1
|
Portillo-Estrada M. Limitations of Plant Stress Tolerance upon Heat and CO 2 Exposure in Black Poplar: Assessment of Photosynthetic Traits and Stress Volatile Emissions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1165. [PMID: 38674574 PMCID: PMC11054441 DOI: 10.3390/plants13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Volatile organic compounds (VOCs) emitted by plants may help in understanding the status of a plant's physiology and its coping with mild to severe stress. Future climatic projections reveal that shifts in temperature and CO2 availability will occur, and plants may incur the uncoupling of carbon assimilation and synthesis of key molecules. This study explores the patterns of emissions of key VOCs (isoprene, methanol, acetaldehyde, and acetic acid) emitted by poplar leaves (more than 350) under a combined gradient of temperature (12-42 °C) and air CO2 concentration (400-1500 ppm), along with measurements of photosynthetic rates and stomatal conductance. Isoprene emission exhibited a rise with temperature and CO2 availability, peaking at 39 °C, the temperature at which methanol emission started to peak, illustrating the limit of stress tolerance to severe damage. Isoprene emission was uncoupled from the photosynthesis rate, indicating a shift from the carbon source for isoprene synthesis, while assimilation was decreased. Methanol and acetaldehyde emissions were correlated with stomatal conductance and peaked at 25 °C and 1200 ppm CO2. Acetic acid emissions lacked a clear correlation with stomatal conductance and the emission pattern of its precursor acetaldehyde. This study offers crucial insights into the limitations of photosynthetic carbon and stress tolerance.
Collapse
|
2
|
Chieppa J, Feller IC, Harris K, Dorrance S, Sturchio MA, Gray E, Tjoelker MG, Aspinwall MJ. Thermal acclimation of leaf respiration is consistent in tropical and subtropical populations of two mangrove species. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3174-3187. [PMID: 36882067 DOI: 10.1093/jxb/erad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Populations from different climates often show unique growth responses to temperature, reflecting temperature adaptation. Yet, whether populations from different climates differ in physiological temperature acclimation remains unclear. Here, we test whether populations from differing thermal environments exhibit different growth responses to temperature and differences in temperature acclimation of leaf respiration. We grew tropical and subtropical populations of two mangrove species (Avicennia germinans and Rhizophora mangle) under ambient and experimentally warmed conditions in a common garden at the species' northern range limit. We quantified growth and temperature responses of leaf respiration (R) at seven time points over ~10 months. Warming increased productivity of tropical populations more than subtropical populations, reflecting a higher temperature optimum for growth. In both species, R measured at 25 °C declined as seasonal temperatures increased, demonstrating thermal acclimation. Contrary to our expectations, acclimation of R was consistent across populations and temperature treatments. However, populations differed in adjusting the temperature sensitivity of R (Q10) to seasonal temperatures. Following a freeze event, tropical Avicennia showed greater freeze damage than subtropical Avicennia, while both Rhizophora populations appeared equally susceptible. We found evidence of temperature adaptation at the whole-plant scale but little evidence for population differences in thermal acclimation of leaf physiology. Studies that examine potential costs and benefits of thermal acclimation in an evolutionary context may provide new insights into limits of thermal acclimation.
Collapse
Affiliation(s)
- Jeff Chieppa
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- College of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ilka C Feller
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Kylie Harris
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Susannah Dorrance
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Matthew A Sturchio
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Eve Gray
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith New South Wales, Australia
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- College of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA
- Formation Environmental LLC, 1631 Alhambra Blvd, Suite 220, Sacramento, CA 95816, USA
| |
Collapse
|
3
|
Kullberg AT, Slot M, Feeley KJ. Thermal optimum of photosynthesis is controlled by stomatal conductance and does not acclimate across an urban thermal gradient in six subtropical tree species. PLANT, CELL & ENVIRONMENT 2023; 46:831-849. [PMID: 36597283 DOI: 10.1111/pce.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Modelling the response of plants to climate change is limited by our incomplete understanding of the component processes of photosynthesis and their temperature responses within and among species. For ≥20 individuals, each of six common subtropical tree species occurring across steep urban thermal gradients in Miami, Florida, USA, we determined rates of net photosynthesis (Anet ), maximum RuBP carboxylation, maximum RuBP regeneration and stomatal conductance, and modelled the optimum temperature (Topt ) and process rate of each parameter to address two questions: (1) Do the Topt of Anet (ToptA ) and the maximum Anet (Aopt ) of subtropical trees reflect acclimation to elevated growth temperatures? And (2) What limits Anet in subtropical trees? Against expectations, we did not find significant acclimation of ToptA , Aopt or the Topt of any of the underlying photosynthetic parameters to growth temperature in any of the focal species. Model selection for the single best predictor of Anet both across leaf temperatures and at ToptA revealed that the Anet of most trees was best predicted by stomatal conductance. Our findings are in accord with those of previous studies, especially in the tropics, that have identified stomatal conductance to be the most important factor limiting Anet , rather than biochemical thermal responses.
Collapse
Affiliation(s)
- Alyssa T Kullberg
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
4
|
Kong RS, Way DA, Henry HAL, Smith NG. Stomatal conductance, not biochemistry, drives low temperature acclimation of photosynthesis in Populus balsamifera, regardless of nitrogen availability. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:766-779. [PMID: 35398958 DOI: 10.1111/plb.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Low-temperature thermal acclimation may require adjustments to N and water use to sustain photosynthesis because of slow enzyme functioning and high water viscosity. However, understanding of photosynthetic acclimation to temperatures below 11 °C is limited. We acclimated Populus balsamifera to 6 °C and 10 °C (6A and 10A, respectively) and provided the trees with either high or low N fertilizer. We measured net CO2 assimilation (Anet ), stomatal conductance (gs ), maximum rates of Rubisco carboxylation (Vcmax ), electron transport (Jmax ) and dark respiration (Rd ) at leaf temperatures of 2, 6, 10, 14 and 18 °C, along with leaf N concentrations. The 10A trees had higher Anet than the 6A trees at warmer leaf temperatures, which was correlated with higher gs in the 10A trees. The instantaneous temperature responses of Vcmax , Jmax and Rd were similar for trees from both acclimation temperatures. While soil N availability increased leaf N concentrations, this had no effect on acclimation of photosynthesis or respiration. Our results indicate that acclimation below 11 °C occurred primarily through changes in stomatal conductance, not photosynthetic biochemistry, and was unaffected by short-term N supply. Thermal acclimation of stomatal conductance should therefore be a priority for future carbon cycle model development.
