1
|
Chen B, He J, Tian K, Qu J, Hong L, Lin Q, Yang K, Ma L, Xu X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024; 29:3534. [PMID: 39124939 PMCID: PMC11314202 DOI: 10.3390/molecules29153534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.
Collapse
Affiliation(s)
- Bangyao Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Kewei Tian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jie Qu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lihui Hong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Qin Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing College of New Materials and Chemical Engineering, Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| |
Collapse
|
2
|
Rivadulla M, Lois M, Elena AX, Balboa S, Suarez S, Berendonk TU, Romalde JL, Garrido JM, Omil F. Occurrence and fate of CECs (OMPs, ARGs and pathogens) during decentralised treatment of black water and grey water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169863. [PMID: 38190906 DOI: 10.1016/j.scitotenv.2023.169863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Decentralised wastewater treatment is becoming a suitable strategy to reduce cost and environmental impact. In this research, the performance of two technologies treating black water (BW) and grey water (GW) fractions of urban sewage is carried out in a decentralised treatment of the wastewater produced in three office buildings. An Anaerobic Membrane Bioreactor (AnMBR) treating BW and a Hybrid preanoxic Membrane Bioreactor (H-MBR) containing small plastic carrier elements, treating GW were operated at pilot scale. Their potential on reducing the release of contaminants of emerging concern (CECs) such as Organic Micropollutants (OMPs), Antibiotic Resistance Genes (ARGs) and pathogens was studied. After 226 d of operation, a stable operation was achieved in both systems: the AnMBR removed 92.4 ± 2.5 % of influent COD, and H-MBR removed 89.7 ± 3.5 %. Regarding OMPs, the profile of compounds differed between BW and GW, being BW the matrix with more compounds detected at higher concentrations (up to μg L-1). For example, in the case of ibuprofen the concentrations in BW were 23.63 ± 3.97 μg L-1, 3 orders of magnitude higher than those detected in GW. The most abundant ARGs were sulfonamide resistant genes (sul1) and integron class 1 (intl1) in both BW and GW. Pathogenic bacteria counts were reduced between 1 and 3 log units in the AnMBR. Bacterial loads in GW were much lower than in BW, being no bacterial re-growth observed for the GW effluents after treatment in the H-MBR. None of the selected enteric viruses was detected in GW treatment line.
Collapse
Affiliation(s)
- M Rivadulla
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - M Lois
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A X Elena
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - S Balboa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - S Suarez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - T U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - J L Romalde
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Garrido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
3
|
Lobiuc A, Pavăl NE, Dimian M, Covașă M. Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Samples. Microorganisms 2023; 11:2834. [PMID: 38137978 PMCID: PMC10745997 DOI: 10.3390/microorganisms11122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
As seen in earlier and present pandemics, monitoring pathogens in the environment can offer multiple insights on their spread, evolution, and even future outbreaks. The present paper assesses the opportunity to detect microbial pathogens and associated antibiotic resistance genes, in relation to specific pathogen sources, by using nanopore sequencing in municipal waters and wastewaters in Romania. The main results indicated that waters collecting effluents from a meat processing facility exhibit altered communities' diversity and abundance, with reduced values (101-108 and 0.86-0.91) of Chao1 and, respectively, Simpson diversity indices and Campylobacterales as main order, compared with other types of municipal waters where the same diversity index had much higher values of 172-214 and 0.97-0.98, and Burkholderiaceae and Pseudomonadaceae were the most abundant families. Moreover, the incidence and type of antibiotic resistance genes were significantly influenced by the proximity of antibiotic sources, with either tetracycline (up to 45% of total reads) or neomycin, streptomycin and tobramycin (up to 3.8% total reads) resistance incidence being shaped by the sampling site. As such, nanopore sequencing proves to be an easy-to-use, accessible molecular technique for environmental pathogen surveillance and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covașă
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| |
Collapse
|
4
|
Yesilay G, Dos Santos OAL, A BR, Hazeem LJ, Backx BP, J JV, Kamel AH, Bououdina M. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106620. [PMID: 37399782 DOI: 10.1016/j.aquatox.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Türkiye, Istanbul 34668, Türkiye; Experimental Medicine Application & Research Center, University of Health Sciences, Validebag Research Park, Uskudar, Istanbul 34662, Türkiye
| | | | - Bevin Roger A
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 32038, Bahrain
| | | | - Judith Vijaya J
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain, 32038, Bahrain; Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Ali AS, Gari SR, Goodson ML, Walsh CL, Dessie BK, Ambelu A. Fecal Contamination in the Wastewater Irrigation System and its Health Threat to Wastewater-Based Farming Households in Addis Ababa, Ethiopia. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231181307. [PMID: 37362237 PMCID: PMC10286199 DOI: 10.1177/11786302231181307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Due to rapidly growing demand, the production of vegetables is increasing along the Akaki Rivers. The objective of this study was to examine the degree of fecal contamination and levels of fecal contamination and dissemination throughout the wastewater irrigation system. Irrigation water, irrigated soil, and leafy vegetables were collected twice during 2 vegetable growing seasons, at the maturity period of the growing season, from 19 sampling points along the 2 Akaki Rivers. Composite samples were taken from all sampling points and E.coli was enumerated. The mean E.coli load in wastewater and non-wastewater sources were 1.16±5.53 CFU/100 ml and 2.232±1.292 CFU/100 ml respectively. All counts of E. coli in the wastewater exceeded the WHO's standards indicating that the irrigation water quality was unacceptable. In the wastewater-irrigated and non-wastewater-irrigated soil, the mean E.coli were 3.62 ±1.582 CFU/g and 1.322±87.1 CFU/g respectively. Meanwhile, the mean E.coli counts on the lettuce and Swiss chard were 78 ± 2 CFU/g and 44 ±3CFU/g respectively. The E.coli count on the leafy vegetables was found to be associated with the E.coli in the wastewater and soil. The production of leafy vegetables using wastewater with unacceptably high levels of E.coli and high occupational exposure introduces high levels of risk to the farming communities and to the consumers. Leafy, low-growing raw edible vegetables need careful treatment during food production and harvesting procedures or activities.
Collapse
Affiliation(s)
- Adane Sirage Ali
- Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Environmental Management, Kotebe University of Education, Addis Ababa, Ethiopia
| | - Sirak Robele Gari
- Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Michaela L Goodson
- Newcastle University Medicine Malaysia, Iskandar Puteri, Johor, Malaysia
| | - Claire L Walsh
- School of Engineering, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Bitew K Dessie
- Water and Land Resource Centre, Addis Ababa University, Addis Ababa, Ethiopia
| | - Argaw Ambelu
- Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Machado EC, Freitas DL, Leal CD, de Oliveira AT, Zerbini A, Chernicharo CA, de Araújo JC. Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159376. [PMID: 36240935 DOI: 10.1016/j.scitotenv.2022.159376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment.
Collapse
Affiliation(s)
- Elayne Cristina Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Deborah Leroy Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Cintia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Amanda Teodoro de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Adriana Zerbini
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos Augusto Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Batista MPB, Cavalcante FS, Alves Cassini ST, Pinto Schuenck R. Diversity of bacteria carrying antibiotic resistance genes in hospital raw sewage in Southeastern Brazil. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:239-250. [PMID: 36640035 DOI: 10.2166/wst.2022.427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent decades, antibiotic-resistant bacteria (ARB) emerged and spread among humans and animals worldwide. In this study, we evaluated the presence of ARB and antibiotic resistance genes (ARGs) in the raw sewage of two hospitals in Brazil. Sewage aliquots were inoculated in a selective medium with antibiotics. Bacterial identification was performed by MALDI-TOF and ARGs were assessed by polymerase chain reaction (PCR). A total of 208 strains from both hospitals were isolated (H1 = 117; H2 = 91). A wide variety of Enterobacterales and non-Enterobacterales species were isolated and most of them were Enterobacter spp. (13.0%), Proteus mirabilis (10.1%), and Klebsiella pneumoniae (9.6%). blaTEM and blaKPC were the most frequent β-lactamase-encoding genes and the predominant macrolide resistance genes were mph(A) and mel. Many species had the three tetracycline resistance genes (tetD, tetM, tetA) and strB was the prevalent aminoglycoside resistance gene. Two Staphylococcus haemolyticus strains had the mecA gene. Quinolone, colistin, and vancomycin resistance genes were not found. This study showed that hospital raw sewage is a great ARB and ARG disseminator. Strict monitoring of hospital sewage treatment is needed to avoid the spread of these genes among bacteria in the environment.
