1
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
2
|
Gong P, Tang X, Chen J, You H, Wang Y, Yu PK, Yu DY, Cense B. Deep learning-based label-free imaging of lymphatics and aqueous veins in the eye using optical coherence tomography. Sci Rep 2024; 14:6126. [PMID: 38480842 PMCID: PMC10937663 DOI: 10.1038/s41598-024-56273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
We demonstrate an adaptation of deep learning for label-free imaging of the micro-scale lymphatic vessels and aqueous veins in the eye using optical coherence tomography (OCT). The proposed deep learning-based OCT lymphangiography (DL-OCTL) method was trained, validated and tested, using OCT scans (23 volumetric scans comprising 19,736 B-scans) from 11 fresh ex vivo porcine eyes with the corresponding vessel labels generated by a conventional OCT lymphangiography (OCTL) method based on thresholding with attenuation compensation. Compared to conventional OCTL, the DL-OCTL method demonstrates comparable results for imaging lymphatics and aqueous veins in the eye, with an Intersection over Union value of 0.79 ± 0.071 (mean ± standard deviation). In addition, DL-OCTL mitigates the imaging artifacts in conventional OCTL where the OCT signal modelling was corrupted by the tissue heterogeneity, provides ~ 10 times faster processing based on a rough comparison and does not require OCT-related knowledge for correct implementation as in conventional OCTL. With these favorable features, DL-OCTL promises to improve the practicality of OCTL for label-free imaging of lymphatics and aqueous veins for preclinical and clinical imaging applications.
Collapse
Affiliation(s)
- Peijun Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Xiaolan Tang
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China
| | - Junying Chen
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China.
| | - Haijun You
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China
| | - Yuxing Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, 6009, Australia
- Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, 6009, Australia
- Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Barry Cense
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Jiang Y, Cai Z, Fu S, Gu H, Fu X, Zhu J, Ke Y, Jiang H, Cao W, Wu C, Xia C, Lui S, Song B, Gong Q, Ai H. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. NANO LETTERS 2023; 23:8505-8514. [PMID: 37695636 DOI: 10.1021/acs.nanolett.3c02214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weidong Cao
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Li M, Zhang Y, Ma J, Du J. Albumin-based nanoparticle for dual-modality imaging of the lymphatic system. RSC Adv 2023; 13:2248-2255. [PMID: 36741156 PMCID: PMC9838117 DOI: 10.1039/d2ra07414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels, lymph nodes, and lymphoid organs. The current understanding of the basic mechanism and framework of the lymphatic system is relatively limited and not ideal for exploring the function of the lymphatic system, diagnosing lymphatic system diseases, and controlling tumor metastasis. Imaging modalities for evaluating lymphatic system diseases mainly include lymphatic angiography, reactive dye lymphatic angiography, radionuclide lymphatic angiography, computed tomography, and ultrasonography. However, these are insufficient for clinical diagnosis. Some novel imaging methods, such as magnetic resonance imaging, positron emission computed tomography, single-photon emission computed tomography, contrast-enhanced ultrasonography, and near-infrared imaging with agents such as cyanine dyes, can reveal lymphatic system information more accurately and in detail. We fabricated an albumin-based fluorescent probe for dual-modality imaging of the lymphatic system. A near-infrared cyanine dye, IR-780, was absorbed into bovine serum albumin (BSA), which was covalently linked to a molecule of diethylenetriaminepentaacetic acid to chelate gadolinium Gd3+. The fabricated IR-780@BSA@Gd3+ nanocomposite demonstrates strong fluorescence and high near-infrared absorption and can be used as a T1 contrast agent for magnetic resonance imaging. In vivo dual-modality fluorescence and magnetic resonance imaging showed that IR-780@BSA@Gd3+ rapidly returned to the heart through the lymphatic circulation after it was injected into the toe webs of mice, facilitating good lymphatic imaging. The successful fabrication of the new IR-780@BSA@Gd3+ nanocomposite will facilitate the study of the mechanism and morphological structure of the lymphatic system.
Collapse
Affiliation(s)
- Mingze Li
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Yundong Zhang
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jinli Ma
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jianshi Du
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| |
Collapse
|
5
|
Knopf P, Stowbur D, Hoffmann SHL, Fransen MF, Schwenck J, Pichler BJ, Kneilling M. Preclinical Identification Of Tumor-Draining Lymph Nodes Using a Multimodal Non-invasive In vivo Imaging Approach. Mol Imaging Biol 2023; 25:606-618. [PMID: 36600172 PMCID: PMC10172276 DOI: 10.1007/s11307-022-01797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Resection of the tumor-draining lymph -node (TDLN) represents a standard method to identify metastasis for several malignancies. Interestingly, recent preclinical studies indicate that TDLN resection diminishes the efficacy of immune checkpoint inhibitor-based cancer immunotherapies. Thus, accurate preclinical identification of TDLNs is pivotal to uncovering the underlying immunological mechanisms. Therefore, we validated preclinically, and clinically available non-invasive in vivo imaging approaches for precise TDLN identification. PROCEDURES For visualization of the lymphatic drainage into the TDLNs by non-invasive in vivo optical imaging, we injected the optical imaging contrast agents Patent Blue V (582.7 g mol-1) and IRDye® 800CW polyethylene glycol (PEG; 25,000-60,000 g mol-1), subcutaneously (s.c.) in close proximity to MC38 adenocarcinomas at the right flank of experimental mice. For determination of the lymphatic drainage and the glucose metabolism in TDLNs by non-invasive in vivo PET/magnetic resonance imaging (PET/MRI), we injected the positron emission tomography (PET) tracer (2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) [181.1 g mol-1]) in a similar manner. For ex vivo cross-correlation, we isolated TDLNs and contralateral nontumor-draining lymph nodes (NTDLNs) and performed optical imaging, biodistribution, and autoradiography analysis. RESULTS The clinically well-established Patent Blue V was superior for intraoperative macroscopic identification of the TDLNs compared with IRDye® 800CW PEG but was not sensitive enough for non-invasive in vivo detection by optical imaging. Ex vivo Patent Blue V biodistribution analysis clearly identified the right accessory axillary and the proper axillary lymph node (LN) as TDLNs, whereas ex vivo IRDye® 800CW PEG completely failed. In contrast, functional non-invasive in vivo 18F-FDG PET/MRI identified a significantly elevated uptake exclusively within the ipsilateral accessory axillary TDLN of experimental mice and was able to differentiate between the accessory axillary and the proper LN. Ex vivo biodistribution and autoradiography confirmed our in vivo 18F-FDG PET/MRI results. CONCLUSIONS When taken together, our results demonstrate the feasibility of 18F-FDG-PET/MRI as a valid method for non-invasive in vivo, intraoperative, and ex vivo identification of the lymphatic drainage and glucose metabolism within the TDLNs. In addition, using Patent Blue V provides additive value for the macroscopic localization of the lymphatic drainage both visually and by ex vivo optical imaging analysis. Thus, both methods are valuable, easy to implement, and cost-effective for preclinical identification of the TDLN.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dimitri Stowbur
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center, Heidelberg, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany. .,Department of Dermatology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
6
|
Fu X, Fu S, Cai Z, Jin R, Xia C, Lui S, Song B, Gong Q, Ai H. Manganese porphyrin/ICG nanoparticles as magnetic resonance/fluorescent dual-mode probes for imaging of sentinel lymph node metastasis. J Mater Chem B 2022; 10:10065-10074. [PMID: 36454208 DOI: 10.1039/d2tb01885c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnosis of sentinel lymph node (SLN) metastasis and its status are key parameters for predicting overall disease prognosis. In this work, Pluronic F127 stabilized ICG/tetra(4-carboxyphenyl)porphyrin-Mn(III) (TCPP(Mn)) nanoparticles (F127-ICG/Mn NPs) as fluorescent/magnetic resonance (FL/MR) dual-modality probes were prepared. The application of F127-ICG/Mn NPs in SLN imaging was mainly evaluated from two perspectives: the difference between the normal LN and the metastatic SLN and the difference between micrometastasis and macrometastasis. Normal and metastatic SLNs and micro- and macro-SLN metastasis were successfully distinguished through fluorescence and MR imaging with the help of F127-ICG/Mn NPs. In contrast, for the ICG group, the micro- and macro-SLN metastasis status could not be differentiated by fluorescence imaging. Besides, the lymph nodes can be stained green by the F127-ICG/Mn NPs and clearly visualized by the naked eye. In general, F127-ICG/Mn NPs demonstrated the potential of the preoperative diagnosis of SLN metastasis and its status, as well as intraoperative navigation by green-stained SLN and NIR FL imaging. This work provides a reference for developing multimodal nanoparticles for SLN metastasis diagnosis.
