1
|
Goto H, Ishikiriyama T, Oe K, Asaga R, Sato H, Mori K, Kearney BM, Nakashima H, Sugaya T, Kinoshita M, Oshima N. Liver fatty acid-binding protein point-of-care testing detects heat-induced organ damage: a pilot study in Japanese male self-defense force personnel. Sci Rep 2025; 15:7197. [PMID: 40021940 PMCID: PMC11871146 DOI: 10.1038/s41598-025-91685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
Heat-related illnesses cause multiple organ injuries, including acute kidney injury (AKI). Recent studies have reported that heat-induced AKI can progress to chronic kidney disease (CKD). We previously reported that urinary levels of liver fatty acid-binding protein (L-FABP) are elevated in patients with severe heat-related illness. In this study, we prospectively examined the detection ability of L-FABP rapid assay kit (L-FABP Point-of-Care [POC] kit) for heat-induced organ damage in prehospital settings. After applying the exclusion criteria, 65 Japanese male military personnel who intended to carry out training in a hot environment were analyzed. The L-FABP POC kit enabled the detection of heat-induced kidney and/or liver damage after heat exposure (defined as serum creatinine [Cr] ≥ 1.2 mg/dL and total bilirubin ≥ 1.2 mg/dL) with a high negative predictive value (95.7%). L-FABP-positive participants showed higher serum Cr and total bilirubin levels than L-FABP-negative participants. Moreover, L-FABP-positive participants showed higher acyl-to-free carnitine ratios, indicating carnitine insufficiency which leads to impaired fatty acid oxidation, as well as high and rapid elevation of their core temperature in comparison to L-FABP-negative participants. In conclusion, the L-FABP POC kit may be useful as a screening tool for detecting heat-induced organ damage, which would prevent prolonged organ dysfunction.
Collapse
Affiliation(s)
- Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Takuya Ishikiriyama
- Department of Internal Medicine, Self-Defense Force (SDF) Central Hospital, Setagaya, Tokyo, 154-8532, Japan
| | - Kyoko Oe
- Research Department, Ground Self-Defense Force (GSDF) Chemical School, Omiya, Saitama, 331-0823, Japan
| | - Reina Asaga
- Research Department, Ground Self-Defense Force (GSDF) Chemical School, Omiya, Saitama, 331-0823, Japan
- Department of Infectious Disease and Respiratory Medicine, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroki Sato
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kazuma Mori
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Bradley M Kearney
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
- U.S. Army Japan Engineer and Scientist Exchange Program, Camp Zama, Zama, 96338, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Takeshi Sugaya
- Department of Nephrology and Hypertension, St. Marianna University, Kawasaki, Kanagawa, 216-8511, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
2
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Liang Y, Quan X, Gu R, Meng Z, Gan H, Wu Z, Sun Y, Pan H, Han P, Liu S, Dou G. Repurposing existing drugs for the treatment ofCOVID-19/SARS-CoV-2: A review of pharmacological effects and mechanism of action. Heliyon 2024; 10:e35988. [PMID: 39247343 PMCID: PMC11379597 DOI: 10.1016/j.heliyon.2024.e35988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Following the coronavirus disease-2019 outbreak caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an ongoing need to seek drugs that target COVID-19. First off, novel drugs have a long development cycle, high investment cost, and are high risk. Second, novel drugs must be evaluated for activity, efficacy, safety, and metabolic performance, contributing to the development cycle, investment cost, and risk. We searched the Cochrane COVID-19 Study Register (including PubMed, Embase, CENTRAL, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and WHO COVID-19 Coronaviral Disease Global Literature to identify completed and ongoing studies as of February 20, 2024. We evaluated the pharmacological effects, in vivo and in vitro data of the 16 candidates in the paper. The difficulty of studying these candidates in clinical trials involving COVID-19 patients, dosage of repurposed drugs, etc. is discussed in detail. Ultimately, Metformin is more suitable for prophylactic administration or mildly ill patients; the combination of Oseltamivir, Tamoxifen, and Dexamethasone is suitable for moderately and severely ill patients; and more clinical trials are needed for Azvudine, Ribavirin, Colchicine, and Cepharanthine to demonstrate efficacy.