Collapse
Affiliation(s)
- R S Kong
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - D A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Duke University, Nicholas School of the Environment, Durham, NC, USA
- Brookhaven National Laboratory, Environmental and Climate Sciences Department, Upton, NY, USA
| | - H A L Henry
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - N G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Greer DH. Changes in photosynthesis and chlorophyll a fluorescence in relation to leaf temperature from just before to after harvest of Vitis vinifera cv. Shiraz vines grown in outdoor conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:170-185. [PMID: 34883042 DOI: 10.1071/fp21304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Harvesting fruit from horticultural species causes a down-regulation of photosynthesis but some species can recover after harvest. The objective of this study was to assess the hypothesis that the impact of fruit removal on the photosynthetic performance of Shiraz grapevines, in relation to CO2 concentration and leaf temperature, would contribute to a depreciation in photosynthetic assimilation. To assess this hypothesis, vines that were continuously vegetative were compared with vines that were harvested when fruit were ripe. These fruiting vines had higher rates of CO2 -limited photosynthesis at all leaf temperatures compared to vegetative vines before harvest but after, photosynthetic rates were highest in vegetative vines. There were few treatment differences in CO2 -saturated photosynthesis before harvest but after, below about 30°C, the harvested vines had higher photosynthesis than the vegetative vines. Maximum rates of ribulose 1,5 bisphosphate (RuBP) carboxylation and regeneration and responses to temperature were unaffected by differences in sink demand but after harvest, maximum rates increased, but markedly more in the vegetative vines, especially at higher temperatures. This conformed to higher photosynthetic rates in the vegetative vines. There were no sink demand effects on chlorophyll a fluorescence, consistent with the evidence that the fruit sink removal probably affected Rubisco activity and performance. The conclusion that sink removal caused a depreciation in photosynthesis was sustained but the temperature had a strong modulating effect through both stomatal and non-stomatal limitations driving the depreciation in assimilation. What was less clear was why assimilation of continuously vegetative vines increased during the harvest time when there were no apparent changes in sink demand.
Collapse
Affiliation(s)
- Dennis H Greer
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
6
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
7
|
Hogan JA, Baraloto C, Ficken C, Clark MD, Weston DJ, Warren JM. The physiological acclimation and growth response of Populus trichocarpa to warming. PHYSIOLOGIA PLANTARUM 2021; 173:1008-1029. [PMID: 34272872 DOI: 10.1111/ppl.13498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Plant metabolic acclimation to thermal stress remains underrepresented in current global climate models. Gaps exist in our understanding of how metabolic processes (i.e., photosynthesis, respiration) acclimate over time and how aboveground versus belowground acclimation differs. We measured the thermal acclimation of Populus trichocarpa, comparing aboveground versus belowground physiology over time. Ninety genetically identical ramets were propagated in mesocosms that separated root and microbial components. After establishment at 25°C for 6 weeks, 60 clones were warmed +4 or +8°C and monitored for 10 weeks, measuring photosynthesis (A), leaf respiration (R), soil respiration (Rs ), root plus soil respiration (Rs+r ), and root respiration (Rr ). We observed thermal acclimation in both A and R, with rates initially increasing, then declining as the thermal photosynthetic optimum (Topt ) and the temperature-sensitivity (Q10 ) of respiration adjusted to warmer conditions. Photosynthetic acclimation was constructive, based on an increase in both Topt and peak A. Belowground, Rs+r decreased linearly with warming, while Rs rates declined abruptly, then remained constant with additional warming. Plant biomass was greatest at +4°C, with 30% allocated belowground. Rates of mass-based Rr were similar among treatments; however, root nitrogen declined at +8°C leading to less mass nitrogen-based Rr in that treatment. The Q10 -temperature relationship of Rr was affected by warming, leading to differing values among treatments. Aboveground acclimation exceeded belowground acclimation, and plant nitrogen-use mediated the acclimatory response. Results suggest that moderate climate warming (+4°C) may lead to acclimation and increased plant biomass production but increases in production could be limited with severe warming (+8°C).
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, Florida, USA
- Division of Environmental Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Cari Ficken
- Department of Geology, University at Buffalo, Buffalo, New York, USA
| | - Miranda D Clark
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jeffrey M Warren
- Division of Environmental Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Elferjani R, Benomar L, Momayyezi M, Tognetti R, Niinemets Ü, Soolanayakanahally RY, Théroux-Rancourt G, Tosens T, Ripullone F, Bilodeau-Gauthier S, Lamhamedi MS, Calfapietra C, Lamara M. A meta-analysis of mesophyll conductance to CO2 in relation to major abiotic stresses in poplar species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4384-4400. [PMID: 33739415 PMCID: PMC8163042 DOI: 10.1093/jxb/erab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 05/16/2023]
Abstract
Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy.
Collapse
Affiliation(s)
- Raed Elferjani
- Quebec Network for Reforestation and Intensive Silviculture, TELUQ University, Montreal, QC, H2S 3L5, Canada
| | - Lahcen Benomar
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
- Correspondence:
| | - Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Roberto Tognetti
- Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | | | - Guillaume Théroux-Rancourt
- Institute of Botany, University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
| | - Tiina Tosens
- Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | | | | | - Mohammed S Lamhamedi
- Direction de la Recherche Forestière, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | - Carlo Calfapietra
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, Porano (TR) 05010, Italy
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| |
Collapse
|
9
|
Gimeno TE, Campany CE, Drake JE, Barton CVM, Tjoelker MG, Ubierna N, Marshall JD. Whole-tree mesophyll conductance reconciles isotopic and gas-exchange estimates of water-use efficiency. THE NEW PHYTOLOGIST 2021; 229:2535-2547. [PMID: 33217000 DOI: 10.1111/nph.17088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.
