimation, which could allow it to capture green or blue light at different depths. Additionally, transcriptomic analysis showed that syn-bin2 upregulated genes involved in the synthesis of C4 acids, photosystem II proteins, and HCO3- transporters in the deep euphotic layer, which might contribute to its predominance in low-light environments. Overall, this study expands our understanding of oceanic S5.2 and S5.3 Synechococcus by revealing their metabolic adaptations to mesoscale eddies.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Yingdong Li
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, 572000, China
| | - Xiaodong Zhang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, 518000, China
| | - Jie Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Hongbin Liu
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, 572000, China
| |
Collapse
|
15
|
Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Bolychevtseva YV, Tropin IV, Stadnichuk IN. State 1 and State 2 in Photosynthetic Apparatus of Red Microalgae and Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1181-1191. [PMID: 34903149 DOI: 10.1134/s0006297921100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 06/14/2023]
Abstract
Imbalanced light absorption by photosystem I (PSI) and photosystem II (PSII) in oxygenic phototrophs leads to changes in interaction of photosystems altering the linear electron flow. In plants and green algae, this imbalance is mitigated by a partial migration of the chlorophyll a/b containing light-harvesting antenna between the two photosystem core complexes. This migration is registered as fluorescence changes of the pigment apparatus and is termed the reverse transitions between States 1 and 2. By contrast, the molecular mechanism of State 1/2 transitions in phycobilisome (PBS)-containing photosynthetics, cyanobacteria and red algae, is still insufficiently understood. The suggested hypotheses - PBS movement along the surface of thylakoid membrane between PSI and PSII complexes, reversible PBS detachment from the dimeric PSII complex, and spillover - have some limitations as they do not fully explain the accumulated data. Here, we have recorded changes in the stationary fluorescence emission spectra of red algae and cyanobacteria in States 1/2 at room temperature, which allowed us to offer an explanation of the existing contradictions. The change of room temperature fluorescence of chlorophyll belonged to PSII was revealed, while the fluorescence of PBS associated with the PSII complexes remained during States 1/2 transitions at the stable level. Only the reversible dissociation of PBS from the monomeric PSI was revealed earlier which implied different degree of surface contact of PBS with the two photosystems. The detachment of PBS from the PSI corresponds to ferredoxin oxidation as electron carrier and the increase of cyclic electron transport in the pigment apparatus in State I.
Collapse
Affiliation(s)
- Yulia V Bolychevtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor N Stadnichuk
- Timiryasev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| |
Collapse
|
17
|
Chakraborty S, Mishra AK. Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica-ultastructural, physiological and biochemical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12882-1. [PMID: 33638788 DOI: 10.1007/s11356-021-12882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current study describes the mechanisms of zinc toxicity in the cyanobacterium Anabaena sphaerica after eight days treatment with 10 mg L-1 ZnCl2. The application of zinc not only showed elevated accumulation of the metal inside the cells but also exhibited devastating impacts on the cell numbers, morphology, and ultrastructure of A. sphaerica. The effects of zinc on the pigments contents, oxygen evolution rate, Fv/Fm, electron transport rate, and carbohydrate content were also evaluated in A. sphaerica. Moreover, zinc adversely affected nutrient uptake and the cellular energy budget in the test cyanobacterium which in turn hampered heterocyst development and nitrogen fixation. Alongside, the cyanobacterium experienced zinc-mediated non-competitive inhibition of glutamine synthetase activity, curtailed synthesis of amino acids and proteins. Furthermore, drastically reduced total lipid and increased unsaturated lipid contents were also the prominent characteristics of zinc stressed A. sphaerica. Most importantly, zinc stress caused severe damages to the protein, lipid, and DNA by triggering hydrogen peroxide generation and accumulation of oxidized glutathione. Therefore, excess zinc is highly toxic to the cyanobacterium A. sphaerica, and the mechanisms of its toxicity followed a cascade of events including oxidative stress mediated geopardisation of growth and ultrastructure, metabolic derangements, and macromolecular damages.
