1
|
Rahman SU, Han JC, Zhou Y, Li B, Huang Y, Farman A, Zhao X, Riaz L, Yasin G, Ullah S. Eco-resilience of China's mangrove wetlands: The impact of heavy metal pollution and dynamics. ENVIRONMENTAL RESEARCH 2025; 277:121552. [PMID: 40194676 DOI: 10.1016/j.envres.2025.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Mangrove forests in China have significantly degraded over the past several decades primarily due to rapid economic growth and land reclamation for aquaculture and infrastructure development. Among various threats, heavy metal pollution, primarily from urbanization, agricultural runoff, and industrial runoff, poses a substantial risk to mangroves in China. It impairs their ecological functions, limiting biodiversity and reducing their natural ability to sequester carbon and detoxify coastal areas. Despite these challenges, the mangrove ecosystem's resilience in China has not been completely compromised. Natural adaptations and phytoremediation mechanisms, such as limiting metal uptake, excreting metal binding proteins, upregulating antioxidants, forming Fe plague, excreting metals through salt glands, and tolerance to specific metal concentrations, help mitigate heavy metal toxicity. However, these adaptive strategies are limited by the extent of pollutants and the speed at which these pollution factors arise. This review highlights a need to shift restoration efforts from expanding mangrove areas to enhancing ecosystem integrity, with a specific focus on reducing heavy metal pollution through phytoremediation. It also examines how heavy metal interactions at the sediment-water interface impact microbial communities and local fauna, contributing to climate change. Addressing these challenges is critical to improving mangrove conservation in China and ensuring the long-term health and resilience of these critical ecosystems for future generations.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, School of Civil Engineering and Water Resources, Qinghai University, Xining, 810016, China.
| | - Ali Farman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakaryia University, Multan, Pakistan.
| | - Sami Ullah
- Department of Forestry & Range Management, Kohsar University Murree, Murree, 47150, Pakistan.
| |
Collapse
|
2
|
Koka EG, Masao CA, Limbu SM, Kilawe CJ, Norbert J, Pauline NM, Perfect J, Mabhuye EB. A systematic review on distribution, sources and impacts of heavy metals in mangrove ecosystems. MARINE POLLUTION BULLETIN 2025; 213:117666. [PMID: 39970790 DOI: 10.1016/j.marpolbul.2025.117666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Mangrove ecosystems play a vital role in providing habitat for numerous plant and animal species, protecting coastlines from erosion and storm damage, and supporting coastal communities with natural resources. Several studies have been conducted on heavy metals due to advancements in technology, which have improved the accuracy in detecting, identifying, and quantifying the metals. However, our understanding on the distribution, sources, and impacts of heavy metals on mangrove ecosystem health and productivity is currently scattered and unorganized. This review aims to bridge knowledge gaps, inform conservation strategies, and promote interdisciplinary collaboration by synthesizing ecological, socio-economic, and policy-related insights. We reviewed 139 publications from 2003 to 2024 across 20 countries, sourced from four databases (Scopus, Web of Science, PubMed, and EBSCO) and one search engine (Google Scholar). The results revealed a rapid increase in publications on this topic globally, particularly during the period between 2010 and 2023. China (29%) and India (22%) emerged as the leading contributors to research on mangrove heavy metal contamination. The most frequently studied heavy metals were Cadmium followed by Lead, Copper, Zinc and Chromium. The major sources of heavy metals contamination in mangrove ecosystems were industrial effluents (36 %) and rapid land-use conversion (31 %) and sediments (51 %) were the most commonly investigated component of mangrove ecosystem. Heavy metals have negative effects on human health (44 %) and reduce mangroves growth and development (25 %). Future studies should prioritize investigating the interactions among heavy metals contamination, and mangrove productivity and health, as well as the resilience of associated species over time.
Collapse
Affiliation(s)
- Eliengerasia Godliving Koka
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania.
| | - Catherine Aloyce Masao
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, University of Dar es Salaam (UDSM), P.O. Box 60091, Dar es Salaam, Tanzania
| | - Charles Joseph Kilawe
- Department of Ecosystems and Conservation, P.O. Box 3010, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Joel Norbert
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Noah Makula Pauline
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Joseph Perfect
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Edmund B Mabhuye
- Institute of Resource Assessment (IRA), University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| |
Collapse
|
3
|
Hu WJ, Deng LX, Huang YY, Wang XC, Qing JL, Zhu HJ, Zhou X, Zhou XY, Chu JM, Pan X. Genome mining and metabolite profiling illuminate the taxonomy status and the cytotoxic activity of a mangrove-derived Microbacterium alkaliflavum sp. nov. BMC Microbiol 2025; 25:103. [PMID: 40021979 PMCID: PMC11869465 DOI: 10.1186/s12866-025-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
