1
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sousa M, Machado I, Simões LC, Simões M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100557. [PMID: 40230384 PMCID: PMC11995807 DOI: 10.1016/j.ese.2025.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Idalina Machado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga, Guimarães, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
Salazar-Remigio L, Ponce-Vélez G, Olivares-Rubio HF, Amador-Muñoz O, Márquez-García AZ, Ontiveros-Cuadras JF. Bisphenol and phthalate levels, sources, and hazard estimation in sediments from a reef system: First study in the southern Gulf of Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125888. [PMID: 39986562 DOI: 10.1016/j.envpol.2025.125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Bisphenols (BPs) and phthalate acid esters (PAEs) are emerging pollutants (EPs) associated with plastic pollution, as they are used in manufacturing processes and easily separated from these msaterials, accumulating in the sediments of coastal and marine ecosystems. This is the first report of the concentrations of BPs and PAEs in surface and trap sediments from a Protected Natural Area (PNA) of great biological, tourist, and economic importance in the southern Gulf of Mexico (GoM), the Veracruz Reef System National Park (VRSNP). ΣBPs in surface sediments were between 7.0 × 10-2 and 1.35 ng g-1, for ΣPAEs from 0.18 to 4.59 × 103 ng g-1, while in the trap sediments, the ΣPAEs were between 0.12 and 3.17 × 103 ng g-1. Plasticizer bisphenol A (BPA) showed the highest concentration (0.66 ng g-1), whereas di-butyl phthalate (DBP) for PAEs (2.58 × 103 ng g-1). PAEs were strongly associated with terrigenous sources, while BPs with urban and port activities. The ecotoxicological hazard was estimated from the sediments, where BPs had a low hazard level, and PAEs presented a moderate to high hazard level for the reef benthos, reflecting the enormous anthropogenic pressures on the VRSNP. This study contributes with the first scientifically and technically reliable records of EPs, necessary to influence the definition of effective strategies for coastal management and territorial planning of the basins that directly influence chemical pollution. These efforts are crucial for mitigating risk to biodiversity and ensuring the conservation of this PNA in the southern GoM.
Collapse
Affiliation(s)
- Laura Salazar-Remigio
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ave. Universidad No. 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Guadalupe Ponce-Vélez
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico.
| | - Hugo F Olivares-Rubio
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Cto. Exterior s/n Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Antonio Z Márquez-García
- Laboratorio de Geología, Departamento de Hidrobiología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico
| | - Jorge Feliciano Ontiveros-Cuadras
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| |
Collapse
|
4
|
Mireisz T, Horváth FB, Kashaija NT, Farkas R, Boldizsár I, Tóth E. Drug-degrading bacteria isolated from the effluent water of a sewage plant. Biol Futur 2024; 75:351-359. [PMID: 39060760 DOI: 10.1007/s42977-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Endocrine disruptors are potential environmental contaminants that can cause toxicity in aquatic ecosystems, so the Water Framework Directive has established limits for these compounds. During our research, 41 bacterial strains were isolated and identified from sewage effluent and tested for their degradation capacities for bisphenol A, 17β-estradiol, and nonylphenol. All the isolated bacteria belonged to the Gammaproteobacteria class of Pseudomonadota phylum (members of Citrobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leclercia, Raoultella, Shigella. Acinetobacter, Aeromonas, and Pseudomonas genera). During the experiments, only strains HF17, HF18 (Pseudomonas aeruginosa), and HF31 (Citrobacter freundii) were unable to grow on these compounds, all other bacterial strains could grow in the presence of the investigated endocrine disruptors. Based on the genomic analysis of the type strains, a set of genes involving aromatic compound degradation was detected, among the peripheral metabolic pathways, the quinate and benzoate degradation pathways proved to be widespread, among the central aromatic intermediates metabolism, the catechol branch of the beta-ketoadipate pathway was the most dominant. Pseudomonas fulva HF16 strain could utilize the investigated endocrine disruptors: bisphenol A by 34%, 17β-estradiol by 52%, and nonylphenol by 54%.
Collapse
Affiliation(s)
- T Mireisz
- Department of Microbiology, Doctoral School of Environmental Sciences, Institute of Biology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
| | - F B Horváth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- Department of Microbiology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - N T Kashaija
- Department of Microbiology, Doctoral School of Environmental Sciences, Institute of Biology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - R Farkas
- Department of Microbiology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - I Boldizsár
- Department of Pharmacognosy, Semmelweis University, Üllői Út 26, Budapest, 1085, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - E Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- Health Promotion and Education Research Team, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Soriano Y, Gimeno-García E, Campo J, Hernández-Crespo C, Andreu V, Picó Y. Exploring organic and inorganic contaminant histories in sediment cores across the anthropocene: Accounting for site/area dependent factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134168. [PMID: 38603905 DOI: 10.1016/j.jhazmat.2024.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Sedimentary records help chronologically identify anthropogenic contamination in environmental systems. This study analysed dated sediment cores from L'Albufera Lake (Valencia, Spain), to assess the occurrence of heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), perfluoroalkyl substances (PFASs), organophosphorus flame retardants (OPFRs), pesticides and pharmaceuticals and personal care products (PPCPs). The results evidence the continuing vertical presence of all types of contaminants in this location. The sediment age was difficult to establish. However, the presence of shells together with an historical estimation and the knowledge of sedimentary rates could help. HMs contents are higher in the upper layer reflecting the most recent increase of the industrial and agricultural practices in the area since the middle 20th century. Higher availability index of these HMs in the upper sediment layers is associated with point and diffuse contamination sources in the area. PAHs and OPFRs were homogeneous distributed through the sediments with few exceptions such as phenanthrene in the North and fluoranthene in the South. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were detected throughout the sediment core while short-chain PFASs (except perfluoropentanoic acid (PFPeA)) were detected only in the top layer. Pesticides and PPCPs showed appreciable down-core mobility. The vertical concentration profiles of organic contaminants did not exhibit a clear trend with depth, then, it is difficult to develop a direct relationship between sediment age and contaminant concentrations, and to elucidate the historical trend of contamination based on dated sediment core. Consequently, linking contaminant occurrence in sediments directly to their historical use is somewhat speculative at least in the conditions of L'Albufera Lake.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain.
| | - Eugenia Gimeno-García
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Julián Campo
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Carmen Hernández-Crespo
- Water and Environmental Engineering University Research Institute (IIAMA), Polytechnic Universitat Politècnica de València, Valencia, Spain
| | - Vicente Andreu
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| |
Collapse
|
6
|
Nazar N, Kumaran AK, Athira AS, Sivadas M, Panda SK, Banerjee K, Chatterjee NS. Untargeted metabolomics reveals potential health risks associated with chronic exposure to environmentally relevant concentrations of 2-Phenylphenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169172. [PMID: 38101641 DOI: 10.1016/j.scitotenv.2023.169172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Chronic exposure to endocrine-disrupting chemicals through foods of aquatic origin, at levels that are commonly found in the environment, can affect metabolic health and lead to metabolic diseases. One such chemical is 2-phenylphenol (2-PP), a suspected endocrine disruptor that is used extensively in agriculture and industry, and has become a widespread pollutant in aquatic environments. This study evaluated the risk of exposure to 2-PP through foods of aquatic origin from Vembanad Lake, using a Target Hazard Quotient (THQ) and an untargeted metabolomics approach. The study found that 2-PP content was higher in samples from areas with intense industrial, tourism, and agricultural activities. The average concentration of 2-PP in fish, crustaceans, and mollusks from the Vembanad estuary ranged from 0.012 to 0.017 mg/kg. The mean concentration of 2-PP was used to assess the THQ of exposure to the coastal population. The results showed that the THQ value was <1, indicating a low to moderate health risk for both adults and children. Furthermore, an untargeted metabolomics approach using HPLC-Q-Orbitrap MS was used to study the metabolome changes associated with chronic exposure to 2-PP (at the environmentally relevant concentration) over 60 days in the Wistar albino rat model. The findings indicated significant alterations in the phospholipid, fatty acid, sterol lipid, and amino acid profiles, suggesting that chronic exposure to 2-PP at environmentally relevant concentrations could affect purine, phenylalanine, tyrosine, and cholesterol metabolism.
Collapse
Affiliation(s)
- Nasreen Nazar
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India
| | | | - A S Athira
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Megha Sivadas
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Satyen Kumar Panda
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi 110002, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Manjri Farm, Pune 412 307, India
| | - Niladri Sekhar Chatterjee
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India.
| |
Collapse
|
7
|
Amorim VE, Morais H, Ferreira ACS, Pardal MA, Cruzeiro C, Cardoso PG. Application of a robust analytical method for quantifying progestins in environmental samples from three Portuguese Estuaries. MARINE POLLUTION BULLETIN 2024; 199:115967. [PMID: 38159385 DOI: 10.1016/j.marpolbul.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the last years, progestins have raised special concerns for their documented negative effects on aquatic species, yet little is known about their environmental levels in surface waters and bioaccumulation in the trophic web. This study aimed to 1) adapt an extraction method for quantifying progestins in freeze-dried matrices, 2) validate the analytical procedure for three matrices: bivalve, polychaete, and crustacean, and 3) characterize levels of the four most prescribed synthetic progestins in key species across three Portuguese estuaries. Through the validated method, progestins were only quantifiable for the crustacean. Values were generally low, peaking with drospirenone values in Ria de Aveiro (1.33 ± 0.26 ng/g ww) and Tagus estuary (1.42 ± 0.55 ng/g ww), while Ria Formosa exhibited the lowest progestin concentrations (< 1 ng/g ww). This study enabled the development of a precise extraction and analytical method for quantifying steroid hormones in three distinct biological matrices.