Collapse
Affiliation(s)
| | | | | | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil E-mail:
| |
Collapse
|
8
|
Basiry D, Entezari Heravi N, Uluseker C, Kaster KM, Kommedal R, Pala-Ozkok I. The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Front Microbiol 2022; 13:1050558. [PMID: 36583052 PMCID: PMC9793094 DOI: 10.3389/fmicb.2022.1050558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic led to increased use of disinfectants and antiseptics (DAs), resulting in higher concentrations of these compounds in wastewaters, wastewater treatment plant (WWTP) effluents and receiving water bodies. Their constant presence in water bodies may lead to development and acquisition of resistance against the DAs. In addition, they may also promote antibiotic resistance (AR) due to cross- and co-selection of AR among bacteria that are exposed to the DAs, which is a highly important issue with regards to human and environmental health. This review addresses this issue and provides an overview of DAs structure together with their modes of action against microorganisms. Relevant examples of the most effective treatment techniques to increase the DAs removal efficiency from wastewater are discussed. Moreover, insight on the resistance mechanisms to DAs and the mechanism of DAs enhancement of cross- and co-selection of ARs are presented. Furthermore, this review discusses the impact of DAs on resistance against antibiotics, the occurrence of DAs in aquatic systems, and DA removal mechanisms in WWTPs, which in principle serve as the final barrier before releasing these compounds into the receiving environment. By recognition of important research gaps, research needs to determine the impact of the majority of DAs in WWTPs and the consequences of their presence and spread of antibiotic resistance were identified.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Nooshin Entezari Heravi
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Cansu Uluseker
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
9
|
Avram A, Rapuntean S, Gorea M, Tomoaia G, Mocanu A, Horovitz O, Rapuntean G, Tomoaia-Cotisel M. In vitro antibacterial effect of forsterite nanopowder: synthesis and characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77097-77112. [PMID: 35676576 DOI: 10.1007/s11356-022-21280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The aims of this study were the preparation, characterization, and in vitro antibacterial activity evaluation of forsterite (FS, Mg2SiO4) nanopowder obtained by two major methods, namely sol-gel (FSsg) and co-precipitation (FSpp). The main aim was to determine the influence of preparation methodologies on physical properties and in vitro antibacterial activity of obtained forsterite nanopowder. To assess the best working temperature for the preparation of FSsg and FSpp, the synthesis and thermal treatment conditions were optimized on the basis of thermal gravimetric (TG) and differential scanning calorimetric (DSC) analysis performed on the dried gel and dried co-precipitated solid, respectively. The FSsg and FSpp powders were characterized by X-ray powder diffraction (XRD), indicating a high purity for both FSsg and FSpp powders. The morphology of FSsg and FSpp nanopowders was explored by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). In vitro antibacterial activity was investigated using a targeted pathogen, namely Staphylococcus aureus (S. aureus) ATCC 6538 P as tested strain by broth dilution technique and inoculations on nutrient agar to highlight the bactericidal inhibitory effect. FSsg nanopowder has no inhibitory capacity, while FSpp produced inhibition, the effect being bactericidal at a concentration of 10 mg/mL. The superior bactericidal activity of FSpp against FSsg is due to variation in the own surface properties, such as specific surface area (SSA) and nano-regime particle size. The FSpp nanoparticles, NPs, obtained by co-precipitation method are reported for the first time as a novel bactericidal nanomaterial against S. aureus.
Collapse
Affiliation(s)
- Alexandra Avram
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Sorin Rapuntean
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur Str, RO-400372, Cluj-Napoca, Romania
| | - Maria Gorea
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Orthopedics and Traumatology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Traian Mosoiu Str, RO-400132, Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str, RO-050044, Bucharest, Romania
| | - Aurora Mocanu
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Ossi Horovitz
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Gheorghe Rapuntean
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur Str, RO-400372, Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania.
- Academy of Romanian Scientists, 3 Ilfov Str, RO-050044, Bucharest, Romania.
| |
Collapse
|
10
|
Shajari M, Ahmadi N, Zamani M, Rostamizadeh K, Shapouri R. Hospital wastewater treatment using eco-friendly eugenol nanostructured lipid carriers: Formulation, optimization, and in vitro study for antibacterial and antioxidant properties. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10751. [PMID: 35765847 DOI: 10.1002/wer.10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, nano-formulation has been used to tackle one of the most important environmental problems which can be considered a major threat to human health. We prepared some eco-friendly nanostructured lipid carriers (NLCs) as delivery agents to properly deliver an antibacterial agent (eugenol) into hospital wastewater in order to control bacterial growth. Eugenol-loaded nanostructured lipid carriers were prepared by hot high-speed homogenization. Then, the prepared nanocarriers were characterized using different techniques such as transmission electron microscopy, Fourier transform infrared, and dynamic scanning calorimetry. The turbidity assay and colony counting method were used to determine the ability of the prepared eugenol-loaded nanostructured lipid carriers to inhibit bacterial growth rate in the culture media and hospital wastewater, respectively. The mean size and zeta potential of NLC-eugenol were 78.12 ± 6.1 nm and -29.43 ± 2.21 mV, respectively. The results showed that the highest inhibitory effect of NLC-eugenol in culture media was seen in standard and wild Staphylococcus aureus strains (43.42% and 26.41%, respectively) with a concentration of 0.125 μM. The antibacterial activity of NLC-eugenol in sterile wastewater on wild strains of bacteria showed that the most effective concentration to reduce bacterial amounts was 0.125 μM on wild S. aureus and Enterococcus faecalis strains (38% and 33.47%, respectively) at 37°C. The NLC-eugenol with a concentration of 0.125 μM showed the greatest effect of reducing total microbial agents by 28.66% in hospital wastewater at 25°C. The highest antibacterial effect achieved using the 0.125 μM concentration is due to the egel phenomenon. Also, the mechanism of action of NLC-eugenol is cell wall destruction and eventually cell death. The results showed that NLC-eugenol with a concentration of 0.125 μM can reduce wild bacterial strains in sterilized wastewater and hospital wastewater, which can prove the great potential of the prepared eugenol-loaded nanostructured lipid carriers to control bacterial growth. PRACTITIONER POINTS: NLC is one of the safest biodegradable and environmentally friendly carriers, which is nontoxic for humans and the environment. Eugenol is a natural compound, which makes it less toxic for the environment while being toxic for bacteria. Therefore, our method has the least side effect in comparison with existing methods for wastewater treatment. The gradual release of eugenol from NLC nanoparticles can effectively control the pathogenic factors of wastewater.