Collapse
Affiliation(s)
- Teresa E Gimeno
- Basque Centre for Climate Change (BC3), Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48008, Spain
| | - Courtney E Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - John E Drake
- Forest and Natural Resources Management, SUNY-ESF, Syracuse, NY, 132110, USA
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nerea Ubierna
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd 17, 907 36, Umeå, Sweden
| |
Collapse
|
10
|
Bermudez R, Stefanski A, Montgomery RA, Reich PB. Short- and long-term responses of photosynthetic capacity to temperature in four boreal tree species in a free-air warming and rainfall manipulation experiment. TREE PHYSIOLOGY 2021; 41:89-102. [PMID: 32864704 DOI: 10.1093/treephys/tpaa115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
High latitude forests cope with considerable variation in moisture and temperature at multiple temporal scales. To assess how their photosynthetic physiology responds to short- and long-term temperature variation, we measured photosynthetic capacity for four tree species growing in an open-air experiment in the boreal-temperate ecotone `Boreal Forest Warming at an Ecotone in Danger' (B4WarmED). The experiment factorially manipulated temperature above- and below-ground (ambient, +3.2 °C) and summer rainfall (ambient, 40% removal). We measured A/Ci curves at 18, 25 and 32 °C for individuals of two boreal (Pinus banksiana Lamb., Betula papyrifera Marsh.) and two temperate species (Pinus strobus L., Acer rubrum L.) experiencing the long-term warming and/or reduced-rainfall conditions induced by our experimental treatments. We calculated the apparent photosynthetic capacity descriptors VCmax,Ci and Jmax,Ci and their ratio for each measurement temperate. We hypothesized that (i) VCmax,Ci and Jmax,Ci would be down-regulated in plants experiencing longer term (e.g., weeks to months) warming and reduced rainfall (i.e., have lower values at a given measurement temperature), as is sometimes found in the literature, and that (ii) plants growing at warmer temperatures or from warmer ranges would show greater sensitivity (steeper slope) to short-term (minutes to hours) temperature variation. Neither hypothesis was supported as a general trend across the four species, as there was not a significant main effect (across species) of either warming or rainfall reduction on VCmax,Ci and Jmax,Ci. All species markedly increased VCmax,Ci and Jmax,Ci (and decreased their ratio) with short-term increases in temperature (i.e., contrasting values at 18, 25 and 32 °C), and those responses were independent of long-term treatments and did not differ among species. The Jmax,Ci:VCmax,Ci ratio was, however, significantly lower across species in warmed and reduced rainfall treatments. Collectively, these results suggest that boreal trees possess considerable short-term plasticity that may allow homeostasis of VCmax,Ci and Jmax,Ci to a longer term temperature treatment. Our results also caution against extrapolating results obtained under controlled and markedly contrasting temperature treatments to responses of photosynthetic parameters to more modest temperature changes expected in the near-term with climate warming in field conditions.
Collapse
Affiliation(s)
- Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Locked Bag 1797, Penrith, NSW 2753, Australia
| |
Collapse
|
11
|
Gagne MA, Smith DD, McCulloh KA. Limited physiological acclimation to recurrent heatwaves in two boreal tree species. TREE PHYSIOLOGY 2020; 40:1680-1696. [PMID: 32785621 DOI: 10.1093/treephys/tpaa102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The intensity of extreme heat and drought events has drastically risen in recent decades and will likely continue throughout the century. Northern forests have already seen increases in tree mortality and a lack of new recruitment, which is partially attributed to these extreme events. Boreal species, such as paper birch (Betula papyrifera) and white spruce (Picea glauca), appear to be more sensitive to these changes than lower-latitude species. Our objectives were to investigate the effects of repeated heatwaves and drought on young paper birch and white spruce trees by examining (i) responses in leaf gas exchange and plant growth and (ii) thermal acclimation of photosynthetic and respiratory traits to compare ecophysiological responses of two co-occurring, yet functionally dissimilar species. To address these objectives, we subjected greenhouse-grown seedlings to two consecutive summers of three 8-day long, +10 °C heatwaves in elevated atmospheric CO2 conditions with and without water restriction. The data show that heatwave stress reduced net photosynthesis, stomatal conductance and growth-more severely so when combined with drought. Acclimation of both photosynthesis and respiration did not occur in either species. The combination of heat and drought stress had a similar total effect on both species, but each species adjusted traits differently to the combined stress. Birch experienced greater declines in gas exchange across both years and showed moderate respiratory but not photosynthetic acclimation to heatwaves. In spruce, heatwave stress reduced the increase in basal area in both experimental years and had a minor effect on photosynthetic acclimation. The data suggest these species lack the ability to physiologically adjust to extreme heat events, which may limit their future distributions, thereby altering the composition of boreal forests.
Collapse
Affiliation(s)
- Maegan A Gagne
- Department of Botany, University of Wisconsin, 322 Birge Hall, Madison, WI 53706, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin, 322 Birge Hall, Madison, WI 53706, USA
| | - Katherine A McCulloh
- Department of Botany, University of Wisconsin, 322 Birge Hall, Madison, WI 53706, USA
| |
Collapse
|
12
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
13
|
Sperlich D, Chang CT, Peñuelas J, Sabaté S. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change? TREE PHYSIOLOGY 2019; 39:1783-1805. [PMID: 31553458 DOI: 10.1093/treephys/tpz089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/19/2019] [Accepted: 08/15/2019] [Indexed: 05/24/2023]
Abstract
Global warming is raising concerns about the acclimatory capacity of trees and forests, especially in Mediterranean-type ecosystems. The sensitivity of photosynthesis to temperature is a key uncertainty for projecting the magnitude of terrestrial feedbacks on future climate change. While boreal, temperate and tropical species have been comparatively well investigated, our study provides the first comprehensive overview of the seasonal acclimatory responses of photosynthesis and its component processes to temperature in four Mediterranean climax species under natural conditions. We quantified seasonal changes in the responses of net photosynthesis (Anet), stomatal conductance (gs), mesophyllic conductance (gm) and electron-transport rate (Jcf), and investigated their sensitivity to drought and temperature stress in sunlit and shaded leaves of four Mediterranean tree species (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.). Sunlit leaves, but not shaded leaves, showed a pronounced seasonality in the temperature responses of Anet, gs, gm and Jcf. All four species and variables showed a remarkably dynamic and consistent acclimation of the thermal optimum (Topt), reaching peaks in summer ~29-32 °C. Changes in the shape of the response curves were, however, highly species-specific. Under severe drought, Topt of all variables were on average 22-29% lower. This was accompanied by narrower response curves above all in P. halepensis, reducing the optimal range for photosynthesis to the cooler morning or evening periods. Wider temperature-response curves and less strict stomatal control under severe drought were accompanied by wilting and drought-induced leaf shedding in Q. ilex and Q. pubescens and by additional branch dieback in A. unedo. Mild winter conditions led to a high Topt (~19.1-22.2 °C), benefitting the evergreen species, especially P. halepensis. Seasonal acclimation of Anet was explained better by gs and gm being less pronounced in Jcf. Drought was thus a key factor, in addition to growth temperature, to explain seasonal acclimation of photosynthesis. Severe drought periods may exceed more frequently the high acclimatory capacity of Mediterranean trees to high ambient temperatures, which could lead to reduced growth, increased leaf shedding and, for some species such as A. unedo, increased mortality risk.