Collapse
Affiliation(s)
- V E Amorim
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - H Morais
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A C Silva Ferreira
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Institute for Wine Biotechnology (IWBT), Department of Viticulture and Oenology (DVO), University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa; Cork Supply Portugal, S.A., Rua Nova do Fial 102, 4535 São Paio de Oleiros, Portugal
| | - M A Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Portugal
| | - C Cruzeiro
- Unit Environmental Simulation (EUS), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - P G Cardoso
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
8
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
10
|
Farkas R, Mireisz T, Toumi M, Abbaszade G, Sztráda N, Tóth E. The Impact of Anti-Inflammatory Drugs on the Prokaryotic Community Composition and Selected Bacterial Strains Based on Microcosm Experiments. Microorganisms 2023; 11:1447. [PMID: 37374949 PMCID: PMC10303239 DOI: 10.3390/microorganisms11061447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are increasingly recognized as potential environmental contaminants that may induce toxicity in aquatic ecosystems. This 3-week microcosm experiment explores the acute impacts of NSAIDs, including diclofenac (DCF), ibuprofen (IBU), and acetylsalicylic acid (ASA), on bacterial communities using a wide range of these substances (200-6000 ppm). The results showed that the NSAID-treated microcosms had higher cell count values than control samples, though the diversity of microbial communities decreased. The isolated heterotrophic bacteria mostly belonged to Proteobacteria, particularly Klebsiella. Next-generation sequencing (NGS) revealed that NSAIDs altered the structure of the bacterial community composition, with the proportion of Proteobacteria aligning with the selective cultivation results. Bacteria had higher resistance to IBU/ASA than to DCF. In DCF-treated microcosms, there has been a high reduction of the number of Bacteroidetes, whereas in the microcosms treated with IBU/ASA, they have remained abundant. The numbers of Patescibacteria and Actinobacteria have decreased across all NSAID-treated microcosms. Verrucomicrobia and Planctomycetes have tolerated all NSAIDs, even DCF. Cyanobacteria have also demonstrated tolerance to IBU/ASA treatment in the microcosms. The archaeal community structure was also impacted by the NSAID treatments, with Thaumarchaeota abundant in all microcosms, especially DCF-treated microcosms, while Nanoarchaeota is more typical of IBU/ASA-treated microcosms with lower NSAID concentrations. These results indicate that the presence of NSAIDs in aquatic environments could lead to changes in the composition of microbial communities.
Collapse
Affiliation(s)
- Rózsa Farkas
- Department of Microbiology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| | - Tamás Mireisz
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
- Department of Microbiology, Doctoral School of Environmental Sciences, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| | - Marwene Toumi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
- Department of Microbiology, Doctoral School of Environmental Sciences, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
- Department of Microbiology, Doctoral School of Environmental Sciences, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| | - Nóra Sztráda
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny., 1/C, 1117 Budapest, Hungary
| |
Collapse
|
11
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Giménez V, Cardoso P, Sá C, Patinha C, Ferreira da Silva E, Figueira E, Pires A. Interplay of Seasonality, Major and Trace Elements: Impacts on the Polychaete Diopatra neapolitana. BIOLOGY 2022; 11:biology11081153. [PMID: 36009780 PMCID: PMC9404888 DOI: 10.3390/biology11081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Coastal systems often serve as sinks for toxic elements, and seasonality has been responsible for many changes in the physical and chemical parameters of waters and sediments, leading to geochemical alterations in aquatic systems and the alteration of element uptake rates in organisms. Diopatra neapolitana worms were collected from five sites of the Ria de Aveiro lagoon in the autumn, winter, spring, and summer of 2018/2019 and were tested to check for differences in the biochemical responses (cell damage, antioxidant enzymes, biotransformation enzymes, and energy-related parameters) among seasons and sites. In general, the results demonstrated that enzyme activities were higher in spring and summer due to high temperatures and element bioaccumulation. Energy-related parameters presented with higher levels in spring and autumn, which was mainly due to element bioaccumulation. Oxidative damage was higher during winter and was related to salinity and decreases in temperature. This study demonstrated that abiotic factors influence the geochemistry of elements and that both significantly affect organism performance in low-contamination systems, such as the Ria de Aveiro lagoon. This knowledge is important to understand how ecological and economically relevant species such as D. neapolitana respond to environmental changes. Abstract Polychaetes are known to be good bioindicators of marine pollution, such as inorganic contamination. Major and trace elements are commonly present in sediment and may be accumulated by polychaetes such as the tubiculous Diopatra neapolitana. In this study, D. neapolitana individuals were collected in the autumn, winter, spring, and summer of 2018/2019 from the Ria de Aveiro lagoon (western Portugal) to understand how seasonality influences element accumulation. The impact of the interaction of seasonality and elements on oxidative status, energy metabolism, and oxidative damage was also assessed. The obtained results showed that the activity of the antioxidant enzymes catalase, glutathione S-transferases, and non-protein thiol levels were higher in summer and that superoxide dismutase, lipid peroxidation, and electron transport system activity increased in winter. The lowest glycogen levels were observed during spring, and protein carbonylation was the highest during autumn. These results could mainly be related to high temperatures and the bioaccumulation of Al, As, Mn, and Zn. Energy-related parameters increased during spring and autumn, mainly due to the bioaccumulation of the same elements during spring and summer. Lipid damage was higher during winter, which was mainly due to salinity and temperature decreases. Overall, this study demonstrates that seasonality plays a role in element accumulation by polychaetes and that both impact the oxidative status of D. neapolitana.
Collapse
Affiliation(s)
- Valéria Giménez
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (C.S.); (E.F.)
| | - Carina Sá
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (C.S.); (E.F.)
| | - Carla Patinha
- GEOBIOTEC, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.); (E.F.d.S.)
| | - Eduardo Ferreira da Silva
- GEOBIOTEC, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.); (E.F.d.S.)
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (C.S.); (E.F.)
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (C.S.); (E.F.)
- Correspondence:
| |
Collapse
|
13
|
Shimabuku I, Chen D, Wu Y, Miller E, Sun J, Sutton R. Occurrence and risk assessment of organophosphate esters and bisphenols in San Francisco Bay, California, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152287. [PMID: 34906577 DOI: 10.1016/j.scitotenv.2021.152287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) and bisphenols are two classes of industrial chemicals that are ubiquitously detected in environmental matrices due to high global production and widespread use, particularly in the manufacture of plastic products. In 2017, water samples collected throughout the highly urbanized San Francisco Bay were analyzed for 22 OPEs and 16 bisphenols using liquid chromatography-electrospray ionization-Q Trap-mass spectrometry. Fifteen of the 22 OPEs were detected, with highest median concentrations in the order TCPP (42 ng/L) > TPhP (9.5 ng/L) > TBOEP (7.6 ng/L) > TnBP (7.5 ng/L) > TEP (6.7 ng/L) > TDCIPP (6.2 ng/L). In contrast, only two of 16 bisphenols, BPA and BPS, were quantified, with concentrations ranging from <0.7-35 ng/L and <1-120 ng/L, respectively. BPA and a few OPEs (EHDPP and TEHP) were primarily present in the particulate phase, while BPS and all other observed OPEs were predominantly found in the dissolved phase. Pairwise correlation analysis revealed several strong, positive correlations among OPEs, and few weak, negative correlations between OPEs and BPA, suggesting differences between the two classes with respect to their sources, pathways, and/or fate in the environment. Concentrations of OPEs and bisphenols observed in this study were generally consistent with reported concentrations in other estuarine and marine settings globally. TDCIPP exceeded existing predicted no-effect concentrations (PNECs) at some sites, and six other compounds (TCrP, IDDPP, EHDPP, TPhP, TBOEP, and BPA) were observed at levels approaching individual compound PNECs (not considering mixture effects), indicating potential risks to Bay biota. These results emphasize the need to control releases of these contaminants in order to protect the ecosystem. Periodic monitoring can be used to maintain vigilance in the face of potential regrettable substitutions.
Collapse
Affiliation(s)
- Ila Shimabuku
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ezra Miller
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Jennifer Sun
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA.
| |
Collapse
|
14
|
Galinaro CA, Spadoto M, de Aquino FWB, de Souza Pelinson N, Vieira EM. Environmental risk assessment of parabens in surface water from a Brazilian river: the case of Mogi Guaçu Basin, São Paulo State, under precipitation anomalies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8816-8830. [PMID: 34491494 DOI: 10.1007/s11356-021-16315-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Parabens are preservatives widely used by industry since these compounds have antifungal properties, relative low cost, and stability over a wide pH range. This study aims to quantify and assess the environmental risks of methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) in surface water from a Brazilian River, Mogi Guaçu. The State of São Paulo, including the Mogi Guaçu River region, suffered from a period of intense drought and high temperatures, which caused anomalies in river flows and water supply problems. The water samples were collected from 14 locations, along 300 km of river extension, at four different seasons. Samples were previously extracted and pre-concentrated by dispersive liquid-liquid microextraction (DLLME) and later analyzed by ultra-performance liquid chromatography coupled with electrospray ionization in tandem with mass spectrometry (UPLC-ESI-MS/MS) detector. During the sampling period, PP was detected in 89.3% of the water samples, MP in 87.5%, EP in 73.2%, and BP in 48.2%. The sum of parabens' average levels was 42.2 μg L-1 in Winter, 41.5 μg L-1 in Summer, 36.6 μg L-1 in Autumn, and 31.5 μg L-1 in Spring. These levels can be attributed to the smaller dilution effect caused by the drought period. Also, ecological risk assessment indicated that parabens could take a low, medium, and high risk for target organisms in the measured aquatic environments, especially considering Pimephales promelas where 15% of the samples do not present potential risk, 84% of samples can present medium risk and only 1% have low risk. Besides, the risks for BP are also considerably higher, when almost 40% presents for high risks and 60% for medium risks. The present study indicates worrisome threats to the water source and to allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect.