Collapse
Affiliation(s)
- Mozhgan Shajari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Ahmadi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mostafa Zamani
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Shapouri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
11
|
Occurrence of Antibiotic-Resistant Genes and Bacteria in Household Greywater Treated in Constructed Wetlands. WATER 2022. [DOI: 10.3390/w14050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is a growing body of knowledge on the persistence of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB) in greywater and greywater treatment systems such as constructed wetlands (CWs). Our research quantified ARGs (sul1, qnrS, and blaCTXM32), class one integron (intI1), and bacterial marker (16S) in four recirculating vertical flow CWs in a small community in the Negev desert, Israel, using quantitative polymerase chain reaction (qPCR). The greywater microbial community was characterized using 16S rRNA amplicon sequencing. Results show that CWs can reduce ARG in greywater by 1–3 log, depending on the gene and the quality of the raw greywater. Community sequencing results showed that the bacterial community composition was not significantly altered after treatment and that Proteobacteria, Epsilonbacteraeota, and Bacteroidetes were the most dominant phyla before and after treatment. Pseudomonas, Citrobacter, Enterobacter, and Aeromonas were the most commonly identified genera of the extended spectrum beta lactamase (ESBL) colonies. Some of the ESBL bacteria identified have been linked to clinical infections (Acinetobacter nosocomialis, Pseudomonas fulva, Pseudomonas putida, Pseudomonas monteilii, and Roseomonas cervicalis). It is important to monitor intI1 for the potential transfer of ARGs to pathogenic bacteria.
Collapse
|
12
|
Freudenthal J, Ju F, Bürgmann H, Dumack K. Microeukaryotic gut parasites in wastewater treatment plants: diversity, activity, and removal. MICROBIOME 2022; 10:27. [PMID: 35139924 PMCID: PMC8827150 DOI: 10.1186/s40168-022-01225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND During wastewater treatment, the wastewater microbiome facilitates the degradation of organic matter, reduction of nutrients, and removal of gut parasites. While the latter function is essential to minimize public health risks, the range of parasites involved and how they are removed is still poorly understood. RESULTS Using shotgun metagenomic (DNA) and metatranscriptomic (RNA) sequencing data from ten wastewater treatment plants in Switzerland, we were able to assess the entire wastewater microbiome, including the often neglected microeukaryotes (protists). In the latter group, we found a surprising richness and relative abundance of active parasites, particularly in the inflow. Using network analysis, we tracked these taxa across the various treatment compartments and linked their removal to trophic interactions. CONCLUSIONS Our results indicate that the combination of DNA and RNA data is essential for assessing the full spectrum of taxa present in wastewater. In particular, we shed light on an important but poorly understood function of wastewater treatment - parasite removal. Video Abstract.
Collapse
Affiliation(s)
- Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
13
|
Victoria NS, Sree Devi Kumari T, Lazarus B. Assessment on impact of sewage in coastal pollution and distribution of fecal pathogenic bacteria with reference to antibiotic resistance in the coastal area of Cape Comorin, India. MARINE POLLUTION BULLETIN 2022; 175:113123. [PMID: 34872749 DOI: 10.1016/j.marpolbul.2021.113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Sewage is one of the biggest contributors to coastal pollution. The study was aimed to assess the impact of sewage on coastal water quality of Kanyakumari, the southernmost part of India. A bacteriological survey was made on distribution and abundance of fecal indicators and human pathogenic bacteria and seasonal influence on the bacterial load and antibiotic resistance of the isolates. Samples were collected from sewage discharge point along the eastern shore of Kanyakumari Coast from February 2019 to January 2020. Nine pollution indicator bacteria and pathogenic species such as Escherichia coli, Klebsiella spp., Enterococcus faecalis, Aeromonas spp., Proteus mirabilis, Salmonella typhi, Vibrio cholerae, Shigella spp. and Flavobacterium spp. were isolated from the samples. These isolates were tested against 10 antibiotics, using Kirby Bauer method. All the isolates were resistant to at least two antibiotics. The presence of antibiotic resistant bacteria has been used as bio-indicators of pollution. Hence it is clear that the domestic sewage entering the coast is untreated which might lead a serious impact on human and marine wildlife along coastlines.
Collapse
Affiliation(s)
- Nanthini Sahaya Victoria
- PG and Research Department of Zoology, Vivekananda College, Agasteeswaram, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India.
| | - T Sree Devi Kumari
- PG and Research Department of Zoology, Vivekananda College, Agasteeswaram, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
| | - Bakthasingh Lazarus
- Department of Medical Laboratory Technology, Grace College of Allied Health Sciences, Padanthalumoodu, Affiliated to TN Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. ENVIRONMENTAL MICROBIOME 2022; 17:3. [PMID: 35033203 PMCID: PMC8760730 DOI: 10.1186/s40793-022-00398-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). CONCLUSIONS Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Paul Jankowski
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jaydon Gan
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Michaela McKennitt
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
- Institute of the Environment, University of Ottawa, Ottawa, ON, Canada
| | - Audrey Garcia
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Miguel Uyaguari-Diaz
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
15
|
Bruce SA, Huang YH, Kamath PL, van Heerden H, Turner WC. The roles of antimicrobial resistance, phage diversity, isolation source and selection in shaping the genomic architecture of Bacillus anthracis. Microb Genom 2021; 7. [PMID: 34402777 PMCID: PMC8549369 DOI: 10.1099/mgen.0.000616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic structure, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthesis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeography, virulence and evolution.
Collapse
Affiliation(s)
- Spencer A Bruce
- Department of Biological Sciences, University at Albany - State University of New York, Albany, NY 12222, USA
| | - Yen-Hua Huang
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Wendy C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
17
|
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. WATER RESEARCH 2021; 191:116787. [PMID: 33421639 DOI: 10.1016/j.watres.2020.116787] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Public health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Yuwei Pan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|
18
|
Mao G, Liang J, Wang Q, Zhao C, Bai Y, Liu R, Liu H, Qu J. Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. J Environ Sci (China) 2021; 101:27-35. [PMID: 33334522 DOI: 10.1016/j.jes.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/12/2023]
Abstract
Virulence factors (VFs) confer upon pathogens the ability to cause various types of damage or diseases. Wastewater treatment plants (WWTPs) are important point sources for the emission of pathogens and VFs into receiving rivers. Conventional WWTP upgrades are often implemented to improve the water quality of receiving ecosystems. However, knowledge on the pathogens, VFs, and health risks to receiving aquatic ecosystems after upgrade remains limited. In this study, we investigated detailed pathogenic information, including taxa, pathogenicity, and health risk, in two wastewater-dominant rivers after WWTP upgrade. Using 16S rRNA gene sequencing, we screened 14 potential pathogens in water and epilithic biofilm samples, though they were significantly more enriched in the biofilms. Combining 16S rRNA and metagenomic sequencing data, we identified Pseudomonas and Aeromonas as the dominant pathogenic taxa carrying functional VFs (e.g., mobility and offensive) in the epilithic biofilm. Moreover, strong pathogen-specific VF-host co-occurrence events were observed in the epilithic biofilm samples, indicating the importance of biofilms as reservoirs and vehicles for VFs. Further, we demonstrated that mobility VF is crucial for biofilm formation and pathogens in biofilm carrying offensive VF may be highly invasive. Quantification and health risk assessment suggested that the skin contact risk of P. aeruginosa carrying VFs was higher than the acceptable probability of 10-4 in both water and epilithic biofilm samples, which may threaten ecological and human health.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jinsong Liang
- Harbin Institute of Technology, School of Civil and Environmental Engineering, Shenzhen 518055, China.