Collapse
Affiliation(s)
- D Sperlich
- Chair of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, 79085 Freiburg im Breisgau, Tennenbacherstr. 4, Germany
| | - C T Chang
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - J Peñuelas
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - S Sabaté
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Greer DH. Modelling the seasonal changes in the gas exchange response to CO 2 in relation to short-term leaf temperature changes in Vitis vinifera cv. Shiraz grapevines grown in outdoor conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:372-383. [PMID: 31400541 DOI: 10.1016/j.plaphy.2019.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Effects of temperature on the photosynthetic response of Vitis vinifera cv. Shiraz leaves to CO2 were investigated across the growing season and modelling was used to determine relationships between photosynthesis and seasonal climate. Results indicated that photosynthetic rates declined from spring to summer, conforming to the deciduous habit of grapevines. Rates of ribulose 1,5-bisphosphate (RuBP) carboxylation and regeneration increased in a temperature dependent pattern throughout the season. However, the maximum rates decreased as the season progressed. There were also marked decreases in temperature sensitivity for each of these processes, consistent with the decreases occurring faster at high compared to low temperatures. There were no correlations between the seasonal climate and each of these photosynthetic processes but the effect of day was significant in all cases. CO2 saturated rates of photosynthesis (Amax) across the season were highly correlated with the maximum rates of RuBP carboxylation and regeneration. The transition temperature between RuBP regeneration and RuBP carboxylation-limited assimilation varied across the growing season, from 23 °C in spring, 35 °C in mid-summer and 30 °C at harvest and were highly correlated with mean day temperature. This suggested dynamic control of assimilation by carboxylation and regeneration processes occurred in these grapevines in tune with the seasonal climate.
Collapse
Affiliation(s)
- Dennis H Greer
- National Grape and Wine Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, Australia.
| |
Collapse
|
15
|
Kruse J, Adams M, Winkler B, Ghirardo A, Alfarraj S, Kreuzwieser J, Hedrich R, Schnitzler JP, Rennenberg H. Optimization of photosynthesis and stomatal conductance in the date palm Phoenix dactylifera during acclimation to heat and drought. THE NEW PHYTOLOGIST 2019; 223:1973-1988. [PMID: 31093986 DOI: 10.1111/nph.15923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/01/2019] [Indexed: 05/25/2023]
Abstract
We studied acclimation of leaf gas exchange to differing seasonal climate and soil water availability in slow-growing date palm (Phoenix dactylifera) seedlings. We used an extended Arrhenius equation to describe instantaneous temperature responses of leaf net photosynthesis (A) and stomatal conductance (G), and derived physiological parameters suitable for characterization of acclimation (Topt , Aopt and Tequ ). Optimum temperature of A (Topt ) ranged between 20-33°C in winter and 28-45°C in summer. Growth temperature (Tgrowth ) explained c. 50% of the variation in Topt , which additionally depended on leaf water status at the time of measurement. During water stress, light-saturated rates of A at Topt (i.e. Aopt ) were reduced to 30-80% of control levels, albeit not limited by CO2 supply per se. Equilibrium temperature (Tequ ), around which A/G and substomatal [CO2 ] are constant, remained tightly coupled with Topt . Our results suggest that acclimatory shifts in Topt and Aopt reflect a balance between maximization of photosynthesis and minimization of the risk of metabolic perturbations caused by imbalances in cellular [CO2 ]. This novel perspective on acclimation of leaf gas exchange is compatible with optimization theory, and might help to elucidate other acclimation and growth strategies in species adapted to differing climates.
Collapse
Affiliation(s)
- Jörg Kruse
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Adams
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
- Swinburne University of Technology, John St., Hawthorn, Vic., 3122, Australia
| | - Barbro Winkler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Saleh Alfarraj
- College of Sciences, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, 97082, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- College of Sciences, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Vico G, Way DA, Hurry V, Manzoni S. Can leaf net photosynthesis acclimate to rising and more variable temperatures? PLANT, CELL & ENVIRONMENT 2019; 42:1913-1928. [PMID: 30706948 DOI: 10.1111/pce.13525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Under future climates, leaf temperature (Tl ) will be higher and more variable. This will affect plant carbon (C) balance because photosynthesis and respiration both respond to short-term (subdaily) fluctuations in Tl and acclimate in the longer term (days to months). This study asks the question: To what extent can the potential and speed of photosynthetic acclimation buffer leaf C gain from rising and increasing variable Tl ? We quantified how increases in the mean and variability of growth temperature affect leaf performance (mean net CO2 assimilation rates, Anet ; its variability; and time under near-optimal photosynthetic conditions), as mediated by thermal acclimation. To this aim, the probability distribution of Anet was obtained by combining a probabilistic description of short- and long-term changes in Tl with data on Anet responses to these changes, encompassing 75 genera and 111 species, including both C3 and C4 species. Our results show that (a) expected increases in Tl variability will decrease mean Anet and increase its variability, whereas the effects of higher mean Tl depend on species and initial Tl , and (b) acclimation reduces the effects of leaf warming, maintaining Anet at >80% of its maximum under most thermal regimes.
Collapse
Affiliation(s)
- Giulia Vico
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, 27708, North Carolina, USA
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
17
|
Thermal acclimation of photosynthetic activity and RuBisCO content in two hybrid poplar clones. PLoS One 2019; 14:e0206021. [PMID: 30742644 PMCID: PMC6370183 DOI: 10.1371/journal.pone.0206021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic bases of thermal acclimation of net photosynthetic rate (An) are still difficult to discern, and the data sets available are scarce, particularly for hybrid poplar. In the present study, we examined the contribution of a number of biochemical and biophysical traits on thermal acclimation of An for two hybrid poplar clones. We grew cuttings of Populus maximowiczii × Populus nigra (M×N) and Populus maximowiczii × Populus balsamifera (M×B) clones under two day/night temperature of 23°C/18°C and 33°C /27°C and under low and high soil nitrogen level. After ten weeks, we measured leaf RuBisCO (RAR) and RuBisCO activase (RARCA) amounts and the temperature response of An, dark respiration (Rd), stomatal conductance, (gs), apparent maximum carboxylation rate of CO2 (Vcmax) and apparent photosynthetic electron transport rate (J). Results showed that a 10°C increase in growth temperature resulted in a shift in thermal optimum (Topt) of An of 6.2±1.6°C and 8.0±1.2°C for clone M×B and M×N respectively, and an increased An and gs at the growth temperature for clone M×B but not M×N. RuBisCO amount was increased by N level but was insensitive to growth temperature while RARCA amount and the ratio of its short to long isoform was stimulated by the warm condition for clone M×N and at low N for clone M×B. The activation energy of apparent Vcmax and apparent J decreased under the warm condition for clone M×B and remained unchanged for clone M×N. Our study demonstrated the involvement of both RARCA, the activation energy of apparent Vcmax and stomatal conductance in thermal acclimation of An.
