1
|
Flores-Roco A, Lago BM, Villa-Bellosta R. Elevated glucose levels increase vascular calcification risk by disrupting extracellular pyrophosphate metabolism. Cardiovasc Diabetol 2024; 23:405. [PMID: 39529124 PMCID: PMC11555999 DOI: 10.1186/s12933-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Vascular calcification is a major contributor to cardiovascular disease, especially diabetes, where it exacerbates morbidity and mortality. Although pyrophosphate is a recognized natural inhibitor of vascular calcification, there have been no prior studies examining its specific deficiency in diabetic conditions. This study is the first to analyze the direct link between elevated glucose levels and disruptions in extracellular pyrophosphate metabolism. METHODS Rat aortic smooth muscle cells, streptozotocin (STZ)-induced diabetic rats, and diabetic human aortic smooth muscle cells were used to assess the effects of elevated glucose levels on pyrophosphate metabolism and vascular calcification. The techniques used include extracellular pyrophosphate metabolism assays, thin-layer chromatography, phosphate-induced calcification assays, BrdU incorporation for DNA synthesis, aortic smooth muscle cell viability and proliferation assays, and quantitative PCR for enzyme expression analysis. Additionally, extracellular pyrophosphate metabolism was examined through the use of radiolabeled isotopes to track ATP and pyrophosphate transformations. RESULTS Elevated glucose led to a significant reduction in extracellular pyrophosphate across all diabetic models. This metabolic disruption was marked by notable downregulation of both the expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase 1, a key enzyme that converts ATP to pyrophosphate. We also observed an upregulation of ectonucleoside triphosphate diphosphohydrolase 1, which preferentially hydrolyzes ATP to inorganic phosphate rather than pyrophosphate. Moreover, tissue-nonspecific alkaline phosphatase activity was markedly elevated across all diabetic models. This shift in enzyme activity significantly reduced the pyrophosphate/phosphate ratio. In addition, we noted a marked downregulation of matrix Gla protein, another inhibitor of vascular calcification. The impaired pyrophosphate metabolism was further corroborated by calcification experiments across all three diabetic models, which demonstrated an increased propensity for vascular calcification. CONCLUSIONS This study demonstrated that diabetes-induced high glucose disrupts extracellular pyrophosphate metabolism, compromising its protective role against vascular calcification. These findings identify pyrophosphate deficiency as a potential mechanism in diabetic vascular calcification, highlighting a new therapeutic target. Strategies aimed at restoring or enhancing pyrophosphate levels may offer significant potential in mitigating cardiovascular complications in diabetic patients, meriting further investigation.
Collapse
MESH Headings
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Diphosphates/metabolism
- Animals
- Humans
- Phosphoric Diester Hydrolases/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Pyrophosphatases/metabolism
- Pyrophosphatases/genetics
- Cells, Cultured
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Rats, Sprague-Dawley
- Alkaline Phosphatase/metabolism
- Alkaline Phosphatase/blood
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Blood Glucose/metabolism
- Matrix Gla Protein
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Cell Proliferation/drug effects
- GPI-Linked Proteins/metabolism
- Rats
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aorta/metabolism
- Aorta/pathology
- Aorta/drug effects
- 5'-Nucleotidase
Collapse
Affiliation(s)
- Alicia Flores-Roco
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Belinda M Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain.
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, Avenida de Barcelona S/N, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
3
|
Noronha-Matos JB, Pinto-Cardoso R, Bessa-Andrês C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Pelletier J, Sévigny J, Correia-de-Sá P. Silencing NTPDase3 activity rehabilitates the osteogenic commitment of post-menopausal stem cell bone progenitors. Stem Cell Res Ther 2023; 14:97. [PMID: 37076930 PMCID: PMC10116749 DOI: 10.1186/s13287-023-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| |
Collapse
|
4
|
Bi C, Schäkel L, Mirza S, Sylvester K, Pelletier J, Lee SY, Pillaiyar T, Sévigny J, Müller CE. Synthesis and structure-activity relationships of ticlopidine derivatives and analogs as inhibitors of ectonucleotidase CD39. Bioorg Chem 2023; 135:106460. [PMID: 37023582 DOI: 10.1016/j.bioorg.2023.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.
Collapse
|
5
|
Wang Q, He R, Chen L, Zhang Q, Shan J, Wang P, Wang X, Zhao Y. MIG-23 is involved in sperm migration by modulating extracellular ATP levels in Ascaris suum. Development 2022; 149:275964. [DOI: 10.1242/dev.200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In nematodes, spermiogenesis is a process of sperm activation in which nonmotile spermatids are transformed into crawling spermatozoa. Sperm motility acquisition during this process is essential for successful fertilization, but the underlying mechanisms remain to be clarified. Herein, we have found that extracellular adenosine-5′-triphosphate (ATP) level regulation by MIG-23, which is a homolog of human ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), was required for major sperm protein (MSP) filament dynamics and sperm motility in the nematode Ascaris suum. During sperm activation, a large amount of ATP was produced in mitochondria and was stored in refringent granules (RGs). Some of the produced ATP was released to the extracellular space through innexin channels. MIG-23 was localized in the sperm plasma membrane and contributed to the ecto-ATPase activity of spermatozoa. Blocking MIG-23 activity resulted in a decrease in the ATP hydrolysis activity of spermatozoa and an increase in the depolymerization rate of MSP filaments in pseudopodia, which eventually affected sperm migration. Overall, our data suggest that MIG-23, which contributes to the ecto-ATPase activity of spermatozoa, regulates sperm migration by modulating extracellular ATP levels.
Collapse
Affiliation(s)
- Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Ruijun He
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Xia Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 3 , Beijing 100101 , China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| |
Collapse
|
6
|
Schäkel L, Mirza S, Winzer R, Lopez V, Idris R, Al-Hroub H, Pelletier J, Sévigny J, Tolosa E, Müller CE. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004660. [PMID: 35981785 PMCID: PMC9394215 DOI: 10.1136/jitc-2022-004660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. Methods We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. Results The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1–10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. Conclusions CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riekje Winzer
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham Idris
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eva Tolosa
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Aresta Branco MSL, Gutierrez Cruz A, Dayton J, Perrino BA, Mutafova-Yambolieva VN. Mechanosensitive Hydrolysis of ATP and ADP in Lamina Propria of the Murine Bladder by Membrane-Bound and Soluble Nucleotidases. Front Physiol 2022; 13:918100. [PMID: 35784885 PMCID: PMC9246094 DOI: 10.3389/fphys.2022.918100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Prior studies suggest that urothelium-released adenosine 5′-triphosphate (ATP) has a prominent role in bladder mechanotransduction. Urothelial ATP regulates the micturition cycle through activation of purinergic receptors that are expressed in many cell types in the lamina propria (LP), including afferent neurons, and might also be important for direct mechanosensitive signaling between urothelium and detrusor. The excitatory action of ATP is terminated by enzymatic hydrolysis, which subsequently produces bioactive metabolites. We examined possible mechanosensitive mechanisms of ATP hydrolysis in the LP by determining the degradation of 1,N6-etheno-ATP (eATP) at the anti-luminal side of nondistended (empty) or distended (full) murine (C57BL/6J) detrusor-free bladder model, using HPLC. The hydrolysis of eATP and eADP was greater in contact with LP of distended than of nondistended bladders whereas the hydrolysis of eAMP remained unchanged during filling, suggesting that some steps of eATP hydrolysis in the LP are mechanosensitive. eATP and eADP were also catabolized in extraluminal solutions (ELS) that were in contact with the LP of detrusor-free bladders, but removed from the organ chambers prior to addition of substrate. The degradation of both purines was greater in ELS from distended than from nondistended preparations, suggesting the presence of mechanosensitive release of soluble nucleotidases in the LP. The released enzyme activities were affected differently by Ca2+ and Mg2+. The common nucleotidase inhibitors ARL67156, POM-1, PSB06126, and ENPP1 Inhibitor C, but not the alkaline phosphatase inhibitor (-)-p-bromotetramisole oxalate, inhibited the enzymes released during bladder distention. Membrane-bound nucleotidases were identified in tissue homogenates and in concentrated ELS from distended preparations by Wes immunodetection. The relative distribution of nucleotidases was ENTPD1 >> ENPP1 > ENTPD2 = ENTPD3 > ENPP3 = NT5E >> ENTPD8 = TNAP in urothelium and ENTPD1 >> ENTPD3 >> ENPP3 > ENPP1 = ENTPD2 = NT5E >> ENTPD8 = TNAP in concentrated ELS, suggesting that regulated ectodomain shedding of membrane-bound nucleotidases possibly occurs in the LP during bladder filling. Mechanosensitive degradation of ATP and ADP by membrane-bound and soluble nucleotidases in the LP diminishes the availability of excitatory purines in the LP at the end of bladder filling. This might be a safeguard mechanism to prevent over-excitability of the bladder. Proper proportions of excitatory and inhibitory purines in the bladder wall are determined by distention-associated purine release and purine metabolism.