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Böger B, Surek M, Vilhena RDO, Fachi MM, Junkert AM, Santos JM, Domingos EL, Cobre ADF, Momade DR, Pontarolo R. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123448. [PMID: 32688189 DOI: 10.1016/j.jhazmat.2020.123448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 05/11/2023]
Abstract
The occurrence of antibiotics in the natural environment has been a growing issue and correlations between this presence and developing resistance bacteria are explored. The purpose of this study was to investigate the presence of antibiotics of different classes and associated resistant bacteria, in water samples taken from urban river waters in Curitiba, Brazil. A method for the quantification of antibiotics (azithromycin, amoxicillin, norfloxacin ciprofloxacin, doxycycline and sulfamethoxazole) was developed and validated using liquid chromatography coupled with mass spectrometry. To investigate and identify coliforms resistant to these antibiotics, we performed selective microbiological culturing techniques. We detected antibiotics in our water samples; concentrations ranged from 0.13 to 4.63 μg L-1, with the highest being amoxicillin at 4.63 μg L-1. In all water samples this study, antibiotic resistant bacteria were detected. Escherichia coli was resistant to amoxicillin, norfloxacin, ciprofloxacin, doxycycline and sulfamethoxazole. Strains producing β-lactamase with extended spectrum (ESBL and AmpC) were also found in these isolates. Enterococcus spp. displayed resistance to norfloxacin and ciprofloxacin, and some isolates were resistant to vancomycin, gentamicin and streptomycin (complementary tests). No P. aeruginosa resistant strains were observed. It is possible these antibiotics came from domestic effluents and may be contributing to the spread of bacterial resistance.
Collapse
Affiliation(s)
- Beatriz Böger
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Monica Surek
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Raquel de O Vilhena
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Mariana M Fachi
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Allan M Junkert
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Josiane Mmf Santos
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Eric L Domingos
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Alexandre de F Cobre
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Danilo R Momade
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| | - Roberto Pontarolo
- Pharmaceutical Sciences Post-Graduate Program, Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
20
|
Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122544. [PMID: 32224375 DOI: 10.1016/j.jhazmat.2020.122544] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
21
|
Dissecting microbial community structure in sewage treatment plant for pathogens’ detection using metagenomic sequencing technology. Arch Microbiol 2019; 202:825-833. [DOI: 10.1007/s00203-019-01793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
|
22
|
Reduction of Arcobacter at Two Conventional Wastewater Treatment Plants in Southern Arizona, USA. Pathogens 2019; 8:pathogens8040175. [PMID: 31581714 PMCID: PMC6963474 DOI: 10.3390/pathogens8040175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify the bacterial community in two wastewater treatment plants (WWTPs) and to determine the occurrence and reduction of Arcobacter, along with virulence genes (ciaB and pldA). A total of 48 samples (24 influent and 24 effluent) were collected at two WWTPs in southern Arizona in the United States, monthly from August 2011 to July 2012. Bacterial DNA extract was utilized for 16S rRNA metagenomic sequencing. Quantification of Arcobacter 16S rRNA gene was conducted using a recently developed SYBR Green-based quantitative PCR assay. Among 847 genera identified, 113 (13%) were identified as potentially pathogenic bacteria. Arcobacter 16S rRNA gene was detected in all influent samples and ten (83%) and nine (75%) effluent samples at each plant, respectively. Log reduction ratios of Arcobacter 16S rRNA gene in Plant A and Plant B were 1.7 ± 0.9 (n = 10) and 2.3 ± 1.5 (n = 9), respectively. The ciaB gene was detected by quantitative PCR in eleven (92%) and twelve (100%) of 12 influent samples from Plant A and Plant B, respectively, while the pldA gene was detected in eight (67%) and six (50%) influent samples from Plant A and Plant B, respectively. The prevalence of potentially pathogenic bacteria in WWTP effluent indicated the need for disinfection before discharge into the environment.
Collapse
|
23
|
Zhu L, Torres M, Betancourt WQ, Sharma M, Micallef SA, Gerba C, Sapkota AR, Sapkota A, Parveen S, Hashem F, May E, Kniel K, Pop M, Ravishankar S. Incidence of fecal indicator and pathogenic bacteria in reclaimed and return flow waters in Arizona, USA. ENVIRONMENTAL RESEARCH 2019; 170:122-127. [PMID: 30579985 DOI: 10.1016/j.envres.2018.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The quality of irrigation water used to cultivate produce that is consumed raw is an important issue with regard to food safety. In this study, the microbiological quality of potential irrigation water sources in Arizona was evaluated by testing for the presence of indicator and pathogenic bacteria. Reclaimed water samples were collected from two wastewater treatment plants and return flow samples were collected from two drainage canals and one return flow pond. Standard membrane filtration methods were used for detection of indicator bacteria. Water samples (n = 28) were filtered through cellulose ester membrane filters and bacterial populations were enumerated by placing the filters on selective agar. For detection of pathogens (Salmonella enterica, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)), water samples were filtered through Modified Moore swabs and enriched in Universal Pre-enrichment Broth, followed by selective enrichment broth for each pathogen. The enriched broth was streaked onto agar media selective for each pathogen. Presumptive colonies were confirmed by PCR/real-time PCR. Among the 14 reclaimed water samples from two sites, the ranges of recovered populations of E. coli, total coliforms, and enterococci were 0-1.3, 0.5-8.3 × 103, and 0-5.5 CFU/100 mL, respectively. No L. monocytogenes, Salmonella or STEC were found. In the 13 return flow water samples from 3 sites, the ranges of recovered populations of E. coli, total coliforms and enterococci were 1.9-5.3 × 102, 6.5 × 102-9.1 × 104, and 2.9-3.7× 103 CFU/100 mL, respectively. All samples were negative for L. monocytogenes. One (7.1%) of the return flow samples was positive for E. coli O145. Nine (64.3%) of the samples were positive for Salmonella. Both real-time PCR and culture-based methods were used for the detection of Salmonella and L. monocytogenes, and the results from the two methods were comparable. The findings of this study provide evidence that irrigation waters in Arizona, including reclaimed water and return flows, could be potential sources of bacterial contamination of produce. Additional work is needed to evaluate whether bacteria present in irrigation water sources transfer to the edible portion of irrigated plants and are capable of persisting through post-harvest activities.
Collapse
Affiliation(s)
- Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States
| | - Monique Torres
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States
| | - Walter Q Betancourt
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, United States
| | - Manan Sharma
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, 2126 Plant Sciences Building, College Park, MD 20742, United States; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, United States
| | - Charles Gerba
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, United States
| | - Amy R Sapkota
- School of Public Health, University of Maryland, 2234P SPH Building, College Park, MD 20742, United States
| | - Amir Sapkota
- School of Public Health, University of Maryland, 2234P SPH Building, College Park, MD 20742, United States
| | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Fawzy Hashem
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Eric May
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, United States
| | - Mihai Pop
- Department of Computer Science & the Center for Bioinformatics and Computational Biology, University of Maryland, 8223 Paint Branch Drive, College Park, MD 20742, United States
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States.