Collapse
|
18
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
19
|
Niinemets Ü. When leaves go over the thermal edge. PLANT, CELL & ENVIRONMENT 2018; 41:1247-1250. [PMID: 29508926 DOI: 10.1111/pce.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/04/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Tallinn, 10130, Estonia
| |
Collapse
|
20
|
Benomar L, Lamhamedi MS, Pepin S, Rainville A, Lambert MC, Margolis HA, Bousquet J, Beaulieu J. Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming. ANNALS OF BOTANY 2018; 121:443-457. [PMID: 29300870 PMCID: PMC5838847 DOI: 10.1093/aob/mcx174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Knowledge of thermal acclimation of physiological processes of boreal tree species is necessary to determine their ability to adapt to predicted global warming and reduce the uncertainty around the anticipated feedbacks of forest ecosystems and global carbon cycle to climate change. The objective of this work was to examine the extent of thermal acclimation of net photosynthesis (An) and dark respiration (Rd) of two distant white spruce (Picea glauca) seed sources (from south and north of the commerial forest zone in Québec) in response to latitudinal and seasonal variations in growing conditions. METHODS The temperature responses of An, its biochemical and biophysical limitations, and Rd were measured in 1-year-old needles of seedlings from the seed sources growing in eight forest plantations along a regional thermal gradient of 5.5 °C in Québec, Canada. KEY RESULTS The average optimum temperature (Topt) for An was 19 ± 1.2 °C and was similar among seed sources and plantation sites along the thermal gradient. Net photosynthesis at Topt (Aopt) varied significantly among plantation sites and was quadratically related to the mean July temperature (MJT) of plantation sites. Topt for mesophyll conductance, maximum electron transport rate and maximum rate of carboxylation were 28, 22 and 30 °C, respectively. Basal respiration rate (Rd at 10 °C) was linearly and negatively associated with MJT. Q10 of Rd (the rate of change in Rd with a 10 °C increase in temperature) did not show any significant relationship with MJT and averaged 1.5 ± 0.1. The two seed sources were similar in their thermal responses to latitudinal and seasonal variations in growing conditions. CONCLUSIONS The results showed moderate thermal acclimation of respiration and no evidence for thermal acclimation of photosynthesis or local genetic adaptation for traits related to thermal acclimation. Therefore, growth of local white spruces may decline in future climates.
Collapse
Affiliation(s)
- Lahcen Benomar
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
- For correspondence. E-mail
| | - Mohammed S Lamhamedi
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Steeve Pepin
- Faculté des sciences de l’agriculture et de l’alimentation, Pavillon de l’Envirotron, Université Laval, Québec, Canada
| | - André Rainville
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Marie-Claude Lambert
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Hank A Margolis
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| | - Jean Bousquet
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| | - Jean Beaulieu
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| |
Collapse
|
21
|
Greer DH. Modelling seasonal changes in the temperature-dependency of CO 2 photosynthetic responses in two Vitis vinifera cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:315-327. [PMID: 32290955 DOI: 10.1071/fp17201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 06/11/2023]
Abstract
A study of photosynthesis of two grapevine cultivars, Vitis vinifera L. cv. Chardonnay and cv. Merlot in relation to the seasonal climate and internal CO2 (Ci) concentration at leaf temperatures from 15 to 45°C was undertaken. Average rates of photosynthesis at saturating CO2 concentrations and all leaf temperatures were higher in Merlot compared with Chardonnay leaves. This was attributable to higher rates of ribulose 1,5-bisphosphate (RuBP) carboxylation (Vcmax) and regeneration (Jmax) in Merlot leaves. These differences in photosynthesis were extended as the season progressed, partly because rates of RuBP carboxylation and regeneration of Chardonnay leaves declined markedly whereas rates for Merlot leaves remained high. Although there was no cultivar difference in the seasonal average temperature optima for assimilation (34°C) and the underlying metabolism (40°C for Vcmax and 35°C for Jmax), for temperatures above 35°C, the Merlot leaves had 50% higher rates. Across the season, activation energies of the temperature sensitivity of Vcmax and Jmax declined in response to the seasonal climate but were consistently lower in Merlot than Chardonnay. This suggested some apparent differences in the biochemistry occurred between the two cultivars that limited assimilation in Chardonnay leaves, especially at higher temperatures, but did not limit assimilation in Merlot leaves.
Collapse
Affiliation(s)
- Dennis H Greer
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW Australia. Email
| |
Collapse
|
22
|
Dillon S, Quentin A, Ivković M, Furbank RT, Pinkard E. Photosynthetic variation and responsiveness to CO2 in a widespread riparian tree. PLoS One 2018; 13:e0189635. [PMID: 29293528 PMCID: PMC5749701 DOI: 10.1371/journal.pone.0189635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 12/03/2022] Open
Abstract
Phenotypic responses to rising CO2 will have consequences for the productivity and management of the world's forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (φ). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in φ could have broader implications for productivity of red gum forests.
Collapse
Affiliation(s)
- Shannon Dillon
- Genetic Diversity and Adaptation, Breakthrough genetic technologies for crop productivity, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Audrey Quentin
- Landscape Intensification, CSIRO Land and Water, Hobart, TAS, Australia
| | - Milos Ivković
- Genetic Diversity and Adaptation, Breakthrough genetic technologies for crop productivity, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Robert T. Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Elizabeth Pinkard
- Landscape Intensification, CSIRO Land and Water, Hobart, TAS, Australia
| |
Collapse
|
23
|
Smith NG, Dukes JS. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. GLOBAL CHANGE BIOLOGY 2017; 23:4840-4853. [PMID: 28560841 DOI: 10.1111/gcb.13735] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and foliar dark respiration (Rd ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C3 and C4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C3 species tending to preferentially accelerate CO2 -limited photosynthetic processes and respiration and C4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. Rd acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. Rd acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting.
Collapse
Affiliation(s)
- Nicholas G Smith
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Qiu C, Ethier G, Pepin S, Dubé P, Desjardins Y, Gosselin A. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? PLANT, CELL & ENVIRONMENT 2017. [PMID: 28620951 DOI: 10.1111/pce.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The temperature dependence of mesophyll conductance (gm ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf ) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm . However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes..