Collapse
Affiliation(s)
- Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Bing Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
7
|
Lian Y, Li T, Wu N, Wu J, Tang Z. Lymphography method based on time-autocorrelated optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5390-5399. [PMID: 36425642 PMCID: PMC9664883 DOI: 10.1364/boe.470390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Lymphatic vessels are structurally similar to blood vessels, and the lymphatic fluid flowing within the lymphatic vessels is distributed throughout the body and plays a vital role in the human immune system. Visualization of the lymphatic vessels is clinically important in the diagnosis of tumor cell metastasis and related immune system diseases, but lymph is difficult to image due to its near-transparent nature and low flow rate. In this paper, we present a lymphography method based on time-autocorrelated optical coherence tomography. By using the minimum value difference of the autocorrelation function of the time-varying interference intensity between the lymph and the surrounding tissues, the non-invasive and high-sensitivity imaging of lymph vessels can be achieved. The method proposed in this paper has potential significance for the research and treatment of immune system diseases.
Collapse
Affiliation(s)
- Yi Lian
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Contributed equally to this work
| | - Tingfeng Li
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Contributed equally to this work
| | - Nanshou Wu
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Jiayi Wu
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhilie Tang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Laboratory of Quantum Engineering and Quantum Material,
South China Normal University, IMOT , Guangzhou 510006, China
| |
Collapse
|
8
|
Xu L, Zhang Q, Lu L, Shi Y, Liu L, Shen J, Chen Y. Unimolecular Nano-contrast Agent with Ultrahigh Relaxivity and Very Long Retention for Magnetic Resonance Lymphography. NANO LETTERS 2022; 22:4090-4096. [PMID: 35549497 DOI: 10.1021/acs.nanolett.2c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic resonance (MR) imaging is very important for noninvasive lymphography. However, the present MR contrast agents still cannot supply strong enough tissue contrast and long observation window. To improve the performance of contrast agents, we introduce one-dimensional unimolecular nanoparticles with a confined and compact poly(acrylic acid) core as nanoparticulate chelates of gadolinium ions. Thus, obtained nanoparticulate T1 contrast agents give r1 relaxivity as high as 136.3 mM-1·s-1 under 3.0 T. By injection at the footpad of mice, the contrast agents provide excellent contrast enhancement of lymphatic drainage and they may arrive at popliteal lymph nodes within 30 min and reside for more than 80 h. High performance of the present contrast agent is attributed to the confined and compact core of materials that increase hydration number, intershell water diffusion, and decrease rotational motion.
Collapse
Affiliation(s)
- Lu Xu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, 510275 Guangzhou, Guangdong, China
- Third Affiliated Hospital, Sun Yat-sen University, 510630 Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong, China
| |
Collapse
|
9
|
In Vitro Studies Regarding the Safety of Chitosan and Hyaluronic Acid-Based Nanohydrogels Containing Contrast Agents for Magnetic Resonance Imaging. Int J Mol Sci 2022; 23:ijms23063258. [PMID: 35328678 PMCID: PMC8955704 DOI: 10.3390/ijms23063258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the biocompatibility of contrast agents, such as gadolinium 1, 4, 7, 10 tetraazacyclo-dodecane tetraacetic acid (GdDOTA) and gadolinium dioctyl terephthalate (GdDOTP), encapsulated in a polymeric matrix containing chitosan and hyaluronic acid using RAW264.7 murine macrophages and human blood samples. The cell viability and cytotoxicity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, while cell cycle analysis was determined in RAW264.7 cells using flow cytometry. The mitochondrial membrane potential (MMP), hemolytic index, complement activation, and thrombogenic potential of gadolinium (Gd) containing nanohydrogels were measured by fluorometric and spectrophotometric methods. Taken together, our results demonstrate the good bio- and hemocompatibility of chitosan-based nanohydrogels with the RAW264.7 cell line and human blood cells, suggesting that these could be used as injectable formulations for the magnetic resonance imaging diagnostic of lymph nodes.
Collapse
|
10
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
11
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|
12
|
Lin LS, Chiu HC, Nishimura R, Fujiwara R, Chung CS. Computed tomographic lymphangiography via intra-metatarsal pad injection is feasible in dogs with chylothorax. Vet Radiol Ultrasound 2020; 61:435-443. [PMID: 32362026 DOI: 10.1111/vru.12865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphangiography can be useful for preoperative planning in chylothorax. Conventional ultrasound-guided intranodal injection can be difficult in some cases and is dependent upon operator skill. Alternative methods have been proposed to simplify the procedure, but their feasibility has not been sufficiently evaluated in clinical cases. The primary purpose of this multicenter, retrospective, descriptive study was to assess the feasibility and describe the clinical findings of CT lymphangiography by intrametatarsal pad injection in dogs with naturally occurring chylothorax. Twenty dogs were analyzed, and enhancement of thoracic ducts (TDs) was successful in 18 (90%) dogs within 5-14 min after initiating the injection, while successful enhancement of the lymphatic vessels cranial to the popliteal lymph nodes was seen in all dogs within 5 min after injection. The dose with good success to achieve TD enhancement was 1 mL/kg (concentration 350 mg I/kg). Only two dogs had mild discomfort after recovery from general anesthesia. Computed tomography lymphangiography by intrametatarsal pad injection is a feasible, easy, and safe procedure, which could provide adequate TD and cisterna chyli enhancement, identify TD number and cisterna chyli location and structure, and contribute to surgical planning.
