1
|
Ola I, Drebenstedt C, Burgess RM, Mensah M, Hoth N, Okoroafor P, Külls C. Assessing petroleum contamination in parts of the Niger Delta based on a sub-catchment delineated field assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:585. [PMID: 38809286 PMCID: PMC11136865 DOI: 10.1007/s10661-024-12743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.
Collapse
Affiliation(s)
- Ibukun Ola
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany.
| | - Carsten Drebenstedt
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Robert M Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, Rhode Island, 02882, USA
| | - Martin Mensah
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Nils Hoth
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Precious Okoroafor
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Freiberg Technical University of Mining, Leipziger Street 29, 09599, Freiberg, Germany
| | - Christoph Külls
- Labor Für Hydrologie Und Internationale Wasserwirtschaft, Technische Hochschule, 23562, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
2
|
Naaz N, Pandey J. Spatial distribution of polycyclic aromatic hydrocarbons in water and sediment in the Ganga River: source diagnostics and health risk assessment on dietary exposure through a common carp fish Labeo rohita. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:196. [PMID: 38695954 DOI: 10.1007/s10653-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.
Collapse
Affiliation(s)
- Neha Naaz
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Shi D, Wu F, He J, Sun Y, Qin N, Sun F, Su H, Wang B. Spatiotemporal distributions and ecological risk of polycyclic aromatic hydrocarbons in the surface seawater of Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12131-12143. [PMID: 38227259 DOI: 10.1007/s11356-023-31253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
The spatial-temporal distribution, source, and potential ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface seawater from Laizhou Bay were investigated. The total PAH (ΣPAH) concentrations ranged from 277 to 4393 ng/L with an average of 1178 ng/L, thereby suggesting a relatively moderate to high PAH exposure level in Laizhou Bay in comparison to other bays in the world. The composition patterns and source apportionment results revealed that the coal, biomass burning, diesel emissions, and petroleum combustion as well as the combination of these processes were the dominant sources of PAHs in the surface water, which were closely associated with sail process and sewage effluents. The ecological risk assessment indicated that benzo(a)pyrene (BaP), phenanthrene (Phe), luoranthene (Flua), and naphthalene (Nap) would exist ecological risks in most of surface seawater sites, but the probabilistic risk assessment (PRA) results showed that the current level of risk is not as severe as the risk quotient (RQ) results revealed.
Collapse
Affiliation(s)
- Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yan Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ning Qin
- University of Science & Technology Beijing, Beijing, 100083, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beibei Wang
- University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Singh V, Negi R, Jacob M, Gayathri A, Rokade A, Sarma H, Kalita J, Tasfia ST, Bharti R, Wakid A, Suthar S, Kolipakam V, Qureshi Q. Polycyclic Aromatic Hydrocarbons (PAHs) in aquatic ecosystem exposed to the 2020 Baghjan oil spill in upper Assam, India: Short-term toxicity and ecological risk assessment. PLoS One 2023; 18:e0293601. [PMID: 38019821 PMCID: PMC10686499 DOI: 10.1371/journal.pone.0293601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
This study focuses on the short-term contamination and associated risks arising from the release of Polycyclic Aromatic Hydrocarbons (PAHs) due to the 2020 Baghjan oil blowout in upper Assam, India. Shortly after the Baghjan oil blowout, samples were collected from water, sediment, and fish species and examined for PAHs contents. The results of the analysis revealed ΣPAHs concentrations ranged between 0.21-691.31 μg L-1 (water); 37.6-395.8 μg Kg-1 (sediment); 104.3-7829.6 μg Kg-1 (fish). The prevalence of 3-4 ring low molecular weight PAHs compounds in water (87.17%), sediment (100%), and fish samples (93.17%) validate the petrogenic source of origin (oil spill). The geographic vicinity of the oil blowout is rich in wildlife; thus, leading to a significant mass mortality of several eco-sensitive species like fish, plants, microbes, reptiles, amphibians, birds and mammals including the Gangetic River dolphin. The initial ecological risk assessment suggested moderate to high-risk values (RQ >1) of majority PAHs concerning fish, daphnia, and algae species. This study highlights the need for recognizing the potential for short-term exposure to local species. To safeguard local ecosystems from potential future environmental disasters, it is imperative for the government to adopt a precautionary strategy.
Collapse
Affiliation(s)
- Vineet Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Ranjana Negi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Merin Jacob
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Aaranya Gayathri
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Anurag Rokade
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Hiyashri Sarma
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Jitul Kalita
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | | | | | - Abdul Wakid
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Aaranyak, Guwahati, Assam, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, India
| | | | - Qamar Qureshi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Hu T, Shi M, Mao Y, Liu W, Li M, Yu Y, Yu H, Cheng C, Zhang Z, Zhang J, Xing X, Qi S. The characteristics of polycyclic aromatic hydrocarbons and heavy metals in water and sediment of dajiuhu subalpine wetland, shennongjia, central China, 2018-2020: Insights for sources, sediment-water exchange, and ecological risk. CHEMOSPHERE 2022; 309:136788. [PMID: 36220429 DOI: 10.1016/j.chemosphere.2022.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are persistent environmental issues. Secondary emissions are produced as a result of climate change and human activity. To observe spatio-temporal variations of PAHs and HMs and to discuss the sources as well as the source or sink of PAHs for sediment and peat, twelve surface sediment and surface water sites were chosen along the direction of the flow to down hole in the Dajiuhu area, simultaneously, surface peat and water samples were collected in peatland. Samples were continuously taken for three years (Sep. 2018, Sep. 2019, and Sep. 2020, respectively). The results showed that PAHs and HMs are common in sediment and peat. PAHs concentration is generally higher in peat and water, while HMs concentration is relatively higher in water and relatively low in sediment and peat, and the ecological risk of sediment was low. HMs in sediment are mainly affected by rock weathering, while PAHs are mainly affected by atmospheric deposition, biomass and coal combustion and vehicle emission. HMs and PAHs can be used as an indicator of rock weathering and human activity in Dajiuhu area, respectively. A water-sediment fugacity analysis revealed that peat is a sink for PAHs, confirming that it has a high capacity for adsorbing organic contaminants, and that sediments are secondary sources of PAHs that can release them into water. Attention should be paid to the increased fugacity fraction (ff) value in peatland, indicating that peat might be converted from a sink to a source of PAHs.