Collapse
|
8
|
Cheemalamarri C, Batchu UR, Thallamapuram NP, Katragadda SB, Reddy Shetty P. A review on hydroxy anthraquinones from bacteria: crosstalk's of structures and biological activities. Nat Prod Res 2022; 36:6186-6205. [PMID: 35175877 DOI: 10.1080/14786419.2022.2039920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthraquinones (AQ), unveiling large structural diversity, among polyketides demonstrate a wide range of applications. The hydroxy anthraquinones (HAQ), a group of anthraquinone derivatives, are secondary metabolites produced by bacteria and eukaryotes. Plant-based HAQ are well-studied unlike bacterial HAQ and applied as herbal medicine for centuries. Bacteria are known to synthesize a wide variety of structurally diversified HAQ through polyketide pathways using polyketide synthases (I, II & III) principally through polyketide synthase-II. The actinobacteria especially the genus Streptomyces and Micromonospora represent a rich source of HAQ, however novel HAQ are reported from the rare actinobacteria genera (Salinospora, Actinoplanes, Amycoloptosis, Verrucosispora, Xenorhabdus, and Photorhabdus. Though several reviews are available on AQ produced by plants and fungi, however none on bacterial AQ. The current review focused on sources of bacterial HAQ and their structural diversity and biological activities along with toxicity and side effects.
Collapse
Affiliation(s)
- Chandrasekhar Cheemalamarri
- Medicinal Chemistry and Biotechnology Lab- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Uma Rajeswari Batchu
- Medicinal Chemistry and Biotechnology Lab- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Nagendra Prasad Thallamapuram
- Medicinal Chemistry and Biotechnology Lab- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Suresh Babu Katragadda
- Centre for natural products and traditional knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Prakasham Reddy Shetty
- Medicinal Chemistry and Biotechnology Lab- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Abbas S, Afzal S, Nadeem H, Hussain D, Langer P, Sévigny J, Ashraf Z, Iqbal J. Synthesis, characterization and biological evaluation of thiadiazole amide derivatives as nucleoside triphosphate diphosphohydrolases (NTPDases) inhibitors. Bioorg Chem 2021; 118:105456. [PMID: 34800887 DOI: 10.1016/j.bioorg.2021.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Importance of extracellular nucleotides is widely understood. These nucleotides act as ligand for P2X and P2Y receptors and modulate a variety of biological functions. However, their extracellular concentration is maintained by a chain of enzymes termed as ecto-nucleotidases. Amongst them, nucleoside triphosphate diphosphohydrolases (NTPDases) is an important enzyme family responsible for the dephosphorylation of these nucleotides. Overexpression of NTPDases leads to many pathological conditions such as cancer and thrombosis. So far, only a few NTPDase inhibitors have been reported. Considering this scarcity of (NTPDase) inhibitors, a number of thiadiazole amide derivatives were synthesized and screened against human (h)-NTPDases. Several compounds showed promising inhibitory activity; compound 5a (IC50 (µM); 0.05 ± 0.008) and 5g (IC50 (µM); 0.04 ± 0.006) appeared to be the most distinguished molecules corresponding to h-NTPDase1 and -2. However, h-NTPDase3 was the least susceptible isozyme and only three compounds (5d, 5e, 5j) strongly inhibited h-NTPDase3. Interestingly, compound 5e was recognized as the most active compound that showed dual inhibition against h-NTPDase3 as well as against h-NTPDase8. For better comprehension of binding mode of these inhibitors, most potent inhibitors were docked with their respective isozyme.
Collapse
Affiliation(s)
- Sadia Abbas
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Dilawar Hussain
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
10
|
Murtaza A, Afzal S, Zaman G, Saeed A, Pelletier J, Sévigny J, Iqbal J, Hassan A. Divergent synthesis and elaboration of structure activity relationship for quinoline derivatives as highly selective NTPDase inhibitor. Bioorg Chem 2021; 115:105240. [PMID: 34416508 DOI: 10.1016/j.bioorg.2021.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Quinoline derivatives have interesting biological profile. In continuation for the comprehensive evaluations of substituted quinoline derivatives against human nucleoside triphosphate diphosphohydrolases (h-NTPDases) a series of substituted quinoline derivatives (2a-g, 3a-f, 4, 5a-c, 6) was synthesized. The inhibitory activities of the synthesized compounds were evaluated against four isoenzymes of human nucleoside triphosphate diphosphohydrolases (h-NTPDases). These quinoline derivatives had IC50 (µM) values in the range of 0.20-1.75, 0.77-2.20, 0.36-5.50 and 0.90-1.82 for NTPDase1, NTPDase2, NTPDase3 and NTPDase8, respectively. The derivative 3f was the most active compound against NTPDase1 (IC50, 0.20 ± 0.02 µM) that also possessed selectivity towards NTPDase1. Similarly, derivative 3b (IC50, 0.77 ± 0.06), 2h (IC50, 0.36 ± 0.01) and 2c (IC50, 0.90 ± 0.08) displayed excellent activity corresponding to NTPDase2, NTPDase3 and NTPdase8. The compound 5c emerged as a selective inhibitor of NTPDase8. The most active compounds were then investigated to determine their mode of inhibition and finally binding interactions of the active compounds were analyzed through molecular docking studies. The obtained results strongly support the quinoline scaffold's potential as potent and selective NTPDase inhibitor.