Collapse
Affiliation(s)
- Yutong Liang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoxiao Quan
- Beijing Institute of Radiation Medicine, Beijing, China
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Huajie Pan
- General Internal Medicine Department, Jingnan Medical District, PLA General Hospital, Beijing, China
| | - Peng Han
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Wong C, Junqueira E, Poldiak NP, Crossley N, Jenkins S. Influence of Metformin Discontinuation on Readmission Rate in Patients With Acute Heart Failure. J Community Hosp Intern Med Perspect 2024; 14:12-17. [PMID: 39391108 PMCID: PMC11464055 DOI: 10.55729/2000-9666.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background The consequences of discontinuing metformin in patients with heart failure have not been determined. Knowing that acute exacerbation of chronic heart failure contributes to substantial increases in major adverse cardiovascular events (MACE), we proposed a retrospective study to examine whether discontinuing metformin in patients hospitalized with heart failure impacts mortality and readmission rates. Methods We conducted a retrospective analysis of patients admitted with a diagnosis of acute heart failure to hospitals in the HCA Healthcare System from 2020 to 2022. Included patients had a prior diagnosis of diabetes mellitus, acute heart failure, and were taking metformin prior to admission. After applying our exclusion criteria, a total of 7740 patients remained. The primary outcomes were 30-, 60-, and 90-day readmission rates and secondary outcomes were mortality and length of stay. Results Patients who were discharged without a prescription for metformin (NONDIS-MET) were 4.489 (95% CI 3.673-5.488, p < 0.0001) times more likely to have a MACE outcome in 30 days compared to patients who received a discharge order for metformin (DIS-MET). The findings were similar for 60-day and 90-day readmission rates, with NONDIS-MET patients 3.457 (95% CI 2.893-4.131, p < 0.0001) and 2.992 (95% CI 2.534-3.533 p < 0.0001) times more likely to have a MACE outcome than MET patients, respectively. However, when metformin was continued during the patients' hospital stay (CONT-MET) there was no significant association with MACE outcomes, readmission, or mortality rates. Conclusion We found that diabetic patients admitted with acute heart failure exacerbations had a higher incidence of major adverse cardiac events and were more likely to be readmitted when they were not prescribed metformin after discharge. Our findings agree with prior work showing the cardioprotective effects of metformin; however, continuing metformin during hospital admission did not affect our patients adverse outcomes.
Collapse
Affiliation(s)
- Curtis Wong
- Trident Health, Internal Medicine Residency Program,
United States
| | | | | | - Nancy Crossley
- Trident Health, Internal Medicine Residency Program,
United States
| | - Shantae Jenkins
- Trident Health, Internal Medicine Residency Program,
United States
| |
Collapse
|
5
|
Song ZH, Huang QM, Xu SS, Zhou JB, Zhang C. The Effect of Antihyperglycemic Medications on COVID-19: A Meta-analysis and Systematic Review from Observational Studies. Ther Innov Regul Sci 2024; 58:773-787. [PMID: 38683419 DOI: 10.1007/s43441-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Diabetes, a chronic disease worldwide, may be associated with a poorer prognosis in patients with coronavirus disease 2019 (COVID-19). While some antihyperglycemic medications may be beneficial, others may increase the risk of adverse clinical outcomes of COVID-19. We aimed to analyze the effect of antihyperglycemic medications on COVID-19. METHODS We searched the Web of Science, Cochrane Library, EMBASE, PubMed, and Scopus databases from December 2019 to June 2022 to identify literature related to patients with COVID-19 and type 2 diabetes mellitus (T2DM) treated with antihyperglycemic medications. RESULTS 56 studies were included in the analysis. Metformin (OR 0.66; 95% CI 0.58-0.74; p < 0.05), Glucagon-like peptide-1 receptor agonist (GLP-1ra) (OR 0.73; 95% CI 0.59-0.91; p < 0.05), and sodium-dependent glucose transporters 2 inhibitor (SGLT 2i) (OR 0.77; 95% CI 0.69-0.87; p < 0.05) were associated with lower mortality risk, while insulin was associated with increased mortality risk (OR 1.40; 95% CI 1.26-1.55; p < 0.05). Meanwhile, metformin (OR 0.65; 95% CI 0.50-0.85; p < 0.05) and GLP-1ra (OR 0.84; 95% CI 0.76-0.94; p < 0.05) were significantly associated with decreased severe manifestation risk. What's more, metformin (OR 0.77; 95% CI 0.62-0.96; p < 0.05), GLP-1ra (OR 0.86; 95% CI 0.81-0.92; p < 0.05), and SGLT 2i (OR 0.87; 95% CI 0.79-0.97; p < 0.05) were also associated with a decreased risk of hospitalization, but insulin were associated with an increased risk of hospitalization (OR 1.31; 95% CI 1.12-1.52; p < 0.05). Nevertheless, the results of the subgroup analyses showed that the effects of different glucose-lowering agents on COVID-19 may be related to in-hospital use or out-hospital use, elderly or non-elderly patients use, and different geography. CONCLUSION Metformin, GLP-1ra, and SGLT 2i have shown a positive effect on clinical outcomes in COVID-19, particularly in non-elderly individuals. However, insulin use may pose a higher risk, especially in elderly patients, so need with caution. Meanwhile, DPP-4i, TZD, α-GLUi, and sulfonylureas appeared to have a neutral effect. These results need to be validated in future clinical studies.