Collapse
Affiliation(s)
- Carlos Alexandre Galinaro
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil.
| | - Mariangela Spadoto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, Avenida do Trabalhador São Carlense, 400, 13.560-970, São Carlos, São Paulo, Brazil
| | - Francisco Wendel Batista de Aquino
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luís s/n km 235, P.O. Box 676, São Paulo, São Carlos, 13565-905, Brazil
| | - Natália de Souza Pelinson
- São Carlos School of Engineering (EESC), University of São Paulo (USP), 400 Trabalhador São Carlense Avenue, São Carlos, SP, 13566-590, Brazil
| | - Eny Maria Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Lu S, Lin C, Lei K, Xin M, Wang B, Ouyang W, Liu X, He M. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117588. [PMID: 34153606 DOI: 10.1016/j.envpol.2021.117588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in water are receiving particular attention as they pose adverse effects on aquatic systems, even at trace concentrations. A comprehensive study was conducted on 14 EDCs (five estrogens and nine household and personal care products (HPCPs)) in the water of the urbanized Jiaozhou Bay in the Yellow Sea during summer and winter. Results showed that the total concentration of 14 EDCs ranged from 100 to 658 ng L-1 and 56.7-212 ng L-1 in the estuarine and bay water, respectively. The average total concentration of five estrogens in summer was significantly (p < 0.05) lower than that in winter due to the higher precipitation dilution and degradations during summer, whereas the average total concentration of nine HPCPs was significantly (p < 0.05) higher during the summer than that during the winter because of the higher usage and emissions during the summer. Estrogens and HPCPs were dominated by 17α-ethinylestradiol and p-hydroxybenzoic acid (PHBA), respectively. High PHBA concentrations may be related to the hydrolysis of parabens. The total concentrations of EDCs were higher in the eastern coastal seawater of the bay due to the strong influence of domestic and industrial wastewater discharge. Estrogens may interfere with the endocrine system of aquatic organisms in the bay because the total estradiol equivalent concentration exceeded 1 ng L-1. 17α-ethinylestradiol was the main contributor to the estrogenic activity. The EDC mixtures posed high risks (RQ > 1) to mollusks, crustaceans, and fish, and low to moderate risks (RQ < 1) to algae. Fish was the most sensitive aquatic taxon to the EDC mixtures. Given the concentration and frequency of EDCs, the optimized risk quotient method revealed that 17α-ethinylestradiol, estrone, triclocarban, triclosan, and 17β-estradiol should be prioritized in ecological management because of their high risks (prioritization index of >1).
Collapse
Affiliation(s)
- Shuang Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kai Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Wei Ouyang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
de Carvalho Penha LC, Coimbra Rola R, da Silva Junior FM, de Martinez Gaspar Martins C. Toxicity and sublethal effects of methylparaben on zebrafish (Danio rerio) larvae and adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45534-45544. [PMID: 33866511 DOI: 10.1007/s11356-021-12800-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Among the parabens, methylparaben (MeP) is the most commonly found in personal care products. Due to the continuous use of MeP and low removal efficiency by wastewater treatment plants (WWTPs), it reaches aquatic environments, where it is incorporated by organisms inhabiting these waters. The present study aimed to evaluate the effects of MeP on the zebrafish Danio rerio larvae and adults through toxicity tests and physiological and biochemical biomarkers in order to assess possible harmful effects of MeP. For biomarker measurements, fish were exposed to the environmental concentration of 30 μg/L of MeP and the non-effect concentration (NOEC) estimated for larvae (60 mg/L) and adult (50 mg/L) in toxicity tests. The median lethal concentration (LC50) of MeP was 105.09 mg/L for adults and 211.12 mg/L for larvae. These values unexpectedly indicated that adults were more sensitive to MeP compared to larvae. In adult fish, exposure to 50 mg/L MeP induced a significant decrease in phase 1 biotransformation (ethoxyresorufin O-deethylase activity) and an increase in lipoperoxidation (LPO) in gills, as well as an increase in frequency of micronuclei in erythrocytes of these fish. Biomarkers results were integrated (integrated biomarker response [IBR] index), and it observed lower IBR scores in tissues of fish exposed to MeP, suggesting a suppression of biological responses. In addition, LPO contributed mostly to the IBR score estimated for gills of fish exposed to 50 mg/L MeP. Based on LPO quantity, sublethal exposure of MeP (30 μg/L and 60 mg/L) did not cause toxicity to larvae. Hence, we investigated whether the difference in sensitivity between adults and larvae could be associated with the antimicrobial action of MeP that could affect the intestinal microbiota of adults. We only found an increase in the number of carbon sources consumed by them without effects on diversity and abundance. This outcome can be considered an adaptation to environmental stress, but not a negative effect. However, the LPO and genotoxicity caused by MeP to zebrafish adults call direct attention to the importance of regulating the presence of this compound in the environment and improve cleaning processes adopted by WWTP.
Collapse
Affiliation(s)
- Larissa Cristine de Carvalho Penha
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil
| | - Regina Coimbra Rola
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil
| | - Flávio Manoel da Silva Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil.
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália s/n, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
18
|
Chen MH, Yu B, Zhang ZF, Ma WL. Occurrence of parabens in outdoor environments: Implications for human exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117058. [PMID: 33838443 DOI: 10.1016/j.envpol.2021.117058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Parabens (PBs) are widely used as preservatives in food, pharmaceuticals and personal care products (PCPs). Due to their potential characteristics, similar to endocrine-disrupting compounds, their safety in our daily products and frequent exposure to human health have become public concerns. Nevertheless, little information is available about the occurrence of PBs in outdoor environments and their implications for human exposure. In this study, seven pairs of gas- and particle-phase air samples and 48 soil samples from Harbin City, China, were collected for the analysis of eight typical PBs (including methyl-paraben, ethyl-paraben, propyl-paraben, isopropyl-paraben, butyl-paraben, isobutyl-paraben, benzyl-paraben, and heptyl-paraben), which have been frequently selected as target compounds in previous studies. Concentrations of ∑8PBs in outdoor air samples were 253-1540 pg/m3 with a median of 555 pg/m3. The results of the gas-particle partitioning indicated that PBs had not reached equilibrium between the gas phase and particle phase. Concentrations of ∑8PBs in the soil samples were <LOQ-5530 ng/kg dw. Higher concentrations of PBs were observed in soils from commercial and residential areas with extensive anthropogenic activities. Based on the inhalation rate of air and ingestion rate of soil, the estimated daily intake (EDI) was calculated. The EDI values (EDIair + EDIsoil) for male adults, female adults and children were comparable, with mean values of 2.74 × 10-2, 3.21 × 10-2 and 2.70 × 10-2 ng/kg-bw/day, respectively. All EDIs were much lower than the daily acceptable intake, indicating lower health risk with PB occurrence in outdoor environments. Finally, the total EDI from all external exposure routes (outdoor air, indoor air, soil, indoor dust, foodstuffs, pharmaceuticals and PCPs) was calculated for the first time. The total EDI was not consistent with that of the internal exposure, which provided new insight into future studies for human exposure assessment.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Bo Yu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| |
Collapse
|
19
|
Chiriac FL, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103673. [PMID: 34029729 DOI: 10.1016/j.etap.2021.103673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the occurrence of organic UV-filters (UVFs) and bisphenol derivatives (BPs) in the marine environment has raised high concerns all over the world, due to the potentially adverse impacts on marine organism and, indirectly on human health. This paper reports, for the first time in Romania, the occurrence, distribution pattern and environmental risk assessment of UVFs, BPs and their metabolites in seawater, sediment and algae collected from the Romania Black Sea coastal region. BP-3 (2-hydroxy-4-methoxy-benzophenone) was the most abundant contaminant in seawater samples, with detection frequency of 100 %. Sediment samples were dominated by ES (Ethylhexyl salicylate), with concentration values up to 5823 ng/g d.w., while for algae, concentrations of several hundreds of ng/g d.w. were determined for BP-3, BS (Benzyl salicylate) and BPE (Bisphenol E). Environmental risk assessment revealed that some UVFs and BPs detected in seawater samples were hazardous to the marine organism of the Black Sea.
