1
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Liu X, Keyhani NO, Liu H, Zhang Y, Xia Y, Cao Y. Glyoxal oxidase-mediated detoxification of reactive carbonyl species contributes to virulence, stress tolerance, and development in a pathogenic fungus. PLoS Pathog 2024; 20:e1012431. [PMID: 39078845 PMCID: PMC11315307 DOI: 10.1371/journal.ppat.1012431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus, Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane. MaGlox targeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of the MaGlox mutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGlox mutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression of MaGlox promoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGlox mutant. These findings demonstrate that MaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Hong Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yue Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yueqing Cao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Kass D, Larson VA, Corona T, Kuhlmann U, Hildebrandt P, Lohmiller T, Bill E, Lehnert N, Ray K. Trapping of a phenoxyl radical at a non-haem high-spin iron(II) centre. Nat Chem 2024; 16:658-665. [PMID: 38216752 DOI: 10.1038/s41557-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 11/17/2023] [Indexed: 01/14/2024]
Abstract
The activation of dioxygen at haem and non-haem metal centres, and subsequent functionalization of unactivated C‒H bonds, has been a focal point of much research. In iron-mediated oxidation reactions, O2 binding at an iron(II) centre is often accompanied by an oxidation of the iron centre. Here we demonstrate dioxygen activation by sodium tetraphenylborate and protons in the presence of an iron(II) complex to form a reactive radical species, whereby the iron oxidation state remains unaltered in the presence of a highly oxidizing phenoxyl radical and O2. This complex, containing an unusual iron(II)-phenoxyl radical motif, represents an elusive example of a spectroscopically characterized oxygen-derived iron(II)-reactive intermediate during chemical and biological dioxygen activation at haem and non-haem iron active centres. The present report opens up strategies for the stabilization of a phenoxyl radical cofactor, with its full oxidizing capabilities, to act as an independent redox centre next to an iron(II) site during substrate oxidation reactions.
Collapse
Affiliation(s)
- Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Teresa Corona
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Kuhlmann
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Thomas Lohmiller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Alpdağtaş S, Jankowski N, Urlacher VB, Koschorreck K. Identification of redox activators for continuous reactivation of glyoxal oxidase from Trametes versicolor in a two-enzyme reaction cascade. Sci Rep 2024; 14:5932. [PMID: 38467766 PMCID: PMC10928124 DOI: 10.1038/s41598-024-56429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.
Collapse
Affiliation(s)
- Saadet Alpdağtaş
- Department of Biology, Van Yuzuncu Yil University, Van, 65080, Turkey
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nina Jankowski
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Mohammed TP, George A, Sivaramakrishnan MP, Vadivelu P, Balasubramanian S, Sankaralingam M. Deciphering the effect of amine versus imine ligands of copper(II) complexes in 2-aminophenol oxidation. J Inorg Biochem 2023; 247:112309. [PMID: 37451084 DOI: 10.1016/j.jinorgbio.2023.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
A series of amine (1-6) and imine (5',6') based copper(II) complexes with tridentate (NNO) ligand donors were synthesized and characterized using modern analytical techniques. All the complexes were subjected to 2-aminophenol (OAP) oxidation to form 2-aminophenoxazin-3-one, as a functional analogue of an enzyme, phenoxazinone synthase. In addition, a critical comparison of the reactivity using the amine-based complexes with their respective imine counterparts was achieved in both experimental as well as theoretical studies. For instance, the kinetic measurement revealed that the imine-based copper(II) complexes (kcat, 2.4 × 105-6.2 × 106 h-1) are better than amine-based (kcat, 6.3 × 104-3.9 × 105 h-1) complexes. The complex-substrate adducts [Cu(L3)(OAP)] (7) and [Cu(L3')(OAP)] (7') were characterized for both systems by mass spectrometry. Further, the DFT study was performed with amine- (3) and imine- (3') based copper(II) complexes, to compare their efficacy in the oxidation of OAP. The mechanistic investigations reveal that the key elementary step to determine the reactivity of 3 and 3' is the proton-coupled electron transfer (PCET) step occurring from the intermediates 7/7'. Further, the computed HOMO-LUMO energy gap of 7' was smaller than 7 by 0.8 eV, which indicates the facile PCET compared to that of 7. Moreover, the coupling of the OAP moiety using imine-complexes (ΔGR.E = -5.8 kcal/mol) was found to be thermodynamically more favorable than amine complexes (ΔGR.E = +3.3 kcal/mol). Overall, the theoretical findings are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | | | - Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
7
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Alruwaili A, Rashid GMM, Bugg TDH. Application of Rhodococcus jostii RHA1 glycolate oxidase as an efficient accessory enzyme for lignin conversion by bacterial Dyp peroxidase enzymes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:3549-3560. [PMID: 37179958 PMCID: PMC10167727 DOI: 10.1039/d3gc00475a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Lignin oxidation by bacterial dye-decolorizing peroxidase enzymes requires hydrogen peroxide as a co-substrate, an unstable and corrosive oxidant. We have identified a glycolate oxidase enzyme from Rhodococcus jostii RHA1 that can couple effectively at pH 6.5 with DyP peroxidase enzymes from Agrobacterium sp. or Comamonas testosteroni to oxidise lignin substrates without addition of hydrogen peroxide. Rhodococcus jostii RHA1 glycolate oxidase (RjGlOx) has activity for oxidation of a range of α-ketoaldehyde and α-hydroxyacid substrates, and is also active for oxidation of hydroxymethylfurfural (HMF) to furandicarboxylic acid. The combination of RjGlOx with Agrobacterium sp. DyP or C. testosteroni DyP generated new and enhanced amounts of low molecular weight aromatic products from organosolv lignin substrates, and was able to generate high-value products from treatment of lignin residue from cellulosic biofuel production, and from a polymeric humin substrate.