Collapse
Affiliation(s)
- Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiao-Ming Huang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Xu
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Hou Y, Yang Z, Xiang B, Liu J, Geng L, Xu D, Zhan M, Xu Y, Zhang B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci Rep 2024; 14:12406. [PMID: 38811809 PMCID: PMC11137110 DOI: 10.1038/s41598-024-63081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer, and coronavirus disease 2019 (COVID-19) has become a serious public health threat worldwide. Patients with LUAD and COVID-19 have a poor prognosis. Therefore, finding medications that can be used to treat COVID-19/LUAD patients is essential. Bioinformatics analysis was used to identify 20 possible metformin target genes for the treatment of COVID-19/LUAD. PTEN and mTOR may serve as hub target genes of metformin. Metformin may be able to cure COVID-19/LUAD comorbidity through energy metabolism, oxidoreductase NADH activity, FoxO signalling pathway, AMPK signalling system, and mTOR signalling pathway, among other pathways, according to the results of bioinformatic research. Metformin has ability to inhibit the proliferation of A549 cells, according to the results of colony formation and proliferation assays. In A549 cells, metformin increased glucose uptake and lactate generation, while decreasing ATP synthesis and the NAD+/NADH ratio. In summary, PTEN and mTOR may be potential targets of metformin for the treatment of COVID-19/LUAD. The mechanism by which metformin inhibits lung adenocarcinoma cell proliferation may be related to glucose metabolism regulated by PI3K/AKT signalling and mTOR signalling pathways. Our study provides a new theoretical basis for the treatment of COVID-19/LUAD.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Baoli Xiang
- Respiratory Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiangmin Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Lina Geng
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yuhuan Xu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
7
|
Raji H, Rashidi H, Moradi L, Kianizadeh F, Mahmoodi A, Saeidimehr S. Frequency of Mortality and Adverse Outcomes of COVID-19 in Hospitalized Type 2 Diabetics with a History of Sitagliptin or Metformin Use. JUNDISHAPUR JOURNAL OF CHRONIC DISEASE CARE 2024; 13. [DOI: 10.5812/jjcdc-140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/06/2024] [Accepted: 03/08/2024] [Indexed: 01/03/2025]
Abstract
Background: The relationship between various blood glucose-lowering treatments for type 2 diabetes mellitus (T2DM) and the mortality and complication rates of COVID-19 infection holds significant relevance. Objectives: This retrospective study aimed to investigate the clinical progression of COVID-19 in T2DM patients previously treated with sitagliptin, metformin, or a combination of both. Methods: The study reviewed the medical records of T2DM patients with COVID-19 who had received treatment with sitagliptin, metformin, or both. Participants were selected from those admitted to Naft Hospital in Ahvaz, Iran, from March 2020 to March 2022. Data on mortality and adverse outcomes related to COVID-19 were gathered from the medical records. Results: The study included 529 diabetic patients treated with metformin (n = 197), sitagliptin (n = 231), or both (n = 101) for a minimum of three months. The overall mortality rate among diabetic patients was 15.1%, with the metformin group showing the highest mortality rate at 28.9% (P < 0.0001). Significant differences were observed among the three treatment groups in terms of the frequency of acute respiratory failure (P < 0.0001), stroke (P = 0.002), pulmonary embolism (P < 0.0001), and the necessity for ICU admission (P < 0.0001). Nonetheless, the incidence of myocardial infarction did not significantly differ between the groups. Conclusions: The findings suggest that sitagliptin use for blood sugar control in T2DM patients may help reduce adverse outcomes and the risk of death due to COVID-19. Mortality and morbidity rates were found to be higher in patients treated with metformin compared to those in the other groups.