Collapse
Affiliation(s)
- Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania
| | - Iuliana Paun
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| |
Collapse
|
20
|
Wei F, Mortimer M, Cheng H, Sang N, Guo LH. Parabens as chemicals of emerging concern in the environment and humans: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146150. [PMID: 34030374 DOI: 10.1016/j.scitotenv.2021.146150] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Parabens are one of the most widely used preservatives in food, pharmaceuticals and personal care products (PCPs) because of their advantageous properties and low toxicity based on the early assessments. However, recent research indicates that parabens may act as endocrine-disrupting chemicals (EDCs) and thus, are considered as chemicals of emerging concern that have adverse human health effects. To provide the basis for future human health studies, we reviewed relevant literature, published between 2005 and 2020, regarding the levels of parabens in the consumer products (pharmaceuticals, PCPs and food), environmental matrices and humans, including susceptible populations, such as pregnant women and children. The analysis showed that paraben detection rates in consumer products, environmental compartments and human populations are high, while the levels vary greatly by country and paraben type. The concentrations of parabens reported in pregnant women (~20-120 μg/L) were an order of magnitude higher than in the general population. Paraben concentrations in food and pharmaceuticals were at the ng/g level, while the levels in PCPs reached mg/g levels. Environmental concentrations ranged from ng/L-μg/L in surface waters to tens of μg/g in wastewater and indoor dust. The levels of human exposure to parabens appear to be higher in the U.S. and EU countries than in China and India, which may change with the increasing production of parabens in the latter countries. The review provides context for future studies to connect paraben exposure levels with human health effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
21
|
Hsieh CZ, Chung WH, Ding WH. Experimental design approaches to optimize ultrasound-assisted simultaneous-silylation dispersive liquid-liquid microextraction for the rapid determination of parabens in water samples. RSC Adv 2021; 11:23607-23615. [PMID: 35479786 PMCID: PMC9036600 DOI: 10.1039/d1ra04195a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples. The method involved the use of a combination of a novel ultrasound-assisted simultaneous-silylation within dispersive liquid–liquid microextraction (UASS-DLLME) with detection by gas chromatography-tandem mass spectrometry (GC-MS/MS). To overcome the challenges related to the different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box–Behnken design were utilized to screen and optimize parameters that have significant influences on the efficiency of silylation and extraction. The method was then validated and shown to provide low limits of quantitation (LOQs; 1–5 ng L−1), high precision (3–11%), and satisfactory mean spiked recoveries (accuracy; 79–101%). Upon analyzing samples of surface water obtained from the field, we found that, in total, there was a relatively high concentration of the target parabens ranging from 200 to 1389 ng L−1. The sources of the elevated levels of these parabens may be from the release of untreated municipal wastewater in this region, and also due to the widespread application of parabens in personal care and food products. This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples.![]()
Collapse
Affiliation(s)
- Chi-Zhong Hsieh
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| | - Wu-Hsun Chung
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905.,Department of Chemical Engineering, Army Academy ROC Chung-Li 320 Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| |
Collapse
|
22
|
Zhao X, Zheng Y, Hu S, Qiu W, Jiang J, Gao C, Xiong J, Lu H, Quan F. Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125047. [PMID: 33453662 DOI: 10.1016/j.jhazmat.2021.125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Parabens are preservatives widely used in pharmaceutical and personal care products (PPCPs). This study investigated urban water pollution by parabens from a watershed perspective. Water and sediment samples were collected from one of the most polluted urban streams in China. Six parabens and five paraben metabolites were frequently detected in the samples, whereas the overall pollution level was intermediate according to a global comparison. The spatial distributions of the chemical concentrations along the river are influenced by multiple factors, and WWTPs appear to be a major factor. In general, the target pollutants were detected at higher concentrations in the dry season than in the wet season, but extraordinary concentration peaks in water were observed downstream of wastewater treatment plants (WWTPs), indicating a dominant contribution from combined sewage overflows (CSOs) during rainfall events. In a representative WWTP-influenced reach, CSOs account for its 97.3% of ∑parabens input and 96.9% of ∑metabolites input in a typical rainfall event. Converting the existing combined sewer systems to separate stormwater drainage systems could reduce the inputs of ∑parabens and ∑metabolites by 86.9-84.5%, respectively. This study highlights the role of urban drainage systems in preventing surface water pollution by PPCPs. CAPSULE: Urban drainage systems play a critical role in controlling pollution by parabens and their metabolites in urban surface water.
Collapse
Affiliation(s)
- Xue Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shiyao Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiping Jiang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanzi Gao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhi Xiong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyan Lu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Quan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Corrêa JMM, Sanson AL, Machado CF, Aquino SF, Afonso RJCF. Occurrence of contaminants of emerging concern in surface waters from Paraopeba River Basin in Brazil: seasonal changes and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30242-30254. [PMID: 33586100 DOI: 10.1007/s11356-021-12787-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This study describes the application of gas chromatography coupled to mass spectrometry (GC-MS) to evaluate the occurrence of 12 CECs-contaminants of emerging concern (bisphenol A, diclofenac, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, gemfibrozil, ibuprofen, naproxen, 4-nonylphenol, 4-octylphenol, and acetaminophen) in surface waters from Paraopeba River Basin, Minas Gerais State, Brazil. The analytical procedure was validated and applied to 60 surface water samples collected across four sampling campaigns along the upper and middle watershed. Methods for CECs determination involved sample filtration, and solid-phase extraction (SPE) with subsequent derivatization of the target compounds prior to their analysis by GC-MS. The LOQ varied from 3.6 to 14.4 ng/L and extraction recoveries ranged from 46.1 to 107.1% for the lowest spiked concentration level (10 ng/L). The results showed a profile of spatial distribution of compounds, as well as the influence of rainfall. Ibuprofen (1683.9 ng/L), bisphenol (1587.7 ng/L), and naproxen (938.4 ng/L) occurred in higher concentrations during the rainy season, whereas during the dry season, the concentrations of bisphenol (1057.7 ng/L), estriol (991.0 ng/L), and estrone (978.4 ng/L) were highlighted. The risk assessment of human exposure shows that for most contaminants, the concentration is well below the estimated thresholds for chronic toxicity from water intake. However, estradiol and 17α-ethinylestradiol showed concentrations in the same order of magnitude as the guide values estimated for babies.
Collapse
Affiliation(s)
- Joane M M Corrêa
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Ananda L Sanson
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil.
| | - Célia F Machado
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Sérgio F Aquino
- Technological and Environmental Chemistry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Robson J C F Afonso
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| |
Collapse
|
24
|
Bio S, Nunes B. Twists and turns of an oyster's life: effects of different depuration periods on physiological biochemical functions of oysters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29601-29614. [PMID: 33559825 DOI: 10.1007/s11356-021-12683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture activities are often established in the vicinity of highly populated, potentially contaminated areas. Animals cultured at such locations, namely bivalves, are frequently used as test organisms in ecotoxicological testing. In this case, a period of depuration is required to allow the normalization of physiological processes, which are likely to be altered after exposure to a multiplicity of waterborne contaminants occurring in the wild. One of the most important species in modern marine aquaculture is the oyster species Crassostrea gigas. The aim of this study was to assess if the current depuration time frame of 24 h (adopted by most aquaculture facilities), is long enough to permit oysters to revert potential toxic effects exerted by environmental contaminants, allowing their use in laboratory-based ecotoxicological studies. The selected approach involved the monitoring of biochemical (antioxidant defence, oxidative damage, phase II metabolism, and neurological homeostasis) and physiological (condition index) parameters, along a period of 42 days. The obtained results showed that a period of 24 h does not revert any of the potential toxic effects caused by environmental contaminants to which animals may have been previously subjected; even a period of 42 days was not long enough for the oysters to completely normalize the levels of their antioxidant defences, namely total GPx activity, which increased over time. Lipid peroxidation was also increased during the depuration period, and the activity of the metabolic isoenzymes GSTs was significantly decreased. Furthermore, AChE activity measured in the adductor muscle of oysters was increased over time. These assumptions suggest that a period of depuration longer than 24 h is mandatory to obtain adequate test organisms of this oyster species, to be used for ecotoxicological testing purposes.
Collapse
Affiliation(s)
- Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Abdallah P, Dossier-Berne F, Karpel Vel Leitner N, Deborde M. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31256-31267. [PMID: 33599931 DOI: 10.1007/s11356-020-11503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The impacts of chlorination on methylparaben (MP) removal, as well as of bromide and ammonia on the MP elimination kinetics, were studied. Bromide and ammonia react with chlorine and are promptly transformed into bromine and chloramines, respectively. Rate constants of chlorine, bromine, and monochloramine with MP were determined under different pH conditions. At pH 8.5, the apparent second-order rate constants of MP reactions with chlorine and bromine were found to be 3.37(±0.50) × 101 and 2.37 (±0.11) × 106 M-1.s-1 for kChlorine/MP and kBromine/MP, respectively, yet there was low reactivity with monochloramine ([Formula: see text] = 0.045 M-1.s-1). Regarding chlorination and bromination, in order to gain further insight into the observed pH-dependence of the reaction, the elementary reactions were considered and the corresponding second-order rate constants were calculated. The experimental and modeled values were quite consistent under these conditions. Then, chlorination experiments with different bromide and/or ammonia concentrations were performed to assess the impact of inorganic water content on MP elimination and a kinetic model was designed to assess MP degradation. Under these conditions, MP degradation was found to be enhanced in the presence of bromide whereas it was inhibited in the presence of ammonia, and the overall impact was pH dependent.
Collapse
Affiliation(s)
- Pamela Abdallah
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Florence Dossier-Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Nathalie Karpel Vel Leitner
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Marie Deborde
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France.