Collapse
Affiliation(s)
- Lee-Shuan Lin
- Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,UniCore Animal Hospital, Taipei City, Taiwan
| | | | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | - Reina Fujiwara
- Department of Diagnostic Imaging, Veterinary Medical Center, The University of Tokyo, Japan
| | - Cheng-Shu Chung
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Dogra P, Butner JD, Nizzero S, Ruiz Ramírez J, Noureddine A, Peláez MJ, Elganainy D, Yang Z, Le AD, Goel S, Leong HS, Koay EJ, Brinker CJ, Cristini V, Wang Z. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1628. [PMID: 32314552 PMCID: PMC7507140 DOI: 10.1002/wnan.1628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug-loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size-dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non-invasive in vivo imaging modalities. This allows for visualization and quantification of the whole-body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non-invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state-of-the-art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - María J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Applied Physics Graduate Program, Rice University, Houston, Texas, USA
| | - Dalia Elganainy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anh-Dung Le
- Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Shreya Goel
- Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
14
|
Bisso S, Degrassi A, Brambilla D, Leroux JC. Poly(ethylene glycol)-alendronate coated nanoparticles for magnetic resonance imaging of lymph nodes. J Drug Target 2018; 27:659-669. [DOI: 10.1080/1061186x.2018.1545235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Bisso
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna Degrassi
- Department of Biology, Nerviano Medical Sciences Srl, Milan, Italy
| | - Davide Brambilla
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Fusser M, Øverbye A, Pandya AD, Mørch Ý, Borgos SE, Kildal W, Snipstad S, Sulheim E, Fleten KG, Askautrud HA, Engebraaten O, Flatmark K, Iversen TG, Sandvig K, Skotland T, Mælandsmo GM. Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release 2018; 293:183-192. [PMID: 30529259 DOI: 10.1016/j.jconrel.2018.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/07/2023]
Abstract
The effect of poly(2-ethyl-butyl cyanoacrylate) nanoparticles containing the cytotoxic drug cabazitaxel was studied in three breast cancer cell lines and one basal-like patient-derived xenograft model grown in the mammary fat pad of immunodeficient mice. Nanoparticle-encapsulated cabazitaxel had a much better efficacy than similar concentrations of free drug in the basal-like patient-derived xenograft and resulted in complete remission of 6 out of 8 tumors, whereas free drug gave complete remission only with 2 out of 9 tumors. To investigate the different efficacies obtained with nanoparticle-encapsulated versus free cabazitaxel, mass spectrometry quantification of cabazitaxel was performed in mice plasma and selected tissue samples. Nanoparticle-encapsulated drug had a longer circulation time in blood. There was approximately a three times higher drug concentration in tumor tissue 24 h after injection, and two times higher 96 h after injection of nanoparticles with drug compared to the free drug. The tissue biodistribution obtained after 24 h using mass spectrometry analyses correlates well with biodistribution data obtained using IVIS® Spectrum in vivo imaging of nanoparticles labeled with the fluorescent substance NR668, indicating that these data also are representative for the nanoparticle distribution. Furthermore, immunohistochemistry was used to estimate infiltration of macrophages into the tumor tissue following injection of nanoparticle-encapsulated and free cabazitaxel. The higher infiltration of anti-tumorigenic versus pro-tumorigenic macrophages in tumors treated with the nanoparticles might also contribute to the improved effect obtained with the nanoparticle-encapsulated drug. Tumor infiltration of pro-tumorigenic macrophages was four times lower when using nanoparticles containing cabazitaxel than when using particles without drug, and we speculate that the very good therapeutic efficacy obtained with our cabazitaxel-containing particles may be due to their ability to reduce the level of pro-tumorigenic macrophages in the tumor. In summary, encapsulation of cabazitaxel in poly(2-ethyl-butyl cyanoacrylate) nanoparticles seems promising for treatment of breast cancer.
Collapse
Affiliation(s)
- Markus Fusser
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anders Øverbye
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Abhilash D Pandya
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway; Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway; Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Karianne Giller Fleten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Hanne Arenberg Askautrud
- Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Olav Engebraaten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute for Clinical Medicine, The Medical Faculty, University of Oslo, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute for Clinical Medicine, The Medical Faculty, University of Oslo, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Tromsø, Tromsø, Norway
| |
Collapse
|
16
|
Gong P, Yu DY, Wang Q, Yu PK, Karnowski K, Heisler M, Francke A, An D, Sarunic MV, Sampson DD. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography. JOURNAL OF BIOPHOTONICS 2018; 11:e201800070. [PMID: 29920959 DOI: 10.1002/jbio.201800070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/14/2018] [Indexed: 05/08/2023]
Abstract
We employ optical coherence tomography (OCT) and optical coherence microscopy (OCM) to study conjunctival lymphatics in porcine eyes ex vivo. This study is a precursor to the development of in vivo imaging of the collecting lymphatics for potentially guiding and monitoring glaucoma filtration surgery. OCT scans at 1300 nm and higher-resolution OCM scans at 785 nm reveal the lymphatic vessels via their optical transparency. Equivalent signal characteristics are also observed from blood vessels largely free of blood (and devoid of flow) in the ex vivo conjunctiva. In our lymphangiography, vessel networks were segmented by compensating the depth attenuation in the volumetric OCT/OCM signal, projecting the minimum intensity in two dimensions and thresholding to generate a three-dimensional vessel volume. Vessel segmentation from multiple locations of a range of porcine eyes (n = 21) enables visualization of the vessel networks and indicates the varying spatial distribution of patent lymphatics. Such visualization provides a new tool to investigate conjunctival vessels in tissue ex vivo without need for histological tissue processing and a valuable reference on vessel morphology for the in vivo label-free imaging studies of lymphatics to follow.