Collapse
Affiliation(s)
- Awatif Alruwaili
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Goran M M Rashid
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
9
|
Copper radical oxidases: galactose oxidase, glyoxal oxidase, and beyond! Essays Biochem 2022; 67:597-613. [PMID: 36562172 DOI: 10.1042/ebc20220124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The copper radical oxidases (CROs) are an evolutionary and functionally diverse group of enzymes established by the historically significant galactose 6-oxidase and glyoxal oxidase from fungi. Inducted in 2013, CROs now constitute Auxiliary Activity Family 5 (AA5) in the Carbohydrate-Active Enzymes (CAZy) classification. CROs catalyse the two-electron oxidation of their substrates using oxygen as the final electron acceptor and are particularly distinguished by a cross-linked tyrosine-cysteine co-factor that is integral to radical stabilization. Recently, there has been a significant increase in the biochemically and structurally characterized CROs, which has revealed an expanded natural diversity of catalytic activities in the family. This review provides a brief historical introduction to CRO biochemistry and structural biology as a foundation for an update on current advances in CRO enzymology, biotechnology, and biology across kingdoms of life.
Collapse
|
10
|
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022; 2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
Abstract
Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.
Collapse
Affiliation(s)
- Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Saadet Alpdagtas
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Department of Biology, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
11
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
12
|
Khairi MHF, Nor Muhammad NA, Bunawan H, Abdul Murad AM, Ramzi AB. Unveiling the Core Effector Proteins of Oil Palm Pathogen Ganoderma boninense via Pan-Secretome Analysis. J Fungi (Basel) 2022; 8:jof8080793. [PMID: 36012782 PMCID: PMC9409662 DOI: 10.3390/jof8080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm, causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study, genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina sequencing platform, and comparative genome analysis was performed with previously reported G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and comprised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total, 320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cascade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the G. boninense genome and the lack of preferential association of CEP genes to transposable elements. The findings obtained from this study aid in the characterization of pathogenicity determinants and molecular biomarkers of BSR disease.
Collapse
Affiliation(s)
- Mohamad Hazwan Fikri Khairi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
- Correspondence: ; Tel.: +603-8921-4546; Fax: +603-8921-3398
| |
Collapse
|
13
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Koskimäki JJ, Pohjanen J, Kvist J, Fester T, Härtig C, Podolich O, Fluch S, Edesi J, Häggman H, Pirttilä AM. The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. TREE PHYSIOLOGY 2022; 42:391-410. [PMID: 34328183 PMCID: PMC8842435 DOI: 10.1093/treephys/tpab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
Collapse
Affiliation(s)
- Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Johanna Pohjanen
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00014 Helsinki, Finland
| | - Thomas Fester
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Claus Härtig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150 03680 Kyiv, Ukraine
| | | | - Jaanika Edesi
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
- Production Systems, Tree Breeding, Natural Resources Institute Finland LUKE, FI-57200 Savonlinna, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | | |
Collapse
|
15
|
A transcriptome-based association study of growth, wood quality, and oleoresin traits in a slash pine breeding population. PLoS Genet 2022; 18:e1010017. [PMID: 35108269 PMCID: PMC8843129 DOI: 10.1371/journal.pgen.1010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/14/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program. Slash pine is an important source of original timber and resin production on commercial forest plantations. It is necessary to implement precise breeding strategies to improve timber quality and resin yield. However, little is known about the species’ molecular genetic basis. Using a transcriptome dataset with sequencing from 240 individuals in the slash pine population, we combined multiple approaches (based on gene variation, expression variation and co-expression network) to dissect the genetic structure for slash pine major breeding traits. We found that the research population could be divided into three genetic groups with a mean heterozygosity of 0.2246. We also found that six genes with important functions in slash pine resin synthesis and timber formation through association studies. Four new SNPs associatation with the average ring width were also discovered. Our results provide new insights into the molecular genetic basis of important traits in slash pine and provide a comprehensive method for association analyses of conifer tree species with large genome.
Collapse
|
16
|
Saini S, Sharma KK. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol 2021; 193:2304-2319. [PMID: 34800524 DOI: 10.1016/j.ijbiomac.2021.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
The continuous increase in the global energy demand has diminished fossil fuel reserves and elevated the risk of environmental deterioration and human health. Biorefinery processes involved in producing bio-based energy-enriched chemicals have paved way to meet the energy demands. Compared to the thermochemical processes, fungal system biorefinery processes seems to be a promising approach for lignocellulose conversion. It also offers an eco-friendly and energy-efficient route for biofuel generation. Essentially, ligninolytic white-rot fungi and their enzyme arsenals degrade the plant biomass into structural constituents with minimal by-products generation. Hemi- or cellulolytic enzymes from certain soft and brown-rot fungi are always favoured to hydrolyze complex polysaccharides into fermentable sugars and other value-added products. However, the cost of saccharifying enzymes remains the major limitation, which hinders their application in lignocellulosic biorefinery. In the past, research has been focused on the role of lignocellulolytic fungi in biofuel production; however, a cumulative study comprising the contribution of the lignocellulolytic enzymes in biorefinery technologies is still lagging. Therefore, the overarching goal of this review article is to discuss the major contribution of lignocellulolytic fungi and their enzyme arsenal in global biofuel research and multiproduct biorefinery.