Collapse
|
8
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
9
|
Martin DE, Cadar AN, Bartley JM. Old drug, new tricks: the utility of metformin in infection and vaccination responses to influenza and SARS-CoV-2 in older adults. FRONTIERS IN AGING 2023; 4:1272336. [PMID: 37886013 PMCID: PMC10598609 DOI: 10.3389/fragi.2023.1272336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
In the face of global pathogens such as influenza (flu) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategies beyond standard vaccines and virus-specific treatments are critically needed for older populations who are more susceptible to severe disease and death from these infections due to age-related immune dysregulation. Thus, complimentary therapeutics are needed to address the increased risk of complications and death in older adults. Metformin, an FDA approved diabetes drug, is an attractive therapeutic candidate to improve immune defenses and resilience in older adults facing viral challenge. Metformin is already a candidate anti-aging drug, but its benefits have potential to span beyond this and improve specific immune responses. Metformin can target multiple aging hallmarks as well as directly impact innate and adaptive immune cell subsets. Both retrospective and prospective studies have demonstrated metformin's efficacy in improving outcomes after SARS-CoV-2 or flu infections. Moreover, evidence from clinical trials has also suggested that metformin treatment can improve vaccination responses. In totality, these findings suggest that metformin can improve age-related declines in immunological resilience. Strategies to improve outcomes after infection or improve vaccine-induced protection are invaluable for older adults. Moreover, the ability to repurpose an already FDA approved drug has significant advantages in terms of necessary time and resources. Thus, metformin has great potential as a therapeutic to improve age-related immune dysregulation during flu and SARS-CoV-2 infections and should be further explored to confirm its ability to improve overall immunological resilience in older adults.
Collapse
|
10
|
Erickson SM, Fenno SL, Barzilai N, Kuchel G, Bartley JM, Justice JN, Buse JB, Bramante CT. Metformin for Treatment of Acute COVID-19: Systematic Review of Clinical Trial Data Against SARS-CoV-2. Diabetes Care 2023; 46:1432-1442. [PMID: 37339345 PMCID: PMC10300519 DOI: 10.2337/dc22-2539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Observational and preclinical data suggest metformin may prevent severe coronavirus disease 2019 (COVID-19) outcomes. PURPOSE We conducted a systematic review of randomized, placebo-controlled clinical trials of metformin treatment for COVID-19 to determine whether metformin affects clinical or laboratory outcomes in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and present a structured summary of preclinical data. STUDY SELECTION Two independent reviewers searched PubMed, Scopus, Cochrane COVID-19 Study Register, and ClinicalTrials.gov on 1 February 2023 with no date restrictions for trials where investigators randomized adults with COVID-19 to metformin versus control and assessed clinical and/or laboratory outcomes of interest. The Cochrane Risk of Bias 2 tool was used to assess bias. DATA EXTRACTION Two reviewers extracted data pertaining to prespecified outcomes of each interest from each included trial. DATA SYNTHESIS The synthesis plan was developed a priori and was guided by Synthesis Without Meta-analysis (SWiM) guidelines. Summary tables and narrative synthesis were used (PROSPERO, 2022, CRD42022349896). Three randomized trials met inclusion criteria. In two of the trials investigators found that metformin improved clinical outcomes (prevented need for oxygen and prevented need for acute health care use), and in the third trial a larger portion of adults with diabetes were enrolled but results did show a direction of benefit similar to that of the other trials in the per-protocol group. In the largest trial, subjects were enrolled during the delta and omicron waves and vaccinated individuals were included. The certainty of evidence that metformin prevents health care use due to COVID-19 was moderate per Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. Many preclinical studies have shown metformin to be effective against SARS-CoV-2. LIMITATIONS Limitations include inclusion of only three trials and heterogeneity between trials. CONCLUSIONS Future trials will help define the role of metformin in COVID-19 treatment guidelines.