Collapse
Affiliation(s)
- Changpeng Qiu
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Gilbert Ethier
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Steeve Pepin
- Department of Soils and Agri-Food Engineering, Laval University, Quebec, Canada
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Yves Desjardins
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - André Gosselin
- Department of Plant Sciences, Laval University, Quebec, Canada
| |
Collapse
|
25
|
Aspinwall MJ, Vårhammar A, Blackman CJ, Tjoelker MG, Ahrens C, Byrne M, Tissue DT, Rymer PD. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. TREE PHYSIOLOGY 2017; 37:1095-1112. [PMID: 28460131 DOI: 10.1093/treephys/tpx047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Short-term acclimation and long-term adaptation represent two ways in which forest trees can respond to changes in temperature. Yet, the relative contribution of thermal acclimation and adaptation to tree physiological responses to temperature remains poorly understood. Here, we grew two cool-origin and two warm-origin populations of a widespread broad-leaved evergreen tree species (Corymbia calophylla (Lindl.) K.D.Hill & L.A.S.Johnson) from a Mediterranean climate in southwestern Australia under two growth temperatures representative of the cool- and warm-edge of the species distribution. The populations selected from each thermal environment represented both high and low precipitation sites. We measured the short-term temperature response of leaf photosynthesis (A) and dark respiration (R), and attributed observed variation to acclimation, adaptation or the combination of both. We observed limited variation in the temperature optimum (Topt) of A between temperature treatments or among populations, suggesting little plasticity or genetic differentiation in the Topt of A. Yet, other aspects of the temperature response of A and R were dependent upon population and growth temperature. Under cooler growth temperatures, the population from the coolest, wettest environment had the lowest A (at 25 °C) among all four populations, but exhibited the highest A (at 25 °C) under warmer growth temperatures. Populations varied in R (at 20 °C) and the temperature sensitivity of R (i.e., Q10 or activation energy) under cool, but not warm growth temperatures. However, populations showed similar yet lower R (at 20 °C) and no differences in the temperature sensitivity of R under warmer growth temperatures. We conclude that C. calophylla populations from contrasting climates vary in physiological acclimation to temperature, which might influence how this ecologically important tree species and the forests of southwestern Australia respond to climate change.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Collin Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Margaret Byrne
- Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
26
|
Warming puts the squeeze on photosynthesis – lessons from tropical trees. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2073-2077. [PMCID: PMC5447882 DOI: 10.1093/jxb/erx114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
27
|
Perdomo JA, Carmo-Silva E, Hermida-Carrera C, Flexas J, Galmés J. Acclimation of Biochemical and Diffusive Components of Photosynthesis in Rice, Wheat, and Maize to Heat and Water Deficit: Implications for Modeling Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1719. [PMID: 27920782 PMCID: PMC5118457 DOI: 10.3389/fpls.2016.01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/01/2016] [Indexed: 05/03/2023]
Abstract
The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD) and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat, and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa), and a high temperature (HT, 38°C, VPD 3.5 kPa), both under well-watered (WW) and water deficit (WD) conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax, and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.
Collapse
Affiliation(s)
- Juan A. Perdomo
- Plant Biology and Crop Science, Rothamsted ResearchHarpenden, UK
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes BalearsPalma, Spain
| | | | - Carmen Hermida-Carrera
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes BalearsPalma, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes BalearsPalma, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes BalearsPalma, Spain
| |
Collapse
|
28
|
Galmés J, Hermida-Carrera C, Laanisto L, Niinemets Ü. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5067-91. [PMID: 27406782 PMCID: PMC5014154 DOI: 10.1093/jxb/erw267] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized photosynthesis.
Collapse
Affiliation(s)
- Jeroni Galmés
- Research Group in Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Illes Balears, Spain
| | - Carmen Hermida-Carrera
- Research Group in Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Illes Balears, Spain
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
29
|
Yin X, van der Putten PEL, Driever SM, Struik PC. Temperature response of bundle-sheath conductance in maize leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2699-714. [PMID: 26969744 PMCID: PMC4861018 DOI: 10.1093/jxb/erw104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A small bundle-sheath conductance (g bs) is essential for the C4 CO2-concentrating mechanism to suppress photorespiration effectively. To predict the productivity of C4 crops accurately under global warming, it is necessary to examine whether and how g bs responds to temperature. We investigated the temperature response of g bs in maize by fitting a C4 photosynthesis model to combined gas exchange and chlorophyll fluorescence measurements of irradiance and CO2 response curves at 21% and 2% O2 within the range of 13.5-39 °C. The analysis was based on reported kinetic constants of C4 Rubisco and phosphoenolpyruvate carboxylase and temperature responses of C3 mesophyll conductance (g m). The estimates of g bs varied greatly with leaf temperature. The temperature response of g bs was well described by the peaked Arrhenius equation, with the optimum temperature being ~34 °C. The assumed temperature responses of g m had only a slight impact on the temperature response of g bs In contrast, using extreme values of some enzyme kinetic constants changed the shape of the response, from the peaked optimum response to the non-peaked Arrhenius pattern. Further studies are needed to confirm such an Arrhenius response pattern from independent measurement techniques and to assess whether it is common across C4 species.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
30
|
Perdomo JA, Conesa MÀ, Medrano H, Ribas-Carbó M, Galmés J. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation. PHYSIOLOGIA PLANTARUM 2015; 155:149-165. [PMID: 25348109 DOI: 10.1111/ppl.12303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 05/03/2023]
Abstract
This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (Bt ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in Bt correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in Bt was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with Bt under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change.
Collapse
Affiliation(s)
- Juan Alejandro Perdomo
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, 07122, Spain
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, 07122, Spain
| | - Hipólito Medrano
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, 07122, Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, 07122, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, 07122, Spain
| |
Collapse
|
31
|
Peraudeau S, Lafarge T, Roques S, Quiñones CO, Clement-Vidal A, Ouwerkerk PBF, Van Rie J, Fabre D, Jagadish KSV, Dingkuhn M. Effect of carbohydrates and night temperature on night respiration in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3931-44. [PMID: 25954047 DOI: 10.1093/jxb/erv193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Global warming causes night temperature (NT) to increase faster than day temperature in the tropics. According to crop growth models, respiration incurs a loss of 40-60% of photosynthate. The thermal sensitivity of night respiration (R(n)) will thus reduce biomass. Instantaneous and acclimated effects of NT on R(n) of leaves and seedlings of two rice cultivars having a variable level of carbohydrates, induced by exposure to different light intensity on the previous day, were investigated. Experiments were conducted in a greenhouse and growth chambers, with R(n) measured on the youngest fully expanded leaves or whole seedlings. Dry weight-based R(n) was 2.6-fold greater for seedlings than for leaves. Leaf R(n) was linearly related to starch (positive intercept) and soluble sugar concentration (zero intercept). Increased NT caused higher R(n) at a given carbohydrate concentration. The change of R(n) at NT increasing from 21 °C to 31 °C was 2.4-fold for the instantaneous response but 1.2- to 1.7-fold after acclimation. The maintenance component of R(n) (R(m)'), estimated by assimilate starvation, averaged 28% in seedlings and 34% in leaves, with no significant thermal effect on this ratio. The acclimated effect of increased NT on R(m)' across experiments was 1.5-fold for a 10 °C increase in NT. No cultivar differences were observed in R(n) or R(m)' responses. The results suggest that the commonly used Q10=2 rule overestimates thermal response of respiration, and R(n) largely depends on assimilate resources.