Collapse
Affiliation(s)
- Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Miao Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Haikuo Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Cheng Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhiqi Zhang
- Shennongjia National Park Administration, Shennongjia, 442400, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
6
|
Han M, Liu F, Kang Y, Zhang R, Yu K, Wang Y, Wang R. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China: a health risk assessment through seafood consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52493-52506. [PMID: 35258733 DOI: 10.1007/s11356-022-19542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The coastal zone is a crucial transitional area between land and ocean, which is facing enormous pressure due to global climate change and anthropogenic activities. It is essential to pay close attention to the pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the coastal environment and their effect on human health. The pollution status of PAHs was investigated in the Beibu Gulf, taking into consideration various environmental media. The results showed that the total concentration of 16 PAHs (Σ16PAHs) was significantly higher in winter than in summer. Compared to the coastal area, the status of PAHs in the estuarine areas was found to be more severe in summer, while the regional difference was insignificant in winter. In summer, the Σ16PAHs in estuarine waters (71.4 ± 9.58 ng/L) > coastal waters (50.4 ± 9.65 ng/L); estuarine sediment (146 ± 116 ng/g) > coastal zone (76.9 ± 108 ng/g). The source apportionment indicated that spilled oil, biomass, and coal burning were the primary sources of PAHs in the water. The predominant sources of pollution in the sediments were spilled oil, fossil fuel burning, and vehicle emissions. With regard to the status of PAHs in marine organisms in the coastal area of the Beibu Gulf, the highest average concentration of PAHs was indicated in shellfishes (183 ± 165 ng/g), followed by fishes (73.7 ± 57.2 ng/g), shrimps (42.7 ± 19.2 ng/g), and crabs (42.7 ± 19.2 ng/g) in Beibu Gulf coastal area. The calculated bioaccumulation factor indicates a low bioaccumulation capacity of PAHs in various seafood considering the ambient environment. The human health risk assessment considering multiple age groups indicates minimal health risk on accidental ingestion of PAHs through seafood. However, it is suggested that the intake of shellfish in children be controlled.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yaru Kang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Yinghui Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Fouad MM, El-Gendy AS, Khalil MMH, Razek TMA. Polycyclic aromatic hydrocarbons (PAHs) in Greater Cairo water supply systems. JOURNAL OF WATER AND HEALTH 2022; 20:680-691. [PMID: 35482384 DOI: 10.2166/wh.2022.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose a constant threat to the environment and public health. There are numerous activities in the Greater Cairo area that emit and release significant amounts of PAHs. Concentrations of these PAHs are released into the air and mixed with surface water, limiting its use. In this study, 17 PAH compounds are mapped at eight sites along the Nile River and its tributaries in Greater Cairo. In addition, their removal efficiency is evaluated with the conventional treatment in eight water treatment plants. PAHs were analyzed using GC-MS from January to December 2018. Naphthalene, anthracene, fluorene, pyrene, and phenanthrene were detected. The total amount of PAHs in raw water was highest in Shamal Helwan (1,325 ± 631 ng/l) and lowest in Mostorod (468 ± 329 ng/l), and the removal ranged from 25 to 31%. Further research is needed to integrate other techniques to reduce PAHs using the conventional treatment, and more efforts should be made to reduce the presence and release of PAHs in raw water.
Collapse
Affiliation(s)
- Mahmoud M Fouad
- Quality and Environmental Affairs Department, Holding Company for Water and Wastewater, 11687 Rod El Farag, Cairo, Egypt E-mail: ,
| | - Ahmed S El-Gendy
- Department of Construction Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mostafa M H Khalil
- Chemistry Department, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| | - Taha M A Razek
- Environmental Basic Sciences, Institute for Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Sheng Y, Yan C, Nie M, Ju M, Ding M, Huang X, Chen J. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112573. [PMID: 34340152 DOI: 10.1016/j.ecoenv.2021.112573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in a city of Central China were determined in the settled dust and its extracted water phase from different land use types and bus stops in Nanchang City. The physicochemical properties of its water extracted dissolved organic matter (WEOM) were characterized to investigate the effect of fluorescence organic matter on the dust-water partitioning coefficients (Kd) using three-dimensional excitation-emission matrix fluorescence spectroscopy combined parallel factor analysis. Results showed that the range of ∑PAHs in settled dust and the extracted water phase was 0.05-15.92 μg·g-1 and 2-211 ng·L-1, respectively. These PAHs mostly came from the combustion of biomass. The risk assessment showed that PAHs in dust had no obvious health risk (less than the magnitude of 10-6). Additionally, the high molecular weight (HMW) PAHs and the low molecular weight (LMW) PAHs were preferentially adsorbed by dust and the dissolved portion, respectively. It was confirmed by the relatively high logKd values of 4.23 for the HMW-PAHs. Pearson correlation analysis suggested that the higher concentration of dissolved organic carbon and humic-like substance were in favor of PAHs in dust released into waters. This study can provide information on pollution control when considering the impact of fluorescent organic matter on the fate and transport of PAHs.
Collapse
Affiliation(s)
- Yanru Sheng
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resource, Beijing 100037, China.
| | - Min Ju
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xian Huang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Jiaming Chen
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
9
|
Bouchelouche D, Saal I, Arab A. Study of the impact of metal and organic pollution on benthic macrofauna using multivariate analyses in coastal wetland of Reghaïa, Algeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46816-46826. [PMID: 34156621 DOI: 10.1007/s11356-021-14820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, we studied the impact of pollution, metallic, organic, and environmental parameters, on benthic macroinvertebrates of the Reghaïa wetland and coastal zone, which is a nature reserve located in northern Algeria and is one of the last heritage sites on the central coast of the country. To do this, multivariate methods are used. The results of the multivariate analyses clearly show the impact of metal and organic pollution on the macroinvertebrates of this wetland which is really striking; this pollution has destroyed and upset the biodiversity of the benthic macrofauna and it has led to the disappearance of several taxa. This pollution has drained this wetland of the taxonomic richness of benthic macroinvertebrates, the only taxa that have resisted are the Diptera such as Psychodidae, Ceratopogonidae, and Syrphidae.
Collapse
Affiliation(s)
| | - Imane Saal
- LaDyBio, FSB, USTHB, LP 32. El Alia. Bab Ezzouar, Algiers, Algeria
| | - Abdeslem Arab
- LaDyBio, FSB, USTHB, LP 32. El Alia. Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
10
|
Carrieri V, Fernández JÁ, Aboal JR, Picariello E, De Nicola F. Accumulation of polycyclic aromatic hydrocarbons in the devitalized aquatic moss Fontinalis antipyretica: From laboratory to field conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1196-1206. [PMID: 34273176 DOI: 10.1002/jeq2.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
This work aims to test the feasibility of a Fontinalis antipyretica devitalized moss clone to uptake and accumulate polycyclic aromatic hydrocarbons (PAHs) from surface waters. To assess the capability of the devitalized clone to accumulate PAHs, in the laboratory, moss was placed in water and spiked with increasing concentrations of 16 PAHs, and under field conditions, the moss was transplanted to 22 sites of Galicia (Spain) rivers. In general, PAH concentrations in water samples were lower than the maximum allowable concentrations from Directive 2013/39/EU, so the sampling sites did not show water PAH contamination. The exponential accumulation kinetic in the laboratory trial highlights a good capability of the devitalized moss clone to accumulate total PAHs. In field experiments, the hydrogeological conditions and the low emission sources caused low concentrations of PAHs in the water system and, consequently, in the transplants, although an enrichment can be observed for several PAHs. Overall, the devitalized clone of F. antipyretica can uptake and accumulate PAHs in water and may be useful in bioremediation strategies.
Collapse
Affiliation(s)
- Vittoria Carrieri
- Dep. of Sciences and Technologies, Univ. of Sannio, Benevento, 82100, Italy
| | - José Ángel Fernández
- Dep. of Functional Biology, Univ. of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jesús Ramón Aboal
- Dep. of Functional Biology, Univ. of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Enrica Picariello
- Dep. of Sciences and Technologies, Univ. of Sannio, Benevento, 82100, Italy
| | - Flavia De Nicola
- Dep. of Sciences and Technologies, Univ. of Sannio, Benevento, 82100, Italy
| |
Collapse
|
11
|
Zhang Y, Chen H, Liu C, Chen R, Wang Y, Teng Y. Developing an integrated framework for source apportionment and source-specific health risk assessment of PAHs in soils: Application to a typical cold region in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125730. [PMID: 34088198 DOI: 10.1016/j.jhazmat.2021.125730] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Here, a new integrated methodology framework has been proposed for source apportionment and source-oriented risk evaluation, and applied to identify the characteristics, sources and health risks of PAHs in the soils of a typical cold region in Northeastern China. To this end, a large-scale data set containing 1780 soil samples and 16 priority PAHs has been collected from the study area. Two advanced receptor models, positive matrix factorization (PMF) and multivariate curve resolution-weighted alternating least-squares (MCR-WALS), have been comparatively employed to apportion the pollution sources of soil PAHs, with the help of a set of modified literature PAH source fingerprints. Further, the apportionment results have been incorporated into a probabilistic incremental lifetime cancer risk model for assessing the source-specific health risk of soil PAHs. Notably, the PMF and MCR-WALS models have apportioned essentially same results. The coal combustion and gasoline engine are identified as the main contributors of soil PAHs, with contributions of 57.9-58.1% and 25.2-22.2%, respectively. The health risks posed by PAHs in the soils are negligible for both adult and children; relatively, source-oriented risk assessment shows coal combustions make the largest contribution to the total risk of PAHs (56.1%), followed by gasoline engine (22.5%) and coke oven (21.4%).