- UFR Médecine et de Pharmacie, Université de Poitiers, 6 rue de la Milétrie, Bâtiment D1, TSA 51115, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
26
|
Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. WATER 2021. [DOI: 10.3390/w13101347] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting compounds (EDCs) as emerging contaminants have accumulated in the aquatic environment at concentration levels that have been determined to be significant to humans and animals. Several compounds belong to this family, from natural substances (hormones such as estrone, 17-estradiol, and estriol) to synthetic chemicals, especially pesticides, pharmaceuticals, and plastic-derived compounds (phthalates, bisphenol A). In this review, we discuss recent works regarding EDC occurrence in the aquatic compartment, strengths and limitations of current analytical methods used for their detection, treatment technologies for their removal from water, and the health issues that they can trigger in humans. Nowadays, many EDCs have been identified in significant amounts in different water matrices including drinking water, thus increasing the possibility of entering the food chain. Several studies correlate human exposure to high concentrations of EDCs with serious effects such as infertility, thyroid dysfunction, early puberty, endometriosis, diabetes, and obesity. Although our intention is not to explain all disorders related to EDCs exposure, this review aims to guide future research towards a deeper knowledge of EDCs’ contamination and accumulation in water, highlighting their toxicity and exposure risks to humans.
Collapse
|
27
|
Paraben Compounds—Part II: An Overview of Advanced Oxidation Processes for Their Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water scarcity represents a problem for billions of people and is expected to get worse in the future. To guarantee people’s water needs, the use of “first-hand water” or the reuse of wastewater must be done. Wastewater treatment and reuse are favorable for this purpose, since first-hand water is scarce and the economic needs for the exploration of this type of water are increasing. In wastewater treatment, it is important to remove contaminants of emerging concern, as well as pathogenic agents. Parabens are used in daily products as preservatives and are detected in different water sources. These compounds are related to different human health problems due to their endocrine-disrupting behavior, as well as several problems in animals. Thus, their removal from water streams is essential to achieve safe reusable water. Advanced Oxidation Processes (AOPs) are considered very promising technologies for wastewater treatment and can be used as alternatives or as complements of the conventional wastewater treatments that are inefficient in the removal of such contaminants. Different AOP technologies such as ozonation, catalytic ozonation, photocatalytic ozonation, Fenton’s, and photocatalysis, among others, have already been used for parabens abatement. This manuscript critically overviews several AOP technologies used in parabens abatement. These treatments were evaluated in terms of ecotoxicological assessment since the resulting by-products of parabens abatement can be more toxic than the parent compounds. The economic aspect was also analyzed to evaluate and compare the considered technologies.
Collapse
|
28
|
Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parabens are widely used in different industries as preservatives and antimicrobial compounds. The evolution of analytical techniques allowed the detection of these compounds in different sources at µg/L and ng/L. Until today, parabens were already found in water sources, air, soil and even in human tissues. The impact of parabens in humans, animals and in ecosystems are a matter of discussion within the scientific community, but it is proven that parabens can act as endocrine disruptors, and some reports suggest that they are carcinogenic compounds. The presence of parabens in ecosystems is mainly related to wastewater discharges. This work gives an overview about the paraben problem, starting with their characteristics and applications. Moreover, the dangers related to their usage were addressed through the evaluation of toxicological studies over different species as well as of humans. Considering this, paraben detection in different water sources, wastewater treatment plants, humans and animals was analyzed based on literature results. A review of European legislation regarding parabens was also performed, presenting some considerations for the use of parabens.
Collapse
|
29
|
Mashile GP, Mpupa A, Nomngongo PN. Magnetic Mesoporous Carbon/β-Cyclodextrin-Chitosan Nanocomposite for Extraction and Preconcentration of Multi-Class Emerging Contaminant Residues in Environmental Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:540. [PMID: 33672631 PMCID: PMC7924173 DOI: 10.3390/nano11020540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022]
Abstract
This study reports the development of magnetic solid-phase extraction combined with high-performance liquid chromatography for the determination of ten trace amounts of emerging contaminants (fluoroquinolone antibiotics, parabens, anticonvulsants and β-blockers) in water systems. Magnetic mesoporous carbon/β-cyclodextrin-chitosan (MMPC/Cyc-Chit) was used as an adsorbent in dispersive magnetic solid-phase extraction (DMSPE). The magnetic solid-phase extraction method was optimized using central composite design. Under the optimum conditions, the limits of detection (LODs) ranged from 0.1 to 0.7 ng L-1, 0.5 to 1.1 ng L-1 and 0.2 to 0.8 ng L-1 for anticonvulsants and β-blockers, fluoroquinolone and parabens, respectively. Relatively good dynamic linear ranges were obtained for all the investigated analytes. The repeatability (n = 7) and reproducibility (n = 5) were less than 5%, while the enrichment factors ranged between 90 and 150. The feasibility of the method in real samples was assessed by analysis of river water, tap water and wastewater samples. The recoveries for the investigated analytes in the real samples ranged from 93.5 to 98.8%, with %RSDs under 4%.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
30
|
Zheng R, Fang C, Hong F, Kuang W, Lin C, Jiang Y, Chen J, Zhang Y, Bo J. Developing and applying a classification system for ranking the biological effects of endocrine disrupting chemicals on male rockfish Sebastiscus marmoratus in the Maowei Sea, China. MARINE POLLUTION BULLETIN 2021; 163:111931. [PMID: 33418343 DOI: 10.1016/j.marpolbul.2020.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting compounds (EDCs) in marine environments has become a major environmental concern. Nonetheless, the biological effects of EDCs on organisms in coastal environments remain poorly characterized. In this study, biomonitoring of EDCs in male fish Sebastiscus marmoratus was carried out in the Maowei Sea, China. The results showed that the concentration of 4-nonylphenol (4-NP) was below the detection limit, the concentrations of 4-tert-octylphenol (4-t-OP) and bisphenol A (BPA) in seawater were moderate compared with those in other global regions, and the possible sources are the municipal wastewater discharge. Nested ANOVA analyses suggest significant differences of the brain aromatase activities and plasma vitellogenin (VTG) expression between the port area and the oyster farming area. A new fish expert system (FES) was developed for evaluating the biological effects of EDCs on fish. Our findings show that the FES is a potential tool to evaluate the biological effects of marine pollutants.
Collapse
Affiliation(s)
- RongHui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - FuKun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - WeiMing Kuang
- Laboratory of Marine Ecological Environment Monitoring Pre-Warning Technology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Laboratory of Marine Ecological Environment Monitoring Pre-Warning Technology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - YuLu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - JinCan Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - YuSheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
31
|
Zhao C, Zhang G, Jiang J. Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020810. [PMID: 33477860 PMCID: PMC7832867 DOI: 10.3390/ijerph18020810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/20/2022]
Abstract
Bisphenol A (BPA) is a typical endocrine disruptor that causes problems in waters all around the world. In this study, the effects of submerged macrophytes (Ceratophyllum demersum and Myriophyllum spicatum) cultured in vitro on the removal of BPA at two initial concentrations (0.5 mg L−1 vs. 5.0 mg L−1) from Donghu lake water were investigated, using different biomass densities (2 g L−1 vs. 10 g L−1) under different nutrient conditions (1.85 mg L−1 and 0.039 mg L−1 vs. 8.04 mg L−1 and 0.175 mg L−1 of the total nitrogen and phosphorus concentration, respectively), together with the effect of indigenous microorganisms in the water. The results showed that indigenous microorganisms had limited capacity for BPA removal, especially at higher BPA initial concentration when its removal rate amounted to about 12% in 12 days. Addition with plant seedlings (5 cm in length) greatly enhanced the BPA removal, which reached 100% and over 50% at low and high BPA initial concentration in 3 days, respectively. Higher biomass density greatly favored the process, resulting in 100% of BPA removal at high BPA initial concentration in 3 days. However, increases in nutrient availability had little effect on the BPA removal by plants. BPA at 10.0 mg L−1 significantly inhibited the growth of M. spicatum. Therefore, C. demersum may be a candidate for phytoremediation due to greater efficiency for BPA removal and tolerance to BPA pollution. Overall, seedlings of submerged macrophytes from in vitro culture showed great potential for use in phytoremediation of BPA in natural waters, especially C. demersum.
Collapse
Affiliation(s)
- Chong Zhao
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
- The College of Urban & Environmental Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China
| | - Guosen Zhang
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
| | - Jinhui Jiang
- School of Life Sciences, Central China Normal University, No. 152, Luoyu Avenue, HongShan District, Wuhan 430079, China; (C.Z.); (G.Z.)
- Correspondence: ; Tel./Fax: +86-27-67861233
| |
Collapse
|
32
|
Emnet P, Mahaliyana AS, Northcott G, Gaw S. Organic Micropollutants in Wastewater Effluents and the Receiving Coastal Waters, Sediments, and Biota of Lyttelton Harbour (Te Whakaraupō), New Zealand. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:461-477. [PMID: 33128586 DOI: 10.1007/s00244-020-00760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Coastal ecosystems are receiving environments for micropollutants due to high levels of associated anthropogenic activities. Effluent discharges from wastewater treatment plants are a significant source of micropollutants to coastal environments. Wastewater effluents, seawater, sediments, and green-lipped mussels (Perna canaliculus) in Lyttelton Harbour (Te Whakaraupō), Christchurch, New Zealand, were analysed for a suite of personal care products and steroid hormones during a 1-year period. In wastewater effluents, the concentration of methyl paraben (mParaben), ethyl paraben (eParaben), propyl paraben (pParaben), butyl paraben (bParaben), 4-t-octylphenol (OP), 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), benzophenone-1 (BP-1), triclosan, methyl triclosan (mTric), Bisphenol A (BPA), Estrone (E1), 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and Estriol (E3) ranged from < 0.6 to 429 ng L-1 and was dominated by OP, 4-MBC, BP-3, triclosan, BP-1, and BPA. In seawater, 4-MBC, BP-3, BPA, and E1 were the most frequently detected contaminants (< 0.2-9.4 ng L-1). Coastal sediment samples contained mParaben, OP, 4-MBC, BP-3, BP-1, BPA, OMC, and E1 (< 0.2-11 ng g-1 d.w.), and mParaben, OP, and BP-3 were found to bioaccumulate (3.8-21.3 ng g-1 d.w.) in green lipped mussels.