Collapse
Affiliation(s)
- Sonu Saini
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
17
|
Identification of Copper-Containing Oxidoreductases in the Secretomes of Three Colletotrichum Species with a Focus on Copper Radical Oxidases for the Biocatalytic Production of Fatty Aldehydes. Appl Environ Microbiol 2021; 87:e0152621. [PMID: 34613753 DOI: 10.1128/aem.01526-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.
Collapse
|
18
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spektroskopische Charakterisierung eines reaktiven [Cu
2
(μ‐OH)
2
]
2+
Intermediates in Cu/TEMPO‐katalysierten aeroben Alkoholoxidationen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | | | - Erik Andris
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Stefan Mebs
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jana Roithová
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
19
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spectroscopic Characterization of a Reactive [Cu 2 (μ-OH) 2 ] 2+ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction. Angew Chem Int Ed Engl 2021; 60:23018-23024. [PMID: 34309168 PMCID: PMC8518518 DOI: 10.1002/anie.202108442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Indexed: 12/23/2022]
Abstract
CuI/TEMPO (TEMPO=2,2,6,6‐tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12Cu2]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+/4 e− reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2‐reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(μ‐oxo)dicopper(III) (2) and bis(μ‐hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition‐metal catalysts involving redox‐active organic cocatalysts.
Collapse
Affiliation(s)
- Katrin Warm
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Guilherme Tripodi
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Erik Andris
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Stefan Mebs
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jana Roithová
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
20
|
Albedo- and Flavedo-Specific Transcriptome Profiling Related to Penicillium digitatum Infection in Citrus Fruit. Foods 2021; 10:foods10092196. [PMID: 34574307 PMCID: PMC8467057 DOI: 10.3390/foods10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit. Although the inner fruit peel part (albedo) is less resistant than the outer part (flavedo) to P. digitatum, the global mechanisms involved in their different susceptibility remain unknown. Here, we examine transcriptome differences between both tissues at fruit harvest and in their early responses to infection. At harvest, not only was secondary metabolism, involving phenylpropanoids, waxes, and terpenoids, generally induced in flavedo vs. albedo, but also energy metabolism, transcription factors (TFs), and biotic stress-related hormones and proteins too. Flavedo-specific induced responses to infection might be regulated in part by ERF1 TF, and are related to structural plant cell wall reinforcement. Other induced responses may be related to H2O2, the synthesis of phenylpropanoids, and the stress-related proteins required to maintain basal defense responses against virulent pathogens, whereas P. digitatum represses some hydrolase-encoding genes that play different functions and auxin-responsive genes in this peel tissue. In infected albedo, the repression of transport and signal transduction prevail, as does the induction of not only the processes related to the synthesis of flavonoids, indole glucosinolates, cutin, and oxylipins, but also the specific genes that elicit plant immunity against pathogens.
Collapse
|
21
|
Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mushroom ligninolytic enzymes are attractive biocatalysts that can degrade lignin through oxido-reduction. Laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase are the main enzymes that depolymerize highly complex lignin structures containing aromatic or aliphatic moieties and oxidize the subunits of monolignol associated with oxidizing agents. Among these enzymes, mushroom laccases are secreted glycoproteins, belonging to a polyphenol oxidase family, which have a powerful oxidizing capability that catalyzes the modification of lignin using synthetic or natural mediators by radical mechanisms via lignin bond cleavage. The high redox potential laccase within mediators can catalyze the oxidation of a wide range of substrates and the polymerization of lignin derivatives for value-added chemicals and materials. The chemoenzymatic process using mushroom laccases has been applied effectively for lignin utilization and the degradation of recalcitrant chemicals as an eco-friendly technology. Laccase-mediated grafting has also been employed to modify lignin and other polymers to obtain novel functional groups able to conjugate small and macro-biomolecules. In this review, the biochemical features of mushroom ligninolytic enzymes and their potential applications in catalytic reactions involving lignin and its derivatives to obtain value-added chemicals and novel materials in lignin valorization are discussed.
Collapse
|
22
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
23
|
Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN. Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus. DNA Res 2021; 27:5856740. [PMID: 32531032 PMCID: PMC7406137 DOI: 10.1093/dnares/dsaa011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.