Collapse
Affiliation(s)
- Peijun Gong
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Qiang Wang
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Karol Karnowski
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Morgan Heisler
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Ashley Francke
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Dong An
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
- University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
17
|
Magnetic Resonance Lymphography at 9.4 T Using a Gadolinium-Based Nanoparticle in Rats: Investigations in Healthy Animals and in a Hindlimb Lymphedema Model. Invest Radiol 2018; 52:725-733. [PMID: 28678084 DOI: 10.1097/rli.0000000000000398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Magnetic resonance lymphography (MRL) in small animals is a promising but challenging tool in preclinical lymphatic research. In this study, we compared the gadolinium (Gd)-based nanoparticle AGuIX with Gd-DOTA for interstitial MRL in healthy rats and in a chronic rat hindlimb lymphedema model. MATERIALS AND METHODS A comparative study with AGuIX and Gd-DOTA for interstitial MRL was performed in healthy Lewis rats (n = 6). For this purpose, 75 μL of 3 mM AGuIX (containing 30 mM Gd-DOTA side residues) and 75 μL 30 mM Gd-DOTA were injected simultaneously in the right and left hindlimbs. Repetitive high-resolution, 3-dimensional time-of-flight gradient recalled echo MRL sequences were acquired over a period of 90 minutes using a 9.4 T animal scanner. Gadofosveset-enhanced MR angiography and surgical dissection after methylene blue injection served as supportive imaging techniques. In a subsequent proof-of-principle study, AGuIX-based MRL was investigated in a hindlimb model of chronic lymphedema (n = 4). Lymphedema of the right hindlimbs was induced by means of popliteal and inguinal lymphadenectomy and irradiation with 20 Gy. The nonoperated left hindlimbs served as intraindividual controls. Six, 10, and 14 weeks after lymphadenectomy, MRL investigations were performed to objectify lymphatic reorganization. Finally, skin samples of the lymphedematous and the contralateral control hindlimbs were analyzed by means of histology and immunohistochemistry. RESULTS AGuIX-based MRL resulted in high-resolution anatomical depiction of the rodent hindlimb lymphatic system. Signal-to-noise ratio and contrast-to-noise ratio of the popliteal lymph node were increased directly after injection and remained significantly elevated for up to 90 minutes after application. AGuIX provided significantly higher and prolonged signal intensity enhancement as compared with Gd-DOTA. Furthermore, AGuIX-based MRL demonstrated lymphatic regeneration in the histopathologically verified chronic lymphedema model. Collateral lymphatic vessels were detectable 6 weeks after lymphadenectomy. CONCLUSIONS This study demonstrates that AGuIX is a suitable contrast agent for preclinical interstitial MRL in rodents. AGuIX yields anatomical imaging of lymphatic vessels with diameters greater than 200 μm. Moreover, it resides in the lymphatic system for a prolonged time. AGuIX may therefore facilitate high-resolution MRL-based analyses of the lymphatic system in rodents.
Collapse
|
18
|
Kim H, Chang JH. Multimodal photoacoustic imaging as a tool for sentinel lymph node identification and biopsy guidance. Biomed Eng Lett 2018; 8:183-191. [PMID: 30603202 PMCID: PMC6208518 DOI: 10.1007/s13534-018-0068-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
As a minimally invasive method, sentinel lymph node biopsy (SLNB) in conjunction with guidance methods is the standard method to determine cancer metastasis in breast. The desired guidance methods for SLNB should be capable of precise SLN localization for accurate diagnosis of micro-metastases at an early stage of cancer progression and thus facilitate reducing the number of SLN biopsies for minimal surgical complications. For this, high sensitivity to the administered dyes, high spatial and contrast resolutions, deep imaging depth, and real-time imaging capability are pivotal requirements. Currently, various methods have been used for SLNB guidance, each with their own advantages and disadvantages, but no methods meet the requirements. In this review, we discuss the conventional SLNB guidance methods in this perspective. In addition, we focus on the role of the PA imaging modality on real-time SLN identification and biopsy guidance. In particular, PA-based hybrid imaging methods for precise SLN identification and efficient biopsy guidance are introduced, and their unique features, advantages, and disadvantages are discussed.
Collapse
Affiliation(s)
- Haemin Kim
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
| | - Jin Ho Chang
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
| |
Collapse
|
19
|
Kraft JC, Treuting PM, Ho RJY. Indocyanine green nanoparticles undergo selective lymphatic uptake, distribution and retention and enable detailed mapping of lymph vessels, nodes and abnormalities. J Drug Target 2018; 26:494-504. [PMID: 29388438 DOI: 10.1080/1061186x.2018.1433681] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distributed network of lymph vessels and nodes in the body, with its complex architecture and physiology, presents a major challenge for whole-body lymphatic-targeted drug delivery. To gather physiological and pathological information of the lymphatics, near-infrared (NIR) fluorescence imaging of NIR fluorophores is used in clinical practice due to its tissue-penetrating optical radiation (700-900 nm) that safely provides real-time high-resolution in vivo images. However, indocyanine green (ICG), a common clinical NIR fluorophore, is unstable in aqueous environments and under light exposure, and its poor lymphatic distribution and retention limits its use as a NIR lymphatic tracer. To address this, we investigated in mice the distribution pathways of a novel nanoparticle formulation that stabilises ICG and is optimised for lymphatic drug delivery. From the subcutaneous space, ICG particles provided selective lymphatic uptake, lymph vessel and node retention, and extensive first-pass lymphatic distribution of ICG, enabling 0.2 mm and 5-10 cell resolution of lymph vessels, and high signal-to-background ratios for lymphatic vessel and node networks. Soluble (free) ICG readily dissipated from lymph vessels local to the injection site and absorbed into the blood. These unique characteristics of ICG particles could enable mechanistic studies of the lymphatics and diagnosis of lymphatic abnormalities.
Collapse
Affiliation(s)
- John C Kraft
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| | - Piper M Treuting
- b Department of Comparative Medicine , University of Washington , Seattle , WA , USA
| | - Rodney J Y Ho
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA.,c Department of Bioengineering , University of Washington , Seattle , WA , USA
| |
Collapse
|
20
|
Abstract
Thin section histology is limited in providing 3D structural information, particularly of the intricate morphology of the vasculature. Availability of high spatial resolution imaging for thick samples, would overcome the restriction dictated by low light penetration. Our study aimed at optimizing the procedure for efficient and affordable tissue clearing, along with an appropriate immunofluorescence labeling that will be applicable for high resolution imaging of blood and lymphatic vessels. The new procedure, termed whole organ blood and lymphatic vessels imaging (WOBLI), is based on two previously reported methods, CLARITY and ScaleA2. We used this procedure for the analysis of isolated whole ovary, uterus, lung and liver. These organs were subjected to passive clearing, following fixation, immunolabeling and embedding in hydrogel. Cleared specimens were immersed in ScaleA2 solution until transparency was achieved and imaged using light sheet microscopy. We demonstrate that WOBLI allows detailed analysis and generation of structural information of the lymphatic and blood vasculature from thick slices and more importantly, from whole organs. We conclude that WOBLI offers the advantages of morphology and fluorescence preservation with efficient clearing. Furthermore, WOBLI provides a robust, cost-effective method for generation of transparent specimens, allowing high resolution, 3D-imaging of blood and lymphatic vessels networks.
Collapse
|
21
|
Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery. Biosci Rep 2017; 37:BSR20160619. [PMID: 29180378 PMCID: PMC5741830 DOI: 10.1042/bsr20160619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
The use of ultrasound has gained great interest for nucleic acids delivery. Ultrasound can reach deep tissues in non-invasive manner. The process of sonoporation is based on the use of low-frequency ultrasound combined with gas-filled microbubbles (MBs) allowing an improved delivery of molecules including nucleic acids in the insonified tissue. For in vivo gene transfer, the engineering of cationic MBs is essential for creating strong electrostatic interactions between MBs and nucleic acids leading to their protection against nucleases degradation and high concentration within the target tissue. Cationic MBs must be stable enough to withstand nucleic acids interaction, have a good size distribution for in vivo administration, and enough acoustic activity to be detected by echography. This review aims to summarize the basic principles of ultrasound-based delivery and new knowledge acquired in these recent years about this method. A focus is made on gene delivery by discussing reported studies made with cationic MBs including ours. They have the ability for efficient delivery of plasmid DNA (pDNA), mRNA or siRNA. Last, we discuss about the key challenges that have to be faced for a fine use of this delivery system.