Collapse
Affiliation(s)
- Philipp Emnet
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- ibacon GmbH, Arheilger Weg 17, 64380, Rossdorf, Germany
| | - Anjula Sachintha Mahaliyana
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Uva Wellassa University of Sri Lanka, Passara Rd, Badulla, 90000, Sri Lanka
| | - Grant Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton, 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
33
|
Barboza LGA, Cunha SC, Monteiro C, Fernandes JO, Guilhermino L. Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122419. [PMID: 32155522 DOI: 10.1016/j.jhazmat.2020.122419] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
In the present study, the levels of bisphenol A (BPA) and analagous compounds in muscle and liver of fish (Dicentrarchus labrax, Trachurus trachurus, Scomber colias) from the North East Atlantic Ocean were determined and the risk of their consumption by humans was assessed. The potential relationship between bisphenol concentrations and microplastic (MP) contamination of fish was also investigated. Fish from all the species had BPA in the liver and muscle, and bisphenol B (BPB) and bisphenol E (BPE) in the muscle. The highest concentration of BPA in the liver (302 ng/g dry weight - dw) was found in S. colias and the lowest one (5 ng/g dw) in T. trachurus. In the muscle, the bisphenol with the highest concentration was BPE in S. colias (272 ng/g dw). Fish with microplastics had significantly higher concentrations of bisphenols than fish where no microplastics were found, suggesting a relation between MP and bisphenol contamination in fish. In all species, the concentration of bisphenols was correlated with higher MP intake. Regarding human food safety, the estimated daily intake (EDI), target hazard quotient (THQ) and hazard index (HI) of bisphenols were higher than those established by the European Food Safety Authority suggesting hazardous risk for human consumers. These findings highlight the need of more research on fish contamination by MP and associated chemicals and inherent human food safety risks.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua De Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Av. General Norton De Matos, s/n, 289, 4450-208 Matosinhos, Portugal.
| | - Sara C Cunha
- LAQV - REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge De Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Carolina Monteiro
- LAQV - REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge De Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - José O Fernandes
- LAQV - REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge De Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua De Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Av. General Norton De Matos, s/n, 289, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
34
|
Separation of Methylparaben by emulsion liquid membrane: Optimization, characterization, stability and multiple cycles studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Wang J, Zhang M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031075. [PMID: 32046258 PMCID: PMC7037948 DOI: 10.3390/ijerph17031075] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/04/2023]
Abstract
In this paper, biochar (BC) was prepared from discarded grapefruit peel and modified to prepare magnetic biochar (MBC). Physical and chemical properties of BC and MBC were characterized, and the results showed that the type of iron oxide loaded by MBC was γ-Fe2O3. Compared with BC, MBC has a larger specific surface area and pore volume, with more oxygen-containing functional groups on the surface. BC and MBC were used to adsorb and remove endocrine-disrupting chemical (EDC) bisphenol A (BPA) from simulated wastewater. The results showed that the adsorption kinetics and adsorption isotherm of BPA adsorption by BC and MBC were mainly in accordance with the pseudo-second-order kinetics model and the Langmuir model. This indicates that the adsorption of BPA on BC and MBC is mainly a chemically controlled monolayer adsorption. Adsorption thermodynamics show that BC and MBC adsorption of BPA is a spontaneous exothermic reaction, and lowering the temperature is conducive to the adsorption reaction. The effect of solution pH on the adsorption of BPA by both was significant. The optimum pH for BC and MBC to absorb BPA was 6 and 3, respectively. The concentration of Na+ in the range of 0–0.10 mol·L−1 can promote the adsorption of BPA to MBC. MBC loaded with γ-Fe2O3 not only has excellent magnetic separation ability, but can also reach about 80% of the initial adsorption capacity after four cycles of adsorption. By analyzing the adsorption mechanism, it was found that the H-bond and the π–π electron donor–acceptor interaction (EDA) were the main forces for BC and MBC to adsorb BPA.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Ming Zhang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence:
| |
Collapse
|
36
|
Gmurek M, Gomes JF, Martins RC, Quinta-Ferreira RM. Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37174-37192. [PMID: 31749006 PMCID: PMC6937227 DOI: 10.1007/s11356-019-06703-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
Parabens (esters of p-hydroxybenzoic acid) are xenobiosis belonging to endocrine disruptors and commonly used as a preservative in cosmetics, food, pharmaceutical, and personal care products. Their wide use is leading to their appearance in water and wastewater in the range from ng/L to mg/L. In fact, the toxicity of benzylparaben is comparable to bisphenol A. Therefore, it is important to find not only effective but also ecofriendly methods for their removal from aqueous environment since the traditional wastewater treatment approaches are ineffective. Herein, for the first time, such extended comparison of several radical-driven technologies for paraben mixture degradation is presented. The detailed evaluation included (1) comparison of ozone and hydroxyl peroxide processes; (2) comparison of catalytic and photocatalytic processes (including photocatalytic ozonation); (3) characterisation of catalysts using SEM, XRD, DRS, XPS techniques and BET isotherm; (4) mineralisation, biodegradability and toxicity assessment; and (5) cost assessment. O3, H2O2/Fe2+, H2O2/UVC, O3/H2O2, O3/UVA, O3/H2O2/UVA, UVA/catalyst, O3/catalyst and O3/UVA/catalyst were selected from advanced oxidation processes to degrade parabens as well as to decrease its toxicity towards Aliivibrio fischeri, Corbicula fluminea and Lepidium sativum. Research was focused on the photocatalytic process involving visible light (UVA and natural sunlight) and TiO2 catalysts modified by different metals (Ag, Pt, Pd, Au). Photocatalytic oxidation showed the lowest efficiency, while in combining ozone with catalysis and photocatalysis process, degradation efficiency and toxicity removal were improved. Photocatalytic ozonation slightly improved degradation efficiency but appreciably decreased transferred ozone dose (TOD). Results indicate that the degradation pathway is different, or different transformation products (TPs) could be formed, despite that the hydroxyl radicals are the main oxidant. Graphical abstract.
Collapse
Affiliation(s)
- Marta Gmurek
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland.
| | - João F Gomes
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rui C Martins
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Juksu K, Zhao JL, Liu YS, Yao L, Sarin C, Sreesai S, Klomjek P, Jiang YX, Ying GG. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1110-1119. [PMID: 31470474 DOI: 10.1016/j.scitotenv.2019.07.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 05/05/2023]
Abstract
This study investigated the occurrence and fate of 19 biocides in 8 wastewater treatment plants and receiving aquatic environments (both freshwater and estuarine systems) in Thailand. The predominant compound in wastewater and surface water was methylparaben with the maximum concentration of 15.2 μg/L detected in the receiving river, while in sludge and sediment was triclocarban with the maximum concentration of 8.47 μg/g in sludge. Triclosan was the main contaminants in the fish samples with the maximum concentration of 1.20 μg/g. Similar results of biocides were found in the estuarine system in Pattaya city, with the maximum concentration of 185 ng/L in sea water for methylparaben, and 242 ng/g in estuarine sediment for triclocarban. The aqueous removal rates for the biocides ranged from 15% to 95% in average. The back estimated-usage and total estimated emission of Ʃ19 biocides in Thailand was 279 and 202 tons/year, respectively. Preliminary ecological risk assessment showed that clotrimazole and triclosan could pose high risks to aquatic organisms in the receiving aquatic environments.
Collapse
Affiliation(s)
- Kanokthip Juksu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li Yao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Charoon Sarin
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Siranee Sreesai
- Department of Environmental Health Science, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Pantip Klomjek
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
38
|
Serbezeanu D, Carja ID, Nicolescu A, Aflori M, Vlad-Bubulac T, Butnaru M, Damian RF, Dunca S, Shova S. Synthesis, crystal structure and biological activity of new phosphoester-p-substituted-methylparabens. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Peteffi GP, Fleck JD, Kael IM, Rosa DC, Antunes MV, Linden R. Ecotoxicological risk assessment due to the presence of bisphenol A and caffeine in surface waters in the Sinos River Basin - Rio Grande do Sul - Brazil. BRAZ J BIOL 2019; 79:712. [DOI: 10.1590/1519-6984.189752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023] Open
Abstract
Abstract Bisphenol A (BPA) is an emerging contaminant, regularly detected in aquatic ecosystems, considered as an endocrine disrupting compound (EDC). Caffeine is another chemical related to human activity, often found in surface waters. The objective of this study was to evaluate the ecotoxicological risk due to BPA and caffeine in water samples from the Sinos River basin, Rio Grande do Sul, Brazil. Water samples were collected at three sites monthly from May 9 th, 2016 to April 11th, 2017 (n = 36). BPA concentrations in water samples collected were in the range of not detected to 517 ng L-1 and caffeine concentrations in the range of 41.7 to 28,439.6 ng L-1. The concentration of BPA in the analyzed samples had a moderate correlation with caffeine (rs = 0.402). High ecotoxicological risk for BPA was characterized in 77.77% of samples, with 11.11% presenting medium and 11.1% presenting low risk. For caffeine 13.9%, 50% and 36.11% of the samples presented high, medium and low risk, respectively. Caffeine concentrations in water can be used as predictors of BPA concentrations above 10 ng L-1, the lower concentration of ecotoxicological risk, with specificity of 66.7% and sensitivity of 70.4%. The assessment of aquatic risks has shown that both investigated compounds pose risks to organisms in the studied surface waters, mouth of the Pampa stream, mouth of the Luiz Rau stream and catchment point for public supply in Lomba Grande.