Collapse
Affiliation(s)
- Shingo Miyauchi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Hayat Hage
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Elodie Drula
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Jean-Guy Berrin
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - David Navarro
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Anne Favel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Delphine Chaduli
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Sacha Grisel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Mireille Haon
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - François Piumi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | | | - Anne Lomascolo
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Steven Ahrendt
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt M LaButti
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Didier Chevret
- INRAE, UMR1319, Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Chris Daum
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jérôme Mariette
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Allen C Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Matthieu Hainaut
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | | | - Ursula Kües
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.,Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Walt Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Anna Lipzen
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Mélanie Morel-Rouhier
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Emmanuelle Morin
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Jasmyn Pangilinan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | - Robert Riley
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Eric Record
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
24
|
Wohlschlager L, Kracher D, Scheiblbrandner S, Csarman F, Ludwig R. Spectroelectrochemical investigation of the glyoxal oxidase activation mechanism. Bioelectrochemistry 2021; 141:107845. [PMID: 34147826 DOI: 10.1016/j.bioelechem.2021.107845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
Glyoxal oxidase (GLOX) is an extracellular source of H2O2 in white-rot secretomes, where it acts in concert with peroxidases to degrade lignin. It has been reported that GLOX requires activation prior to catalytic turnover and that a peroxidase system can fulfill this task. In this study, we verify that an oxidation product of horseradish peroxidase, the radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), is an activator for GLOX. A spectroelectrochemical cell was used to generate the activating radical species, to continuously measure its concentration, and to simultaneously measure the catalytic activity of GLOX based on its O2 consumption. The results show that GLOX can undergo multiple catalytic turnovers upon activation and that activity increases with the activator concentration. However, we also found that the ABTS cation radical can serve as an electron acceptor which becomes visible in the absence of O2. Furthermore, GLOX activity is highly restrained by the naturally occurring, low O2 concentration. We conclude that GLOX is indeed an auxiliary enzyme for H2O2 production in white-rot secretomes. Its turnover rate is strongly regulated by the availability of O2 and the radical generating activity of peroxidases present in the secretome, which acts as a feedback loop for GLOX activity.
Collapse
Affiliation(s)
- Lena Wohlschlager
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Daniel Kracher
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
25
|
de Figueiredo FL, de Oliveira ACP, Terrasan CRF, Gonçalves TA, Gerhardt JA, Tomazetto G, Persinoti GF, Rubio MV, Peña JAT, Araújo MF, de Carvalho Silvello MA, Franco TT, Rabelo SC, Goldbeck R, Squina FM, Damasio A. Multi-omics analysis provides insights into lignocellulosic biomass degradation by Laetiporus sulphureus ATCC 52600. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:96. [PMID: 33865436 PMCID: PMC8052766 DOI: 10.1186/s13068-021-01945-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/01/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Wood-decay basidiomycetes are effective for the degradation of highly lignified and recalcitrant plant substrates. The degradation of lignocellulosic materials by brown-rot strains is carried out by carbohydrate-active enzymes and non-enzymatic Fenton mechanism. Differences in the lignocellulose catabolism among closely related brown rots are not completely understood. Here, a multi-omics approach provided a global understanding of the strategies employed by L. sulphureus ATCC 52600 for lignocellulose degradation. RESULTS The genome of Laetiporus sulphureus ATCC 52600 was sequenced and phylogenomic analysis supported monophyletic clades for the Order Polyporales and classification of this species within the family Laetiporaceae. Additionally, the plasticity of its metabolism was revealed in growth analysis on mono- and disaccharides, and polysaccharides such as cellulose, hemicelluloses, and polygalacturonic acid. The response of this fungus to the presence of lignocellulosic substrates was analyzed by transcriptomics and proteomics and evidenced the occurrence of an integrated oxidative-hydrolytic metabolism. The transcriptomic profile in response to a short cultivation period on sugarcane bagasse revealed 125 upregulated transcripts, which included CAZymes (redox enzymes and hemicellulases) as well as non-CAZy redox enzymes and genes related to the synthesis of low-molecular-weight compounds. The exoproteome produced in response to extended cultivation time on Avicel, and steam-exploded sugarcane bagasse, sugarcane straw, and Eucalyptus revealed 112 proteins. Contrasting with the mainly oxidative profile observed in the transcriptome, the secretomes showed a diverse hydrolytic repertoire including constitutive cellulases and hemicellulases, in addition to 19 upregulated CAZymes. The secretome induced for 7 days on sugarcane bagasse, representative of the late response, was applied in the saccharification of hydrothermally pretreated grass (sugarcane straw) and softwood (pine) by supplementing a commercial cocktail. CONCLUSION This study shows the singularity of L. sulphureus ATCC 52600 compared to other Polyporales brown rots, regarding the presence of cellobiohydrolase and peroxidase class II. The multi-omics analysis reinforces the oxidative-hydrolytic metabolism involved in lignocellulose deconstruction, providing insights into the overall mechanisms as well as specific proteins of each step.
Collapse
Affiliation(s)
- Fernanda Lopes de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Carolina Piva de Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Brazilian Biorenewables National Laboratory (LNBr), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Cesar Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Augusto Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Technological and Environmental Processes, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200, Aarhus, Denmark
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBr), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning (NIPE), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sarita Cândida Rabelo
- Department of Bioprocess and Biotechnology, College of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rosana Goldbeck
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabio Marcio Squina
- Department of Technological and Environmental Processes, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- São Paulo Fungal Group, São Paulo, Brazil.