Collapse
Affiliation(s)
| | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY
| | - George Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT
| | - Jenna M. Bartley
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT
| | - Jamie Nicole Justice
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Carolyn T. Bramante
- Division of General Internal Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
11
|
Petakh P, Kamyshna I, Oksenych V, Kainov D, Kamyshnyi A. Metformin Therapy Changes Gut Microbiota Alpha-Diversity in COVID-19 Patients with Type 2 Diabetes: The Role of SARS-CoV-2 Variants and Antibiotic Treatment. Pharmaceuticals (Basel) 2023; 16:904. [PMID: 37375851 DOI: 10.3390/ph16060904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota play a crucial role in maintaining host health and have a significant impact on human health and disease. In this study, we investigated the alpha diversity of gut microbiota in COVID-19 patients and analyzed the impact of COVID-19 variants, antibiotic treatment, type 2 diabetes (T2D), and metformin therapy on gut microbiota composition and diversity. We used a culture-based method to analyze the gut microbiota and calculated alpha-diversity using the Shannon H' and Simpson 1/D indices. We collected clinical data, such as the length of hospital stay (LoS), C-reactive protein (CRP) levels, and neutrophil-to-lymphocyte ratio. We found that patients with T2D had significantly lower alpha-diversity than those without T2D. Antibiotic use was associated with a reduction in alpha-diversity, while metformin therapy was associated with an increase. We did not find significant differences in alpha-diversity between the Delta and Omicron groups. The length of hospital stay, CRP levels, and NLR showed weak to moderate correlations with alpha diversity. Our findings suggest that maintaining a diverse gut microbiota may benefit COVID-19 patients with T2D. Interventions to preserve or restore gut microbiota diversity, such as avoiding unnecessary antibiotic use, promoting metformin therapy, and incorporating probiotics, may improve patient outcomes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Denis Kainov
- Department for Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
12
|
Nagendra L, Bhattacharya S, Kalra S, Kapoor N. Metformin in COVID-19: Is There a Role Beyond Glycemic Control? Int J Endocrinol Metab 2023; 21:e132965. [PMID: 37654526 PMCID: PMC10467582 DOI: 10.5812/ijem-132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/26/2023] [Accepted: 04/15/2023] [Indexed: 09/02/2023] Open
Abstract
Context The coronavirus disease 2019 (COVID-19) pandemic is still a cause of worldwide health concern. Diabetes and its associated comorbidities are risk factors for mortality and morbidity in COVID-19. Selecting the right antidiabetic drug to achieve optimal glycemic control might mitigate some of the negative impacts of diabetes. Metformin continues to be the most widely administered antidiabetic agent. There is evidence of its beneficial outcome in COVID-19 independent of its glucose-lowering effect. Evidence Acquisition A thorough literature search was conducted in PubMed, Google Scholar, Scopus, and Web of Science to identify studies investigating metformin in COVID-19. Results Several overlapping mechanisms have been proposed to explain its antiviral properties. It could bring about conformational changes in the angiotensin-converting enzyme-2 receptor and decrease viral entry. The effects on the mammalian target of the rapamycin pathway and cellular pH have been proposed to reduce viral protein synthesis and replication. The immunomodulatory effects of metformin might counter the detrimental effects of hyperinflammation associated with COVID-19. Conclusions These findings call for broader metformin usage to manage hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College and Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
13
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
14
|
Potential Therapeutic Benefits of Metformin Alone and in Combination with Sitagliptin in the Management of Type 2 Diabetes Patients with COVID-19. Pharmaceuticals (Basel) 2022; 15:ph15111361. [PMID: 36355535 PMCID: PMC9699540 DOI: 10.3390/ph15111361] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a potential risk factor for the development of COVID-19 and is associated with higher severity and mortality rates. T2DM patients are commonly treated with metformin monotherapy or metformin plus sitagliptin. In the present case-control, single-center cohort study, a total number of 112 T2DM patients suffering from COVID-19 and aged 44−62 years old were compared with 78 T2DM patients without COVID-19 and aged 42−56 years old. Both the patient group and the control group were allocated into four groups. Group A: T2DM patients with COVID-19 on metformin treatments plus standard therapy (n = 60); group B: T2DM patients with COVID-19 on metformin plus sitagliptin plus standard therapy (n = 52); group C: T2DM patients without COVID-19 on metformin treatments (n = 40); and group D: T2DM patients without COVID-19 on metformin plus sitagliptin (n = 38). The investigation duration was 2−3 weeks. Anthropometric measurements, serological and biochemical investigations, pulmonary radiological findings, and clinical outcomes were evaluated. Only 101 T2DM patients with COVID-19 continued the study, 71 (70.29%) with mild-moderate COVID-19 and 30 (29.7%) with severe COVID-19 were compared with 78 T2DM patients as a control. Inflammatory biomarkers (C reactive protein, ferritin, and procalcitonin), a lung injury biomarker (lactate dehydrogenase), and a coagulopathy biomarker (D-dimer) were elevated in severe COVID-19 patients compared with mild-moderate COVID-19 (p < 0.05) and T2DM patients (p < 0.05). However, metformin plus sitagliptin was more effective than metformin monotherapy in T2DM patients with COVID-19, as evidenced by the mitigation of oxidative stress, CT scan score, and clinical outcomes. The present study confirmed the protective effects of this combination against the development of COVID-19 severity, as most T2DM COVID-19 patients develop mild-moderate forms. Herein, the combination of metformin and sitagliptin may lead to more beneficial effects than metformin monotherapy.
Collapse
|
15
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
16
|
Kow CS, Ramachandram DS, Hasan SS. Metformin therapy in COVID-19: inhibition of NETosis. J Thromb Thrombolysis 2022; 54:217-218. [PMID: 35653049 PMCID: PMC9161198 DOI: 10.1007/s11239-022-02667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom.,School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|