Collapse
Affiliation(s)
- Amna Murtaza
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Gohar Zaman
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
11
|
Afzal S, Zaib S, Jafari B, Langer P, Lecka J, Sévigny J, Iqbal J. Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold. Med Chem 2021; 16:689-702. [PMID: 31203806 DOI: 10.2174/1573406415666190614095821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) terminate nucleotide signaling via the hydrolysis of extracellular nucleoside-5'-triphosphate and nucleoside- 5'-diphosphate, to nucleoside-5'-monophosphate and composed of eight Ca2+/Mg2+ dependent ectonucleotidases (NTPDase1-8). Extracellular nucleotides are involved in a variety of physiological mechanisms. However, they are rapidly inactivated by ectonucleotidases that are involved in the sequential removal of phosphate group from nucleotides with the release of inorganic phosphate and their respective nucleoside. Ectonucleoside triphosphate diphosphohydrolases (NTPDases) represent the key enzymes responsible for nucleotides hydrolysis and their overexpression has been related to certain pathological conditions. Therefore, the inhibitors of NTPDases are of particular importance in order to investigate their potential to treat various diseases e.g., cancer, ischemia and other disorders of the cardiovascular and immune system. METHODS Keeping in view the importance of NTPDase inhibitors, a series of thiadiazolopyrimidones were evaluated for their potential inhibitory activity towards NTPDases by the malachite green assay. RESULTS The results suggested that some of the compounds were found as non-selective inhibitors of isozyme of NTPDases, however, most of the compounds act as potent and selective inhibitors. In case of substituted amino derivatives (4c-m), the compounds 4m (IC50 = 1.13 ± 0.09 μM) and 4g (IC50 = 1.72 ± 0.08 μM) were found to be the most potent inhibitors of h-NTPDase1 and 2, respectively. Whereas, compound 4d showed the best inhibitory potential for both h-NTPDase3 (IC50 = 1.25 ± 0.06 μM) and h-NTPDase8 (0.21 ± 0.02 μM). Among 5a-t derivatives, compounds 5e (IC50 = 2.52 ± 0.15 μM), 5p (IC50 = 3.17 ± 0.05 μM), 5n (IC50 = 1.22 ± 0.06 μM) and 5b (IC50 = 0.35 ± 0.001 μM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. Interestingly, the inhibitory concentration values of above-mentioned inhibitors were several folds greater than suramin, a reference control. In order to determine the binding interactions, molecular docking studies of the most potent inhibitors were conducted into the homology models of NTPDases and the putative binding analysis further confirmed that selective and potent compounds bind deep inside the active pocket of the respective enzymes. CONCLUSION The docking analysis proposed that the inhibitory activity correlates with the hydrogen bonds inside the binding pocket. Thus, these derivatives are of interest and may further be investigated for their importance in medicinal chemistry.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Behzad Jafari
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany,Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| |
Collapse
|
12
|
Lopez V, Schäkel L, Schuh HJM, Schmidt MS, Mirza S, Renn C, Pelletier J, Lee SY, Sévigny J, Alban S, Bendas G, Müller CE. Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Mar Drugs 2021; 19:md19020051. [PMID: 33499103 PMCID: PMC7911304 DOI: 10.3390/md19020051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Michael S. Schmidt
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Renn
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Susanne Alban
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany;
| | - Gerd Bendas
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
13
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Abstract
Cross-coupling reactions furnishing carbon–carbon (C–C) and carbon–heteroatom (C–X) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Ullmann, Ullman–Goldberg, Cadiot–Chodkiewicz, Castro–Stephens, and Corey–House, utilizing elemental copper or its salts as catalyst have, for decades, attracted and inspired scientists. However, these reactions were suffering from the range of functional groups tolerated as well as severely restricted by the harsh reaction conditions often required high temperatures (150–200 °C) for extended reaction time. Enormous efforts have been paid to develop and achieve more sustainable reaction conditions by applying the microwave irradiation. The use of controlled microwave heating dramatically reduces the time required and therefore resulting in increase in the yield as well as the efficiency of the reaction. This review is mainly focuses on the recent advances and applications of copper catalyzed cross-coupling generation of carbon–carbon and carbon–heteroatom bond under microwave technology.
Collapse
|
15
|
Naresh P, Selvaraj A, Shyam Sundar P, Murugesan S, Sathianarayanan S, Namboori P K K, Jubie S. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J Biomol Struct Dyn 2020; 40:4866-4878. [PMID: 33345726 DOI: 10.1080/07391102.2020.1862707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dengue virus enters the cell by receptor-mediated endocytosis followed by a viral envelope (DENVE) protein-mediated membrane fusion. A small detergent molecule n-octyl-β-D-glucoside (βOG) occupies the hydrophobic pocket which is located in the hinge region plays a major role in the rearrangement. It has been reported that mutations occurred in this binding pocket lead to the alterations of pH threshold for fusion. In addition to this event, the protonation of histidine residues present in the hydrophobic pocket would also impart the conformational change of the E protein evidence this pocket as a promising target. The present study identified novel cinnamic acid analogs as significant blockers of the hydrophobic pocket through molecular modeling studies against DENVE. A library of seventy-two analogs of cinnamic acid was undertaken for the discovery process of DENV inhibitors. A Molecular docking study was used to analyze the binding mechanism between these compounds and DENV followed by ADMET prediction. Binding energies were predicted by the MMGBSA study. The Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. The compounds CA and SCA derivatives have been tested against HSV-1 & 2 viruses. From the computational results, the compounds CA1, CA2, SCA 60, SCA 57, SCA 37, SCA 58, and SCA 14 exhibited favorable interaction energy. The compounds have in-vitro antiviral activity; the results clearly indicate that the compounds showed the activity against both the viruses (HSV-1 & HSV-2). Our study provides valuable information on the discovery of small molecules DENVE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - A Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - P Shyam Sundar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - S Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India
| | - S Sathianarayanan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Ponekkara, Kochi, Kerala, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Coimbatore, Tamilnadu, India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| |
Collapse
|
16
|
Jeffrey JL, Lawson KV, Powers JP. Targeting Metabolism of Extracellular Nucleotides via Inhibition of Ectonucleotidases CD73 and CD39. J Med Chem 2020; 63:13444-13465. [PMID: 32786396 DOI: 10.1021/acs.jmedchem.0c01044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the tumor microenvironment, unusually high concentrations of extracellular adenosine promote tumor proliferation through various immunosuppressive mechanisms. Blocking adenosine production by inhibiting nucleotide-metabolizing enzymes, such as ectonucleotidases CD73 and CD39, represents a promising therapeutic strategy that may synergize with other immuno-oncology mechanisms and chemotherapies. Emerging small-molecule ectonucleotidase inhibitors have recently entered clinical trials. This Perspective will outline challenges, strategies, and recent advancements in targeting this class with small-molecule inhibitors, including AB680, the first small-molecule CD73 inhibitor to enter clinical development. Specific case studies, including structure-based drug design and lead optimization, will be outlined. Preclinical data on these molecules and their ability to enhance antitumor immunity will be discussed.