Collapse
Affiliation(s)
- G. P. Peteffi
- Universidade Feevale, Brasil; Universidade Feevale, Brasil
| | - J. D. Fleck
- Universidade Feevale, Brasil; Universidade Feevale, Brasil
| | - I. M. Kael
- Universidade Feevale, Brasil; Universidade Feevale, Brasil
| | - D. C. Rosa
- Universidade Feevale, Brasil; Universidade Feevale, Brasil
| | | | - R. Linden
- Universidade Feevale, Brasil; Universidade Feevale, Brasil
| |
Collapse
|
40
|
Zhao X, Qiu W, Zheng Y, Xiong J, Gao C, Hu S. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:43-52. [PMID: 31063942 DOI: 10.1016/j.ecoenv.2019.04.083] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol analogues and alkyl esters of p-hydroxybenzoic (parabens) can be defined as emerging endocrine-disrupting compounds (EDCs) due to their similar characteristics. This study analyzed eight bisphenol analogues, six parabens, and five paraben metabolites in seawater (including aqueous and suspended particle matter (SPM)), as well as organism samples from the Pearl River Estuary, in order to determine their occurrence, distribution, bioaccumulation, and ecological and human health risk in South China's marine environment. The aggregation concentrations of bisphenol analogues, parabens, and paraben metabolites were 106 ng/L, 4.53 ng/L, and 231 ng/L in aqueous samples, 868 ng/g, 173 ng/g, and 9320 ng/g in SPM samples, 41.6 ng/g, 6.46 ng/g, and 460 ng/g in marine organisms, respectively. This study identified significantly higher concentrations of paraben metabolites than their parent parabens in the marine environment, which has not yet been reported in previous studies. These findings call for greater attention on the contamination of paraben metabolites in marine environments. Moreover, the median values of the logarithm of bioaccumulation factors (BAF) for the detected 20 target compounds ranged from 0.11 to 5.07. Bisphenol analogues including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), bisphenol P (BPP), and Fluornen-9-bisphenol (BPFL) (3.3 < lg BAF < 3.7), and three paraben metabolites including 4-hydroxybenzoic acid (4-HB) (3.3 < lg BAF < 3.7), methyl protocatechuate (OH-MeP), and ethyl protocatechuate (OH-EtP) (Log BAF > 3.7), exhibited varying degrees of potential bioaccumulation effect in the majority of organism samples. Furthermore, all tested chemicals in this study were at low risk quotient (RQ) levels for acute and chronic toxicity in seawater. However, the target hazard quotient (THQ) values of two paraben metabolites, 4-HB and benzoic acid (BA), were higher than 1, which indicates that paraben metabolites have the potential to adsorb into organisms, and their associated human health risks should be of great concern. Overall, the study results suggest that the occurrence and risks of emerging EDCs in coastal waters are deserving of further studies, especially in densely populated regions of the world.
Collapse
Affiliation(s)
- Xue Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yi Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jianzhi Xiong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanzi Gao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiyao Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
41
|
Kang HM, Kim MS, Hwang UK, Jeong CB, Lee JS. Effects of methylparaben, ethylparaben, and propylparaben on life parameters and sex ratio in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2019; 226:388-394. [PMID: 30947048 DOI: 10.1016/j.chemosphere.2019.03.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 05/21/2023]
Abstract
Parabens are used as a preservative substance in a wide range of man-made products causing deleterious effects on aquatic organisms and therefore, the concern of their effects to aquatic organisms has been increased. In this study, acute toxicity of methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) was assessed in the marine copepod Tigriopus japonicus. The acute toxicity assessment resulted in the median lethal concentration (LC50) values of MeP, EtP, and PrP were 29,754, 11,659, and 113 μg/L, respectively, for male and 38,183, 15,371, and 357 μg/L, respectively, for female, indicating the strongest toxicity of PrP, compared to MeP and EtP and the higher sensitivity of males compared to females. Developmental retardation and reproduction rate were also measured under chronic exposure. Furthermore, significant alteration in sex ratio was shown in PrP-exposed group, indicating PrP would have feminization effect in T. japonicus. Here we report different toxicity of three types of parabens and also shows potential estrogenic effects of PrP in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
42
|
Pompei CME, Campos LC, da Silva BF, Fogo JC, Vieira EM. Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. CHEMOSPHERE 2019; 226:210-219. [PMID: 30927673 DOI: 10.1016/j.chemosphere.2019.03.122] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The presence of PPCPs (Pharmaceuticals and Personal Care Products) in water sources and drinking water has concerned researchers in recent times. This study was carried out to evaluate the occurrence of 6 PPCPs (namely paracetamol, diclofenac, naproxen, ibuprofen, benzophenone-3 and methylparaben) in the Lobo reservoir, their degradation products, and how efficiently they were removed by 22 ecological filters, considering individual and mixture of compounds. There were 3 spiking events of PPCPs (2 μg L-1) in the ecological filter influents conducted with a lag period of 15 days between spikes. Water samples were collected from the influent and effluent of the filters at 3, 6 and 24 h after each spiking event. All target PPCPs were identified in the Lobo reservoir water in the range of μg L-1. The personal care products were detected with 100% frequency in the samples, and in higher concentrations compared to the pharmaceuticals. Degradation products of diclofenac and benzophenone-3 were identified in the water samples. Results of this investigation show that ecological filtration was an effective process (70-99%) to remove 2 μg L-1 of the selected PPCPs, and demonstrated that the filters were resilient to individual compounds and to their mixtures.
Collapse
Affiliation(s)
- Caroline Moço Erba Pompei
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Luiza Cintra Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Bianca Ferreira da Silva
- Institute of Chemistry, State University "Julio de Mesquita Filho"-UNESP, Araraquara, SP, Brazil.
| | - José Carlos Fogo
- Department of Statistics, Federal University of São Carlos, SP, Brazil.
| | - Eny Maria Vieira
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
43
|
Salgueiro-González N, Campillo JA, Viñas L, Beiras R, López-Mahía P, Muniategui-Lorenzo S. Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:767-775. [PMID: 30951960 DOI: 10.1016/j.envpol.2019.03.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
The spatial and temporal distribution of selected endocrine disrupting compounds (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol, and bisphenol A) in two coastal areas of the Iberian Peninsula (Ria de Vigo and Mar Menor lagoon) were evaluated for the first time. Seawater and sediment samples collected during spring and autumn of 2015 were analysed using greener extraction techniques and liquid chromatography-tandem mass spectrometry. The presence of branched isomers (4-tert-octylphenol and nonylphenol) and bisphenol A in almost all seawater and sediment samples demonstrated their importance as pollutants in the frame of water policy, while no concentrations of linear isomers (4-n-octylphenol and 4-n-nonylphenol) were found. Higher seawater levels were observed in Mar Menor lagoon, especially in spring, associated with wastewater treatment plant effluents and nautical, agricultural and industrial activities. Similar sediment concentrations were measured in both studied areas, being nonylphenol levels five times higher than those measured for the other EDCs. Experimental sediment-water partition coefficients showed a moderate sorption of target compounds to sediments. Risk quotients for water compartment evidenced a moderate risk posed by nonylphenol, considering the worst-case scenario. For sediments, moderate risk related to 4-tert-octylphenol and high risk to nonylphenol were estimated.
Collapse
Affiliation(s)
- N Salgueiro-González
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain.
| | - J A Campillo
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - L Viñas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro, 50, 36390, Vigo, Spain
| | - R Beiras
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200, Vigo, Galicia, Spain
| | - P López-Mahía
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - S Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| |
Collapse
|
44
|
Habbal S, Haddou B, Canselier JP, Gourdon C. Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThis study aimed to investigate the simultaneous removal of methylparaben (MePB) and propylparaben (PrPB) from effluents (each one at 16 mg/L) using a nonionic micellar system containing Triton X-114. Response surface methodology (RSM) has been carried out. Extraction results using nonionic surfactant two-phase system were considered as a function of surfactant concentration and temperature variation. Four responses were investigated: MePB and PrPB extraction yield (E), solute (Xs,w) and surfactant (Xsf,w) concentrations in the aqueous phase and the volume fraction of micellar phase (ϕC) at equilibrium. Very high extraction efficiencies (99 % for PrPB and 84 % for MePB) were achieved at optimal conditions. Thereby, the amounts of PrPB and MePB were reduced 80 and 5 times, respectively. The extraction improvement using sodium sulfate was also shown. Finally, the solute stripping from micellar phase by pH change was proved.