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruihui Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yeyao Wang
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
12
|
Yu H, Liu Y, Han C, Fang H, Weng J, Shu X, Pan Y, Ma L. Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: Spatial distribution, source apportionment, and potential risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141764. [PMID: 32898799 DOI: 10.1016/j.scitotenv.2020.141764] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report long-term measurements of Polycyclic Aromatic Hydrocarbons (PAHs) collected from the surface waters of seven river basins across China. The spatial distribution, source apportionment, and potential risk assessment of 16 USEPA designated PAHs were reviewed. Water samples were collected from the Songhua River Basin (SRB), Yangtze River Basin (YtRB), Yellow River Basin (YRB), Pearl River Basin (PRB), Huai River Basin (HuRB), Liao River Basin (LRB), and Hai River Basin (HRB). Our results show that the total PAH concentration in the surface waters from primary river basins ranged from 99.60 to 3805.00 ng/L in the dry season with a geometric mean value of 797.96 ng/L, and from 235.84 to 11,812.20 ng/L in the wet season with a geometric mean value of 820.75 ng/L. In the river basins examined, the geometric concentration of Σ16PAHs ranged from 215.50 ng/L to 1969.91 ng/L, with a median value of 837.73 ng/L. In the decreasing order across seven river basins, the geometric mean Σ16PAHs content varied as: SRB (1969.91 ng/L) > LRB (1155.87 ng/L) > YRB (884.06 ng/L) > PRB (837.73 ng/L) > HuRB (559.10 ng/L) > HRB (261.84 ng/L) > YtRB (215.50 ng/L). Moreover, the total PAH concentration was slightly lower in the dry season than in the wet season. The pollution level of PAHs in North China was higher than in South China. No discernible temporal trend was observed in Σ16PAHs observed in China during the past decade. Overall, PAHs designated for priority control measures were Nap, Phe, and Flu; as 2- and 3-ring PAHs were the dominant compounds in the river basins, accounting for 33.7% and 36.9% of the total PAHs, respectively. Source analysis revealed that coal and biomass combustion were the main contributors to PAHs in the river basins, accounting for about 40% of the total. The geometric mean concentrations of individual PAH, including BaP, BaA, BbF, BkF, Ind, and DaA in some water samples exceeded the environmental quality standards of both China and the United States. According to metrics describing eco-toxicity from water contamination, the river basin was at moderate risk in YtRB, YRB, PRB, HuRB, and HRB, but at high risk in SRB and LRB, suggesting that targeted control measures or remedial actions should be undertaken to decrease PAH contamination in China.
Collapse
Affiliation(s)
- Haiyan Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongfeng Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changxu Han
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han Fang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junhe Weng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xingquan Shu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Li D, Zhang H, Chang M, Shen K, Zhang N, Zhu K, Zhou Z, Zhang W, Wang Q, Liu X, Zhang W. Neonicotinoid insecticide and their metabolite residues in fruit juices: Implications for dietary intake in China. CHEMOSPHERE 2020; 261:127682. [PMID: 32711240 DOI: 10.1016/j.chemosphere.2020.127682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid insecticides (NEOs) have become the most widely used insecticides worldwide, and they are ubiquitous in food (i.e., fruit juices). In the present study, occurrence of seven NEOs and four metabolites (m-NEOs) in 400 fruit juice samples were investigated. NEOs and m-NEOs were frequently detected (65%-86%) in fruit juice samples. The median residues of NEOs and m-NEOs were ranged from 0.06 ng/mL to 0.94 ng/mL. Seasonal variations in NEOs and m-NEOs in fruit juices were found, indicating that the target analyte residues during the dry season were remarkably higher than those of residues during wet season. The relative potency factor (RPF) method was used to integrate individual NEOs into a single metric [imidacloprid (IMIRPF)] representing the intakes of IMI equivalent to total NEOs for each fruit juice sample. The estimated daily intake (EDI) of total NEOs for the general Chinese population was obtained. The median IMIRPF for total fruit juices was 13.4 ng/g, and the median EDI of NEOs was 18.2 ng/kg bw/day for the general population. Although the EDIs in this study were considerably lower than the acceptable daily intake (60 μg/kg bw/day, ADI), the dietary exposure risks for total NEOs should not be ignored because of the increasing usage of NEOs and their ubiquitous presence in fruit juices in China. To the best of our knowledge, this report was the first time to document residues of NEO and m-NEO in fruit juice samples collected from China.
Collapse
Affiliation(s)
- Dehai Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Minmin Chang
- School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kui Shen
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Nan Zhang
- Department of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Kairui Zhu
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Zhigang Zhou
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Wu Zhang
- Department of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Qian Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| | - Xiaofeng Liu
- Department of Intensive Care Unit, Zengcheng Branch of South Hospital, Southern Medical University, Guangzhou, 511300, China.
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
14
|
Luo Q, Gu L, Wu Z, Shan Y, Wang H, Sun LN. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China. CHEMOSPHERE 2020; 250:126297. [PMID: 32113093 DOI: 10.1016/j.chemosphere.2020.126297] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
A total of 24 surface sediment samples were collected from Liao River, Northeast China. The concentration, spatial distribution, potential source, and ecological risk of 13 organophosphate esters (OPEs) flame retardants and plasticizers were analyzed. The total concentrations of OPEs varied considerably, ranging from 19.7 to 234 ng g-1 dry weight (dw), with the mean concentrations of 64.2 ± 52.2 ng g-1 dw. The OPEs pollution was increasing from upstream to downstream of Liao River. Compared with other sediments of rivers and lakes all over the world, Liao River has been seriously contaminated by OPEs, especially tributyl phosphate (TNBP) and tri-butoxyethyl phosphate (TBOEP). TNBP was the most abundant OPEs, followed by TBOEP and triphenylphosphine oxide. Their mean relative contributions were 26.3%, 12.4% and 11.6%, respectively. Positive matrix factorization indicated that OPEs in sediments from Liao River might be derived from plastic, textile, and polyurethane foam, anti-foam agent, hydraulic fluids, and coatings, indoor release, and chemical process emission. The risk of potential adverse effects of each individually OPEs on aquatic organisms were low (risk quotient less than 0.1). 2-Ethylhexyl diphenyl phosphate was the main substance causing risk.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China.
| | - Leiyan Gu
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Zhongping Wu
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Yue Shan
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Hui Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Li-Na Sun
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
15
|
Chen J, Liao J, Wei C. Coking wastewater treatment plant as a sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and ecological risk assessment. Sci Rep 2020; 10:7833. [PMID: 32398695 PMCID: PMC7217903 DOI: 10.1038/s41598-020-64835-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in sediments of Maba River, a major tributary of Beijiang River (South China). A total of 13 samples from Maba River and its tributary, Meihua River, were analyzed for 16 PAHs. The total concentration of 16 PAHs (ΣPAH) in high and low water period ranged between 47.61 to 25480.98 ng g-1, with a mean concentration of 4382.98 ng g-1, and 60.30 to 15956.62 ng g-1 with a mean concentration of 3664.32 ng g-1, respectively. Three-ring and four-ring PAHs were the dominant species. It was concluded that a pattern of pyrolytic input as a major source of PAHs in sediments through the molecular ratio method for the source identification, such as HMW/LMW PAHs, Flu/(Flu+Pyr), IcdP/(IcdP+BghiP) and BaA/(BaA+Chr). It is suggested that the pollution emission from the iron and steel plant might be the most important sources of PAHs into Maba River water system. The threat of PAHs contamination to biota of the river was assessed using effect range low (ERL) and effect range median (ERM) values, which suggested that PAHs in Maba River and its tributary had already caused ecological risks.