| |
Collapse
|
26
|
Dao ATN, Smits M, Dang HTC, Brouwer A, de Boer TE. Elucidating fungal Rigidoporus species FMD21 lignin-modifying enzyme genes and 2,3,7,8-tetrachlorodibenzo-p-dioxin degradation by laccase isozymes. Enzyme Microb Technol 2021; 147:109800. [PMID: 33992406 DOI: 10.1016/j.enzmictec.2021.109800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 01/17/2023]
Abstract
White-rot fungus Rigidoporus sp. FMD21 is a lignin-modifying enzyme producing fungus that can degrade dioxin. Extracellular enzymes from FMD21 include laccase and manganese peroxidase which are promising enzymes for myco-remediation because of their wide substrate specificity and mild catalysis conditions. The FMD21 genome was sequenced using Ion Torrent technology and consists of 38.98 Mbps with a GC content of 47.4 %. Gene prediction using Augustus with Basidiomycota reference setting resulted in 8245 genes. Functional gene annotations were carried out by using several programs and databases. We focused on laccase and ligninolytic peroxidase genes, which are most likely involved in the degradation of aromatic pollutants. The genome of FMD21 contains 12 predicted laccase genes (10 out of 12 predicted as full length) and 13 putative ligninolytic peroxidases which were annotated as MnP or versatile peroxidases. Four predicted laccases showed a higher than 65 % binding chance to 2,3,7,8-TCDD with the highest at 72 % in in silico docking analysis. Heterologous expressed laccases showed activity towards three tested substrates included ABTS, guaiacol and 2,6-DMP. ABTS displayed two-stage oxidation which differed from natural FMD21 laccases. 2,3,7,8-TCDD was degraded by 50 % after two weeks of enzymatic treatment by three out of five laccase isozymes which were natural laccases secreted by FMD21. In this study, we provide direct evidence for the 2,3,7,8-TCDD biodegradation capability of fungal laccases.
Collapse
Affiliation(s)
- Anh T N Dao
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands; Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Department of Ecological Science, Vrije Universiteit Amsterdam. De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Miriam Smits
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Ha T C Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Abraham Brouwer
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands; Department of Ecological Science, Vrije Universiteit Amsterdam. De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; BioDetection Systems, Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Tjalf E de Boer
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Wohlschlager L, Csarman F, Zrilić M, Seiboth B, Ludwig R. Comparative characterization of glyoxal oxidase from Phanerochaete chrysosporium expressed at high levels in Pichia pastoris and Trichoderma reesei. Enzyme Microb Technol 2021; 145:109748. [PMID: 33750543 DOI: 10.1016/j.enzmictec.2021.109748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/28/2023]
Abstract
In the secretome of Phanerochaete chrysosporium, a white-rot fungus serving as a model organism to elucidate lignocellulose deconstruction, the copper containing metalloprotein glyoxal oxidase (GLOX) is potentially involved in the crucial production of hydrogen peroxide to fuel and initiate oxidative biomass degradation by lignin-degrading peroxidases. Its ability to oxidize a variety of aldehydes and α-hydroxy carbonyls with the concomitant reduction of dioxygen to hydrogen peroxide has attracted attention for its application as green biocatalyst in different industrial fields. Here we report and compare two efficient processes for the heterologous production of GLOX from P. chrysosporium using the well-established methanolytic yeast Pichia pastoris and the filamentous fungus Trichoderma reesei as expression hosts with subsequent purification by anion exchange and hydrophobic interaction chromatography. Both processes were shown to be suitable for the production of the target protein at high levels. GLOX produced in T. reesei carries mainly Man5 glycosylation while the enzyme produced in P. pastoris exhibits the typical high-mannose type N-glycosylation. The enzyme expressed in P. pastoris showed slightly higher specific activities which correlates with the higher copper loading of 65.5 % compared to 51.9 % for the protein from T. reesei. The pH optimum for both recombinant proteins was 6.0, however, GLOX activity was found to be highly affected by different buffer species. Both enzymes showed very similar substrate affinities and turnover numbers with the highest catalytic efficiency observed for methylglyoxal. GLOX from both expression hosts is therefore a suitable enzyme for further mechanistic characterization and application studies.
Collapse
Affiliation(s)
- Lena Wohlschlager
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Matea Zrilić
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
28
|
Schiøtt M, Boomsma JJ. Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies. eLife 2021; 10:e61816. [PMID: 33433325 PMCID: PMC7877906 DOI: 10.7554/elife.61816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
The symbiotic partnership between leaf-cutting ants and fungal cultivars processes plant biomass via ant fecal fluid mixed with chewed plant substrate before fungal degradation. Here we present a full proteome of the fecal fluid of Acromyrmex leaf-cutting ants, showing that most proteins function as biomass degrading enzymes and that ca. 85% are produced by the fungus and ingested, but not digested, by the ants. Hydrogen peroxide producing oxidoreductases were remarkably common in the proteome, inspiring us to test a scenario in which hydrogen peroxide reacts with iron to form reactive oxygen radicals after which oxidized iron is reduced by other fecal-fluid enzymes. Our biochemical assays confirmed that these so-called Fenton reactions do indeed take place in special substrate pellets, presumably to degrade plant cell wall polymers. This implies that the symbiotic partnership manages a combination of oxidative and enzymatic biomass degradation, an achievement that surpasses current human bioconversion technology.
Collapse
Affiliation(s)
- Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| |
Collapse
|
29
|
Ghosh S, Godoy L, Anchang KY, Achilonu CC, Gryzenhout M. Fungal Cellulases: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
White-Rot Fungi for Bioremediation of Polychlorinated Biphenyl Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 2020; 161:1099-1116. [PMID: 32526298 DOI: 10.1016/j.ijbiomac.2020.06.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Lignocellulosic material has drawn significant attention among the scientific community due to its year-round availability as a renewable resource for industrial consumption. Being an economic substrate alternative, various industries are reevaluating processes to incorporate derived compounds from these materials. Varieties of fungi and bacteria have the ability to depolymerize lignocellulosic biomass by synthesizing degrading enzymes. Owing to catalytic activity stability and high yields of conversion, lignocellulolytic enzymes derived from fungi currently have a high spectrum of industrial applications. Moreover, these materials are cost effective, eco-friendly and nontoxic while having a low energy input. Techno-economic analysis for current enzyme production technologies indicates that synthetic production is not commercially viable. Instead, the economic projection of the use of naturally-produced ligninolytic enzymes is promising. This approach may improve the economic feasibility of the process by lowering substrate expenses and increasing lignocellulosic by-product's added value. The present review will discuss the classification and enzymatic degradation pathways of lignocellulolytic biomass as well as the potential and current industrial applications of the involved fungal enzymes.