Collapse
Affiliation(s)
| | | | | | - Cherryl O Quiñones
- International Rice Research Institute (IRRI), Crop and Environment Science Division (CESD), DAPO Box 7777 Metro Manila, Philippines
| | | | - Pieter B F Ouwerkerk
- Bayer CropScience NV, Innovation Center, Technologie park 38, B-9052 Gent, Belgium
| | - Jeroen Van Rie
- Bayer CropScience NV, Innovation Center, Technologie park 38, B-9052 Gent, Belgium
| | - Denis Fabre
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Krishna S V Jagadish
- International Rice Research Institute (IRRI), Crop and Environment Science Division (CESD), DAPO Box 7777 Metro Manila, Philippines
| | - Michael Dingkuhn
- CIRAD, UMR AGAP, F-34398 Montpellier, France International Rice Research Institute (IRRI), Crop and Environment Science Division (CESD), DAPO Box 7777 Metro Manila, Philippines
| |
Collapse
|
32
|
Way DA, Oren R, Kroner Y. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. PLANT, CELL & ENVIRONMENT 2015; 38:991-1007. [PMID: 25737035 DOI: 10.1111/pce.12527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/17/2015] [Indexed: 05/27/2023]
Abstract
To predict how forests will respond to rising temperatures and atmospheric CO₂ concentrations, we need to understand how trees respond to both of these environmental factors. In this review, we discuss the importance of scaling, moving from leaf-level responses to those of the canopy, and from short-term to long-term responses of vegetation to climate change. While our knowledge of leaf-level, instantaneous responses of photosynthesis, respiration, stomatal conductance, transpiration and water-use efficiency to elevated CO₂ and temperature is quite good, our ability to scale these responses up to larger spatial and temporal scales is less developed. We highlight which physiological processes are least understood at various levels of study, and discuss how ignoring differences in the spatial or temporal scale of a physiological process impedes our ability to predict how forest carbon and water fluxes forests will be altered in the future. We also synthesize data from the literature to show that light respiration follows a generalized temperature response across studies, and that the light compensation point of photosynthesis is reduced by elevated growth CO₂. Lastly, we emphasize the need to move beyond single factorial experiments whenever possible, and to combine both CO₂ and temperature treatments in studies of tree performance.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada; Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | | |
Collapse
|
33
|
von Caemmerer S, Evans JR. Temperature responses of mesophyll conductance differ greatly between species. PLANT, CELL & ENVIRONMENT 2015; 38:629-37. [PMID: 25224884 DOI: 10.1111/pce.12449] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 05/04/2023]
Abstract
The temperature responses of mesophyll conductance (gm ) were investigated for nine species using carbon isotope techniques combining tunable diode laser spectroscopy and gas exchange measurements. Species included the evergreen trees Eucalyptus pauciflora and Quercus engelmannii; the tropical evergreen tree Lophostemon confertus; as well as the herbaceous species Nicotiana tabacum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Glycine max and Arabidopsis thaliana. Responses varied from a two- to threefold increase in mesophyll conductance between 15 and 40 °C observed for N. tabacum, G. hirsutum, G. max and E. pauciflora to almost no change in L. confertus and T. aestivum. To account for the different temperature responses between species, we suggest that there must be variation in both the activation energy for membrane permeability and the effective pathlength for liquid phase diffusion. Stomatal conductance was relatively independent of increases in leaf temperature and concomitant increases in leaf to air vapour pressure difference. Two exceptions were Eucalyptus and Gossypium, where stomatal conductance increased with temperature up to 35 °C despite increasing leaf to air vapour pressure. For a given species, temperature responses of stomatal and mesophyll conductance were independent of one another.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | | |
Collapse
|
34
|
General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 2014; 177:885-900. [DOI: 10.1007/s00442-014-3159-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
35
|
Grote R, Morfopoulos C, Niinemets Ü, Sun Z, Keenan T, Pacifico F, Butler T. A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. PLANT, CELL & ENVIRONMENT 2014; 37:1965-80. [PMID: 24661098 PMCID: PMC4415481 DOI: 10.1111/pce.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/14/2014] [Indexed: 05/20/2023]
Abstract
The lack of a mechanistic basis has hampered modelling isoprene emission responses to environmental drivers, in particular the simulation of isoprene emissions under different CO₂ concentrations. Here, we advance previous semi-mechanistic model formulations by introducing a model that explicitly links electron availability for other purpose than carbon assimilation (or available energy for secondary metabolism processes; supply-constraint) and enzyme activity (capacity-constraint) to emissions. We furthermore investigate the sensitivity of the model to variations in photosynthetic and emission-specific parameters. By comparing species-specific simulations with experimental data, we demonstrate that differences in photosynthetic characteristics can explain inter-species differences in emissions. Interestingly, the seasonal development of emissions could also be explained to some degree by the change in energy supply from photosynthesis throughout the season. In addition, we show that the principal responses are not limited to isoprene but can be formulated to describe the emission of other light-dependent volatile species. The proposed model is suitable for implementation into regional and global models, particularly those that already provide species-specific photosynthesis estimates.
Collapse
Affiliation(s)
- Rüdiger Grote
- Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
- Karlsruhe Institute for Technology, Institute for Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Zhihong Sun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Trevor Keenan
- Department of Biological Sciences, E8C Building Room 270, Macquarie University, Sydney, Australia
| | - Federica Pacifico
- University of Exeter College of Engineering, Mathematics and Physical Sciences Harrison, Building, North Park Road Exeter, EX4 4QF, UK
| | - Tim Butler
- Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
| |
Collapse
|
36
|
Cerasoli S, Wertin T, McGuire MA, Rodrigues A, Aubrey DP, Pereira JS, Teskey RO. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature. AOB PLANTS 2014; 6:plu018. [PMID: 24876300 PMCID: PMC4029210 DOI: 10.1093/aobpla/plu018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/27/2014] [Indexed: 05/06/2023]
Abstract
Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature.
Collapse
Affiliation(s)
- Sofia Cerasoli
- School of Agriculture, Forest Research Centre, Technical University of Lisbon, Lisboa, Portugal
| | - Timothy Wertin
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Mary Anne McGuire
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Ana Rodrigues
- School of Agriculture, Forest Research Centre, Technical University of Lisbon, Lisboa, Portugal
| | - Doug P Aubrey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - João Santos Pereira
- School of Agriculture, Forest Research Centre, Technical University of Lisbon, Lisboa, Portugal
| | - Robert O Teskey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Joseph T, Whitehead D, Turnbull MH. Soil water availability influences the temperature response of photosynthesis and respiration in a grass and a woody shrub. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:468-481. [PMID: 32481006 DOI: 10.1071/fp13237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/28/2013] [Indexed: 06/11/2023]
Abstract
Seedlings of the shrub kānuka (Kunzea ericoides var. ericoides (A. Rich) J. Thompson) and the pasture grass brown top (Agrostis capillarus L.) were grown in intact soil cores in climate-controlled cabinets to analyse the thermal response of leaf-level carbon exchange at four levels of volumetric soil water content (θ). The objective was to resolve the combined effects of relatively rapid and short-term changes in θ and temperature on the thermal responses of both photosynthesis and respiration in these two contrasting plant types. Results showed that θ had a greater effect on the short-term temperature response of photosynthesis than the temperature response of respiration. The optimum value of θ for net photosynthesis was around 30% for both plants. The photosynthetic capacity of kānuka and the grass declined significantly when θ fell below 20%. The temperature sensitivity of photosynthesis was low at low soil water content and increased at moderate to high soil water content in both plant types. Statistical analysis showed that the temperature sensitivity of photosynthetic parameters was similar for both plant types, but the sensitivity of respiratory parameters differed. Respiratory capacity increased with increasing soil water content in kānuka but declined significantly when θ fell below 15%. There was no significant influence of soil water content on respiratory capacity in the grass. Collectively, our results indicate that θ influenced the temperature sensitivity of photosynthesis and respiration, and altered the balance between foliar respiration and photosynthetic capacity in both plant types.