| |
Collapse
|
24
|
Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MG, Contreras-Rodríguez A, Filipkowska Z, Osińska A. The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. ENVIRONMENT INTERNATIONAL 2019; 124:408-419. [PMID: 30682596 DOI: 10.1016/j.envint.2018.12.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Anaerobic bacteria of the genus Bacteroides are a large group of commensal microorganisms that colonize the human and animal digestive tract. The genus Bacteroides and the closely related genus Parabacteroides include the Bacteroides fragilis group (BFG) of potentially pathogenic bacteria which are frequently isolated from patients with anaerobic infections. The aim of this study was to assess the antimicrobial resistance of environmental strains of the Bacteroides fragilis group. Strains were isolated from human feces, hospital wastewater, influent (UWW) and effluent (TWW) wastewater from a wastewater treatment plant (WWTP), and from the feces of lab rats as a negative control to monitor the entire route of transmission of BFG strains from humans to the environment. The resistance of 123 environmental BFG strains to six antibiotic groups was analyzed with the use of culture-dependent methods. Additionally, the presence of 25 genes encoding antibiotic resistance was determined by PCR. The analyzed environmental BFG strains were highly resistant to the tested antibiotics. The percentage of resistant strains differed between the analyzed antibiotics and was determined at 97.56% for ciprofloxacin, 49.59% for erythromycin, 44.71% for ampicillin, 35.77% for tetracycline, 32.52% for amoxicillin/clavulanic acid, 26.83% for chloramphenicol, 26.01% for clindamycin, 11.38% for moxifloxacin, and 8.94% for metronidazole. The highest drug-resistance levels were observed in the strains isolated from UWW and TWW samples. The mechanisms of antibiotic-resistance were determined in phenotypically resistant strains of BFG. Research has demonstrated the widespread presence of genes encoding resistance to chloramphenicol (100% of all chloramphenicol-resistant strains), tetracyclines (97.78% of all tetracycline-resistant strains), macrolides, lincosamides and streptogramins (81.97% of all erythromycin-resistant strains). Genes encoding resistance to β-lactams and fluoroquinolones were less prevalent. None of the metronidazole-resistant strains harbored the gene encoding resistance to nitroimidazoles. BFG strains isolated from UWW and TWW samples were characterized by the highest diversity of antibiotic-resistance genes and were most often drug-resistant and multidrug-resistant. The present study examines the potential negative consequences of drug-resistant and multidrug-resistant BFG strains that are evacuated with treated wastewater into the environment. The transmission of these bacteria to surface water bodies can pose potential health threats for humans and animals; therefore, the quality of treated wastewater should be strictly monitored.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Araceli Contreras-Rodríguez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Zofia Filipkowska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| |
Collapse
|
25
|
Narciso-da-Rocha C, Rocha J, Vaz-Moreira I, Lira F, Tamames J, Henriques I, Martinez JL, Manaia CM. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2018; 118:179-188. [PMID: 29883764 DOI: 10.1016/j.envint.2018.05.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 05/25/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, blaCTX-M, blaOXA-A, blaTEM, blaSHV, sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Felipe Lira
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - Javier Tamames
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Isabel Henriques
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - José Luis Martinez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
26
|
Choi PM, Tscharke BJ, Donner E, O'Brien JW, Grant SC, Kaserzon SL, Mackie R, O'Malley E, Crosbie ND, Thomas KV, Mueller JF. Wastewater-based epidemiology biomarkers: Past, present and future. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Wallace JC, Youngblood JE, Port JA, Cullen AC, Smith MN, Workman T, Faustman EM. Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts. PLoS One 2018; 13:e0192412. [PMID: 29438385 PMCID: PMC5811002 DOI: 10.1371/journal.pone.0192412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
Whole-metagenome sequencing (WMS) has emerged as a powerful tool to assess potential public health risks in marine environments by measuring changes in microbial community structure and function in uncultured bacteria. In addition to monitoring public health risks such as antibiotic resistance determinants, it is essential to measure predictors of microbial variation in order to identify natural versus anthropogenic factors as well as to evaluate reproducibility of metagenomic measurements.This study expands our previous metagenomic characterization of Puget Sound by sampling new nearshore environments including the Duwamish River, an EPA superfund site, and the Hood Canal, an area characterized by highly variable oxygen levels. We also resampled a wastewater treatment plant, nearshore and open ocean sites introducing a longitudinal component measuring seasonal and locational variations and establishing metagenomics sampling reproducibility. Microbial composition from samples collected in the open sound were highly similar within the same season and location across different years, while nearshore samples revealed multi-fold seasonal variation in microbial composition and diversity. Comparisons with recently sequenced predominant marine bacterial genomes helped provide much greater species level taxonomic detail compared to our previous study. Antibiotic resistance determinants and pollution and detoxification indicators largely grouped by location showing minor seasonal differences. Metal resistance, oxidative stress and detoxification systems showed no increase in samples proximal to an EPA superfund site indicating a lack of ecosystem adaptation to anthropogenic impacts. Taxonomic analysis of common sewage influent families showed a surprising similarity between wastewater treatment plant and open sound samples suggesting a low-level but pervasive sewage influent signature in Puget Sound surface waters. Our study shows reproducibility of metagenomic data sampling in multiple Puget Sound locations while establishing baseline measurements of antibiotic resistance determinants, pollution and detoxification systems. Combining seasonal and longitudinal data across these locations provides a foundation for evaluating variation in future studies.
Collapse
Affiliation(s)
- James C. Wallace
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jessica E. Youngblood
- Environmental Toxicology, Amec Foster Wheeler, Lynnwood, Washington, United States of America
| | - Jesse A. Port
- Center for Ocean Solutions, Stanford University, Monterey, California, United States of America
| | - Alison C. Cullen
- Daniel J. Evans School of Public Affairs, University of Washington, Seattle, Washington, United States of America
| | - Marissa N. Smith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: ,
| |
Collapse
|
28
|
Phages in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents 2017; 50:678-683. [DOI: 10.1016/j.ijantimicag.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 11/22/2022]
|
29
|
Sidhu C, Vikram S, Pinnaka AK. Unraveling the Microbial Interactions and Metabolic Potentials in Pre- and Post-treated Sludge from a Wastewater Treatment Plant Using Metagenomic Studies. Front Microbiol 2017; 8:1382. [PMID: 28769920 PMCID: PMC5515832 DOI: 10.3389/fmicb.2017.01382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Sewage waste represents an ecosystem of complex and interactive microbial consortia which proliferate with different kinetics according to their individual genetic as well as metabolic potential. We performed metagenomic shotgun sequencing on Ion-Torrent platform, to explore the microbial community structure, their biological interactions and associated functional capacity of pre-treated/raw sludge (RS) and post-treated/dried sludge (DS) of wastewater treatment plant. Bacterial phylotypes belonging to Epsilonproteobacteria (∼45.80%) dominated the RS with relatively few Archaea (∼1.94%) whereas DS has the dominance of beta- (30.23%) and delta- (13.38%) classes of Proteobacteria with relatively greater abundance of Archaea (∼7.18%). In particular, Epsilonproteobacteria appears as a primary energy source in RS and sulfur-reducing bacteria with methanogens seems to be in the potential syntrophic association in DS. These interactions could be ultimately responsible for carrying out amino-acid degradation, aromatic compound degradation and degradation of propionate and butyrate in DS. Our data also reveal the presence of key genes in the sludge microbial community responsible for degradation of polycyclic aromatic hydrocarbons. Potential pathogenic microbes and genes for the virulence factors were found to be relatively abundant in RS which clearly reflect the necessity of treatment of RS. After treatment, potential pathogens load was reduced, indicating the sludge hygienisation in DS. Additionally, the interactions found in this study would reveal the biological and environmental cooperation among microbial communities for domestic wastewater treatment.
Collapse
Affiliation(s)
- Chandni Sidhu
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Surendra Vikram
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India.,Centre for Microbial Ecology and Genomics, Department of Genetics, University of PretoriaPretoria, South Africa
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| |
Collapse
|
30
|
Peracetic Acid (PAA) Disinfection: Inactivation of Microbial Indicators and Pathogenic Bacteria in a Municipal Wastewater Plant. WATER 2017. [DOI: 10.3390/w9060427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Millar JA, Raghavan R. Accumulation and expression of multiple antibiotic resistance genes in Arcobacter cryaerophilus that thrives in sewage. PeerJ 2017; 5:e3269. [PMID: 28462059 PMCID: PMC5407278 DOI: 10.7717/peerj.3269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/03/2017] [Indexed: 01/10/2023] Open
Abstract
We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.