Collapse
Affiliation(s)
- Sara Saldarriaga-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Carolina Velasco-Ayala
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Paulina Leal-Isla Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
32
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
33
|
Balestrini R, Ghignone S, Quiroga G, Fiorilli V, Romano I, Gambino G. Long-Term Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Berry Transcriptome. Int J Mol Sci 2020; 21:ijms21176067. [PMID: 32842492 PMCID: PMC7504522 DOI: 10.3390/ijms21176067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of ‘Nebbiolo’ grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
- Correspondence: ; Tel.: +39-011-650-2927
| | - Stefano Ghignone
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Gabriela Quiroga
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, Turin University, 10125 Turin, Italy;
| | - Irene Romano
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Giorgio Gambino
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| |
Collapse
|
34
|
Vita F, Giuntoli B, Bertolini E, Taiti C, Marone E, D'Ambrosio C, Trovato E, Sciarrone D, Zoccali M, Balestrini R, Scaloni A, Mondello L, Mancuso S, Alessio M, Alpi A. Tuberomics: a molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments. BMC Genomics 2020; 21:90. [PMID: 31996138 PMCID: PMC6988325 DOI: 10.1186/s12864-020-6522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments. RESULTS Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. CONCLUSIONS Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.
Collapse
Affiliation(s)
- Federico Vita
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle idee 30, 50019, Florence, Italy. .,A.R.E.A. Foundation, via Tavoleria 28, 56125, Pisa, Italy.
| | - Beatrice Giuntoli
- Department of Biology, Università di Pisa, via L. Ghini 13, 56126, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.,Present address: Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO, 63132, USA
| | - Cosimo Taiti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle idee 30, 50019, Florence, Italy
| | - Elettra Marone
- Faculty of Biosciences and Technologies for Agriculture Food and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, I.S.P.A.A.M., National Research Council, 80147, Napoli, Italy
| | - Emanuela Trovato
- Chromaleont Srl, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences Polo Annunziata, University of Messina, viale Annunziata, 98168, Messina, Italy
| | - Danilo Sciarrone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, viale Annunziata, 98168, Messina, Italy
| | - Mariosimone Zoccali
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, viale Annunziata, 98168, Messina, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, I.S.P.A.A.M., National Research Council, 80147, Napoli, Italy
| | - Luigi Mondello
- Chromaleont Srl, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences Polo Annunziata, University of Messina, viale Annunziata, 98168, Messina, Italy
| | - Stefano Mancuso
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle idee 30, 50019, Florence, Italy
| | - Massimo Alessio
- Division of Genetics and Cell Biology, IRCCS-Ospedale San Raffaele, Milan, Italy
| | - Amedeo Alpi
- A.R.E.A. Foundation, via Tavoleria 28, 56125, Pisa, Italy
| |
Collapse
|
35
|
Giovanella P, Vieira GAL, Ramos Otero IV, Pais Pellizzer E, de Jesus Fontes B, Sette LD. Metal and organic pollutants bioremediation by extremophile microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121024. [PMID: 31541933 DOI: 10.1016/j.jhazmat.2019.121024] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Extremophiles comprise microorganisms that are able to grow and thrive in extreme environments, including in an acidic or alkaline pH, high or low temperatures, high concentrations of pollutants, and salts, among others. These organisms are promising for environmental biotechnology due to their unique physiological and enzymatic characteristics, which allow them to survive in harsh environments. Due to the stability and persistence of these microorganisms under adverse environmental conditions, they can be used for the bioremediation of environments contaminated with extremely recalcitrant pollutants. Here, we provide an overview of extremophiles and the role of "omics" in the field of bioremediation of environmental pollutants, including hydrocarbons, textile dyes and metals.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| | - Gabriela A L Vieira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Igor V Ramos Otero
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Bruno de Jesus Fontes
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| |
Collapse
|
36
|
Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Sci Rep 2019; 9:17564. [PMID: 31772294 PMCID: PMC6879535 DOI: 10.1038/s41598-019-53608-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
The repertoire of redox-active enzymes produced by the marine fungus Peniophora sp. CBMAI 1063, a laccase hyper-producer strain, was characterized by omics analyses. The genome revealed 309 Carbohydrate-Active Enzymes (CAZymes) genes, including 48 predicted genes related to the modification and degradation of lignin, whith 303 being transcribed under cultivation in optimized saline conditions for laccase production. The secretome confirmed that the fungus can produce a versatile ligninolytic enzyme cocktail. It secretes 56 CAZymes, including 11 oxidative enzymes classified as members of auxiliary activity families (AAs), comprising two laccases, Pnh_Lac1 and Pnh_Lac2, the first is the major secretory protein of the fungi. The Pnh_Lac1-mediator system was able to promote the depolymerization of lignin fragments and polymeric lignin removal from pretreated sugarcane bagasse, confirming viability of this fungus enzymatic system for lignocellulose-based bioproducts applications.