Collapse
Affiliation(s)
- S. Habbal
- 1Laboratory of Physical Chemistry of Materials: Catalysis and Environment, University of Science and Technology of Oran, BP 1505, M'Nouar, Oran, Algeria
| | - B. Haddou
- 1Laboratory of Physical Chemistry of Materials: Catalysis and Environment, University of Science and Technology of Oran, BP 1505, M'Nouar, Oran, Algeria
| | - J. P. Canselier
- 2Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 4 allé Emile Monso, CS 84234, 31 432 Toulouse cedex 4 Toulouse, France
| | - C. Gourdon
- 2Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 4 allé Emile Monso, CS 84234, 31 432 Toulouse cedex 4 Toulouse, France
| |
Collapse
|
45
|
Omar TFT, Aris AZ, Yusoff FM, Mustafa S. Risk assessment of pharmaceutically active compounds (PhACs) in the Klang River estuary, Malaysia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:211-223. [PMID: 30051257 DOI: 10.1007/s10653-018-0157-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
Collapse
Affiliation(s)
- Tuan Fauzan Tuan Omar
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Fatimah M Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Jeong Y, Xue J, Park KJ, Kannan K, Moon HB. Tissue-Specific Accumulation and Body Burden of Parabens and Their Metabolites in Small Cetaceans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:475-481. [PMID: 30518212 DOI: 10.1021/acs.est.8b04670] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parabens have been of global concern due to their endocrine disrupting properties. However, few studies have reported tissue-specific distribution of parabens in wildlife. In this study, we measured parabens and their metabolites in organs and tissues (blubber, muscle, melon, stomach, kidney, liver, gonad, brain, uterus, and umbilical cord, total n = 94) of common dolphins ( Delphinus capensis) and finless porpoises ( Neophocaena asiaeorientalis), to investigate tissue-specific accumulation and body burden. Among the target compounds, methyl paraben (MeP) and para-hydroxybenzoic acid (4-HB) were detected in all organs. Compared to common dolphins, finless porpoises had significantly higher concentrations of MeP and 4-HB due to their near-shore habitat. Higher concentrations of MeP and 4-HB were found in the kidney, liver, and stomach than in other organs, indicating selective accumulation of parabens in certain organs. Significant correlations between MeP and 4-HB in liver/kidney suggested metabolic transformation of the former to the latter. Detection of parabens in brains, umbilical cords, and uteri suggests that these chemicals cross biological barriers such as the blood-brain and placental barriers. The body burdens of total parabens were in the ranges of 13000-90600 μg and 19800-81500 μg for common dolphins and finless porpoises, respectively.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - Jingchuan Xue
- Wadsworth Center, New York State Department of Health , and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany, Albany , New York 12201-0509 , United States
| | - Kyum Joon Park
- Cetacean Research Institute (CRI) , National Institute of Fisheries Science (NIFS) , Ulsan 44780 , Republic of Korea
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health , and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany, Albany , New York 12201-0509 , United States
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| |
Collapse
|
47
|
Huang Q, Liu Y, Chen Y, Fang C, Chi Y, Zhu H, Lin Y, Ye G, Dong S. New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:914-921. [PMID: 30373036 DOI: 10.1016/j.envpol.2018.07.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) exposure receives great ecotoxicological concern. However, gaps in knowledge, such as metabolism of BPA and inconsistent reports on reproductive toxicity, still exist. In this study, a marine fish model (Oryzias melastigma) was exposed to serial concentrations of BPA throughout its whole life cycle. The level of BPA-glucuronide (BPAG) dramatically increased throughout the embryonic stage since 4 dpf. Accordingly, the mRNA level and enzymatic activity of UDP-glucuronosyltransferases (UGTs) increased across the embryonic stage. The mRNA level of UGT2 subtype rather than UGT1 or UGT5 showed a concentration dependent response to BPA exposure. BPA exposure led to the morphological disruption of the chorion and villi as shown by scanning electron microscopy; however, the hatchability was not significantly influenced after exposure. Newly hatching larvae were continuously exposed to BPA for 120 days. Lower mRNA levels of hormone metabolism-related genes, decreased ratio of E2/T, slower ovary development and decreased egg production confirmed the inhibitory effect of BPA on reproduction. Overall, our results showed the conjugation of BPA into BPAG by UGT2 at the embryonic stage and convinced the reproductive toxicity from multiple levels after whole life exposure to BPA.
Collapse
Affiliation(s)
- Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yiyao Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yajie Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Chao Fang
- Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, PR China
| | - Yulang Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Huimin Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yi Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Guozhu Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
48
|
Kung TA, Lee SH, Yang TC, Wang WH. Survey of selected personal care products in surface water of coral reefs in Kenting National Park, Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1302-1307. [PMID: 29710583 DOI: 10.1016/j.scitotenv.2018.04.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 05/20/2023]
Abstract
Kenting National Park (KNP) located in the Hengchun Peninsula in southern Taiwan is a popular tourist spot, annually attracting millions of visitors, who engage in water sport and amusement activities. In this region, sewage is directly discharged into the marine environment. In this study, the concentrations of five organic UV filters [benzophenone (BP), 2,4-dihydroxy benzophenone (BP-1), 2-hydroxy-4-methoxy benzophenone (BP-3), 2,2'-dihydroxy-4-methoxy benzophenone (BP-8), and 4-methylbenzylidene camphor], five preservatives [methylparaben (MeP), ethylparaben, propylparaben (PrP), butylparaben, and benzylparaben], one disinfectant [triclosan (TCS)], and twenty-four detergent derivatives [nonylphenol (NP), nonylphenol ethoxylates (NP2EO-NP12EO), octylphenol (OP) and octylphenol ethoxylates OP2EO-OP12EO] were detected in seawater and river water samples collected from eight beaches in KNP and two major river estuaries in the Hengchun Peninsula. BP-3 was detected at all sampling sites and was higher in concentration than the other organic UV filters. The highest concentration of BP-3 was 1233 ng/L collected from Wanlitong Beach. MeP and PrP were the main preservative components in seawater. The highest total content of preservative agents was 164 ng/L collected from Houwan Beach. Moreover, NP was detected at all sampling sites, with the highest concentration found at Sail Rock Beach (26.5 ng/L). The highest concentration of OP was 113 ng/L in the Boli River estuary. The widespread use of personal care products (PCPs) has resulted in the release of their major ingredients into natural ecosystems. Therefore, the potential long-term effects of multi-PCPs at low concentration exposure to on the coral reef ecosystem in KNP must be considered and monitored.
Collapse
Affiliation(s)
- Te An Kung
- Asia-Pacific Ocean Research Center, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Shu Hui Lee
- Center of General Education, National Kaohsiung Marine University, 142, Haijhuan Road, , Kaohsiung 81157, Taiwan.
| | - Ting Chi Yang
- Asia-Pacific Ocean Research Center, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Wei Hsien Wang
- Asia-Pacific Ocean Research Center, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung 94450, Taiwan.
| |
Collapse
|
49
|
Allinson M, Kameda Y, Kimura K, Allinson G. Occurrence and assessment of the risk of ultraviolet filters and light stabilizers in Victorian estuaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12022-12033. [PMID: 29453716 DOI: 10.1007/s11356-018-1386-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
This reconnaissance study was undertaken to examine the occurrence of common ultraviolet filters (UVF) and light stabilizers (UVLS), and preservatives in four different estuaries in Port Philip Bay, Victoria, for the first time. In total, 11 UV filters, 10 UV stabilizers, 12 preservatives and a metabolite, and one fragrance were screened in grab samples of water and sediment using a combination of solid phase extraction and gas and liquid chromatography mass spectrometry measurement techniques. In that context, 16 of the UVF and UVLS and 5 of the preservatives screened were observed in water and/or sediment samples. There are no marine water quality guideline values for any of the fragrances, preservatives and UV filters and light stabilizers in Australia's current national water quality guidelines, so potential risk was assessed using the risk quotient (RQ) and toxic unit (TU) concepts. In that context, only two chemicals (OC and EHMC) had both an RQ above 1 and a log10TU above - 3, suggesting that few of the screened chemicals would have posed an individual, short-term risk to organisms in the waters studied at the time of sampling. However, the detection of common UV filters, such as 4MBC, EHMC, OC and the common preservatives 2-PE, MP, and PB in these Victorian estuaries highlights that the existence of personal care products in the environment is not just an issue for more densley populated countries in the northern hemisphere, but also potentially of concern in Australia. And, in that context, more sampling campaigns in Port Philip Bay are of paramount importance to assess the potential risk posed by these compounds to aquatic ecosystems.
Collapse
Affiliation(s)
- Mayumi Allinson
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yutaka Kameda
- Chiba Institute of Technology, Architecture and Civil Engineering, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kumiko Kimura
- Saitama City Institute of Health Science and Research, 7-5-12 Suzuya, Chuo-ku, Saitama, 338-0013, Japan
| | - Graeme Allinson
- Future Farming Systems Research Division, Department of Environment and Primary Industries, DEPI Queenscliff Centre, Queenscliff, Victoria, 3225, Australia.
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
50
|
García-Valverde MT, Rosende M, Lucena R, Cárdenas S, Miró M. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode. Anal Chem 2018; 90:4783-4791. [DOI: 10.1021/acs.analchem.8b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Teresa García-Valverde
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - María Rosende
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|