Collapse
Affiliation(s)
- Jess A Millar
- Biology Department, Portland State University, Portland, OR, United States
| | - Rahul Raghavan
- Biology Department, Portland State University, Portland, OR, United States
| |
Collapse
|
32
|
Sousa JM, Macedo G, Pedrosa M, Becerra-Castro C, Castro-Silva S, Pereira MFR, Silva AMT, Nunes OC, Manaia CM. Ozonation and UV 254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:434-441. [PMID: 27072309 DOI: 10.1016/j.jhazmat.2016.03.096] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/03/2023]
Abstract
Conventional wastewater treatment has a limited capacity to reduce antibiotic resistant bacteria and genes (ARB&ARG). Tertiary treatment processes are promising solutions, although the transitory inactivation of bacteria may select ARB&ARG. This study aimed at assessing the potential of ozonation and UV254nm radiation to inactivate cultivable fungal and bacterial populations, and the selected genes 16S rRNA (common to all bacteria), intI1 (common in Gram-negative bacteria) and the ARG vanA, blaTEM, sul1 and qnrS. The abundance of the different microbiological parameters per volume of wastewater was reduced by ∼2 log units for cultivable fungi and 16S rRNA and intI1 genes, by∼3-4 log units, for total heterotrophs, enterobacteria and enterococci, and to values close or below the limits of quantification for ARG, for both processes, after a contact time of 30min. Yet, most of the cultivable populations, the 16S rRNA and intI1 genes as well as the ARG, except qnrS after ozonation, reached pre-treatment levels after 3days storage, suggesting a transitory rather than permanent microbial inactivation. Noticeably, normalization per 16S rRNA gene evidenced an increase of the ARG and intI1 prevalence, mainly after UV254nm treatment. The results suggest that these tertiary treatments may be selecting for ARB&ARG populations.
Collapse
Affiliation(s)
- José M Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gonçalo Macedo
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Marta Pedrosa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cristina Becerra-Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Sérgio Castro-Silva
- Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121 São João da Madeira, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
33
|
Narciso-da-Rocha C, Manaia CM. The influence of the autochthonous wastewater microbiota and gene host on the fate of invasive antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:932-940. [PMID: 27697350 DOI: 10.1016/j.scitotenv.2016.09.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to assess the fate of invasive antibiotic resistance genes (ARG) discharged in wastewater. With this objective, antibiotic resistant bacteria (ARB) known to harbor specific ARG were inoculated in wastewater (hospital effluent, or municipal raw and treated wastewater) and in ultra-pure sterile water microcosms. Two sets of wastewater ARB isolates were used - set 1, Enterococcus faecalis, Acinetobacter johnsonii, Klebsiella pneumoniae and set 2, Enterococcus faecium, Acinetobacter johnsonii, Escherichia coli. Non-inoculated controls were run in parallel. Samples were collected at the beginning and at the end (15days) of the incubation period and the abundance of the genes 16S rRNA, intI1, blaTEM and vanA and the bacterial community composition were analyzed. In general, the genes blaTEM and vanA had lower persistence in wastewater and in ultra-pure water than the genes 16S rRNA or the class 1 integron integrase intI1. This effect was more pronounced in wastewater than in ultra-pure water, evidencing the importance of the autochthonous microbiota on the elimination of invasive ARG. Wastewater autochthonous bacterial groups most correlated with variations of the genes intI1, blaTEM and vanA were members of the classes Gammaproteobacteria, Bacilli or Bacteroidia. For blaTEM, but not for vanA, the species of the ARB host was important to determine its fate. These are novel findings on the ecology of ARB in wastewater environments.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
34
|
Becerra-Castro C, Macedo G, Silva AMT, Manaia CM, Nunes OC. Proteobacteria become predominant during regrowth after water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:313-323. [PMID: 27570199 DOI: 10.1016/j.scitotenv.2016.08.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/06/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Disinfection processes aim at reducing the number of viable cells through the generation of damages in different cellular structures and molecules. Since disinfection involves unspecific mechanisms, some microbial populations may be selected due to resilience to treatment and/or to high post-treatment fitness. In this study, the bacterial community composition of secondarily treated urban wastewater and of surface water collected in the intake area of a drinking water treatment plant was compared before and 3-days after disinfection with ultraviolet radiation, ozonation or photocatalytic ozonation. The aim was to assess the dynamics of the bacterial communities during regrowth after disinfection. In all the freshly collected samples, Proteobacteria and Bacteroidetes were the predominant phyla (40-50% and 20-30% of the reads, respectively). Surface water differed from wastewater mainly in the relative abundance of Actinobacteria (17% and <5% of the reads, respectively). After 3-days storage at light and room temperature, disinfected samples presented a shift of Gammaproteobacteria (from 8 to 10% to 33-65% of the reads) and Betaproteobacteria (from 14 to 20% to 31-37% of the reads), irrespective of the type of water and disinfection process used. Genera such as Pseudomonas, Acinetobacter or Rheinheimera presented a selective advantage after water disinfection. These variations were not observed in the non-disinfected controls. Given the ubiquity and genome plasticity of these bacteria, the results obtained suggest that disinfection processes may have implications on the microbiological quality of the disinfected water.
Collapse
Affiliation(s)
- Cristina Becerra-Castro
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Gonçalo Macedo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Adrian M T Silva
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
35
|
Ahmed W, Staley C, Sidhu J, Sadowsky M, Toze S. Amplicon-based profiling of bacteria in raw and secondary treated wastewater from treatment plants across Australia. Appl Microbiol Biotechnol 2016; 101:1253-1266. [DOI: 10.1007/s00253-016-7959-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 11/28/2022]
|
36
|
Chahal C, van den Akker B, Young F, Franco C, Blackbeard J, Monis P. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:63-119. [PMID: 27926432 PMCID: PMC7126130 DOI: 10.1016/bs.aambs.2016.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes.
Collapse
Affiliation(s)
- C. Chahal
- Flinders University, Adelaide, SA, Australia
| | - B. van den Akker
- Flinders University, Adelaide, SA, Australia
- South Australian Water Corporation, Adelaide, SA, Australia
| | - F. Young
- Flinders University, Adelaide, SA, Australia
| | - C. Franco
- Flinders University, Adelaide, SA, Australia
| | | | - P. Monis
- Flinders University, Adelaide, SA, Australia
- South Australian Water Corporation, Adelaide, SA, Australia
| |
Collapse
|
37
|
Bonetta S, Pignata C, Lorenzi E, De Ceglia M, Meucci L, Bonetta S, Gilli G, Carraro E. Detection of pathogenic Campylobacter, E. coli O157:H7 and Salmonella spp. in wastewater by PCR assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15302-15309. [PMID: 27106076 DOI: 10.1007/s11356-016-6682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was the evaluation of the occurrence of pathogenic Campylobacter, Escherichia coli O157:H7, E. coli virulence genes and Salmonella spp. in different wastewater treatment plants (WWTPs) using a method based on an enrichment step and PCR. This method was sensitive enough to detect low levels (∼2 CFU100 ml(-1) of raw sewage) of all the investigated pathogens. In the WWTP samples, E. coli O157:H7 DNA and the eae gene were never found, but 33 % of influents and effluents exhibited amplicons corresponding to Shiga-like toxin I. Twenty-five percent of the influent and 8 % of the effluent exhibited the presence of Shiga-like toxin II. Campylobacter jejuni and C. coli DNA were identified in 50 and 25 % of the influents and in 8 and 25 % of the effluents, respectively. Salmonella spp. DNA was present in all the samples. Considering the results obtained, the method tested here offers a reliable and expeditious tool for evaluating the efficiency of the effluent treatment in order to mitigate contamination risk. Influent contamination by Salmonella spp. and Campylobacter spp. provides indirect information about their circulation; moreover, their presence in effluents underlines the role of WWTPs in the contamination of the receiving surface waters, which affects public health directly or indirectly.