Collapse
|
37
|
Martínez-Trujillo MA, Bautista-Rangel K, García-Rivero M, Martínez-Estrada A, Cruz-Díaz MR. Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess Biosyst Eng 2019; 43:413-427. [PMID: 31677001 DOI: 10.1007/s00449-019-02237-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
An integral bioprocess to produce lactic acid (LA) from banana peel (BP) was studied. Oxidases produced by Trametes versicolor and hydrolases produced by Aspergillus flavipes and Aspergillus niger saccharified BP at optimal conditions: 230 rpm, 66 g/L BP, and 73.5% (v/v) of enzymatic crude extract (using equal quantities of the enzymatic extracts). At bioreactor scale (1 L), the joint action of oxidases and hydrolases released 18 g/L of reducing sugars (RS) after 24 h (60% corresponded to glucose), consuming the BP polysaccharides. Lactobacillus delbrueckii fermented the released RS, producing 10 g/L of LA; while in the sequential fermentation (inoculating L. delbrueckii after saccharification), 28 g/L of LA were produced, observing an apparent decrease in feedback inhibition of hydrolases below 1.5 g/L of RS. This process is susceptible for upscaling to produce high LA concentrations and represents a platform to utilize agroindustrial wastes to obtain value-added products.
Collapse
Affiliation(s)
- María Aurora Martínez-Trujillo
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico.
| | - Karina Bautista-Rangel
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico
| | - Mayola García-Rivero
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico
| | - Abigail Martínez-Estrada
- Departamento de Ingeniería Y Tecnología, Facultad de Estudios Superiores Cuautitlán, UNAM, Campus 1, Av. 1 de Mayo, C.P. 54740, Cuautitlán Izcalli, Estado de México, Mexico
| | - Martín R Cruz-Díaz
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico.
- Departamento de Ingeniería Y Tecnología, Facultad de Estudios Superiores Cuautitlán, UNAM, Campus 1, Av. 1 de Mayo, C.P. 54740, Cuautitlán Izcalli, Estado de México, Mexico.
| |
Collapse
|
38
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|
39
|
Effects on hyphal morphology and development by the putative copper radical oxidase glx1 in Trichoderma virens suggest a novel role as a cell wall associated enzyme. Fungal Genet Biol 2019; 131:103245. [PMID: 31228644 DOI: 10.1016/j.fgb.2019.103245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Trichoderma spp. have been characterized for their capacity to act as biological control agents against several pathogens through the activity of secondary metabolites and cell wall degrading enzymes. However, only T. reesei has been widely studied for the ability to assimilate lignocellulose substrates. Protein analysis by SDS-PAGE of culture filtrate of T. virens revealed the presence of an unknown ∼77 kDa band protein (GLX1) that showed sequence homology to glyoxal-like oxidase genes involved in lignin degradation. The analysis and biochemical characterization of the 1,119 amino acid coded protein showed the presence of five carbohydrate-binding modules (CBMs) with affinity for colloidal chitin, and a functional glyoxal oxidase catalytic domain that is involved in the production of hydrogen peroxide when methylglyoxal was used as a substrate. The silencing of the glx1 gene resulted in mutants with more than 90% expression reduction and the absence of glyoxal oxidase catalytic activity. These mutants showed delayed hyphal growth, reduced colony and conidial hydrophobicity, but showed no changes in their biocontrol ability. Most significantly, mutants exhibited a loss of growth directionality resulting in a curled phenotype that was eliminated in the presence of exogenous H2O2. Here we present evidence that in T. virens, glx1 is not involved in the breakdown of lignin but instead is responsible for normal hyphal growth and morphology and likely does this through free radical production within the fungal cell wall. This is the first time that a glyoxal oxidase protein has been isolated and characterized in ascomycete fungi.
Collapse
|
40
|
Wei Z, Wilkinson RC, Rashid GMM, Brown D, Fülöp V, Bugg TDH. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from Rhodococcus jostii RHA1 and Pseudomonas fluorescens Pf-5 Involved in Degradation of Aryl C 2 Lignin Degradation Fragments. Biochemistry 2019; 58:5281-5293. [PMID: 30946572 DOI: 10.1021/acs.biochem.9b00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thiamine diphosphate-dependent enzyme annotated as a benzoylformate decarboxylase is encoded by gene cluster ro02984-ro02986 in Rhodococcus jostii RHA1 previously shown to generate vanillin and 4-hydroxybenzaldehyde from lignin oxidation, and a closely related gene cluster is also found in the genome of Pseudomonas fluorescens Pf-5. Two hypotheses for possible pathways involving a thiamine diphosphate-dependent cleavage, either C-C cleavage of a ketol or diketone aryl C3 substrate or decarboxylation of an aryl C2 substrate, were investigated by expression and purification of the recombinant enzymes and expression of dehydrogenase and oxidase enzymes also found in the gene clusters. The ThDP-dependent enzymes showed no activity for cleavage of aryl C3 ketol or diketone substrates but showed activity for decarboxylation of benzoylformate and 4-hydroxybenzoylformate. A flavin-dependent oxidase encoded by gene ro02984 was found to oxidize either mandelic acid or phenylglyoxal. The crystal structure of the P. fluorescens decarboxylase enzyme was determined at 1.69 Å resolution, showing similarity to structures of known benzoylformate decarboxylase enzymes. The P. fluorescens decarboxylase enzyme showed enhanced carboligase activity between vanillin and acetaldehyde, rationalized by the presence of alanine versus serine at residue 73 in the enzyme active site, which was investigated further by site-directed mutagenesis of this residue. A hypothesis for a pathway for degradation of aryl C2 fragments arising from oxidative cleavage of phenylcoumaran and diarylpropane structures in lignin is proposed.