Collapse
Affiliation(s)
| | - Arun Kumar Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Liu H, Zhang MM, Weisz DA, Cheng M, Pakrasi HB, Blankenship RE. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. SCIENCE ADVANCES 2021; 7:7/2/eaba5743. [PMID: 33523959 PMCID: PMC7787483 DOI: 10.1126/sciadv.aba5743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/16/2020] [Indexed: 05/28/2023]
Abstract
In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ming Cheng
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
19
|
Chakraborty S, Mishra AK. Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114375. [PMID: 32220689 DOI: 10.1016/j.envpol.2020.114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC50 concentrations of zinc (3 and 4.5 mg L-1) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Collapse
Affiliation(s)
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Bannu SM, Lomada D, Gulla S, Chandrasekhar T, Reddanna P, Reddy MC. Potential Therapeutic Applications of C-Phycocyanin. Curr Drug Metab 2020; 20:967-976. [PMID: 31775595 DOI: 10.2174/1389200220666191127110857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.
Collapse
Affiliation(s)
- Saira M Bannu
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Thummala Chandrasekhar
- Department of Environmental Science, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Pallu Reddanna
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| |
Collapse
|
21
|
Lou W, Niedzwiedzki DM, Jiang RJ, Blankenship RE, Liu H. Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148155. [PMID: 31935359 DOI: 10.1016/j.bbabio.2020.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ruidong J Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
22
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
23
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
24
|
Toyoshima M, Toya Y, Shimizu H. Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions. PHOTOSYNTHESIS RESEARCH 2020; 143:31-43. [PMID: 31625072 DOI: 10.1007/s11120-019-00678-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/01/2019] [Indexed: 05/05/2023]
Abstract
Cyanobacteria acclimate and adapt to changing light conditions by controlling the energy transfer between photosystem I (PSI) and II (PSII) and pigment composition. Photosynthesis is driven by balancing the excitation between PSI and PSII. To predict the detailed electron transfer flux of cyanobacteria, we refined the photosynthesis-related reactions in our previously reconstructed genome-scale model. Two photosynthetic bacteria, Arthrospira and Synechocystis, were used as models. They were grown under various spectral light conditions and flux balance analysis (FBA) was performed using photon uptake fluxes into PSI and PSII, which were converted from each light spectrum by considering the photoacclimation of pigments and the distribution ratio of phycobilisome to PSI and PSII. In Arthrospira, the FBA was verified with experimental data using six types of light-emitting diodes (White, Blue, Green, Yellow, Red1, and Red2). FBA predicted the cell growth of Synechocystis for the LEDs, excepting Red2. In an FBA simulation, cells used respiratory terminal oxidases and two NADH dehydrogenases (NDH-1 and NDH-2) to balance the PSI and PSII excitations depending on the light conditions. FBA simulation with our refined model functionally implicated NDH-1 and NDH-2 as a component of cyclic electron transport in the varied light environments.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148079. [PMID: 31518567 DOI: 10.1016/j.bbabio.2019.148079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Photosynthetic pigment-protein complexes (PPCs) accomplish light-energy capture and photochemistry in natural photosynthesis. In this review, we examine three pigment protein complexes in oxygenic photosynthesis: light-harvesting antenna complexes and two reaction centers: Photosystem II (PSII), and Photosystem I (PSI). Recent technological developments promise unprecedented insights into how these multi-component protein complexes are assembled into higher order structures and thereby execute their function. Furthermore, the interfacial domain between light-harvesting antenna complexes and PSII, especially the potential roles of the structural loops from CP29 and the PB-loop of ApcE in higher plant and cyanobacteria, respectively, are discussed. It is emphasized that the structural nuances are required for the structural dynamics and consequently for functional regulation in response to an ever-changing and challenging environment.