Collapse
|
22
|
Santiesteban DY, Dumani DS, Profili D, Emelianov SY. Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents. NANO LETTERS 2017; 17:5984-5989. [PMID: 28926263 DOI: 10.1021/acs.nanolett.7b02105] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have developed laser-activated perfluorocarbon nanodroplets containing copper sulfide nanoparticles (CuS NPs) for contrast-enhanced ultrasound and photoacoustic imaging. As potential clinical contrast agents, CuS NPs have favorable properties including biocompatibility, biodegradability, and enhance contrast in photoacoustic images at clinically relevant depths. However, CuS NPs are not efficient optical absorbers when compared to plasmonic nanoparticles and therefore, contrast enhancement with CuS NPs is limited, requiring high concentrations to generate images with sufficient signal-to-noise ratio. We have combined CuS NPs with laser-activated perfluorocarbon nanodroplets (PFCnDs) to achieve enhanced photoacoustic contrast and, more importantly, ultrasound contrast while retaining the favorable clinical characteristics of CuS NPs. The imaging characteristics of synthesized CuS-PFCnD constructs were first tested in tissue-mimicking phantoms and then in in vivo murine models. The results demonstrate that CuS-PFCnDs enhance contrast in photoacoustic (PA) and ultrasound (US) imaging. Upon systemic administration in vivo, CuS-PFCnDs remain stable and their unique vaporization provides sufficient PA/US contrast that can be further exploited for contrast-enhanced background-free imaging. The conducted studies provide a solid foundation for further development of CuS-PFCnDs as PA/US diagnostic and eventually therapeutic agents for clinical applications.
Collapse
Affiliation(s)
- Daniela Y Santiesteban
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine , Atlanta, Georgia 30332, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Diego S Dumani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine , Atlanta, Georgia 30332, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Daniel Profili
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine , Atlanta, Georgia 30332, United States
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine , Atlanta, Georgia 30332, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Wall MA, Shaffer TM, Harmsen S, Tschaharganeh DF, Huang CH, Lowe SW, Drain CM, Kircher MF. Chelator-Free Radiolabeling of SERRS Nanoparticles for Whole-Body PET and Intraoperative Raman Imaging. Am J Cancer Res 2017; 7:3068-3077. [PMID: 28839464 PMCID: PMC5566106 DOI: 10.7150/thno.18019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
A single contrast agent that offers whole-body non-invasive imaging along with the superior sensitivity and spatial resolution of surface-enhanced resonance Raman scattering (SERRS) imaging would allow both pre-operative mapping and intraoperative imaging and thus be highly desirable. We hypothesized that labeling our recently reported ultrabright SERRS nanoparticles with a suitable radiotracer would enable pre-operative identification of regions of interest with whole body imaging that can be rapidly corroborated with a Raman imaging device or handheld Raman scanner in order to provide high precision guidance during surgical procedures. Here we present a straightforward new method that produces radiolabeled SERRS nanoparticles for combined positron emission tomography (PET)-SERRS tumor imaging without requiring the attachment of molecular chelators. We demonstrate the utility of these PET-SERRS nanoparticles in several proof-of-concept studies including lymph node (LN) tracking, intraoperative guidance for LN resection, and cancer imaging after intravenous injection. We anticipate that the radiolabeling method presented herein can be applied generally to nanoparticle substrates of various materials by first coating them with a silica shell and then applying the chelator-free protocol.
Collapse
|
24
|
Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulyás B, Padmanabhan P. Theranostic Probes for Targeting Tumor Microenvironment: An Overview. Int J Mol Sci 2017; 18:E1036. [PMID: 28492519 PMCID: PMC5454948 DOI: 10.3390/ijms18051036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Long gone is the time when tumors were thought to be insular masses of cells, residing independently at specific sites in an organ. Now, researchers gradually realize that tumors interact with the extracellular matrix (ECM), blood vessels, connective tissues, and immune cells in their environment, which is now known as the tumor microenvironment (TME). It has been found that the interactions between tumors and their surrounds promote tumor growth, invasion, and metastasis. The dynamics and diversity of TME cause the tumors to be heterogeneous and thus pose a challenge for cancer diagnosis, drug design, and therapy. As TME is significant in enhancing tumor progression, it is vital to identify the different components in the TME such as tumor vasculature, ECM, stromal cells, and the lymphatic system. This review explores how these significant factors in the TME, supply tumors with the required growth factors and signaling molecules to proliferate, invade, and metastasize. We also examine the development of TME-targeted nanotheranostics over the recent years for cancer therapy, diagnosis, and anticancer drug delivery systems. This review further discusses the limitations and future perspective of nanoparticle based theranostics when used in combination with current imaging modalities like Optical Imaging, Magnetic Resonance Imaging (MRI) and Nuclear Imaging (Positron Emission Tomography (PET) and Single Photon Emission Computer Tomography (SPECT)).
Collapse
Affiliation(s)
- Musafar Gani Sikkandhar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Anu Maashaa Nedumaran
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Roopa Ravichandar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Induja Santhakumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Zheng Cong Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
25
|
Gong P, Es’haghian S, Harms KA, Murray A, Rea S, Wood FM, Sampson DD, McLaughlin RA. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:4886-4898. [PMID: 28018713 PMCID: PMC5175539 DOI: 10.1364/boe.7.004886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/16/2016] [Accepted: 10/17/2016] [Indexed: 05/08/2023]
Abstract
We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks.