Collapse
Affiliation(s)
- Jenna L Jeffrey
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V Lawson
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P Powers
- Arcus Biosciences, 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
17
|
Schäkel L, Schmies CC, Idris RM, Luo X, Lee SY, Lopez V, Mirza S, Vu TH, Pelletier J, Sévigny J, Namasivayam V, Müller CE. Nucleotide Analog ARL67156 as a Lead Structure for the Development of CD39 and Dual CD39/CD73 Ectonucleotidase Inhibitors. Front Pharmacol 2020; 11:1294. [PMID: 33013365 PMCID: PMC7508162 DOI: 10.3389/fphar.2020.01294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) inhibitors have potential as novel drugs for the (immuno)therapy of cancer. They increase the extracellular concentration of immunostimulatory ATP and reduce the formation of AMP, which can be further hydrolyzed by ecto-5'-nucleotidase (CD73) to immunosuppressive, cancer-promoting adenosine. In the present study, we synthesized analogs and derivatives of the standard CD39 inhibitor ARL67156, a nucleotide analog which displays a competitive mechanism of inhibition. Structure-activity relationships were analyzed at the human enzyme with respect to substituents in the N 6- and C8-position of the adenine core, and modifications of the triphosph(on)ate chain. Capillary electrophoresis coupled to laser-induced fluorescence detection employing a fluorescent-labeled ATP derivative was employed to determine the compounds' potency. Selected inhibitors were additionally evaluated in an orthogonal, malachite green assay versus the natural substrate ATP. The most potent CD39 inhibitors of the present series were ARL67156 and its derivatives 31 and 33 with Ki values of around 1 µM. Selectivity studies showed that all three nucleotide analogs additionally blocked CD73 acting as dual-target inhibitors. Docking studies provided plausible binding modes to both targets. The present study provides a full characterization of the frequently applied CD39 inhibitor ARL67156, presents structure-activity relationships, and provides a basis for future optimization towards selective CD39 and dual CD39/CD73 inhibitors.
Collapse
Affiliation(s)
- Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham M Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Xihuan Luo
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Vittoria Lopez
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - The Hung Vu
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Baqi Y, Rashed M, Schäkel L, Malik EM, Pelletier J, Sévigny J, Fiene A, Müller CE. Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3. Front Pharmacol 2020; 11:1282. [PMID: 32973513 PMCID: PMC7481482 DOI: 10.3389/fphar.2020.01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of nucleoside tri- and di-phosphates to mono-phosphates. The products are subsequently hydrolyzed by ecto-5′-nucleotidase (ecto-5′-NT) to nucleosides. NTPDase inhibitors have potential as novel drugs, e.g., for the treatment of inflammation, neurodegenerative diseases, and cancer. In this context, a series of anthraquinone derivatives structurally related to the anthraquinone dye reactive blue-2 (RB-2) was synthesized and evaluated as inhibitors of human NTPDases utilizing a malachite green assay. We identified several potent and selective inhibitors of human NTPDase2 and -3. Among the most potent NTPDase2 inhibitors were 1-amino-4-(9-phenanthrylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (20, PSB-16131, IC50 of 539 nM) and 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (48, PSB-2020, IC50 of 551 nM). The most potent NTPDase3 inhibitors were 1-amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (42, PSB-1011, IC50 of 390 nM) and 1-amino-4-(3-carboxy-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (33, PSB-2046, IC50 of 723 nM). The best NTPDase2 inhibitor 20 showed a non-competitive inhibition type, while the NTPDase3 inhibitor 42 behaved as a mixed-type inhibitor. These potent compounds were found to be selective vs. other NTPDases. They will be useful tools for studying the roles of NTPDase2 and -3 in physiology and under pathological conditions.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Hummell NA, Kirienko NV. Repurposing bioactive compounds for treating multidrug-resistant pathogens. J Med Microbiol 2020; 69:881-894. [PMID: 32163353 DOI: 10.1099/jmm.0.001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction. Antimicrobial development is being outpaced by the rising rate of antimicrobial resistance in the developing and industrialized world. Drug repurposing, where novel antibacterial functions can be found for known molecular entities, reduces drug development costs, reduces regulatory hurdles, and increases rate of success.Aim. We sought to characterize the antimicrobial properties of five known bioactives (DMAQ-B1, carboplatin, oxaliplatin, CD437 and PSB-069) that were discovered in a high-throughput phenotypic screen for hits that extend Caenorhabditis elegans survival during exposure to Pseudomonas aeruginosa PA14.Methodology. c.f.u. assays, biofilm staining and fluorescence microscopy were used to assay the compounds' effect on various virulence determinants. Checkerboard assays were used to assess synergy between compounds and conventional antimicrobials. C. elegans-based assays were used to test whether the compounds could also rescue against Enterococcus faecalis and Staphyloccus aureus. Finally, toxicity was assessed in C. elegans and mammalian cells.Results. Four of the compounds rescued C. elegans from a second bacterial pathogen and two of them (DMAQ-B1, a naturally occurring insulin mimetic, and CD437, an agonist of the retinoic acid receptor) rescued against all three. The platinum complexes displayed increased antimicrobial activity against P. aeruginosa. Of the molecules tested, only CD437 showed slight synergy with ampicillin. The two most effective compounds, DMAQ-B1 and CD437, showed toxicity to mammalian cells.Conclusion. Although these compounds' potential for repurposing is limited by their toxicity, our results contribute to this growing field and provide a simple road map for using C. elegans for preliminary testing of known bioactive compounds with predicted antimicrobial activity.
Collapse
|
20
|
Su S, Wu J, Gao Y, Luo Y, Yang D, Wang P. The pharmacological properties of chrysophanol, the recent advances. Biomed Pharmacother 2020; 125:110002. [PMID: 32066044 DOI: 10.1016/j.biopha.2020.110002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
As a universal Chinese medicine, Rhei Radix et Rhizoma was used for centuries in different fields including pharmaceutical, health care and cosmetics. Chrysophanol (Chr) is one of the most important anthraquinone components isolated from plants of the Rheum genus. Current reports show that in Rheum officinale, Chr is the most abundant free anthraquinone compound [1] and exerts a number of beneficial effects, such as anti-inflammation, anti-cancer, and anti-depressive effects and offers neuroprotection. We collected information about Chr from the Internet databases PubMed, Web of Science, Europe PMC and CNKI with a combination of keywords including "Chr", "Pharmacology", and "Pharmacokinetics". All data about this ingredient in this review were extracted from articles published before September 2019. Based on the literature found, we concluded that (1) Chr exhibited potential anti-inflammation, anti-cardiovascular disease (CVD)and anti-cancer activities by regulating signaling pathway transduction (NF-κB, MAPK, PI3K/Akt, etc.); (2) compared with free Chr, pharmacokinetic studies revealed that other forms of Chr, such as nanoparticle-based and liposome-based Chr, showed high bioavailability. Nevertheless, we also found that the understanding of the exact differences in the regulation of multiple molecular signaling pathways is in a preliminary stage and needs to be clarified. Moreover, further studies are required to determine the apoptotic mechanism of Chr in cancer cells. Finally, we found that (3) structure modification studies demonstrated potential relationships between structure and drug activity. The purpose of this review is to summarize the pharmacological activities, intracorporal processes and structure-activity relationships of Chr and to provide an up-to-date reference for further research and clinical applications.