Collapse
|
26
|
Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci Rep 2019; 9:9474. [PMID: 31263160 PMCID: PMC6603007 DOI: 10.1038/s41598-019-45905-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
C-phycocyanin (C-PC) pigment, as a natural blue dye, has particular applications in various fields. It is a water-soluble protein which has anticancer, antioxidant and anti-inflammatory properties. Here, we introduce an efficient procedure for the purification of C-PC pigment, followed by conducting a comprehensive investigation of its cytotoxic effects on human breast cancer (MCF-7) cells and the underlying mechanisms. A novel four-step purification procedure including the adsorption of impurities with chitosan, activated charcoal, ammonium sulfate precipitation, and ion exchange chromatography was employed, achieving a high purity form of C-PC with purity index (PI) of 5.26. SDS-PAGE analysis showed the purified C-PC with two discrete bands, subunit α (17 kD) and β (20 kD), as confirmed its identity by Native-PAGE. A highly purified C-PC was employed to evaluate its anticancer activity and underlying molecular mechanisms of action. The inhibitory effects of highly purified C-PC on the proliferation of human breast cancer cells (MCF-7) have detected by MTT assay. The IC50 values for 24, 48, and 72 hours of exposure to C-PC were determined to be 5.92, 5.66, and 4.52 μg/μl, respectively. Flow cytometric analysis of cells treated with C-PC, by Annexin V/PI double staining, demonstrated to induce MCF-7 cells apoptosis. Also, the results obtained from propidium iodide (PI) staining showed that MCF-7 cells treated with 5.92 μg/μl C-PC for 24 h would arrest at the G2 phase and 5.66 and 4.52 μg/μl C-PC for 48 and 72 h could induce cell cycle arrest at both G2 and S phases. The oxidative damage and mitochondrial dysfunction were evaluated to determine the possible pathways involved in C-PC-induced apoptosis in MCF-7 cells. Our findings clearly indicated that the treatment of MCF-7 cells with C-PC (IC50 for 24 h) increased the production of reactive oxygen species (ROS). Consequently, an increase in the lipid peroxidation (LPO) level and a reduction in the ATP level, mitochondrial membrane potential (MMP), glutathione (GSH) and its oxidized form (GSSG), occurred over time. The reduced expression levels of anti-apoptotic proteins, Bcl2 and Stat3, plus cell cycle regulator protein, Cyclin D1, using Real-Time PCR confirm that the C-PC-induced death of MCF-7 human breast cancer cells occurred through the mitochondrial pathway of apoptosis. Collectively, the analyses presented here suggest that C-PC has the potential so that to develop it as a chemotherapeutic anticancer drug.
Collapse
|
27
|
Wamhoff EC, Banal JL, Bricker WP, Shepherd TR, Parsons MF, Veneziano R, Stone MB, Jun H, Wang X, Bathe M. Programming Structured DNA Assemblies to Probe Biophysical Processes. Annu Rev Biophys 2019; 48:395-419. [PMID: 31084582 PMCID: PMC7035826 DOI: 10.1146/annurev-biophys-052118-115259] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1-100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Molly F Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Rémi Veneziano
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew B Stone
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Hyungmin Jun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
28
|
Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HCP. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. PHOTOSYNTHESIS RESEARCH 2018; 138:177-189. [PMID: 30027501 PMCID: PMC6208612 DOI: 10.1007/s11120-018-0561-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 05/29/2023]
Abstract
Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.
Collapse
Affiliation(s)
- Veerle M Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Antonie M Verschoor
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands.