Collapse
Affiliation(s)
- Peijun Gong
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Shaghayegh Es’haghian
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Karl-Anton Harms
- Burns Service of Western Australia, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Alexandra Murray
- Burns Service of Western Australia, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Suzanne Rea
- Burns Service of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Burn Injury Research Unit, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - Fiona M. Wood
- Burns Service of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Burn Injury Research Unit, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Liu Q, Zhou M, Li P, Ku G, Huang G, Li C, Song S. 64 CuS-labeled nanoparticles: a new sentinel-lymph-node-mapping agent for PET-CT and photoacoustic tomography. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:475-481. [PMID: 27523742 DOI: 10.1002/cmmi.1709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 01/13/2023]
Abstract
Determining sentinel lymph node (SLN) status is critical to cancer staging and treatment decisions. Currently, in clinical practice, 99m Tc-radiocolloid-mediated planar scintigraphy and single-photon emission computed tomography (SPECT) are used to guide the biopsy and resection of SLNs. Recently, an emerging technique that combines positron emission tomography (PET) and photoacoustic tomography (PAT; PET-PAT) may offer accurate information in detecting SLNs. Herein, we report a kind of 64 CuS-labeled nanoparticle (64 CuS-NP) for the detection of SLNs with PET-PAT. We subcutaneously injected 64 CuS-NPs into the rats' forepaw pads. After 24 h, the rats' first draining axillary lymph nodes (i.e. the SLNs) could be clearly visualized with micro-PET (μPET)-CT. Rats were sacrificed after μPET-CT imaging, their axillary lymph nodes were surgically identified, and then PAT was employed to discover 64 CuS-NP-avid SLNs, which were embedded inside tissues. Biodistribution, autoradiography, and copper staining analyses confirmed the SLNs' high uptake of 64 CuS-NPs. Our study indicates that 64 CuS-NPs are a promising dual-function agent for both PET-CT and PAT and could be used with multi-modal imaging strategies such as PET-PAT to identify SLNs in a clinical setting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qiufang Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Min Zhou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, TX, USA
| | - Panli Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Geng Ku
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, TX, USA
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, TX, USA
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| |
Collapse
|
27
|
Dudani JS, Buss CG, Akana RT, Kwong GA, Bhatia SN. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2919-2928. [PMID: 29706854 PMCID: PMC5914179 DOI: 10.1002/adfm.201505142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered 'synthetic biomarkers' that respond to dysregulated proteases to produce a urinary signal. These assays, however, have been limited to chronic diseases or acute diseases initiated at the time of diagnostic administration. Here, we formulate a subcutaneously administered sustained release system by using small PEG scaffolds (<10 nm) to promote diffusion into the bloodstream over a day. We demonstrate the utility of a thrombin sensor to identify thrombosis and an MMP sensor to measure inflammation. Finally, we developed a companion paper ELISA using printed wax barriers with nanomolar sensitivity for urinary reporters for point-of-care detection. Our approach for subcutaneous delivery of nanosensors combined with urinary paper analysis may enable facile monitoring of at-risk patients.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin G. Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Reid T.K. Akana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
28
|
Liu Z, Rong P, Yu L, Zhang X, Yang C, Guo F, Zhao Y, Zhou K, Wang W, Zeng W. Dual-Modality Noninvasive Mapping of Sentinel Lymph Node by Photoacoustic and Near-Infrared Fluorescent Imaging Using Dye-Loaded Mesoporous Silica Nanoparticles. Mol Pharm 2015; 12:3119-28. [PMID: 26132789 DOI: 10.1021/mp500698b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhiguo Liu
- School
of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Pengfei Rong
- Department
of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Lun Yu
- School
of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Xintong Zhang
- School
of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Cejun Yang
- Department
of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Fei Guo
- Department
of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Yanzhong Zhao
- Department
of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Kechao Zhou
- State
Key Lab Powder Met, Central South University, Changsha, 410083, P. R. China
| | - Wei Wang
- Department
of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Wenbin Zeng
- School
of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
29
|
Niu G, Chen X. Lymphatic imaging: focus on imaging probes. Am J Cancer Res 2015; 5:686-97. [PMID: 25897334 PMCID: PMC4402493 DOI: 10.7150/thno.11862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023] Open
Abstract
In view of the importance of sentinel lymph nodes (SLNs) in tumor staging and patient management, sensitive and accurate imaging of SLNs has been intensively explored. Along with the advance of the imaging technology, various contrast agents have been developed for lymphatic imaging. In this review, the lymph node imaging agents were summarized into three groups: tumor targeting agents, lymphatic targeting agents and lymphatic mapping agents. Tumor targeting agents are used to detect metastatic tumor tissue within LNs, lymphatic targeting agents aim to visualize lymphatic vessels and lymphangionesis, while lymphatic mapping agents are mainly for SLN detection during surgery after local administration. Coupled with various signal emitters, these imaging agents work with single or multiple imaging modalities to provide a valuable way to evaluate the location and metastatic status of SLNs.
Collapse
|
30
|
Lee ES, Kim TS, Kim SK. Current status of optical imaging for evaluating lymph nodes and lymphatic system. Korean J Radiol 2015; 16:21-31. [PMID: 25598672 PMCID: PMC4296273 DOI: 10.3348/kjr.2015.16.1.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022] Open
Abstract
Optical imaging techniques use visual and near infrared rays. Despite their considerably poor penetration depth, they are widely used due to their safe and intuitive properties and potential for intraoperative usage. Optical imaging techniques have been actively investigated for clinical imaging of lymph nodes and lymphatic system. This article summarizes a variety of optical tracers and techniques used for lymph node and lymphatic imaging, and reviews their clinical applications. Emerging new optical imaging techniques and their potential are also described.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| | - Tae Sung Kim
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
31
|
Dewitte H, Vanderperren K, Haers H, Stock E, Duchateau L, Hesta M, Saunders JH, De Smedt SC, Lentacker I. Theranostic mRNA-loaded microbubbles in the lymphatics of dogs: implications for drug delivery. Theranostics 2015; 5:97-109. [PMID: 25553101 PMCID: PMC4265751 DOI: 10.7150/thno.10298] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
Microbubbles have shown potential as intralymphatic ultrasound contrast agents while nanoparticle-loaded microbubbles are increasingly investigated for ultrasound-triggered drug and gene delivery. To explore whether mRNA-nanoparticle loaded microbubbles could serve as theranostics for detection of and mRNA transfer to the lymph nodes, we investigate the behavior of unloaded and mRNA-loaded microbubbles using contrast-enhanced ultrasound imaging after subcutaneous injection in dogs. Our results indicate that both types of microbubbles are equally capable of rapidly entering the lymph vessels and nodes upon injection, and novel, valuable and detailed information on the lymphatic structure in the animals could be obtained. Furthermore, additional observations were made regarding the dynamics of microbubble lymph node uptake. Importantly, neither the microbubble migration distance within the lymphatics, nor the observed contrast signal intensity was influenced by mRNA-loading. Although further optimization of acoustic parameters will be needed, this could represent a first step towards ultrasound-guided, ultrasound-triggered intranodal mRNA delivery using these theranostic microbubbles.
Collapse
|
32
|
Martel C, Yao J, Huang CH, Zou J, Randolph GJ, Wang LV. Photoacoustic lymphatic imaging with high spatial-temporal resolution. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:116009. [PMID: 25408958 PMCID: PMC4407768 DOI: 10.1117/1.jbo.19.11.116009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.