Collapse
Affiliation(s)
- Si Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - C Pignata
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Lorenzi
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - M De Ceglia
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - L Meucci
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - Sa Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - G Gilli
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy.
| |
Collapse
|
38
|
What is the evidence that point sources of anthropogenic effluent increase antibiotic resistance in the environment? Protocol for a systematic review. Anim Health Res Rev 2016; 17:9-15. [DOI: 10.1017/s1466252316000037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractHerein we describe a protocol for a systematic review of the evidence on whether point sources of anthropogenic effluent are associated with an increase in antibiotic resistance in the adjacent environment. The review question was based on the Population, Exposure, Comparator, Outcome, Study Design (PECOS) framework as follows: Is the prevalence or concentration of antibiotic resistant bacteria or resistance genes (O) in soil, water, air or free-living wildlife (P) higher in close proximity to, or downstream from, known or suspected sources of anthropogenic effluent (E) compared to areas more distant from or upstream from these sources (C)? A comprehensive search strategy was created to capture all relevant, published literature. Criteria for two stages of eligibility screening were developed to exclude publications that were not relevant to the question, and determine if the study used a design that permitted estimation of an association between a source and levels of resistance. A decision matrix was created for assessment of risk of bias to internal validity due to sample selection bias, information bias, and confounding. The goal of this protocol is to provide a method for determining the state of knowledge about the effect of point sources on antibiotic resistance in the environment.
Collapse
|
39
|
Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M, Soares CAG, da Silva-Neto ID, Berendonk TU, Petroni G. "Candidatus Fokinia solitaria", a Novel "Stand-Alone" Symbiotic Lineage of Midichloriaceae (Rickettsiales). PLoS One 2016; 11:e0145743. [PMID: 26731731 PMCID: PMC4701390 DOI: 10.1371/journal.pone.0145743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
Collapse
Affiliation(s)
- Franziska Szokoli
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Biologisches Institut II, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
| | - Carlos A. G. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thomas U. Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
40
|
Changes in Microbial Composition of Wastewater During Treatment in a Full-Scale Plant. Curr Microbiol 2015; 72:128-132. [DOI: 10.1007/s00284-015-0924-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/09/2015] [Indexed: 12/15/2022]
|
41
|
Becerra-Castro C, Machado RA, Vaz-Moreira I, Manaia CM. Assessment of copper and zinc salts as selectors of antibiotic resistance in Gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:367-372. [PMID: 26057541 DOI: 10.1016/j.scitotenv.2015.05.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Some metals are nowadays considered environmental pollutants. Although some, like Cu and Zn, are essential for microorganisms, at high concentrations they can be toxic or exert selective pressures on bacteria. This study aimed to assess the potential of Cu or Zn as selectors of specific bacterial populations thriving in wastewater. Populations of Escherichia coli recovered on metal-free and metal-supplemented culture medium were compared based on antibiotic resistance phenotype and other traits. In addition, the bacterial groups enriched after successive transfers in metal-supplemented culture medium were identified. At a concentration of 1mM, Zn produced a stronger inhibitory effect than Cu on the culturability of Enterobacteriaceae. It was suggested that Zn selected populations with increased resistance prevalence to sulfamethoxazole or ciprofloxacin. In non-selective culture media, Zn or Cu selected for mono-species populations of ubiquitous Betaproteobacteria and Flavobacteriia, such as Ralstonia pickettii or Elizabethkingia anophelis, yielding multidrug resistance profiles including resistance against carbapenems and third generation cephalosporins, confirming the potential of Cu or Zn as selectors of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Cristina Becerra-Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Rita A Machado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
42
|
Somensi CA, Souza ALF, Simionatto EL, Gaspareto P, Millet M, Radetski CM. Genetic material present in hospital wastewaters: Evaluation of the efficiency of DNA denaturation by ozonolysis and ozonolysis/sonolysis treatments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 162:74-80. [PMID: 26232566 DOI: 10.1016/j.jenvman.2015.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/22/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Hospital wastewater treatments must ensure that all genetic material is destroyed, since nuclear and extra-nuclear DNA can show antimicrobial resistance and contain recombinant genes, which promote vertical and/or horizontal gene transfer, amplifying the current problem of the emergence of antibiotic-resistant microorganisms. In this study, we investigated whether ozonolysis or ozonolysis/sonolysis in combination can denature genetic material, i.e., destroy the integrity of DNA molecules, present in hospital wastewaters. To achieve this goal, hospital wastewaters were treated by ozonolysis or ozonolysis/sonolysis in combination (at 70 and 100 W L(-1)) and both raw and treated wastewaters were analyzed in terms of disinfection and DNA denaturation efficiency quantified by viable cell counts and by agarose gel electrophoresis. In the ozonolysis treatment, the agarose gel electrophoresis technique showed that the ozone-treated samples contained DNA molecules, while combined ozonolysis/sonolysis destroyed the DNA in a power density-dependent manner (64% at 70 W L(-1) and 81% at 100 W L(-1)). Care must be taken by environmental managers to distinguish disinfection processes from DNA denaturation processes, since these two terms are not synonymous.
Collapse
Affiliation(s)
- Cleder A Somensi
- UNIVALI, Laboratório de Remediação Ambiental, Rua Uruguai, 458, Itajaí, SC 88302-202, Brazil; IFC, Instituto Federal Catarinense, Laboratório de Microbiologia, Rodovia BR 280, km 27, Araquari, SC 89245-000, Brazil
| | - André L F Souza
- IFC, Instituto Federal Catarinense, Laboratório de Microbiologia, Rodovia BR 280, km 27, Araquari, SC 89245-000, Brazil
| | - Edésio L Simionatto
- FURB, Laboratório de Análise em Combustíveis, Rua São Paulo, 3250, Blumenau, SC 89030-000, Brazil
| | - Patrick Gaspareto
- UFSC, Hospital Universitário, Setor de Quimioterapia, Florianópolis, SC 88049-000, Brazil
| | - Maurice Millet
- Université de Strasbourg, ICPEES, UMR 7515 CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Claudemir M Radetski
- UNIVALI, Laboratório de Remediação Ambiental, Rua Uruguai, 458, Itajaí, SC 88302-202, Brazil.
| |
Collapse
|
43
|
Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KYH, Thompson JR. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 2015; 6:1027. [PMID: 26441948 PMCID: PMC4585245 DOI: 10.3389/fmicb.2015.01027] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.
Collapse
Affiliation(s)
- BoonFei Tan
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
| | - Charmaine Ng
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Jean Pierre Nshimyimana
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological UniversitySingapore, Singapore
| | - Lay Leng Loh
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Karina Y.-H. Gin
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Janelle R. Thompson
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|
44
|
Lobova TI, Yemelyanova E, Andreeva IS, Puchkova LI, Repin VY. Antimicrobial Resistance and Plasmid Profile of Bacterial Strains Isolated from the Urbanized Eltsovka-1 River (Russia). Microb Drug Resist 2015; 21:477-90. [DOI: 10.1089/mdr.2014.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tatiana I. Lobova
- Krasnoyarsk Scientific Centre of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Elena Yemelyanova
- Novosibirsk State Medical University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Irina S. Andreeva
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Larisa I. Puchkova
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| | - Vladimir Ye Repin
- State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-Being, Novosibirsk, Russia
| |
Collapse
|
45
|
Lu X, Zhang XX, Wang Z, Huang K, Wang Y, Liang W, Tan Y, Liu B, Tang J. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS One 2015; 10:e0125549. [PMID: 25938416 PMCID: PMC4418606 DOI: 10.1371/journal.pone.0125549] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- * E-mail: (XXZ); (BL)
| | - Zhu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yuan Wang
- Environmental Science Research Institute of Jiangsu, Nanjing, China
| | - Weigang Liang
- Zhengzhou Sewage Purification Company, Zhengzhou, China
| | - Yunfei Tan
- Zhengzhou Sewage Purification Company, Zhengzhou, China
| | - Bo Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- Research Institute of Nanjing University at Lianyungang, Lianyungang, China
- * E-mail: (XXZ); (BL)
| | - Junying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
47
|
Zhang H, Zhou Y, Guo S, Chang W. Multidrug resistance found in extended-spectrum beta-lactamase-producing Enterobacteriaceae from rural water reservoirs in Guantao, China. Front Microbiol 2015; 6:267. [PMID: 25873918 PMCID: PMC4379920 DOI: 10.3389/fmicb.2015.00267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have been isolated from humans and animals across the world. However, data on prevalence of ESBL-producing Enterobacteriaceae from rural water reservoirs is limited. This study aimed to isolate and characterize ESBL-producing Enterobacteriaceae in rural water reservoirs in Guantao, China. ESBL-producing Enterobacteriaceae were found in 5 (16.7%) of 30 sampled rural water reservoirs. Sixty-six individual isolates expressing an ESBL phenotype were obtained in the present study. Species identification showed that 42 representatives of Escherichia coli, 17 Klebsiella pneumoniae, 4 Raoultella planticola, and 3 Enterobacter cloacae. Twenty isolates contained a single bla gene, including CTX-M (17 strains), TEM (2 strains), and SHV (1 strain). Forty-six isolates contained more than one type of beta-lactamase genes. ESBL-producing Enterobacteriaceae isolated in this study were all multidrug resistant. These findings indicated that the serious contamination of ESBL-producing Enterobacteriaceae in rural water reservoirs existed in Guantao, China.