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Vásquez-Suárez A, Lobos-González F, Cronshaw A, Sepúlveda-Ugarte J, Figueroa M, Dagnino-Leone J, Bunster M, Martínez-Oyanedel J. The γ 33 subunit of R-phycoerythrin from Gracilaria chilensis has a typical double linked phycourobilin similar to β subunit. PLoS One 2018; 13:e0195656. [PMID: 29634783 PMCID: PMC5892909 DOI: 10.1371/journal.pone.0195656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/27/2018] [Indexed: 01/11/2023] Open
Abstract
Phycobilisomes (PBS) are accessory light harvesting protein complexes formed mainly by phycobiliproteins (PBPs). The PBPs absorb light that is efficiently transferred to Photosystems due to chromophores covalently bound to specific cysteine residues. Besides phycobiliproteins (PE), the PBS contains linker proteins responsible for assembly and stabilization of the whole complex and the tuning of energy transfer steps between chromophores. The linker (γ33) from Gracilaria chilensis, is a chromophorylated rod linker associated to (αβ)6 hexamers of R-phycoerythrin (R-PE). Its role in the energy transfer process is not clear yet. Structural studies as well as the composition and location of the chromophores are essential to understand their involvement in the energy transfer process in PBS. To achieve this, the coding gene of γ33 was cloned and sequenced. The sequence was analyzed by informatics tools, to obtain preliminary information which leaded the next experiments. The protein was purified from R-phycoerythrin, and the sequence confirmed by mass spectrometry. The coding sequence analysis revealed a protein of 318 aminoacid residues containing a chloroplastidial transit peptide (cTP) of 39 aminoacids at the N-terminus. The conservation of cysteines revealed possible chromophorylation sites. Using α and β R-PE subunits as spectroscopic probes in denaturation assays, we deduced a double bonded phycourobilin (PUB) on γ33 subunit that were confirmed between Cys62 and Cys73 (DL-PUB62/73) by mass spectrometry. The cysteines involved in the double link are located in a helical region, in a conformation that reminds the position of the DL-PUB50/61 in the β subunit of R-PE. The position of single linked PUB at Cys95 and a single linked PEB at Cys172 were also confirmed. Spectroscopic studies show the presence of both types of chromophores and that there are not energy transfer by FRET among them.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
| | - Francisco Lobos-González
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
| | - Andrew Cronshaw
- Michael Swann Building, Kings’ Buildings, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - José Sepúlveda-Ugarte
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
| | - Maximiliano Figueroa
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
| | - Jorge Dagnino-Leone
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
| | - Marta Bunster
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
- * E-mail: (MB); (JM-O)
| | - José Martínez-Oyanedel
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción, Chile
- * E-mail: (MB); (JM-O)
| |
Collapse
|
30
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
31
|
Duanmu D, Rockwell NC, Lagarias JC. Algal light sensing and photoacclimation in aquatic environments. PLANT, CELL & ENVIRONMENT 2017; 40:2558-2570. [PMID: 28245058 PMCID: PMC5705019 DOI: 10.1111/pce.12943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/05/2023]
Abstract
Anoxygenic photosynthetic prokaryotes arose in ancient oceans ~3.5 billion years ago. The evolution of oxygenic photosynthesis by cyanobacteria followed soon after, enabling eukaryogenesis and the evolution of complex life. The Archaeplastida lineage dates back ~1.5 billion years to the domestication of a cyanobacterium. Eukaryotic algae have subsequently radiated throughout oceanic/freshwater/terrestrial environments, adopting distinctive morphological and developmental strategies for adaptation to diverse light environments. Descendants of the ancestral photosynthetic alga remain challenged by a typical diurnally fluctuating light supply ranging from ~0 to ~2000 μE m-2 s-1 . Such extreme changes in light intensity and variations in light quality have driven the evolution of novel photoreceptors, light-harvesting complexes and photoprotective mechanisms in photosynthetic eukaryotes. This minireview focuses on algal light sensors, highlighting the unexpected roles for linear tetrapyrroles (bilins) in the maintenance of functional chloroplasts in chlorophytes, sister species to streptophyte algae and land plants.