Collapse
Affiliation(s)
- Siyu Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yu Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
21
|
de Carvalho LSA, Alves Jr Ij, Junqueira LR, Silva LM, Riani LR, de Faria Pinto P, da Silva Filho AA. ATP-Diphosphohydrolases in Parasites: Localization, Functions and Recent Developments in Drug Discovery. Curr Protein Pept Sci 2020; 20:873-884. [PMID: 31272352 DOI: 10.2174/1389203720666190704152827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023]
Abstract
ATP-diphosphohydrolases (EC 3.6.1.5), also known as ATPDases, NTPases, NTPDases, EATPases or apyrases, are enzymes that hydrolyze a variety of nucleoside tri- and diphosphates to their respective nucleosides, being their activities dependent on the presence of divalent cations, such as calcium and magnesium. Recently, ATP-diphosphohydrolases were identified on the surface of several parasites, such as Trypanosoma sp, Leishmania sp and Schistosoma sp. In parasites, the activity of ATPdiphosphohydrolases has been associated with the purine recuperation and/or as a protective mechanism against the host organism under conditions that involve ATP or ADP, such as immune responses and platelet activation. These proteins have been suggested as possible targets for the development of new antiparasitic drugs. In this review, we will comprehensively address the main aspects of the location and function of ATP-diphosphohydrolase in parasites. Also, we performed a detailed research in scientific database of recent developments in new natural and synthetic inhibitors of the ATPdiphosphohydrolases in parasites.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alves Jr Ij
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lauriene Ricardo Junqueira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lorena Rodrigues Riani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ademar Alves da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
22
|
van Heusden C, Button B, Anderson WH, Ceppe A, Morton LC, O'Neal WK, Dang H, Alexis NE, Donaldson S, Stephan H, Boucher RC, Lazarowski ER. Inhibition of ATP hydrolysis restores airway surface liquid production in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2020; 318:L356-L365. [PMID: 31800264 PMCID: PMC7052677 DOI: 10.1152/ajplung.00449.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.
Collapse
Affiliation(s)
- Catharina van Heusden
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Biophysics and Biochemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Wayne H Anderson
- Marsico Lung Institute/Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Agathe Ceppe
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa C Morton
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott Donaldson
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Richard C Boucher
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Eduardo R Lazarowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Shupeniuk V, Taras T, Sabadakh O, Luchkevich E, Kornii Y. Synthesis some 4-substituted 9,10-anthraquinones. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2020. [DOI: 10.17721/fujcv8i1p58-65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New 4-substituted 9,10-anthraquinones (6 compouds) with amino derivations fragments were synthesized through the substitution of the bromaminic acid by amines using the Ullmann coupling reaction. The structures of the synthesized compounds were determined using LC-MS, 1H NMR, 13C NMR spectroscopy, and elemental analysis data.
Collapse
|
24
|
Kumar M, Lowery R, Kumar V. High-Throughput Screening Assays for Cancer Immunotherapy Targets: Ectonucleotidases CD39 and CD73. SLAS DISCOVERY 2019; 25:320-326. [PMID: 31868071 DOI: 10.1177/2472555219893632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Production of adenosine in the extracellular tumor microenvironment elicits strong immunosuppression and is associated with tumor progression. Thus, targeting adenosine-generating ectonucleotidases is a potential strategy to stimulate and prolong antitumor immunity. Because the reaction products of ectonucleotidases differ by a single phosphate group, selective detection in an assay format that is compatible with high-throughput screening (HTS) has been elusive. We report the development of biochemical assays capable of measuring the activity of ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1; also known as CD39) and ecto-5'-nucleotidase (CD73). Both assays leverage the Transcreener HTS Assay platform, which facilitates selective immunodetection of nucleotides with homogenous fluorescent readouts, fluorescence polarization or time-resolved fluorescence energy transfer. The Transcreener AMP2 Assay was used to measure CD39 activity, allowing detection of adenosine monophosphate (AMP) production (Z' > 0.6) with subnanomolar amounts of CD39, allowing IC50 determination for tool compounds, consistent with previously reported values. To detect the production of adenosine by CD73, the Transcreener ADP2 Assay was coupled with adenosine kinase (AK); conversion of adenosine to AMP and adenosine diphosphate (ADP) by AK allows detection with ADP2 antibody. The Transcreener AMP2 Assay was used to screen a 1280 Library of Pharmacologically Active Compounds (LOPAC) library and a 1600-compound subset of a ChemBridge diversity library for CD39 inhibitors, allowing the identification of nine and eight candidate compounds from each library, respectively. The Transcreener ADP2 Assay was used to screen 1600 compounds from the ChemBridge diversity library for CD73 inhibitors and identified 14 potential candidates. HTS-compatible assays for ectonucleotidase activity may allow identification of purinergic signaling pathway inhibitors important for tumor-specific immune responses during tumor pathogenesis.
Collapse
Affiliation(s)
| | | | - Vaishnav Kumar
- Dane County Youth Apprenticeship Program in Biotechnology, Verona Area High School, Verona, WI, USA
| |
Collapse
|
25
|
Hayat K, Afzal S, Saeed A, Murtaza A, Ur Rahman S, Khan KM, Saeed A, Zaib S, Lecka J, Sévigny J, Iqbal J, Hassan A. Investigation of new quinoline derivatives as promising inhibitors of NTPDases: Synthesis, SAR analysis and molecular docking studies. Bioorg Chem 2019; 87:218-226. [PMID: 30903944 DOI: 10.1016/j.bioorg.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases), an important class of ectonucleotidases, are responsible for the sequential hydrolysis of extracellular nucleotides. However, over-expression of NTPDases has been linked with various pathological diseases e.g. cancer. Thus, to treat these diseases, the inhibitors of this class of enzyme are of interest. The significance of this class of enzyme encouraged us to synthesize a new class of quinoline derivatives with the aim to find selective and potent inhibitors of NTPDases. Therefore, a mild and efficient synthetic route was established for the synthesis of quinoline derivatives. The reaction was catalyzed by molecular iodine to afford the substituted quinoline derivatives. All the synthetic derivatives (3a-3w) were evaluated for their potential to inhibit the h-NTPDase1, 2, 3 and 8. Most of the compounds were identified as dual inhibitors of h-NTPDase1 and 8 with lower effects on h-NTPDase2 and 3. Two compounds i.e.3f and 3t were identified as selective inhibitor of h-NTPDase1 whereas the compound 3s inhibited the h-NTPDase8 selectively. Moreover, the compounds 3p (IC50 = 0.23 ± 0.01 µM), 3j (IC50 = 21.0 ± 0.03 µM) 3d (IC50 = 5.38 ± 0.21 µM) and 3c (IC50 = 1.13 ± 0.04 µM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. To determine the binding interaction, molecular docking studies were also carried out.
Collapse
Affiliation(s)
- Komal Hayat
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Altaf Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amna Murtaza
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shafiq Ur Rahman
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Khalid Mohammed Khan
- H.E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720 Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
26
|
Baqi Y, Müller CE. Antithrombotic P2Y 12 receptor antagonists: recent developments in drug discovery. Drug Discov Today 2018; 24:325-333. [PMID: 30291899 DOI: 10.1016/j.drudis.2018.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The P2Y12 receptor is one of eight known P2Y receptor subtypes, and belongs to the G-protein-coupled receptor (GPCR) family. The P2Y12 receptor is highly expressed on blood platelets and in the brain. Potent, selective, peripherally acting antagonists for the P2Y12 receptor are used clinically as antithrombotic drugs. Several different scaffolds have been identified as P2Y12 receptor antagonists, including irreversibly acting thienotetrahydropyridines (prodrugs), and reversible competitive antagonists, including adenine nucleotide analogs, piperazinyl-glutamate-quinolines, -pyridines, and -pyrimidines, and anthraquinone derivatives. Here, we provide an overview of the different scaffolds that have been developed as P2Y12 receptor antagonists, some of which have become important therapeutics.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman.