Collapse
Affiliation(s)
- Catherine Martel
- Washington University School of Medicine, Department of Pathology and Immunology, 425 S Euclid, St. Louis, Missouri 63110, United States
- Université de Montréal, Faculty of Medicine; Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Address all correspondence to: Catherine Martel, E-mail: ; Gwendalyn J. Randolph, E-mail: ; Lihong V. Wang, E-mail:
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Chih-Hsien Huang
- Texas A&M University, Department of Electrical and Computer Engineering, College Station, Texas 77843-3128, United States
| | - Jun Zou
- Texas A&M University, Department of Electrical and Computer Engineering, College Station, Texas 77843-3128, United States
| | - Gwendalyn J. Randolph
- Washington University School of Medicine, Department of Pathology and Immunology, 425 S Euclid, St. Louis, Missouri 63110, United States
- Address all correspondence to: Catherine Martel, E-mail: ; Gwendalyn J. Randolph, E-mail: ; Lihong V. Wang, E-mail:
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, 1 Brookings Drive, St. Louis, Missouri 63130, United States
- Address all correspondence to: Catherine Martel, E-mail: ; Gwendalyn J. Randolph, E-mail: ; Lihong V. Wang, E-mail:
| |
Collapse
|
33
|
Hedrick MS, Hansen K, Wang T, Lauridsen H, Thygesen J, Pedersen M. Visualising lymph movement in anuran amphibians with computed tomography. J Exp Biol 2014; 217:2990-3. [DOI: 10.1242/jeb.106906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymph flux rates in anuran amphibians are high relative to those of other vertebrates owing to ‘leaky’ capillaries and a high interstitial compliance. Lymph movement is accomplished primarily by specialised lymph muscles and lung ventilation that move lymph through highly compartmentalised lymph sacs to the dorsally located lymph hearts, which are responsible for pumping lymph into the circulatory system; however, it is unclear how lymph reaches the lymph hearts. We used computed tomography (CT) to visualise an iodinated contrast agent, injected into various lymph sacs, through the lymph system in cane toads (Rhinella marina). We observed vertical movement of contrast agent from lymph sacs as predicted, but the precise pathways were sometimes unexpected. These visual results confirm predictions regarding lymph movement, but also provide some novel findings regarding the pathways for lymph movement and establish CT as a useful technique for visualising lymph movement in amphibians.
Collapse
Affiliation(s)
- Michael S. Hedrick
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kasper Hansen
- Comparative Medicine Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Skejby, DK-8200, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biosciences, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Henrik Lauridsen
- Comparative Medicine Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Skejby, DK-8200, Denmark
| | - Jesper Thygesen
- Department of Clinical Engineering, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Skejby, DK-8200, Denmark
| |
Collapse
|
34
|
Sevick-Muraca EM, Kwon S, Rasmussen JC. Emerging lymphatic imaging technologies for mouse and man. J Clin Invest 2014; 124:905-14. [PMID: 24590275 DOI: 10.1172/jci71612] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lymphatic circulatory system has diverse functions in lipid absorption, fluid homeostasis, and immune surveillance and responds dynamically when presented with infection, inflammation, altered hemodynamics, and cancer. Visualization of these dynamic processes in human disease and animal models of disease is key to understanding the contributory role of the lymphatic circulatory system in disease and to devising effective therapeutic strategies. Longitudinal, non-destructive, and repeated imaging is necessary to expand our understanding of disease progression and regression in basic science and clinical investigations. Herein we summarize recent advances in in vivo lymphatic imaging employing magnetic resonance, computed tomography, lymphoscintigraphy, and emerging optical techniques with respect to their contributory roles in both basic science and clinical research investigations.
Collapse
|
35
|
Yousefi S, Zhi Z, Wang RK. Label-free optical imaging of lymphatic vessels within tissue beds in vivo. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2014; 20:6800510. [PMID: 25642129 PMCID: PMC4307825 DOI: 10.1109/jstqe.2013.2278073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis.
Collapse
Affiliation(s)
- Siavash Yousefi
- Bioengineering Department, University of Washington, Seattle, WA 98195 USA
| | - Zhongwei Zhi
- Bioengineering Department, University of Washington, Seattle, WA 98195 USA
| | - Ruikang K. Wang
- Bioengineering and Ophthalmology Department, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
36
|
Kjellman P, in 't Zandt R, Fredriksson S, Strand SE. Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1089-95. [PMID: 24502988 DOI: 10.1016/j.nano.2014.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/12/2013] [Accepted: 01/25/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED This study investigates the retention of different sized ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) in lymph nodes of healthy rats, after subcutaneous injection. Three distinct sizes (15, 27 and 58 nm) of USPIOs were synthesized by only varying the thickness of the polymer coating surrounding the 10 nm cores. Particles were injected on the dorsal side of the hind paw of rats and the uptake in the popliteal, inguinal and iliac lymph nodes was monitored. The data reveal that the 15 nm particle accumulates more rapidly and to a higher amount in the first lymph node than the two larger particles. A clear contrast between the first and second lymph nodes could be detected indicating that even the rather small difference in particle size (15-58 nm) tested has significant effects on the retention of USPIOs in the lymph nodes. FROM THE CLINICAL EDITOR From the Clinical Editor: In this study, the size-dependence of USPIO particles is studied from the standpoint of their accumulation characteristics in lymph nodes. The authors conclude that the smaller particles accumulated faster and at a higher concentration than the two larger sizes studied.
Collapse
Affiliation(s)
- Pontus Kjellman
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden; GeccoDots AB, Lund, Sweden.
| | - René in 't Zandt
- GeccoDots AB, Lund, Sweden; Lund University Bioimaging Center, Lund University, Lund, Sweden
| | | | - Sven-Erik Strand
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Peebo BB, Fagerholm P, Lagali N. An in vivo method for visualizing flow dynamics of cells within corneal lymphatics. Lymphat Res Biol 2014; 11:93-100. [PMID: 23772718 DOI: 10.1089/lrb.2012.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monitoring the trafficking of specific cell populations within lymphatics could improve our understanding of processes such as transplant rejection and cancer metastasis. Current methods, however, lack appropriate image resolution for single-cell analysis or are incompatible with in vivo and longitudinal monitoring of lymphatics in their native state. We therefore sought to achieve high-resolution live imaging of the dynamic behavior of cells within lymph vessels in the rat cornea. METHODS/RESULTS Inflammatory angiogenesis was induced by suture placement in corneas of Wistar rats. Pre- and up to 3 weeks post-induction, corneas were noninvasively examined by laser-scanning in vivo corneal confocal microscopy (IVCM) using only endogenous contrast. Lymph vessels and the cells harbored therein were documented by still images, real-time video, and 3D confocal stack reconstruction of live tissue. In vivo, conjunctival and corneal lymphatics were morphologically distinct, those with corneal location being one-quarter the diameter of those in the conjunctiva (p<0.001). Cells were recruited to initially empty pre-existing lymph vessels during the first day of inflammation and maintained a dense occupation of vessels for up to 7 days. A diverse population of cells (diameter range: 1.5-27.5 μm) with varying morphology was observed, and exhibited variable flow patterns and were transported singly and in clusters of at least 2-9 adherent cells. CONCLUSIONS The in vivo microscopic technique presented enables lymph vessels and cell trafficking to be studied in high resolution in a minimally-perturbed physiologic milieu.