Collapse
Affiliation(s)
- Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Corresponding authors: Deqiang Duanmu, State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Tel:+86-27-87282101; Fax:+86-27-87282469; ; J. Clark Lagarias, Department of Molecular and Cellular Biology, University of California, Davis CA 95616. Tel: 530-752-1865; Fax: 530-752-3085;
| | - Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis CA 95616
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis CA 95616
- Corresponding authors: Deqiang Duanmu, State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Tel:+86-27-87282101; Fax:+86-27-87282469; ; J. Clark Lagarias, Department of Molecular and Cellular Biology, University of California, Davis CA 95616. Tel: 530-752-1865; Fax: 530-752-3085;
| |
Collapse
|
32
|
Allen JF. Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. PHYSIOLOGIA PLANTARUM 2017; 161:28-44. [PMID: 28393369 DOI: 10.1111/ppl.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
In oxygenic photosynthesis there are two 'light states' - adaptations of the photosynthetic apparatus to spectral composition that otherwise favours either photosystem I or photosystem II. In chloroplasts of green plants the transition to light state 2 depends on phosphorylation of apoproteins of a membrane-intrinsic antenna, the chlorophyll-a/b-binding, light-harvesting complex II (LHC II), and on the resulting redistribution of absorbed excitation energy from photosystem II to photosystem I. The transition to light state 1 reverses these events and requires a phospho-LHC II phosphatase. Current structures of LHC II reveal little about possible steric effects of phosphorylation. The surface-exposed N-terminal domain of an LHC II polypeptide contains its phosphorylation site and is disordered in its unphosphorylated form. A molecular recognition hypothesis proposes that state transitions are a consequence of movement of LHC II between binding sites on photosystems I and II. In state 1, LHC II forms part of the antenna of photosystem II. In state 2, a unique but as yet unidentified 3-D structure of phospho-LHC II may attach it instead to photosystem I. One possibility is that the LHC II N-terminus becomes ordered upon phosphorylation, adopting a local alpha-helical secondary structure that initiates changes in LHC II tertiary and quaternary structure that sever contact with photosystem II while securing contact with photosystem I. In order to understand redistribution of absorbed excitation energy in photosynthesis we need to know the structure of LHC II in its phosphorylated form, and in its complex with photosystem I.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
33
|
Ueno Y, Aikawa S, Niwa K, Abe T, Murakami A, Kondo A, Akimoto S. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. PHOTOSYNTHESIS RESEARCH 2017; 133:235-243. [PMID: 28185041 DOI: 10.1007/s11120-017-0345-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Shimpei Aikawa
- Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Kyosuke Niwa
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Akashi, Hyogo, 674-0093, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji, 656-2401, Japan
| | - Akihiko Kondo
- Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
34
|
Ho MY, Soulier NT, Canniffe DP, Shen G, Bryant DA. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:24-33. [PMID: 28391049 DOI: 10.1016/j.pbi.2017.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 05/28/2023]
Abstract
Most cyanobacteria are obligate oxygenic photoautotrophs, and thus their growth and survival is highly dependent on effective utilization of incident light. Cyanobacteria have evolved a diverse set of phytochromes and cyanobacteriochromes (CBCRs) that allow cells to respond to light in the range from ∼300nm to ∼750nm. Together with associated response regulators, these photosensory proteins control many aspects of cyanobacterial physiology and metabolism. These include far-red light photoacclimation (FaRLiP), complementary chromatic acclimation (CCA), low-light photoacclimation (LoLiP), photosystem content and stoichiometry (long-term adaptation), short-term acclimation (state transitions), circadian rhythm, phototaxis, photomorphogenesis/development, and cellular aggregation. This minireview highlights some discoveries concerning phytochromes and CBCRs as well as two acclimation processes that improve light harvesting and energy conversion under specific irradiance conditions: FaRLiP and CCA.
Collapse
Affiliation(s)
- Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
35
|
Dagnino-Leone J, Figueroa M, Mella C, Vorphal MA, Kerff F, Vásquez AJ, Bunster M, Martínez-Oyanedel J. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences. PLoS One 2017; 12:e0177540. [PMID: 28542288 PMCID: PMC5436742 DOI: 10.1371/journal.pone.0177540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/28/2017] [Indexed: 11/25/2022] Open
Abstract
Phycobilisomes (PBS) are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch) are Phycobiliproteins (PBPs), Phycoerythrin (PE), and Phycocyanin (PC) in the rods, while Allophycocyanin (APC) is found in the core, and linker proteins (L). The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and β subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and β18. As for the linkers, Linker core (LC) and Linker core membrane (LCM) are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudia Mella
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Alejandra Vorphal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Frédéric Kerff
- Centre d'Ingéniérie des Protéines, Université de Liège, Liège, Belgium
| | - Aleikar José Vásquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marta Bunster
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
36
|
Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2224-2229. [PMID: 28193857 PMCID: PMC5338524 DOI: 10.1073/pnas.1620360114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein-protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the "mass tags" selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein-protein interactions in membrane protein complexes.