Collapse
Affiliation(s)
- Zhen Wei
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | | | - Goran M M Rashid
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - David Brown
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Vilmos Fülöp
- School of Life Sciences , University of Warwick , Coventry CV4 7AL , U.K
| | - Timothy D H Bugg
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
41
|
Chen J, Guo X, Zhu M, Chen C, Li D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:42. [PMID: 30858879 PMCID: PMC6391835 DOI: 10.1186/s13068-019-1384-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polysaccharide monooxygenases (PMOs) play an important role in the enzymatic degradation of cellulose. They have been demonstrated to able to C6-oxidize cellulose to produce C6-hexodialdoses. However, the biological function of C6 oxidation of PMOs remains unknown. In particular, it is unclear whether C6-hexodialdoses can be further oxidized to uronic acid (glucuronic acid-containing oligosaccharides). RESULTS A PMO gene, Hipmo1, was isolated from Humicola insolens and expressed in Pichia pastoris. This PMO (HiPMO1), belonging to the auxiliary activity 9 (AA9) family, was shown to able to cleave cellulose to yield non-oxidized and oxidized cello-oligosaccharides. The enzyme oxidizes C6 positions in cellulose to form glucuronic acid-containing cello-oligosaccharides, followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid. This indicates that HiPMO1 can catalyze C6 oxidation of hydroxyl groups of cellulose to carboxylic groups. CONCLUSIONS HiPMO1 oxidizes C6 of cellulose to form glucuronic acid-containing cello-oligosaccharides followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid, and even possibly by beta-eliminative cleavage to produce unsaturated cello-oligosaccharides. This study provides a new mechanism for cellulose cleavage by C6 oxidation of HiPMO1.
Collapse
Affiliation(s)
- Jinyin Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xiuna Guo
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Min Zhu
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Chen Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
42
|
Lucini L, Baccolo G, Rouphael Y, Colla G, Bavaresco L, Trevisan M. Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. PHYTOCHEMISTRY 2018; 156:1-8. [PMID: 30149150 DOI: 10.1016/j.phytochem.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 05/26/2023]
Abstract
The stimulation of the plant response to pathogen attack by the application of resistance inducers, called elicitors, could represent an environmentally and commercially viable alternative or complement to existing pathogen control methods. In this work, the elicitor chitosan was sprayed on grape (Vitus vinifera L.) berries growing on the vine to shed light into the elicitation mechanisms underlying its application, with untreated bunches as controls. To gain a more comprehensive picture of the complex molecular processes elicited by chitosan, a proteomic approach was complemented by target and untargeted mass spectrometric analyses. The treatment altered the regulation of reactive oxygen species, with Cu/Zn superoxide dismutase and glyoxal oxidase showing up-accumulation. This might lead to an increased lignification via hypersensitive response mechanisms. Furthermore, enzymes involved in anthocyanin rather than stilbene phytoalexins accumulated in treated bunches. Stilbenes increased from 1.6 times (resveratrol) up to 3.8 times (piceid) over untreated bunches. The up accumulation of hydroperoxide lyase might lead to accumulation of oxylipins. Furthermore, the pentacyclic triterpenoids ursolate, oleanoate and betulinate increased by 1.25, 1.47 and 3.68 times in treated grape bunches (p < 0.01). Hence, the main processes underlying the response of grape fruits to chitosan treatment involved the accumulation of phenylpropanoid and triterpenoids phytoalexins, as well as the modulation of oxidative stress-related enzymes.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Greta Baccolo
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Luigi Bavaresco
- Department of Sustainable Crop Production, Centro di Ricerca sulla Biodiversità e sul DNA antico, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
43
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
44
|
Characterization of a New Glyoxal Oxidase from the Thermophilic Fungus Myceliophthora thermophila M77: Hydrogen Peroxide Production Retained in 5-Hydroxymethylfurfural Oxidation. Catalysts 2018. [DOI: 10.3390/catal8100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myceliophthora thermophyla is a thermophilic industrially relevant fungus that secretes an assortment of hydrolytic and oxidative enzymes for lignocellulose degradation. Among them is glyoxal oxidase (MtGLOx), an extracellular oxidoreductase that oxidizes several aldehydes and α-hydroxy carbonyl substrates coupled to the reduction of O2 to H2O2. This copper metalloprotein belongs to a class of enzymes called radical copper oxidases (CRO) and to the “auxiliary activities” subfamily AA5_1 that is based on the Carbohydrate-Active enZYmes (CAZy) database. Only a few members of this family have been characterized to date. Here, we report the recombinant production, characterization, and structure-function analysis of MtGLOx. Electron Paramagnetic Resonance (EPR) spectroscopy confirmed MtGLOx to be a radical-coupled copper complex and small angle X-ray scattering (SAXS) revealed an extended spatial arrangement of the catalytic and four N-terminal WSC domains. Furthermore, we demonstrate that methylglyoxal and 5-hydroxymethylfurfural (HMF), a fermentation inhibitor, are substrates for the enzyme.
Collapse
|
45
|
A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure. mSphere 2018; 3:3/2/e00023-18. [PMID: 29897877 PMCID: PMC5917426 DOI: 10.1128/msphere.00023-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivoIMPORTANCECryptococcus gattii has the ability to escape from the host's immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall.
Collapse
|