Collapse
Affiliation(s)
- Jundong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Jianbo Liao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
16
|
Xie Z, Gao L, Liang Z, Chen J, Li S, Zhu A, Wu Y, Yang Z, Li R, Wang Z. Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:401-415. [PMID: 32008048 DOI: 10.1007/s00244-020-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The concentrations, composition, sources, and risks of polycyclic aromatic hydrocarbons (PAHs) in topsoil and surface water of the Liuxi River basin, south China were analyzed in this study. The total concentrations of 16 PAHs ranged from 296.26 to 888.14 ng/g in topsoil and from 156.73 to 422.03 ng/L in surface water, indicating mild pollution. The PAHs in topsoil exhibited an even spatial distribution, suggesting that they originated primarily from dry and wet deposition of transported pollutants. The concentration of PAHs in surface water did not differ significantly geographically, but the concentrations of total, three-, and four-ring PAHs were significantly lower in the Liuxi River than in its tributaries. Three- and two-ring PAHs predominated in topsoil and surface water, respectively. A correlation analysis suggested that the total organic carbon content and pH exerted a negligible effect on the spatial distribution of PAHs in topsoil, and they may have common sources. Fossil fuel combustion (particularly vehicle emissions) and coking production were the dominant sources of PAHs in topsoil, whereas those in surface water were derived from a variety of sources. The total toxic equivalent concentrations of 16 PAHs in topsoil ranged from 3.73 to 105.66 ng/g (mean, 30.93 ng/g), suggesting that exposure to the basin's topsoil does not pose a risk to the environment or public health according to the Canadian soil quality guidelines. A risk assessment revealed that the total PAH concentrations in surface water posed a low ecological risk.
Collapse
Affiliation(s)
- Zhenglan Xie
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Gao
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China.
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaoheng Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Aiping Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wu
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhigang Yang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuowei Wang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Abootalebi Jahromi F, Moore F, Keshavarzi B, Mohebbi-Nozar SL, Mohammadi Z, Sorooshian A, Abbasi S. Bisphenol A (BPA) and polycyclic aromatic hydrocarbons (PAHs) in the surface sediment and bivalves from Hormozgan Province coastline in the Northern Persian Gulf: A focus on source apportionment. MARINE POLLUTION BULLETIN 2020; 152:110941. [PMID: 32479302 DOI: 10.1016/j.marpolbul.2020.110941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 06/11/2023]
Abstract
This study investigates Polycyclic Aromatic Hydrocarbons (PAHs) and Bisphenol-A (BPA) pollution in coastal sediments and bivalves of Hormozgan Province coastline. The results indicated that the BPA concentration in some bivalves reached up to 340.16 ng g-1. The mean BPA concentration in the sediment samples was also 787.01 ng g-1. The ∑PAHs content in sediments ranged from 14.54 to 85.00 ng g-1, while values for bivalves ranged from 5.37 to 16.40 ng g-1. Individual PAH concentrations in sediments exceeded those in bivalves for which only LMW PAHs were detected. A combination of techniques including Self-Organizing Maps (SOM), Positive Matrix Factorization (PMF), and Cluster Analysis (CA) were applied and both petrogenic and pyrogenic sources were identified. The risk of PAHs in the sediments was relatively low according to the sediment quality guidelines. The health risk indices suggest that exposure to PAHs through bivalve consumption does not impose harmful health effects upon consumers.
Collapse
Affiliation(s)
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Seyedeh Laili Mohebbi-Nozar
- Persian Gulf and Oman Sea Ecological Research Institute (PGOSERI), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education & Extension Organization (AREEO), Bandar Abbas 79145-1597, Iran
| | - Zargham Mohammadi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| |
Collapse
|
18
|
Dou M, Jia R, Li G. An optimization model of sewage discharge in an urban wetland based on the multi-objective wolf pack algorithm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:763. [PMID: 31745661 DOI: 10.1007/s10661-019-7954-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The Longfeng Wetland of Daqing City in China was taken as the research object to determine a reasonable sewage reduction scheme and resolve the pollution of urban wetland ecosystems. First, the main pollutants, including dichromate oxidizability (CODCr), ammonia nitrogen (NH3-N), total phosphorus (TP), and petroleum, were selected as indices. A two-dimensional hydrodynamic and water quality coupling model was established using MIKE 21. An optimal regulation method to improve the water quality of the wetland was then proposed following the numerical simulation method, and a multi-objective optimization model is established. The model establishes two objective functions based on wetland pollutant and water quality requirements. The model's constraints include hydrodynamic conditions and water quality conditions, and it considers the control point of the sewage concentration, sewage outfall processing capacity, depth of treatment, and changes in the water cycle. The wolf pack algorithm is introduced to resolve the multi-objective problem of sewage outfall optimization, and an optimal sewage scheme is obtained. According to the results of the scheme, some measures are proposed to manage the pollutants in urban wetland waters.
Collapse
Affiliation(s)
- Ming Dou
- School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China.
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, No. 100 Kexue Road, Zhengzhou, 450001, China.
| | - Ruipeng Jia
- School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Guiqiu Li
- School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|
19
|
Chen Y, Zang L, Liu M, Zhang C, Shen G, Du W, Sun Z, Fei J, Yang L, Wang Y, Wang X, Zhao M. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. ENVIRONMENT INTERNATIONAL 2019; 127:550-557. [PMID: 30981913 DOI: 10.1016/j.envint.2019.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 05/20/2023]
Abstract
In the past two decades, neonicotinoid insecticides have been widely used in agricultural activities in China. Many previous studies have investigated the neonicotinoid pollution in aquatic ecosystems, but the status of water safety of neonicotinoid uses in China is very scarce. The present study aims to reveal the spatial and temporal distribution of neonicotinoids in rivers, and then evaluate the ecological risks to aquatic animals. Water samples were collected from all sixteen rivers along the east coast of China during the dry and wet seasons in 2016, and nine individual commercialized neonicotinoids were quantified. Higher concentrations were found during the dry season (343 ± 210 ng/L) compared to those during the wet season (174 ± 162 ng/L). The concentration of neonicotinoid insecticides in river water is mainly affected by the intensity of agricultural activities. The spatial and temporal pollution patterns we discovered suggested the use of neonicotinoids has shifted from old types (i.e., imidacloprid and acetamiprid) to new types (i.e., dinotefuran and nitenpyram) in some areas. The estimated annual quantity of neonicotinoids released into the adjacent seas totaled 1256 ± 780 tons, most of which (95%) ran into the East China Sea due to heavy agricultural use in the Yangtze River Basin. Using the species sensitive distribution (SSD) method, the thresholds for aquatic animals were determined (acute: 362 ng/L; chronic: 58 ng/L). Under current agricultural practices, 27% and 84% of the river water samples exceeded the thresholds for acute and chronic ecological risks, suggesting intervention programs are in urgent need to ensure river water safety for aquatic life in China.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Zang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chunlong Zhang