Collapse
Affiliation(s)
- Daniel A Weisz
- Department of Biology, Washington University, St. Louis, MO 63130
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Sundarapandian Thangapandian
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130;
| | | |
Collapse
|
37
|
Ueno Y, Aikawa S, Kondo A, Akimoto S. Energy Transfer in Cyanobacteria and Red Algae: Confirmation of Spillover in Intact Megacomplexes of Phycobilisome and Both Photosystems. J Phys Chem Lett 2016; 7:3567-3571. [PMID: 27564010 DOI: 10.1021/acs.jpclett.6b01609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyanobacteria and red algae control the energy distributions of two photosystems (PSI and PSII) by changing the energy transfer among phycobilisome (PBS), PSI, and PSII. However, whether PSII → PSI energy transfer (spillover) occurs in the intact megacomplexes composed of PBS, PSI, and PSII (PBS-PSII-PSI megacomplexes) in vivo remains controversial. In this study, we measured the delayed fluorescence spectra of PBS-selective excitation in cyanobacterial and red algal cells. In the absence of spillover, 7% of the PBS (at most) would combine with PSII, inconsistent with the PBSs' function as the antenna pigment-protein complexes of PSII. Therefore, we conclude that spillover occurs in vivo in PBS-PSII-PSI megacomplexes of both cyanobacteria and red algae.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, ‡Graduate School of Engineering, and §Molecular Photoscience Research Center, Kobe University , Kobe 657-8501, Japan
| | - Shimpei Aikawa
- Graduate School of Science, ‡Graduate School of Engineering, and §Molecular Photoscience Research Center, Kobe University , Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, ‡Graduate School of Engineering, and §Molecular Photoscience Research Center, Kobe University , Kobe 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, ‡Graduate School of Engineering, and §Molecular Photoscience Research Center, Kobe University , Kobe 657-8501, Japan
| |
Collapse
|
38
|
Zhao LS, Su HN, Li K, Xie BB, Liu LN, Zhang XY, Chen XL, Huang F, Zhou BC, Zhang YZ. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1751-1758. [PMID: 27528560 DOI: 10.1016/j.bbabio.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
The availability of nitrogen is one of the most important determinants that can limit the growth of photosynthetic organisms including plants and algae; however, direct observations on the supramolecular architecture of photosynthetic membranes in response to nitrogen stress are still lacking. Red algae are an important evolutionary group of algae which contain phycobilisomes (PBSs) on their thylakoid membranes, as do cyanobacteria. PBSs function not only as light-harvesting antennae but also as nitrogen storage. In this report, alterations of the supramolecular architecture of thylakoid membranes from red alga Porphyridium cruentum during nitrogen starvation were characterized. The morphology of the intact thylakoid membrane was observed to be round vesicles. Thylakoid membranes were reduced in content and PBSs were degraded during nitrogen starvation. The size and density of PBSs were both found to be reduced. PBS size decreased by less than one-half after 20days of nitrogen starvation, but their hemispherical morphology was retained. The density of PBSs on thylakoid membranes was more seriously affected as time proceeded. Upon re-addition of nitrogen led to increasing of PBSs on thylakoid membranes. This work reports the first direct observation on alterations in the supramolecular architecture of thylakoid membranes from a photosynthetic organism in response to nitrogen stress.
Collapse
Affiliation(s)
- Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China.
| | - Kang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Lu-Ning Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Feng Huang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan 250100, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
39
|
Malairaj S, Muthu S, Gopal VB, Perumal P, Ramasamy R. Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique. J Chromatogr A 2016; 1454:120-6. [DOI: 10.1016/j.chroma.2016.05.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
40
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
41
|
Bañares-España E, del Mar Fernández-Arjona M, García-Sánchez MJ, Hernández-López M, Reul A, Mariné MH, Flores-Moya A. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain. MICROBIAL ECOLOGY 2016; 71:860-872. [PMID: 26677166 DOI: 10.1007/s00248-015-0715-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.