| | - Christa E Müller
- Pharma-Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
27
|
Alqarni MH, Muharram MM, Labrou NE. Ligand-induced glutathione transferase degradation as a therapeutic modality: Investigation of a new metal-mediated affinity cleavage strategy for human GSTP1-1. Int J Biol Macromol 2018; 116:84-90. [PMID: 29727648 DOI: 10.1016/j.ijbiomac.2018.04.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023]
Abstract
Glutathione transferases (GST, EC. 2.5.1.18) are overexpressed in cancer cell and have been shown to be involved in cancer cell growth, differentiation and the development of multi-drug resistance (MDR) mechanism. Therefore, GST inhibitors are emerging as promising chemosensitizers to manage and reverse MDR. The present work aims to the synthesis, characterization and assessment of a new active-site chimeric inhibitor towards the MDR-involved human GSTP1-1 isoenzyme (hGSTP1-1). The inhibitor [BDA-Fe(III)] was designed to possess two functional groups: the anthraquinone moiety, as recognition element by hGSTP1-1 and a metal chelated complex [iminodiacetic acid-Fe(III)] as a reactive moiety, able to generate reactive oxygen species (ROS), through Fenton reaction. Upon binding of the BDA-Fe(III) to hGSTP1-1 in the presence of hydrogen peroxide, reactive oxygen species (ROS) are generated, which promoted the specific cleavage of hGSTP1-1 in a time and concentration-dependent manner. Electrophoretic analysis showed that each enzyme subunit is cleaved at a single site. Amino acid sequencing as well as molecular modelling studies established that the cleaved peptide bond is located between the amino acids Tyr103 and Ile104. This ligand-induced hGSTP1-1 degradation and inactivation strategy is discussed as a new approach towards chemosensitization of MDR cancer cells.
Collapse
Affiliation(s)
- Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Magdy Mohamed Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia; Department of Microbiology, College of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
28
|
Rafehi M, Malik EM, Neumann A, Abdelrahman A, Hanck T, Namasivayam V, Müller CE, Baqi Y. Development of Potent and Selective Antagonists for the UTP-Activated P2Y 4 Receptor. J Med Chem 2017; 60:3020-3038. [PMID: 28306255 DOI: 10.1021/acs.jmedchem.7b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P2Y4 is a Gq protein-coupled receptor activated by uridine-5'-triphosphate (UTP), which is widely expressed in the body, e.g., in intestine, heart, and brain. No selective P2Y4 receptor antagonist has been described so far. Therefore, we developed and optimized P2Y4 receptor antagonists based on an anthraquinone scaffold. Potency was assessed by a fluorescence-based assay measuring inhibition of UTP-induced intracellular calcium release in 1321N1 astrocytoma cells stably transfected with the human P2Y4 receptor. The most potent compound of the present series, sodium 1-amino-4-[4-(2,4-dimethylphenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (PSB-16133, 61) exhibited an IC50 value of 233 nM, selectivity versus other P2Y receptor subtypes, and is thought to act as an allosteric antagonist. A receptor homology model was built and docking studies were performed to analyze ligand-receptor interactions. Compound 64 (PSB-1699, sodium 1-amino-4-[4-(3-pyridin-3-ylmethylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate) represents the most selective P2Y4 receptor antagonist known to date. Compounds 61 and 64 are therefore anticipated to become useful tools for studying this scarcely investigated receptor.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| |
Collapse
|
29
|
Baqi Y. Anthraquinones as a privileged scaffold in drug discovery targeting nucleotide-binding proteins. Drug Discov Today 2016; 21:1571-1577. [DOI: 10.1016/j.drudis.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
30
|
Fiene A, Baqi Y, Malik EM, Newton P, Li W, Lee SY, Hartland EL, Müller CE. Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorg Med Chem 2016; 24:4363-4371. [DOI: 10.1016/j.bmc.2016.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022]
|
31
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
32
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
33
|
Geoghegan JC, Diedrich G, Lu X, Rosenthal K, Sachsenmeier KF, Wu H, Dall'Acqua WF, Damschroder MM. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action. MAbs 2016; 8:454-67. [PMID: 26854859 PMCID: PMC5037986 DOI: 10.1080/19420862.2016.1143182] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD73 (ecto-5′-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.
Collapse
Affiliation(s)
- James C Geoghegan
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| | - Gundo Diedrich
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| | - Xiaojun Lu
- b Department of Analytical Biotechnology , MedImmune LLC , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| | | | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| | - Melissa M Damschroder
- a Department of Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , MD , USA
| |
Collapse
|
34
|
Malik EM, Baqi Y, Müller CE. Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues) - precursors for dyes and drugs. Beilstein J Org Chem 2015; 11:2326-33. [PMID: 26734081 PMCID: PMC4685860 DOI: 10.3762/bjoc.11.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022] Open
Abstract
Anthraquinone (AQ) derivatives play a prominent role in medicine and also in textile industry. Bromaminic acid (1-amino-4-bromoanthraquinone-2-sulfonic acid) is an important precursor for obtaining dyes as well as biologically active compounds through the replacement of the C4-bromo substituent with different (ar)alkylamino residues. Here we report methods for the synthesis of bromaminic acid analogues bearing different substituents at the 2-position of the anthraquinone core. 1-Aminoanthraquinone was converted to its 2-hydroxymethyl-substituted derivative which, under different reaction conditions, yielded the corresponding carbaldehyde, carboxylic acid, and nitrile derivatives. The latter was further reacted to obtain 1-amino-2-tetrazolylanthraquinone. Subsequent bromination using bromine in DMF led to the corresponding bromaminic acid derivatives in excellent isolated yields (>90%) and high purities. Alternatively, 1-amino-4-bromo-2-hydroxymethylanthraquinone could be directly converted to the desired 2-substituted bromaminic acid analogues in high yields (85-100%). We additionally report the preparation of bromaminic acid sodium salt and 1-amino-2,4-dibromoanthraquinone directly from 1-aminoanthraquinone in excellent yields (94-100%) and high purities. The synthesized brominated AQs are valuable precursors for the preparation of AQ drugs and dyes.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
35
|
Fiene A, Baqi Y, Lecka J, Sévigny J, Müller CE. Fluorescence polarization immunoassays for monitoring nucleoside triphosphate diphosphohydrolase (NTPDase) activity. Analyst 2015; 140:140-8. [DOI: 10.1039/c4an01694g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel and very sensitive fluorescence polarization immunoassays (FPIA) for the screening of NTPDases have been successfully established and validated.
Collapse
Affiliation(s)
- Amelie Fiene
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| | - Younis Baqi
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Christa E. Müller
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| |
Collapse
|
36
|
Evidence for the existence of pyrimidinergic transmission in rat brain. Neuropharmacology 2014; 91:77-86. [PMID: 25541414 DOI: 10.1016/j.neuropharm.2014.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
Abstract
The uridine nucleotides uridine-5'-triphosphate (UTP) and uridine-5'-diphosphate (UDP) have previously been identified in media from cultured cells. However, no study to date has demonstrated their presence in brain extracellular fluid (ECF) obtained in vivo. Using a novel method, we now show that UTP and UDP, as well as uridine, are detectable in dialysates of striatal ECF obtained from freely-moving rats. Intraperitoneal (i.p.) administration of uridine or exposure of striatum to depolarizing concentrations of potassium chloride increases extracellular uridine, UTP and UDP, while tetrodotoxin (TTX) decreases their ECF levels. Uridine administration also enhances cholinergic neurotransmission which is accompanied by enhanced brain levels of diacylglycerol (DAG) and inositol trisphosphate (IP3) and blocked by suramin, but not by PPADS (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid) or MRS2578 suggesting a possible mediation of P2Y2 receptors activated by UTP. These observations suggest that uridine, UTP and UDP may function as pyrimidinergic neurotransmitters, and that enhancement of such neurotransmission underlies pharmacologic effects of exogenous uridine on the brain.