- Department of Biological and Environmental Sciences, College of Science and Engineering, University of Houston-Clear Lake, Houston, TX 77058, USA
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhe Sun
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jie Fei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyang Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yonghui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
20
|
Chen Y, Zang L, Shen G, Liu M, Du W, Fei J, Yang L, Chen L, Wang X, Liu W, Zhao M. Resolution of the Ongoing Challenge of Estimating Nonpoint Source Neonicotinoid Pollution in the Yangtze River Basin Using a Modified Mass Balance Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2539-2548. [PMID: 30754969 DOI: 10.1021/acs.est.8b06096] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides have been widely consumed worldwide, particularly in China. There is a growing interest in the environmental research community about the occurrence, fates, sources, and risks of neonicotinoids. Nine neonicotinoids in river/lake water were measured at 12 sites along the Yangtze River Basin during the dry and wet seasons in 2016, and nonpoint sources were also identified based on a modified mass balance method. A significantly higher concentration of neonicotinoids was found during the dry season probably due to the dilution effect and insecticide consumption. The high pollution levels are due to posing high ecological risks compared with the recommended thresholds. In 2016, 1190 (95% confidence interval (CI) = 822-1690) tons of neonicotinoids were transferred into the adjacent sea. Nonpoint source pollution (1700 (CI = 1200-2370) tons) was the major contributor (91.3%) to the total input of neonicotinoids into the system. Composition profiles identifying specific neonicotinoid sources indicated some changes in usage patterns from old to new types of neonicotinoids. This spatial and seasonal field study and source identification is expected to fill the data gap regarding the limited information on neonicotinoid use patterns and to inform further effective policy-making and intervention programs in China that should be urgently promoted in the near future.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Lu Zang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Wei Du
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jie Fei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Liyang Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences , East China Normal University , Shanghai 200241 , China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Weiping Liu
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science , Zhejiang University of Technology , Hangzhou 310032 , China
| |
Collapse
|
21
|
Zhong M, Zhang H, Sun X, Wang Z, Tian W, Huang H. Analyzing the significant environmental factors on the spatial and temporal distribution of water quality utilizing multivariate statistical techniques: a case study in the Balihe Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29418-29432. [PMID: 30128973 DOI: 10.1007/s11356-018-2943-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The assessment of surface water quality is significant to the management of aquatic ecosystem. In this research, in Balihe Lake which is an agricultural watershed lake, 11 environmental parameters (pH, water temperature, water depth, turbidity, DO, COD, TN, NH4+-N, NO3--N, TP, Chl-a) are monitored at 45 sampling sites in four seasons (winter of 2016, spring, summer, and autumn of 2017). With these monitoring data, two kinds of multivariate statistical methods including cluster analysis (CA) and principal component analysis (PCA) are applied to evaluate the spatial and temporal characteristics of the surface water quality. The results reveal that the spatial clusters (less, moderately, and highly polluted sections) of 45 sampling sites classified by the CA method are exactly consistent with the geographical distribution of these sampling sites, which rely on water quality meliorating downstream. From the perspective of time scale, the correlations between environmental parameters generated by the PCA method reveal that the main factors affecting the surface water quality are different in the four seasons. For the whole study period, which is a longer time scale rather than season, the main factors are also different to that of any season. Large time scale may weaken the effect and potential risk of nutrients on water quality, and it is therefore reasonable to select seasonal scale for the study of water quality in an agricultural watershed by using PCA. The results of this research may demonstrate significance to the identification of the main pollution factors and water quality assessment in freshwater lake with multivariate statistical methods.
Collapse
Affiliation(s)
- Meifang Zhong
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Xuewei Sun
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Hai Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
22
|
Tang J, An T, Li G, Wei C. Spatial distributions, source apportionment and ecological risk of SVOCs in water and sediment from Xijiang River, Pearl River Delta. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1853-1865. [PMID: 28281139 DOI: 10.1007/s10653-017-9929-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Xijiang River is an important drinking water source in Guangxi Province, China. Along the Xijiang River and surrounding tributary, the pollution profile of three important groups of semi-volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), was analyzed. Relatively low levels of PAHs (64-3.7 × 102 ng L-1) and OCPs (16-70 ng L-1), but high levels of PAEs (7.9 × 102-6.8 × 103 ng L-1) occurred in the water. Comparatively, low levels of OCPs (39-1.8 × 102 ng g-1) and PAEs (21-81 ng g-1), but high levels of PAHs (41-1.1 × 103 ng g-1) were found in sediment. Principal component analyses for source identification indicated petroleum-derived residues or coal and biomass combustion, and vehicular emission was the main sources for PAHs. The OCPs sources of each category were almost independent, whereas the new input of HCHs and p,p'-DDTs probably existed in some areas. PAEs were mainly originated from personal care products of urban sewage, plastic and other industrial sources. Ecological risk through the risk quotient analysis indicated a small or significant potential adverse effect on fish, daphnia and green algae. Nevertheless, the integrated risk of all pollutants should be taken into account in future study.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
23
|
Sun Y, Dong D, Zhang L, He S, Hua X, Guo Z. Polycyclic aromatic hydrocarbons (PAHs) in an urban river at mid and high latitudes: A case study in Siping, a traditional industrial city in Northeast China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:960-967. [PMID: 29902118 DOI: 10.1080/10934529.2018.1470804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The occurrence, spatial distribution, seasonal variation, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in overlying water and surface sediments from Tiaozi River, which is an urban river running through the downtown of Siping City, a traditional industrial city of northeastern China, were investigated. The total PAH concentrations (ΣPAHs) in water varied from 473.5 to 2674.3 ng/L with a mean value of 1272.6 ng/L and ranged from 601.5 to 2906.3 ng/g with a mean value of 1534.4 ng/g in sediments. Both the individual and total PAH concentrations in water and sediments decreased from upstream to downstream, and the average ΣPAHs between the four seasons in water and sediments decreased in the following order of winter> autumn> spring> summer. The composition of the PAHs was characterized by an abundance of PAHs from 2 rings to 4 rings, and the predominant components were naphthalene, chrysene, and benzo(a)anthracene. The identification of the source indicated that coal combustion could be the main contributor to the PAHs. The equivalent toxic concentrations of benzo[a]pyrene in the water ranged from 11.5 to 33.1 ng/L, which were much higher than the concentration limit, suggesting that PAHs in the water could cause potential risks. The risk assessment of PAHs in sediments also showed that PAHs could cause negative effects on aquatic organisms in this river.