Collapse
Affiliation(s)
- Elena Bañares-España
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - María del Mar Fernández-Arjona
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - María Jesús García-Sánchez
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Miguel Hernández-López
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Andreas Reul
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Mariona Hernández Mariné
- Departamento de Productos Naturales, Biología Vegetal y Edafología, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| | - Antonio Flores-Moya
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| |
Collapse
|
42
|
Zhang H, Liu H, Lu Y, Wolf NR, Gross ML, Blankenship RE. Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:734-9. [PMID: 26921809 DOI: 10.1016/j.bbabio.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
Orange Carotenoid Protein (OCP) plays a unique role in protecting many cyanobacteria from light-induced damage. The active form of OCP is directly involved in energy dissipation by binding to the phycobilisome (PBS), the major light-harvesting complex in cyanobacteria. There are two structural modules in OCP, an N-terminal domain (NTD), and a C-terminal domain (CTD), which play different functional roles during the OCP-PBS quenching cycle. Because of the quasi-stable nature of active OCP, structural analysis of active OCP has been lacking compared to its inactive form. In this report, partial proteolysis was used to generate two structural domains, NTD and CTD, from active OCP. We used multiple native mass spectrometry (MS) based approaches to interrogate the structural features of the NTD and the CTD. Collisional activation and ion mobility analysis indicated that the NTD releases its bound carotenoid without forming any intermediates and the CTD is resistant to unfolding upon collisional energy ramping. The unfolding intermediates observed in inactive intact OCP suggest that it is the N-terminal extension and the NTD-CTD loop that lead to the observed unfolding intermediates. These combined approaches extend the knowledge of OCP photo-activation and structural features of OCP functional domains. Combining native MS, ion mobility, and collisional activation promises to be a sensitive new approach for studies of photosynthetic protein-pigment complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nathan R Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
43
|
Coutinho F, Tschoeke DA, Thompson F, Thompson C. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 2016; 4:e1522. [PMID: 26839740 PMCID: PMC4734447 DOI: 10.7717/peerj.1522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Synechococcus is among the most important contributors to global primary productivity. The genomes of several strains of this taxon have been previously sequenced in an effort to understand the physiology and ecology of these highly diverse microorganisms. Here we present a comparative study of Synechococcus genomes. For that end, we developed GenTaxo, a program written in Perl to perform genomic taxonomy based on average nucleotide identity, average amino acid identity and dinucleotide signatures, which revealed that the analyzed strains are drastically distinct regarding their genomic content. Phylogenomic reconstruction indicated a division of Synechococcus in two clades (i.e. Synechococcus and the new genus Parasynechococcus), corroborating evidences that this is in fact a polyphyletic group. By clustering protein encoding genes into homologue groups we were able to trace the Pangenome and core genome of both marine and freshwater Synechococcus and determine the genotypic traits that differentiate these lineages.
Collapse
Affiliation(s)
- Felipe Coutinho
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diogo Antonio Tschoeke
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Nganou C, David L, Adir N, Mkandawire M. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus. Photochem Photobiol Sci 2016; 15:31-44. [DOI: 10.1039/c5pp00285k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Comparison of kinetics of photoexcitation migration from PC620 to APC Core in extracted and intact pentacyclic phycobilisomes ofT. vulcanus. The extracted PBS does not have linker protein, while intact has them and they facilitate the migration.