Collapse
|
37
|
Lee SY, Fiene A, Li W, Hanck T, Brylev KA, Fedorov VE, Lecka J, Haider A, Pietzsch HJ, Zimmermann H, Sévigny J, Kortz U, Stephan H, Müller CE. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors. Biochem Pharmacol 2014; 93:171-81. [PMID: 25449596 DOI: 10.1016/j.bcp.2014.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
Polyoxometalates (POMs) are inorganic cluster metal complexes that possess versatile biological activities, including antibacterial, anticancer, antidiabetic, and antiviral effects. Their mechanisms of action at the molecular level are largely unknown. However, it has been suggested that the inhibition of several enzyme families (e.g., phosphatases, protein kinases or ecto-nucleotidases) by POMs may contribute to their pharmacological properties. Ecto-nucleotidases are cell membrane-bound or secreted glycoproteins involved in the hydrolysis of extracellular nucleotides thereby regulating purinergic (and pyrimidinergic) signaling. They comprise four distinct families: ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs), alkaline phosphatases (APs) and ecto-5'-nucleotidase (eN). In the present study, we evaluated the inhibitory potency of a series of polyoxometalates as well as chalcogenide hexarhenium cluster complexes at a broad range of ecto-nucleotidases. [Co4(H2O)2(PW9O34)2](10-) (5, PSB-POM142) was discovered to be the most potent inhibitor of human NTPDase1 described so far (Ki: 3.88 nM). Other investigated POMs selectively inhibited human NPP1, [TiW11CoO40](8-) (4, PSB-POM141, Ki: 1.46 nM) and [NaSb9W21O86](18-) (6, PSB-POM143, Ki: 4.98 nM) representing the most potent and selective human NPP1 inhibitors described to date. [NaP5W30O110](14-) (8, PSB-POM144) strongly inhibited NTPDase1-3 and NPP1 and may therefore be used as a pan-inhibitor to block ATP hydrolysis. The polyoxoanionic compounds displayed a non-competitive mechanism of inhibition of NPPs and eN, but appeared to be competitive inhibitors of TNAP. Future in vivo studies with selected inhibitors identified in the current study are warranted.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Wenjin Li
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russia Academy of Sciences, 3 Acad. Lavrentiev prospect, 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Vladimir E Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russia Academy of Sciences, 3 Acad. Lavrentiev prospect, 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Joanna Lecka
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada G1V 0A6; Centre de Recherche du CHU de Québec, Québec City, QC, Canada G1V 4G2
| | - Ali Haider
- School of Engineering and Science, Campus Ring 8, Jacobs University, 28759 Bremen, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada G1V 0A6; Centre de Recherche du CHU de Québec, Québec City, QC, Canada G1V 4G2
| | - Ulrich Kortz
- School of Engineering and Science, Campus Ring 8, Jacobs University, 28759 Bremen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
38
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
39
|
Roy S, Large RJ, Akande AM, Kshatri A, Webb TI, Domene C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA. Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur J Med Chem 2014; 75:426-37. [PMID: 24561672 DOI: 10.1016/j.ejmech.2014.01.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
We have designed, synthesised and characterised the effects of a number of novel anthraquinone derivatives and assessed their effects on large conductance, Ca(2+) activated K(+) (BK) channels recorded from rabbit bladder smooth muscle cells using the excised, inside/out configuration of the patch clamp technique. These compounds are members of the GoSlo-SR family of compounds, which potently open BK channels and shift the voltage required for half maximal activation (V1/2) negatively. The efficacy of the anilinoanthraquinone derivatives was enhanced when the size of ring D was increased, since the cyclopentane and cyclohexane derivatives shifted the V1/2, by -24 ± 6 mV and -54 ± 8 mV, respectively, whereas the cycloheptane and cyclooctane derivatives shifted the V1/2 by -61 ± 6 mV and -106 ± 6 mV. To examine if a combination of hydrophobicity and steric bulking of this region further enhanced their ability to open BK channels, we synthesised a number of naphthalene and tetrahydro-naphthalene derivatives. The tetrahydro-2-naphthalene derivative GoSlo-SR-5-69 was the most potent and efficacious of the series since it was able to shift the activation V1/2 by greater than -100 mV when applied at a concentration of 1 μM and had an EC50 of 251 nM, making it one of the most potent and efficacious BK channel openers synthesised to date.
Collapse
Affiliation(s)
- Subhrangsu Roy
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Roddy J Large
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Adebola Morayo Akande
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Aravind Kshatri
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Tim I Webb
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Carmen Domene
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; Department of Chemistry, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gerard P Sergeant
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Noel G McHale
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Keith D Thornbury
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Mark A Hollywood
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland.
| |
Collapse
|
40
|
Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071. J Struct Biol 2014; 185:336-41. [PMID: 24462745 DOI: 10.1016/j.jsb.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 01/20/2023]
Abstract
In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5'-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.
Collapse
|
41
|
al-Rashida M, Iqbal J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 2013; 34:703-43. [PMID: 24115166 DOI: 10.1002/med.21302] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.
Collapse
Affiliation(s)
- Mariya al-Rashida
- Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | | |
Collapse
|
42
|
Burnstock G. Purinergic signalling in the lower urinary tract. Acta Physiol (Oxf) 2013; 207:40-52. [PMID: 23176070 DOI: 10.1111/apha.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/22/2011] [Accepted: 09/10/2012] [Indexed: 02/01/2023]
Abstract
The aim of this review is to describe the conceptual steps contributing to our current knowledge of purinergic signalling and to consider its involvement in the physiology and pathophysiology of the lower urinary tract. The voiding reflex involves ATP released as a cotransmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X3 receptors on suburothelial low threshold sensory nerve fibres. This mechanosensory transduction pathway also participates, via high threshold sensory nerve fibres, in the initiation of pain in bladder and ureter. Treatment of prostate and bladder cancer with ATP is effective against the primary tumours in animal models and human cell lines, via P2X5 and P2X7 receptors, and also improves the systemic symptoms associated with advanced malignancy. Acupuncture is widely used for the treatment of urinary disorders, and a purinergic hypothesis is discussed for the underlying mechanism.
Collapse
Affiliation(s)
- G. Burnstock
- Autonomic Neuroscience Centre; University College Medical School; London; UK
| |
Collapse
|
43
|
Baqi Y, Müller CE. Efficient and mild deamination procedure for 1-aminoanthraquinones yielding a diverse library of novel derivatives with potential biological activity. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Jacobson KA, Jayasekara MS, Costanzi S. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:WMTS68. [PMID: 23336097 PMCID: PMC3547624 DOI: 10.1002/wmts.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y(1-14)Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y(3), P2y(5), P2y(7-10)) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y(12-14) subtypes couple via Gα(i) to inhibit adenylate cyclase, while the remaining subtypes couple through Gα(q) to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5'-mono- and dinucleotides and nucleoside-5'-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y(12)R are already widely used as antithrombotics).