Collapse
Affiliation(s)
- Hongna Zhang
- College of Animal Science and Technology, Shandong Agricultural University , Taian, China
| | - Yufa Zhou
- College of Animal Science and Technology, Shanxi Agricultural University , Taigu, China ; Animal Husbandry Bureau of Daiyue District , Taian, China
| | - Shuyuan Guo
- College of Animal Science and Technology, Shandong Agricultural University , Taian, China
| | - Weishan Chang
- College of Animal Science and Technology, Shandong Agricultural University , Taian, China
| |
Collapse
|
48
|
Blom K. Drainage systems, an occluded source of sanitation related outbreaks. Arch Public Health 2015; 73:8. [PMID: 25722855 PMCID: PMC4342212 DOI: 10.1186/s13690-014-0056-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Drainage systems and its role in sanitation related outbreaks are evident but still occluded once it has been installed. This current review evaluates if drainage systems can cause infections and thus be of clinical concern. METHOD A review of the literature was analyzed. Papers, guidelines, and quality management systems have been considered. RESULTS Adequate sanitation is fundamental and a prerequisite for safe life and productivity. In contrast, malfunctioning sanitation has been reported to cause outbreaks all over the world. In areas with no sanitation, diarrheal mortality is high and has been shown to decrease by 36% after interventions to improve sanitation. Often, infections are faeces associated and when present in wastewater and sewage sludge poses a high risk of infection upon exposure. Hence, there are working safety guidelines and in industries where infection reduction is essential strict quality assurance systems, i.e. HACCP (hazard analysis critical control points) and GMP (Good Manufacturing Practice) must be complied. Healthcare has recently taken interest in the HACCP system in their efforts to reduce healthcare associated infections as a response to increasing number of ineffective antibiotics and the threat of mortality rate like the pre-antibiotic era. The last few years have called for immediate action to contain the emergence of increasing resistant microorganisms. Resistance is obtained as a result of overuse and misuse of antibiotics in both healthcare and agriculture. Also, by the discharge of antibiotics from manufacturers, healthcare and society. One mechanism of development of novel resistant pathogens has been shown to be by effortless sharing of genetic mobile elements coding for resistance from microbes in the environment to human microbes. These pathogens have been sampled from the drainage systems. These were noticed owing to their possession of an unusual antibiotic resistance profile linking them to the outbreak. Often the cause of sanitation related outbreaks is due to inadequate sanitation and maintenance. However, in general these infections probably go unnoticed. CONCLUSION Drainage systems and its maintenance, if neglected, could pose a threat in both community and healthcare causing infections as well as emergence of multi-resistant bacteria that could cause unpredictable clinical manifestations.
Collapse
|
49
|
Becerra-Castro C, Lopes AR, Vaz-Moreira I, Silva EF, Manaia CM, Nunes OC. Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental health. ENVIRONMENT INTERNATIONAL 2015; 75:117-35. [PMID: 25461421 DOI: 10.1016/j.envint.2014.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 05/25/2023]
Abstract
The reuse of treated wastewater, in particular for irrigation, is an increasingly common practice, encouraged by governments and official entities worldwide. Irrigation with wastewater may have implications at two different levels: alter the physicochemical and microbiological properties of the soil and/or introduce and contribute to the accumulation of chemical and biological contaminants in soil. The first may affect soil productivity and fertility; the second may pose serious risks to the human and environmental health. The sustainable wastewater reuse in agriculture should prevent both types of effects, requiring a holistic and integrated risk assessment. In this article we critically review possible effects of irrigation with treated wastewater, with special emphasis on soil microbiota. The maintenance of a rich and diversified autochthonous soil microbiota and the use of treated wastewater with minimal levels of potential soil contaminants are proposed as sine qua non conditions to achieve a sustainable wastewater reuse for irrigation.
Collapse
Affiliation(s)
- Cristina Becerra-Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita Lopes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Elisabete F Silva
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
50
|
Amador PP, Fernandes RM, Prudêncio MC, Barreto MP, Duarte IM. Antibiotic resistance in wastewater: occurrence and fate of Enterobacteriaceae producers of class A and class C β-lactamases. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:26-39. [PMID: 25438129 DOI: 10.1080/10934529.2015.964602] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antibiotics have been intensively used over the last decades in human and animal therapy and livestock, resulting in serious environmental and public health problems, namely due to the antibiotic residues concentration in wastewaters and to the development of antibiotic-resistant bacteria. This study aimed to access the contribution of some anthropological activities, namely urban household, hospital and a wastewater treatment plant, to the spread of antibiotic resistances in the treated wastewater released into the Mondego River, Coimbra, Portugal. Six sampling sites were selected in the wastewater network and in the river. The ampicillin-resistant Enterobacteriaceae of the water samples were enumerated, isolated and phenotypically characterized in relation to their resistance profile to 13 antibiotics. Some isolates were identified into species level and investigated for the presence of class A and class C -lactamases. Results revealed high frequency of resistance to the -lactam group, cefoxitin (53.5%), amoxicillin/clavulanic acid combination (43.5%), cefotaxime (22.7%), aztreonam (21.3) cefpirome (19.2%), ceftazidime (16.2%) and to the non--lactam group, trimethoprim/sulfamethoxazol (21.1%), tetracycline (18.2%), followed by ciprofloxacin (14.1%). The hospital effluent showed the higher rates of resistance to all antibiotic, except two (chloramphenicol and gentamicin). Similarly, higher resistance rates were detected in the wastewater treatment plant (WWTP) effluent compared with the untreated affluent. Regarding the multidrug resistance, the highest incidence was recorded in the hospital sewage and the lowest in the urban waste. The majority of the isolates altogether are potentially extended-spectrum -lactamases positive (ESBL(+)) (51.9%), followed by AmpC(+) (44.4%) and ESBL(+)/AmpC(+) (35.2%). The most prevalent genes among the potential ESBL producers were blaOXA (33.3%), blaTEM (24.1%) and blaCTX-M (5.6%) and among the AmpC producers were blaEBC (38.9%), blaFOX (1.9%) and blaCIT (1.9%). In conclusion, the hospital and the WWTP activities revealed to have the highest contribution to the spread of multidrug resistant bacteria in the study area. Such data is important for future management of the environmental and public health risk of these contaminants. This is the first embracing study in the water network of Coimbra region on the dissemination of antibiotic resistance determinants. Moreover, it is also the first report with the simultaneous detection of multiresistant bacteria producers of AmpC and ESBLs -lactamases in aquatic systems in Portugal.
Collapse
Affiliation(s)
- Paula P Amador
- a Departamento de Ambiente, CERNAS , Escola Superior Agraria do Instituto Politécnico de Coimbra , Coimbra , Portugal
| | | | | | | | | |
Collapse
|