Collapse
Affiliation(s)
- C. Nganou
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada
- Department of Chemistry
| | - L. David
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| | - N. Adir
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| | - M. Mkandawire
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada
| |
Collapse
|
45
|
Structural and functional dynamics of photosynthetic antenna complexes. Proc Natl Acad Sci U S A 2015; 112:13751-2. [PMID: 26556885 DOI: 10.1073/pnas.1519063112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
46
|
Bricker TM, Mummadisetti MP, Frankel LK. Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:227-46. [PMID: 26390944 DOI: 10.1016/j.jphotobiol.2015.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/24/2023]
Abstract
Tandem mass spectrometry often coupled with chemical modification techniques, is developing into increasingly important tool in structural biology. These methods can provide important supplementary information concerning the structural organization and subunit make-up of membrane protein complexes, identification of conformational changes occurring during enzymatic reactions, identification of the location of posttranslational modifications, and elucidation of the structure of assembly and repair complexes. In this review, we will present a brief introduction to Photosystem II, tandem mass spectrometry and protein modification techniques that have been used to examine the photosystem. We will then discuss a number of recent case studies that have used these techniques to address open questions concerning PS II. These include the nature of subunit-subunit interactions within the phycobilisome, the interaction of phycobilisomes with Photosystem I and the Orange Carotenoid Protein, the location of CyanoQ, PsbQ and PsbP within Photosystem II, and the identification of phosphorylation and oxidative modification sites within the photosystem. Finally, we will discuss some of the future prospects for the use of these methods in examining other open questions in PS II structural biochemistry.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Manjula P Mummadisetti
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
47
|
Sendersky E, Kozer N, Levi M, Moizik M, Garini Y, Shav-Tal Y, Schwarz R. The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:845-852. [PMID: 26173720 DOI: 10.1111/tpj.12931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterial light-harvesting complex, the phycobilisome, is degraded under nutrient limitation, allowing the cell to adjust light absorbance to its metabolic capacity. This large light-harvesting antenna comprises a core complex of the pigment allophycocyanin, and rod-shaped pigment assemblies emanating from the core. NblA, a low-molecular-weight protein, is essential for degradation of the phycobilisome. NblA mutants exhibit high absorbance of rod pigments under conditions that generally elicit phycobilisome degradation, implicating NblA in degradation of these pigments. However, the vast abundance of rod pigments and the substantial overlap between the absorbance spectra of rod and core pigments has made it difficult to directly associate NblA with proteolysis of the phycobilisome core. Furthermore, lack of allophycocyanin degradation in an NblA mutant may reflect a requirement for rod degradation preceding core degradation, and does not prove direct involvement of NblA in proteolysis of the core pigment. Therefore, in this study, we used a mutant lacking phycocyanin, the rod pigment of Synechococcus elongatusPCC7942, to examine whether NblA is required for allophycocyanin degradation. We demonstrate that NblA is essential for degradation of the core complex of the phycobilisome. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for the interaction of NblA with allophycocyanin, and indicated that NblA interacts with allophycocyanin complexes that are associated with the photosynthetic membranes. Based on these data, as well as previous observations indicating interaction of NblA with phycobilisomes attached to the photosynthetic membranes, we suggest a model for sequential phycobilisome disassembly by NblA.
Collapse
Affiliation(s)
- Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mali Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Moizik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yuval Garini
- Physics Department, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
48
|
Graham PJ, Riordon J, Sinton D. Microalgae on display: a microfluidic pixel-based irradiance assay for photosynthetic growth. LAB ON A CHIP 2015; 15:3116-24. [PMID: 26085371 DOI: 10.1039/c5lc00527b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microalgal biofuel is an emerging sustainable energy resource. Photosynthetic growth is heavily dependent on irradiance, therefore photobioreactor design optimization requires comprehensive screening of irradiance variables, such as intensity, time variance and spectral composition. Here we present a microfluidic irradiance assay which leverages liquid crystal display technology to provide multiplexed screening of irradiance conditions on growth. An array of 238 microreactors are operated in parallel with identical chemical environments. The approach is demonstrated by performing three irradiance assays. The first assay evaluates the effect of intensity on growth, quantifying saturating intensity. The second assay quantifies the influence of time-varied intensity and the threshold frequency for growth. Lastly, the coupled influence of red-blue spectral composition and intensity is assessed. Each multiplexed assay is completed within three days. In contrast, completing the same number of experiments using conventional incubation flasks would require several years. Not only does our approach enable more rapid screening, but the short optical path avoids self-shading issues inherent to flask based systems.
Collapse
Affiliation(s)
- Percival J Graham
- Department of Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada.
| | | | | |
Collapse
|
49
|
Onishi A, Aikawa S, Kondo A, Akimoto S. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. PHOTOSYNTHESIS RESEARCH 2015; 125:191-199. [PMID: 25596847 DOI: 10.1007/s11120-015-0089-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.
Collapse
Affiliation(s)
- Aya Onishi
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
50
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|