Collapse
Affiliation(s)
- Beatrice Bourghardt Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
38
|
Sun Y, Peng J, Feng W, Li F. Upconversion nanophosphors Naluf₄:Yb,Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT. Am J Cancer Res 2013; 3:346-53. [PMID: 23650481 PMCID: PMC3645060 DOI: 10.7150/thno.5137] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/09/2012] [Indexed: 12/05/2022] Open
Abstract
Lanthanide upconversion nanophosphor (UCNP) has attracted increasing attention for potential applications in bioimaging due to its excellence in deep and high contrast imaging. To date, most upconversion imaging applications were demonstrated in dark surroundings without ambient light for higher signal-to-noise ratio, which hindered the application of optical imaging guided surgery. Herein, the new established NaLuF4-based UCNP (NaLuF4:Yb,Tm, ~17 nm) with bright upconversion emission around 800 nm as imaging signal was used to realize imaging under ambient light to provide more convenient for clinician. Moreover, due to the existance of heavy element lutetium (Lu) in the host lattice, the NaLuF4:Yb,Tm nanoparticles can also be used as an X-ray CT imaging agent to enhance the imaging depth and in vivo imaging resolution.
Collapse
|
39
|
Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS, Rinderknecht M, Leroux JC, Detmar M. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 2013; 34:5128-37. [PMID: 23566803 DOI: 10.1016/j.biomaterials.2013.03.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 12/22/2022]
Abstract
Tumor lymphangiogenesis promotes metastatic cancer spread to lymph nodes and beyond. However, the potential remodeling and functionality of tumor-draining lymphatic vessels has remained unclear. Thus, we aimed to develop non-invasive imaging methods for repeated quantitative imaging of lymphatic drainage and of contractile collecting lymphatic vessel function in mice, with colloidal near-infrared (NIR) tracers and a custom fluorescence stereomicroscope specially adapted for NIR sensitive imaging. Using these tools, we quantitatively determined pulse rates and valvular function of collecting lymphatic vessels with high resolution. Unexpectedly, we found that tumor-draining lymphatic vessels in a melanoma footpad model initially were dilated but remained functional, despite lower pulse rates. In two independent tumor models, impaired lymphatic function was detected once metastases were present in draining lymph nodes. Importantly, we found that lymphatic dysfunction, induced by metastatic tumor spread to sentinel lymph nodes, can lead to a rerouting of lymphatic flow away from the metastatic lymph node, via collateral lymphatic vessels, to alternate lymph nodes. These findings might have important clinical implications for the procedure of sentinel lymph node mapping that represents the standard of care for determining prognosis and treatment of melanoma and breast cancer patients.
Collapse
Affiliation(s)
- Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angew Chem Int Ed Engl 2012; 51:12721-6. [PMID: 23136130 PMCID: PMC4486261 DOI: 10.1002/anie.201205271] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | | | - Isthier Chaudhury
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois at Urbana-Champaign
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, IL, 61801 (USA)
| |
Collapse
|
41
|
Tang L, Yang X, Dobrucki LW, Chaudhury I, Yin Q, Yao C, Lezmi S, Helferich WG, Fan TM, Cheng J. Aptamer-Functionalized, Ultra-Small, Monodisperse Silica Nanoconjugates for Targeted Dual-Modal Imaging of Lymph Nodes with Metastatic Tumors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205271] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Kassis T, Kohan AB, Weiler MJ, Nipper ME, Cornelius R, Tso P, Dixon JB. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:086005. [PMID: 23224192 PMCID: PMC3413897 DOI: 10.1117/1.jbo.17.8.086005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.
Collapse
Affiliation(s)
- Timothy Kassis
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang X, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang L, Zhang G, Zhu L, Gao H, Choi HS, Niu G, Chen X. Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 2012; 33:4370-8. [PMID: 22425023 DOI: 10.1016/j.biomaterials.2012.02.060] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
Abstract
The imaging of sentinel lymph nodes (SLNs), the first defense against primary tumor metastasis, has been considered as an important strategy for noninvasive tracking tumor metastasis in clinics. In this study, we report the development and application of mesoporous silica-based triple-modal nanoprobes that integrate multiple functional moieties to facilitate near-infrared optical, magnetic resonance (MR) and positron emission tomography (PET) imaging. After embedding near-infrared dye ZW800, the nanoprobe was labeled with T(1) contrast agent Gd(3+) and radionuclide (64)Cu through chelating reactions. High stability and long intracellular retention time of the nanoprobes was confirmed by in vitro characterization, which facilitate long-term in vivo imaging. Longitudinal multimodal imaging was subsequently achieved to visualize tumor draining SLNs up to 3 weeks in a 4T1 tumor metastatic model. Obvious differences in uptake rate, amount of particles, and contrast between metastatic and contra-lateral sentinel lymph nodes were observed. These findings provide very helpful guidance for the design of robust multifunctional nanomaterials in SLNs' mapping and tumor metastasis diagnosis.
Collapse
Affiliation(s)
- Xinglu Huang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhi Z, Jung Y, Wang RK. Label-free 3D imaging of microstructure, blood, and lymphatic vessels within tissue beds in vivo. OPTICS LETTERS 2012; 37:812-4. [PMID: 22378402 PMCID: PMC3980723 DOI: 10.1364/ol.37.000812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This Letter reports the use of an ultrahigh resolution optical microangiography (OMAG) system for simultaneous 3D imaging of microstructure and lymphatic and blood vessels without the use of an exogenous contrast agent. An automatic algorithm is developed to segment the lymphatic vessels from the microstructural images based on the fact that the lymph fluid is optically transparent. An OMAG system is developed that utilizes a broadband supercontinuum light source, providing an axial resolution of 2.3 μm and lateral resolution of 5.8 μm, capable of resolving the capillary vasculature and lymphatic vessels innervating microcirculatory tissue beds. Experimental demonstration is performed by showing detailed 3D lymphatic and blood vessel maps, coupled with morphology, within mouse ears in vivo.
Collapse
|
45
|
Rasmussen JC, Kwon S, Sevick-Muraca EM, Cormier JN. The role of lymphatics in cancer as assessed by near-infrared fluorescence imaging. Ann Biomed Eng 2011; 40:408-21. [PMID: 22139396 DOI: 10.1007/s10439-011-0476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/17/2011] [Indexed: 01/17/2023]
Abstract
The lymphatic system is the secondary circulatory system responsible for fluid homeostasis and protein transport in the body. In addition, because the lymphatic system provides a primary pathway for cancer metastasis, lymph node involvement is routinely used as a determinant in cancer staging. Despite their importance, the lymphatics remain poorly understood, in part because of the historic lack of imaging modalities with sufficient spatial and/or temporal resolution to visualize the fine lymphatic structure and subtle contractile function. In recent years, near-infrared fluorescence (NIRF) imaging has emerged as a new imaging modality to non-invasively visualize the lymphatics and assess contractile lymphatic function in humans following administration of microdose amounts of a NIRF contrast agent. In this contribution, we first review NIRF imaging and its clinical application in sentinel lymph node mapping, intraoperative guidance, and assessing the architecture and contractile function of the lymphatics in health and in cancer-related lymphedema. We then present recent NIRF lymphatic imaging for non-invasive assessment of lymphatics both in preclinical melanoma models and in human subjects with melanoma.
Collapse
Affiliation(s)
- John C Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|