Collapse
Affiliation(s)
- Tony Joseph
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | | | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| |
Collapse
|
38
|
Way DA, Yamori W. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. PHOTOSYNTHESIS RESEARCH 2014; 119:89-100. [PMID: 23812760 DOI: 10.1007/s11120-013-9873-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/12/2013] [Indexed: 05/05/2023]
Abstract
While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, Western University, London, ON, Canada,
| | | |
Collapse
|
39
|
Diaz-Espejo A. New challenges in modelling photosynthesis: temperature dependencies of Rubisco kinetics. PLANT, CELL & ENVIRONMENT 2013; 36:2104-7. [PMID: 23998434 DOI: 10.1111/pce.12192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This article comments on: Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum
Collapse
Affiliation(s)
- A Diaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, Sevilla, 41012, Spain
| |
Collapse
|
40
|
O'Sullivan OS, Weerasinghe KWLK, Evans JR, Egerton JJG, Tjoelker MG, Atkin OK. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. PLANT, CELL & ENVIRONMENT 2013; 36:1268-1284. [PMID: 23278101 DOI: 10.1111/pce.12057] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110 m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo--these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57 °C, varying with season (e.g. winter summer). Tcrit ranged from 41 to 49 °C in summer and from 58 to 63 °C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45 °C); using these model fits, we found that the negative slope of the Q10 -T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E. pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models.
Collapse
Affiliation(s)
- Odhran S O'Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - K W Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales, 2751, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| |
Collapse
|
41
|
Secchi F, Zwieniecki MA. The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress. FRONTIERS IN PLANT SCIENCE 2013; 4:507. [PMID: 24379822 PMCID: PMC3861612 DOI: 10.3389/fpls.2013.00507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/26/2013] [Indexed: 05/09/2023]
Abstract
In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress.
Collapse
Affiliation(s)
- Francesca Secchi
- *Correspondence: Francesca Secchi, Department of Plant Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA e-mail:
| | | |
Collapse
|
42
|
Smith NG, Dukes JS. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. GLOBAL CHANGE BIOLOGY 2013; 19:45-63. [PMID: 23504720 DOI: 10.1111/j.1365-2486.2012.02797.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 05/21/2023]
Abstract
To realistically simulate climate feedbacks from the land surface to the atmosphere, models must replicate the responses of plants to environmental changes. Several processes, operating at various scales, cause the responses of photosynthesis and plant respiration to temperature and CO2 to change over time of exposure to new or changing environmental conditions. Here, we review the latest empirical evidence that short-term responses of plant carbon exchange rates to temperature and CO2 are modified by plant photosynthetic and respiratory acclimation as well as biogeochemical feedbacks. We assess the frequency with which these responses have been incorporated into vegetation models, and highlight recently designed algorithms that can facilitate their incorporation. Few models currently include representations of the long-term plant responses that have been recorded by empirical studies, likely because these responses are still poorly understood at scales relevant for models. Studies show that, at a regional scale, simulated carbon flux between the atmosphere and vegetation can dramatically differ between versions of models that do and do not include acclimation. However, the realism of these results is difficult to evaluate, as algorithm development is still in an early stage, and a limited number of data are available. We provide a series of recommendations that suggest how a combination of empirical and modeling studies can produce mechanistic algorithms that will realistically simulate longer term responses within global-scale models.
Collapse
Affiliation(s)
- Nicholas G Smith
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
| | | |
Collapse
|
43
|
Lin YS, Medlyn BE, Ellsworth DS. Temperature responses of leaf net photosynthesis: the role of component processes. TREE PHYSIOLOGY 2012; 32:219-31. [PMID: 22278379 DOI: 10.1093/treephys/tpr141] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The response of photosynthesis to temperature is a central facet of plant response to climate. Such responses have been found to be highly variable among species and among studies. Understanding this variability is key when trying to predict the effects of rising global temperatures on plant productivity. There are three major factors affecting the response of leaf net photosynthesis to temperature (A(n)-T): (i) photosynthetic biochemistry, (ii) respiration and (iii) vapour pressure deficit (D) and stomatal sensitivity to vapour pressure deficit during measurements. The overall goal of our study was to quantify the relative contribution of each of these factors in determining the response of A(n) to temperature. We first conducted a sensitivity analysis with a coupled photosynthesis-stomatal (A(n)-g(s)) model, using ranges for parameters of each factor taken from the literature, and quantified how these parameters affected the A(n)-T response. Second, we applied the A(n)-g(s) model to two example sets of field data, which had different optimum temperatures (T(opt)) of A(n), to analyse which factors were most important in causing the difference. We found that each of the three factors could have an equally large effect on T(opt) of A(n). In our comparison between two field datasets, the major cause for the difference in T(opt) was not the biochemical component, but rather the differences in respiratory components and in D conditions during measurements. We concluded that shifts in A(n)-T responses are not always driven by acclimation of photosynthetic biochemistry, but can result from other factors. The D conditions during measurements and stomatal responses to D also need to be quantified if we are to better understand and predict shifts in A(n)-T with climate.
Collapse
Affiliation(s)
- Yan-Shih Lin
- Hawkesbury Institute for the Environment, University of Western Sydney-Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | | | | |
Collapse
|
44
|
Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:895-911. [PMID: 22021569 PMCID: PMC3254689 DOI: 10.1093/jxb/err321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 05/07/2023]
Abstract
Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.
Collapse
Affiliation(s)
- S. V. Archontoulis
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture, University of Thessaly, Volos, Greece
| | - X. Yin
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - J. Vos
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - N. G. Danalatos
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture, University of Thessaly, Volos, Greece
| | - P. C. Struik
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
45
|
Way DA, Oren R, Kim HS, Katul GG. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jg001808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|