Collapse
Affiliation(s)
- Yidian Sun
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| | - Deming Dong
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| | - Liwen Zhang
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| | - Sinan He
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| | - Xiuyi Hua
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| | - Zhiyong Guo
- a Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of Environment and Resources, Jilin University , Changchun , China
| |
Collapse
|
24
|
Wang L, Chen G, Kang W, Wang J, Liu Y, Chen L. Sediment evidence of industrial leakage-induced asynchronous changes in polycyclic aromatic hydrocarbons and trace metals from a sub-trophic lake, southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13035-13047. [PMID: 29480397 DOI: 10.1007/s11356-018-1537-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
It has been well established that regional patterns of atmosphere-borne polycyclic aromatic hydrocarbons (PAHs) and trace metals were predominantly associated with the trajectory of socio-economic development; however, they could be potentially modulated by anthropogenic fingerprint of local sources such as industrial spill. Here, we established historical pollution data of both PAHs and trace metals from a well-dated sediment core from Yangzong Lake of Southwest China, which experienced a severe tailing leakage accident derived from a zinc concentrate smelting plant in 2007, aiming to evaluate the heterogeneity in their temporal trajectories and their sources of contamination in the context of regional deposition patterns. Sedimentary records show that the concentrations and fluxes of both PAHs and trace metals remained a consistently low level before the 1950s. An increasing trend and the synchronous changes of both PAHs and trace metals during ~ 1950-2002 were well consistent with the temporal pattern of socio-economic development in western China, with coal combustion and smelting industries as the main sources of contamination in this region. However, arsenic (As) and PAHs exhibited a concurrent spike for the period of ~ 2007-2013, contrasting strongly to the regional pattern of these contaminants. The modern concentrations of As revealed a 5- to 14-fold increase over the pre-1950 level, with the contemporary concentrations of PAHs rising by ~ 10-14 times. The sediment records reveal that local fingerprints of smelting activities in the catchment of Yangzong Lake have overridden the temporary pattern of regional atmosphere-borne As and PAHs over the last decade. This highlights the important role of local pollution sources in modulating or even overriding the regional pattern of anthropogenic contamination in highly impacted systems.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Guangjie Chen
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| | - Wengang Kang
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jiaoyuan Wang
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yuanyuan Liu
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Li Chen
- Key Laboratory of Plateau Geographic Processes and Environmental Change, School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China
| |
Collapse
|
25
|
Adesina OA, Sonibare JA, Diagboya PN, Adeniran JA, Yusuf RO. Spatiotemporal distributions of polycyclic aromatic hydrocarbons close to a typical medical waste incinerator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:274-282. [PMID: 29032527 DOI: 10.1007/s11356-017-0335-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Environmental contaminations by polycyclic aromatic hydrocarbons (PAHs) especially from incinerators occur subtly, and PAH contribution from this source is underestimated. However, as environmental PAH concentrations build up, this may be a serious concern around the incinerator vicinity due to the potential consequences of PAHs on ecosystems and human health. Thus, the contribution of selected (12) PAHs from the Obafemi Awolowo University Teaching Hospital medical waste incinerator (or source, HWI_0) was determined by sampling stack gas and ambient air around incinerator vicinity from June 2014 to May 2015. Results showed that the 12 PAH source (HWI_0) concentrations were in the range of NA (for phenanthrene, pyrene, anthracene, benz[e]acephenanthrylene, and indeno[2,1-b]chromene) to 10.9 ng/m3 (pyrelene) and generally higher than the receptor points (hospital waste incinerators (HWIs)). The average total PAH concentrations per month at HWI_0 and the receptors-HWI_1, HWI_2, HWI_3, HWI_4 and HWI_5-were 73.0 ± 27.9, 60.4 ± 30.8, 42.5 ± 23.6, 38.7 ± 21.9, 35.0 ± 27.2, and 39.2 ± 22.9 ng/m3, respectively. These results and multivariate receptor model analysis indicated high correlations between source PAH contributions and the receptor points. The PAH concentrations in the dry season were higher than the wet season suggesting that hydrological condition affects ambient PAH concentrations. The average PAH concentrations in the HWIs as well as the cumulative exposure concentrations observed throughout the period are of major health concern because PAH concentrations detected are several times higher than both the European Union standard and the WHO guideline level.
Collapse
Affiliation(s)
- Olusola A Adesina
- Department of Chemical & Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Jacob A Sonibare
- Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Paul N Diagboya
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa.
| | - Jamiu A Adeniran
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Rafiu O Yusuf
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
26
|
Tang J, An T, Xiong J, Li G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1487-1499. [PMID: 28315117 DOI: 10.1007/s10653-017-9936-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 102 ng L-1 and 2.3 × 103-8.6 × 104 ng g-1, respectively. The levels of Σ20OCPs were 23-66 ng L-1 (dissolved phase) and 19-1.7 × 103 ng g-1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Wang C, Zhou S, Wu S, Song J, Shi Y, Li B, Chen H. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2150-2157. [PMID: 29068344 DOI: 10.2166/wst.2017.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑16PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaPeq) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.
Collapse
Affiliation(s)
- Chunhui Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Shaohua Wu
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Jing Song
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Yaxing Shi
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Baojie Li
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Hao Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| |
Collapse
|
28
|
Zhang Y, Ke X, Gui S, Wu X, Wang C, Zhang H. Evaluation of AhR-agonists and AhR-agonist activity in sediments of Liaohe River protected areas, China. MARINE POLLUTION BULLETIN 2017; 115:292-296. [PMID: 27993371 DOI: 10.1016/j.marpolbul.2016.10.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
A total of 9 sediment samples of Liaohe River protected areas were collected to evaluate aryl hydrocarbon receptor agonists (AhR-agonists) and AhR-agonist activity via chemical analysis and in vitro H4IIE cell bioassay. Results indicated that bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) ranged from 89.1 to 251.1pg/g dry weight. Concentrations of 16 EPA polycyclic aromatic hydrocarbons (PAHs), 12 dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ranged from 256.8 to 560.1ng/g, 79.2 to 416.2pg/g, and 199.6 to 538.4pg/g, respectively. According to potency balance analysis, TEQchems based on PAHs, PCBs, and PCDD/Fs could contribute 16.56% to 26.11% of Bio-TEQs. This could be explained by the potential existence of unidentified AhR-agonists and the potential non-additive interactions among AhR-agonists in sediment extracts. Through the different contributions to Bio-TEQs, this study confirms that PCDD/Fs were the main pollutants that induced significantly AhR-agonist activity in sediments of Liaohe River protected areas.
Collapse
Affiliation(s)
- Yun Zhang
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xin Ke
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, PR China.
| | - Shaofeng Gui
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, PR China
| | - Xiaoqiong Wu
- Department of Pharmacy, Land force General Hospital of PLA, Beijing 100000, PR China
| | - Chunyong Wang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, PR China
| | - Haijun Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, PR China
| |
Collapse
|
29
|
Zhang A, Zhao S, Wang L, Yang X, Zhao Q, Fan J, Yuan X. Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. MARINE POLLUTION BULLETIN 2016; 113:592-599. [PMID: 27622925 DOI: 10.1016/j.marpolbul.2016.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Levels, sources, and potential ecological risks of polycyclic aromatic hydrocarbons (PAHs) in surface seawater and sediments from the northern Liaodong Bay of China were seasonally investigated. Total concentrations of 16 PAHs varied from 145.96ng/L to 896.58ng/L in seawater, and from 191.99ng/g to 624.44ng/g in sediments. PAH concentrations in seawater differed significantly, whereas those in sediments exhibited a relatively stable pattern across seasons. PAHs with low molecular weight were predominant in seawater, but PAHs with high molecular weight were abundant in sediments. Crop straw and coal combustion were the main PAH pollution sources. The current levels of PAHs in the northern Liaodong Bay are relatively moderate compared with those in other bays and estuaries. Sediment from all sampling sites is characterized by low to medium ecotoxicological risk. No highly negative toxic effect could occur on the organisms and ecosystems in the northern Liaodong Bay.
Collapse
Affiliation(s)
- Anguo Zhang
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shilan Zhao
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Lili Wang
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Xiaolong Yang
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Qian Zhao
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China.
| |
Collapse
|
30
|
Wang H, Liu Z, Sun L, Wang Y, Luo Q, Wu H, Wang X. Characterization and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Water from Liaohe River, Northeast China. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1220960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hui Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Zhe Liu
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lina Sun
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Yinggang Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Qing Luo
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Hao Wu
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Xiaoxu Wang
- Key Laboratory of Regional Environmental and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Song S, Shao M, Tang H, He Y, Wang W, Liu L, Wu J. Development, comparison and application of sorbent-assisted accelerated solvent extraction, microwave-assisted extraction and ultrasonic-assisted extraction for the determination of polybrominated diphenyl ethers in sediments. J Chromatogr A 2016; 1475:1-7. [DOI: 10.1016/j.chroma.2016.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
|
32
|
Chen J, Li F, Fan Z, Wang Y. Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13101035. [PMID: 27775679 PMCID: PMC5086774 DOI: 10.3390/ijerph13101035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical oxygen demand (BOD5), NH4+–N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics.
Collapse
Affiliation(s)
- Jiabo Chen
- National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China.
- Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China.
| | - Fayun Li
- National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China.
- Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China.
| | - Zhiping Fan
- National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China.
- Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China.
| | - Yanjie Wang
- National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China.
- Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China.
| |
Collapse
|
33
|
Montuori P, Aurino S, Garzonio F, Sarnacchiaro P, Nardone A, Triassi M. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1254-1267. [PMID: 27265739 DOI: 10.1016/j.scitotenv.2016.05.183] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
The concentration, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the Tiber River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. The 16 priority PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments collected from 21 sites in four different seasons. Total concentrations of PAHs ranged from 10.3 to 951.6ngL(-1) and from 36.2 to 545.6ngg(-1) in water (sum of DP and SPM) and in sediment samples, respectively. The compositions of PAHs showed that 2- to 4-ring PAHs were abundant in DP, 4- to 6-ring PAHs were predominant in SPM samples, and 4- to 5-ring PAHs were abundant in sediments. The diagnostic ratio analysis indicated that the PAHs mainly had a pyrolytic source. The toxic equivalent concentration of carcinogenic PAHs was 45.3ngTEQg(-1), suggesting low carcinogenic risk for Tiber River. Total PAHs loads into the sea were calculated in about 3161.7kgyear(-1) showing that this river is one of the main contribution sources of these contaminants to the Tyrrhenian Sea.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Fatima Garzonio
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Economics, University Unitelma Sapienza, Viale Regina Elena no 295, 00161 Rome, Italy
| | - Antonio Nardone
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| |
Collapse
|
34
|
Zhao Q, Jia X, Xia R, Lin J, Zhang Y. A field-based method to derive macroinvertebrate benchmark for specific conductivity adapted for small data sets and demonstrated in the Hun-Tai River Basin, Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:902-910. [PMID: 27389551 DOI: 10.1016/j.envpol.2016.06.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 05/21/2023]
Abstract
Ionic mixtures, measured as specific conductivity, have been increasingly concerned because of their toxicities to aquatic organisms. However, identifying protective values of specific conductivity for aquatic organisms is challenging given that laboratory test systems cannot examine more salt-intolerant species nor effects occurring in streams. Large data sets used for deriving field-based benchmarks are rarely available. In this study, a field-based method for small data sets was used to derive specific conductivity benchmark, which is expected to prevent the extirpation of 95% of local taxa from circum-neutral to alkaline waters dominated by a mixture of SO4(2-) and HCO3(-) anions and other dissolved ions. To compensate for the smaller sample size, species level analyses were combined with genus level analyses. The benchmark is based on extirpation concentration (XC95) values of specific conductivity for 60 macroinvertebrate genera estimated from 296 sampling sites in the Hun-Tai River Basin. We derived the specific conductivity benchmark by using a 2-point interpolation method, which yielded the benchmark of 249 μS/cm. Our study tailored the method that was developed by USEPA to derive aquatic life benchmark for specific conductivity for basin scale application, and may provide useful information for water pollution control and management.
Collapse
Affiliation(s)
- Qian Zhao
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaobo Jia
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Xia
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianing Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
35
|
Xu J, Peng X, Guo CS, Xu J, Lin HX, Shi GL, Lv JP, Zhang Y, Feng YC, Tysklind M. Sediment PAH source apportionment in the Liaohe River using the ME2 approach: A comparison to the PMF model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:164-171. [PMID: 26925728 DOI: 10.1016/j.scitotenv.2016.02.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Environmental contaminant source apportionment is essential for pollution management and control. This study analysed surface sediment samples for 16 priority polycyclic aromatic hydrocarbons (PAHs). PAH sources were identified by two receptor models, which included positive matrix factorization (PMF) and multilinear engine 2 (ME2). Three PAH sources in the Liaohe River sediments were identified by PMF, including traffic, coke oven and coal combustion. The ME2 model apportioned one additional source. The two models yielded excellent correlation coefficients between the measured and predicted PAH concentrations. Traffic emission was the primary PAH source associated with the Liaohe River sediments, with estimated PMF contributions of 58% in May and 63% in September. Coke oven (19%-25%) and coal combustion (13%-18%) were the other two major PAH sources. For ME2, gasoline and diesel were separated: accounted for 14% in May and 16% in September; and 53% in May and 48% in September. This study marks the first application of the ME2 model to study sediment contaminant source apportionment. The methodology can potentially be applied to other aquatic environment contaminants.
Collapse
Affiliation(s)
- Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xing Peng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chang-Sheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiao Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hai-Xia Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guo-Liang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jia-Pei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yin-Chang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Mats Tysklind
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden
| |
Collapse
|
36
|
Hezhong Y, Enlou Z, Qi L, Rong W, Enfeng L. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4430-4441. [PMID: 26507728 DOI: 10.1007/s11356-015-5626-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Sixteen polycyclic aromatic hydrocarbons (PAHs) were analyzed from the surficial sediments in Erhai Lake, a plateau lake in China. The results showed that except for acenaphthylene (Ace) Ace and Dibenz(a,h)anthracene (DBA), the central region contained individual PAHs at concentrations lower than those in other lake regions. Total concentration of the PAHs (ΣPAHs) in the sediments from Erhai Lake ranged from 32.42 to 558.53 mg/kg with a mean value of 256.70 mg/kg. The maximum value of ΣPAHs was observed in the north region of the lake and more than 10-fold higher than the minimum values. Moreover, high molecular weight (HMW) PAHs, especially 5-ring PAHs, accounted for higher ratios up to 76 % relative to other PAHs compound in almost all sampling sites. Molecular diagnostic ratios including anthtacene (Ant)/(Ant + phenanthrene (Phe)), fluoranthene (Flt)/(Flt + pyrene (Pyr)), benz(a)anthracene (BaA)/(BaA + chrysene (Chr)), and indeno(1,2,3-cd)pyrene (IPY)/(IPY + benz(g,h,i)perylene (BPE)) were recorded at all sampling sites and indicated that the origin of PAHs in Erhai Lake was predominately pyrolytic. Furthermore, principal component analysis with component dominating by HMW PAHs showed that combustion origins were the primary contamination sources of PAHs in the sediments of Erhai Lake. Finally, ecological risk assessment indicated that the sediments from Erhai Lake are exposed to potential low risk for ΣPAHs, and the ecological risk decreases in the order of northern region > southern region > central region.
Collapse
Affiliation(s)
- Yuan Hezhong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhang Enlou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Lin Qi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wang Rong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liu Enfeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
37
|
He Y, Meng W, Xu J, Zhang Y, Guo C. Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:193. [PMID: 26915741 DOI: 10.1007/s10661-016-5201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The distribution and potential toxicity of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Liaohe River Basin were investigated in this study. Total concentrations of 16 PAHs (∑PAH16) ranged from 82.5 to 25374.4 μg/kg averaging 3149.2 μg/kg. Three predominant PAHs were fluoranthene, phenanthrene, and pyrene. In Liao River, two-to-three-ring PAHs were dominant taking up 67.2-92.5% of ∑PAH16, whereas sediments in Daliao River system mainly contained four-to-six-ring PAHs ranging from 47.8 to 83.7%. Both petrogenic and pyrogenic sources contributed to the PAH pollution based on diagnostic ratios. The empirical and mechanistic sediment quality guidelines were used to estimate the toxicity risk of PAHs to benthic organisms. The ∑PAH16 in all sediments were significantly lower than probable effect concentrations (PEC), while ∑PAH16 at nine sites of the Daliao River system were between threshold effect concentrations (TEC) and PEC, suggesting that adverse effects were possible at the nine sites. The only individual PAH was acenaphthene whose concentrations were above PEC at some sites, indicating its potential toxicity. Based upon equilibrium partitioning theory and narcosis model, the obtained toxic units for PAH mixtures at all sites were far less than one, implying that the levels of PAH mixtures were acceptable for the protection of benthic fauna. The two evaluation methods lead to the consistent results that benthic organisms inhabiting in the sediments of Liaohe River Basin have no or low risk of adverse effects resulting from exposure to PAHs.