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, USA
| | - M.P. Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. 1A-20, Bethesda, Maryland 20892-0810, USA
| | - Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA
| |
Collapse
|
45
|
Roy S, Morayo Akande A, Large RJ, Webb TI, Camarasu C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA. Structure-activity relationships of a novel group of large-conductance Ca(2+)-activated K(+) (BK) channel modulators: the GoSlo-SR family. ChemMedChem 2012; 7:1763-9. [PMID: 22930560 DOI: 10.1002/cmdc.201200321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 01/20/2023]
Abstract
Opening up ion channels: We synthesised a series of anthraquinone analogues, called the GoSlo-SR family. Their effects on bladder smooth muscle BK channels were examined and, as shown, shifted voltage dependent activation >-100 mV (at 10 μM). They were more efficacious than NS11021 and could provide a new scaffold for the design of efficacious BK openers.
Collapse
Affiliation(s)
- Subhrangsu Roy
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Baqi Y, Müller CE. Convergent synthesis of the potent P2Y receptor antagonist MG 50-3-1 based on a regioselective Ullmann coupling reaction. Molecules 2012; 17:2599-615. [PMID: 22391596 PMCID: PMC6268193 DOI: 10.3390/molecules17032599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 12/22/2022] Open
Abstract
MG 50-3-1 (3, trisodium 1-amino-4-{4-[4-chloro-6-(2-sulfophenylamino)-1,3,5-triazin-2-ylamino]-2-sulfophenylamino}-9,10-dioxo-9,10-dihydroanthracene 2-sulfonate) is the most potent and selective antagonist (IC₅₀ 4.6 nM) for "P2Y₁-like" nucleotide-activated membrane receptors in guinea-pig taenia coli responsible for smooth muscle relaxation. Full characterization of the compound, however, e.g., at the human P2Y₁ receptor, which is a novel potential target for antithrombotic drugs, as well as other P2 receptor subtypes, has been hampered due to difficulties in synthesizing the compound in sufficient quantity. MG 50-3-1 would be highly useful as a biological tool for detailed investigation of signal transduction in the gut. We have now developed a convenient, fast, mild, and efficient convergent synthesis of 3 based on retrosynthetic analysis. A new, regioselective Ullmann coupling reaction under microwave irradiation was successfully developed to obtain 1-amino-4-(4-amino-2-sulfophenylamino)-9,10-dioxo-9,10-dihydro-anthracene 2-sulfonate (8). Four different copper catalysts (Cu, CuCl, CuCl₂, and CuSO₄) were investigated at different pH values of sodium phosphate buffer, and in water in the absence or presence of base. Results showed that CuSO₄ in water in the presence of triethylamine provided the best conditions for the regioselective Ullmann coupling reaction yielding the key intermediate compound 8. A new synthon (sodium 2-(4,6-dichloro-1,3,5-triazin-2-ylamino)benzenesulfonate, 13) which can easily be obtained on a gram scale was prepared, and 13 was successfully coupled with 8 yielding the target compound 3.
Collapse
Affiliation(s)
| | - Christa E. Müller
- Author to whom correspondence should be addressed; ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
47
|
Gallier F, Lallemand P, Meurillon M, Jordheim LP, Dumontet C, Périgaud C, Lionne C, Peyrottes S, Chaloin L. Structural insights into the inhibition of cytosolic 5'-nucleotidase II (cN-II) by ribonucleoside 5'-monophosphate analogues. PLoS Comput Biol 2011; 7:e1002295. [PMID: 22174667 PMCID: PMC3234209 DOI: 10.1371/journal.pcbi.1002295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/20/2011] [Indexed: 02/04/2023] Open
Abstract
Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues. Nucleotidase activity is part of a biological process that allows the cell to regulate the intracellular pools of nucleotides involved in many signaling pathways. During cancer therapy with cytotoxic nucleoside analogues, the role of cN-II is unclear. Therefore, the development of specific inhibitors against this enzyme is of great interest for understanding its implication in cancer biology and drug resistance. Ribonucleoside phosphonates are of major importance because they behave as bioisosteric analogues of the natural cN-II substrates and contain a chemically and enzymatically stable phosphorus-carbon linkage. Taking the advantages of docking methods, we predicted the inhibitory potential of these compounds. Their binding strength was explained by an impressive interaction network involving mainly three residues of the enzyme (acting as hydrophobic tweezers). These new characterized inhibitors will constitute a valuable tool for elucidating the role of cN-II in cancer cells and may be used in combination with cytotoxic nucleosidic drugs in order to increase their antitumor activity. Furthermore, the strategy taking into account the hydrophobic clamp for designing new inhibitors may be applied to other nucleotidases of the HAD family as two of the three identified residues are present in the substrate binding site of cytosolic 5′-nucleotidase III and 5′-deoxynucleotidase-I.
Collapse
Affiliation(s)
- Franck Gallier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Perrine Lallemand
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
| | - Maïa Meurillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Lars P. Jordheim
- Centre de Recherche de Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286 – Université Claude Bernard Lyon 1, Lyon, France
| | - Charles Dumontet
- Centre de Recherche de Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286 – Université Claude Bernard Lyon 1, Lyon, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
- * E-mail:
| |
Collapse
|
48
|
Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1. J Mol Biol 2011; 415:288-306. [PMID: 22100451 DOI: 10.1016/j.jmb.2011.10.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.
Collapse
|
49
|
Abstract
This review begins with background information about the discovery and conceptual steps contributing to our current knowledge of purinergic signalling. It then deals with several topics concerned with the physiology and pathophysiology of the lower urinary tract, including: the involvement in the voiding reflex of ATP released as a co-transmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X₃ receptors on suburothelial low-threshold sensory nerve fibres; this latter mechanosensory transduction pathway is also involved via high-threshold fibres in the initiation of pain. Treatment of prostate and bladder cancer with ATP not only appears to be effective against the primary tumours, but also improves the systemic symptoms associated with advanced malignancy. There is dual control of the tone of blood vessels: constriction by ATP released as a co-transmitter from sympathetic nerves and vasodilatation via ATP released from endothelial cells during shear stress acting on endothelial P2 receptors to release nitric oxide. A purinergic hypothesis is discussed for the mechanism underlying acupuncture, widely used for the treatment of urinary disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
50
|
Baqi Y, Hausmann R, Rosefort C, Rettinger J, Schmalzing G, Müller CE. Discovery of potent competitive antagonists and positive modulators of the P2X2 receptor. J Med Chem 2011; 54:817-30. [PMID: 21207957 DOI: 10.1021/jm1012193] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evaluation and optimization of anthraquinone derivatives related to Reactive Blue 2 at P2X2 receptors yielded the first potent and selective P2X2 receptor antagonists. The compounds were tested for inhibition of ATP (10 μM) mediated currents in Xenopus oocytes expressing the rat P2X2 receptor. The most potent antagonists were sodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-ylamino)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (63, PSB-10211, IC(50) 86 nM) and disodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (57, PSB-1011, IC(50) 79 nM). Compound 57 exhibited a competitive mechanism of action (pA(2) 7.49). It was >100-fold selective versus P2X4, P2X7, and several investigated P2Y receptor subtypes (P2Y(2,4,6,12)); selectivity versus P2X1 and P2X3 receptors was moderate (>5-fold). Compound 57 was >13-fold more potent at the homomeric P2X2 than at the heteromeric P2X2/3 receptor. Several anthraquinone derivatives were found to act as positive modulators of ATP effects at P2X2 receptors, for example, sodium 1-amino-4-(3-phenoxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (51, PSB-10129, EC(50) 489 nM), which led to about a 3-fold increase in the ATP-elicited current.
Collapse
Affiliation(s)
- Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|