Collapse
Affiliation(s)
- Yan He
- College of Water Sciences, Beijing Normal University, Beijing, 100012, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
38
|
Yu S, Li BY, Chen YH. Influences of humic acid and fulvic acid on horizontal leaching behavior of anthracene in soil barriers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20114-20120. [PMID: 26300357 DOI: 10.1007/s11356-015-5195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
The influences of humic acid (HA) and fulvic acid (FA) on horizontal leaching behaviors of anthracene in barriers were investigated. Soil colloids (≤1 μm) were of concern because of their abilities of colloid-facilitated transport for hydrophobic organic compounds with soluble and insoluble organic matters. Through freely out of the barriers in the presence of soil colloids with FA added, the higher concentrations of anthracene were from 320 μg L(-1) (D1 and D3) to 390 μg L(-1) (D2 and D4) with 1 to 20 cm in length. The contents of anthracene were distributed evenly at 25 ng g(-1) dry weight (DW) (D1 and D3) and 11 ng g(-1) DW (D2 and D4) in barriers. Therefore, anthracene leaching behaviors were mainly induced by soil colloids with soluble organic matters. The insoluble organic matters would facilitate anthracene onto soil colloids and enhance the movement in and through porous media of soil matrix.
Collapse
Affiliation(s)
- Sheng Yu
- Lab of Environment and Analysis, Suzhou Vocational University, International Education Park, 106 Zhi-neng Avenue, Suzhou, Jiangsu, 215104, People's Republic of China.
| | - Bang-Yu Li
- Lab of Environment and Analysis, Suzhou Vocational University, International Education Park, 106 Zhi-neng Avenue, Suzhou, Jiangsu, 215104, People's Republic of China
| | - Yi-Hu Chen
- Lab of Environment and Analysis, Suzhou Vocational University, International Education Park, 106 Zhi-neng Avenue, Suzhou, Jiangsu, 215104, People's Republic of China
| |
Collapse
|
39
|
Chen B, Pei N, Huang J, Liu S, Zhang N, Xiao Y, Pan Y. Removal of Polycyclic Aromatic Hydrocarbons from Precipitation in an Urban Forest of Guangzhou, South China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:240-245. [PMID: 26021616 DOI: 10.1007/s00128-015-1567-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations and fluxes were measured monthly in situ from rain events in an urban forest in the megapolitan city Guangzhou, China, to investigate impacts of forest canopy and soils on PAHs. Mean Σ9-PAH concentrations were 107.5, 101.6, 106.3, 107.1 and 42.4 ng L(-1) in precipitation, throughfall, seepage water at the 30 and 60 cm soil depth, and runoff, respectively, indicating a great decrease in the form of runoff. Meanwhile, annual fluxes of total PAHs decreased from precipitation (205.9 µg m(-2) year(-1)), to throughfall (156.3 µg m(-2) year(-1)), and to seepage water (65.3 µg m(-2) year(-1) at 30-cm soil depth and 7.5 µg m(-2) year(-1) at 60-cm soil depth), but increased in runoff (34.1 µg m(-2) year(-1)). When compared to precipitation, PAH fluxes decreased by 83.4% in runoff, with 29% contributed by forest canopy and 71% by soils. Soil biodegradation explained 18.2% of PAH reduction by the surface soil layer and 34.6% by the middle soil layer.
Collapse
Affiliation(s)
- Bufeng Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China,
| | | | | | | | | | | | | |
Collapse
|
40
|
Li P, Cao J, Diao X, Wang B, Zhou H, Han Q, Zheng P, Li Y. Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China. MARINE POLLUTION BULLETIN 2015; 93:53-60. [PMID: 25726067 DOI: 10.1016/j.marpolbul.2015.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 05/27/2023]
Abstract
The occurrence of 14 polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency was investigated in surface seawater of Yangpu Bay, China in November 2013 (winter) and May 2014 (summer). Seventy-two samples were collected from 12 sampling sites. The total concentrations of PAHs in Yangpu Bay showed obvious variations in different seasons, which varied from 582.8 to 2208.3 ng L(-1) in winter and 952.4 to 1201.7 ng L(-1) in summer, respectively. Two-ring PAHs accounted for more than 91.6% of total PAHs in winter, and three-ring PAHs were dominant with 81.6% of total PAHs in summer. Molecular indices analyses indicated that the main source of PAHs in Yangpu Bay could be petrogenic contamination. The ecological risk assessment by Risk quotients (RQNCs and RQMPCs) showed a potential ecological risk of PAHs in Yangpu Bay, indicating a close attention should be paid to pollution of PAHs in the coastal area of Yangpu.
Collapse
Affiliation(s)
- Ping Li
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Jia Cao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoping Diao
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Baihua Wang
- Petrochemical Analytical and Testing Center, Yangpu Entry-Exit Inspection and Quarantine Bureau Technology Center, Hainan 578101, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Pengfei Zheng
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| |
Collapse
|
41
|
Li Y, Li P, Ma W, Song Q, Zhou H, Han Q, Diao X. Spatial and temporal distribution and risk assessment of polycyclic aromatic hydrocarbons in surface seawater from the Haikou Bay, China. MARINE POLLUTION BULLETIN 2015; 92:244-251. [PMID: 25656242 DOI: 10.1016/j.marpolbul.2014.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 05/27/2023]
Abstract
Spatial and temporal distributions of 14 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface waters of Haikou Bay, China from October 2013 to September 2014. The total PAHs concentrations ranged from 420.2 to 2539.1 ng L(-1) with the average value of 1016.3±455.8 ng L(-1), which were predominated by low molecular weight PAHs (2- and 3-ring PAHs). Moreover, PAHs displayed spatial and temporal variations in the concentration and composition pattern. Source analysis based on isomer ratios indicated that the PAHs mostly originated from petroleum and combustion processes. An eco-toxicological risk assessment showed that the potential risk of individual PAHs had reached moderate to high levels and the total concentrations of PAHs had also reached a relatively high level compared with previous studies. This study offers important information on the pollution levels of 14 PAHs in the surface waters of Haikou Bay and recommends that prevention and control of PAHs pollution should be implemented in the region.
Collapse
Affiliation(s)
- Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Ping Li
- Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China; College of Plant Protection and Environment, Hainan University, Haikou 570228, China
| | - Wandong Ma
- Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
| | - Qingqing Song
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| |
Collapse
|
42
|
Lv J, Zhang Y, Zhao X, Zhou C, Guo C, Luo Y, Meng W, Zou G, Xu J. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sediments of Liaohe River: levels, spatial and temporal distribution, possible sources, and inventory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4256-4264. [PMID: 25292305 DOI: 10.1007/s11356-014-3666-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 06/03/2023]
Abstract
Spatial and seasonal variations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the sediment of Liaohe River were investigated in this study. A total of 29 surface sediment samples were collected in May and September in 2013. Results showed that levels of the two classes of compounds were higher in September than in May. The total concentration of PBDEs (∑8PBDEs) ranged from 0.30 to 5.09 ng g(-1) in May and from 0.17 to 13.73 ng g(-1) in September, respectively, and BDE 209 was the dominant compound. The total concentration of PCBs (∑33PCBs) was in the range of 4.92-76.86 and 11.69-179.61 ng g(-1) in May and September, respectively, with tri- and tetra-CBs dominated in the total PCBs in the sediments. According to the congener profiles and the principal component analysis, the major sources of PCBs and PBDEs in sediments of Liaohe River were from the usage of commercial products and industrial activities, and the degradation of high brominated BDEs also contributed to the current PBDEs in the sediments. The mass inventories of PBDEs and PCBs in the sediments of Liaohe River were 1.74 and 21.96 t, respectively, indicating that Liaohe River sediments may act as the potential sources of PBDEs and PCBs to the downstream coastal areas.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | | | | | | | | | | | | | | | | |
Collapse
|