The genus Microbacterium in the phylum Actinomycetota contains over 100 species to date that little is known about their bioactive metabolites production. In this study, a mangrove sediment-derived strain B2969T was identified as a novel type strain within the genus Microbacterium due to the low 16S rRNA gene sequence similarity (< 99%), and low overall genome relatedness indices (ANI, 75.4%-79.5%; dDDH, 18.5%-22.7%, AAI, 68.7%-76.3%; POCP, 48.3%-65.0%) with the validly named species of the genus. The type strain B2969T (= MCCC 1K099113T = JCM 36707 T) is proposed to represent Microbacterium alkaliflavum sp. nov.. The crude extracts of strain B2969T showed weak cytotoxicity against NPC cell lines TW03 and 5-8F, with IC50 values of ranging from 3.5 µg/µL to 2.4 µg/µL respectively. Genome analysis of strain B2969T found 8 clusters of genes responsible for secondary metabolite biosynthesis, including cytotoxic compounds desferrioxamines. In addition, the application of liquid chromatography tandem mass spectrometry (LC-MS/MS)-based molecular networking strategy led to the identification of 10 compounds with potent cytotoxic activity in ethyl acetate extracts of strain B2969T. Results from the cytotoxicity assay, genome mining, and metabolite profiling based on LC-MS/MS analysis revealed its ability to produce bioactive compounds.BackgroundMangrove ecosystems are largely unexplored sources of Actinomycetota, which represent potential important reservoirs of bioactive compounds. The genus Microbacterium in the phylum Actinomycetota contains over 100 species to date that little is known about their bioactive metabolites production. In this study, a novel species, namely B2969T, within the genus Microbacterium that showed cytotoxicity against nasopharyngeal carcinoma (NPC) cell lines was isolated from mangrove sediments. Genome mining and metabolic profiling analyses were explored here to assess its biosynthetic potential of metabolites with cytotoxic properties.ResultsHere, a mangrove sediment-derived strain B2969T was identified as a novel species within the genus Microbacterium due to the low 16S rRNA gene sequence similarity (< 99.0%), and low overall genome relatedness indices (ANI, 75.4%-79.5%; dDDH, 18.5%-22.7%, AAI, 68.7%-76.3%; POCP, 48.3%-65.0%) with the type strains of this genus. We proposed that strain B2969T represents a new species, in which the name Microbacterium alkaliflavum sp. nov. is proposed. The strain showed weak cytotoxicity against NPC cell lines TW03 and 5-8F, with IC50 values of ranging from 3.512 µg/µL to 2.428 µg/µL respectively. Genome analysis of strain B2969T found 8 clusters of genes responsible for secondary metabolite biosynthesis, including desferrioxamines. In addition, the application of liquid chromatography tandem mass spectrometry (LC-MS/MS)-based molecular networking strategy led to the identification of 10 potent cytotoxic compounds in ethyl acetate extracts of strain B2969T.ConclusionsThis study confirmed the taxonomy status of type strain B2969T (= MCCC 1K099113T = JCM 36707 T) within the genus Microbacterium, in which the name Microbacterium alkaliflavum sp. nov.. Results from the cytotoxicity assay, genome mining, and metabolite profiling based on LC-MS/MS analysis revealed its ability to produce bioactive substances, providing sufficient evidence for the potential of Microbacterium species in the discovery of novel pharmaceuticals.
Collapse
Affiliation(s)
- Wen-Jin Hu
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China
| | - Li-Xian Deng
- Life Science Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China
| | - Yi-Ying Huang
- Life Science Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, NanningNanning, 530021, China
| | - Xiao-Chun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China
| | - Jin-Ling Qing
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China
| | - Hao-Jun Zhu
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China
| | - Xing Zhou
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China
| | - Xiao-Ying Zhou
- Life Science Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China.
| | - Jie-Mei Chu
- Life Science Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China.
| | - Xinli Pan
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning, 530007, China.
| |
Collapse
|
4
|
Birgani S, Mohammadiroozbahani M, Behbash R, Sabzalipour S. Study of biological indicators of heavy metal pollution in sediments and plants of Hoor-Al-Azim wetland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:312. [PMID: 39966218 DOI: 10.1007/s10661-025-13739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Wetland ecosystems are vulnerable to various environmental pollutants. In southwest Iran, the presence of significant wetlands alongside multiple oil facilities has led to serious biological issues for these ecosystems. This study was conducted in 2022 to investigate biological indicators of heavy metal pollution in the sediments and plants of the Hoor-al-Azim wetland. A total of 10 samples of sediments and the plant species Typha latifolia were collected. Heavy metals consist of Pb, Hg, Ni, Cu, and Cd were measured. The contamination level of sediments was assessed using contamination factor (CF) and ecological risk (ER) indices, while the transfer of pollution to native plant species was evaluated through transfer factor (TF) and bioaccumulation factor (BCF) indices. Results indicated that in sediment samples, Cd had the lowest average concentration (0.052 mg/kg) and Ni had the highest (147 mg/kg). In plant samples, Cd also showed the lowest concentration (0.086 mg/kg), while Hg had the highest (43.6 mg/kg). Pb and Ni levels were significantly elevated compared to other metals. The CF and ER indices revealed that Ni and Pb posed the greatest pollution levels and ecological risks. The TF index indicated that lead had the highest biological pollution potential (1.06). The average BCF values for lead, nickel, and copper were 0.05, 0.053, and 0.12, respectively. Overall, sediment pollution levels in the wetlands near oil facilities are concerning. Therefore, implementing environmental management strategies, including bioremediation, is crucial to mitigate pollution impacts.
Collapse
Affiliation(s)
- Sara Birgani
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | - Roshana Behbash
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
5
|
Sayed FA, Eid MH, El-Sherbeeny AM, Abdel-Gawad GI, Mohamed EA, Abukhadra MR. Environmental and health risk assessment of polycyclic aromatic hydrocarbons and toxic elements in the red sea using Monte Carlo simulation. Sci Rep 2025; 15:4122. [PMID: 39900963 PMCID: PMC11790872 DOI: 10.1038/s41598-024-71547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/28/2024] [Indexed: 02/05/2025] Open
Abstract
This research evaluates the environmental and health risks linked to potentially toxic elements (PTEs) and PAHs along the western coast of the Gulf of Suez, Egypt. This study investigated the concentration of 16 PAH compounds in the Suez Gulf, revealing significantly higher levels than the EU (0.20 µg/L) and US (0.030 µg/L) standards. The average total PAH concentration across eight locations was significantly higher, with the Suez area having the highest concentration at 479 µg/L. Pyrene (Pyr) was the dominant PAH with a concentration of 443 µg/L in Suez, while acenaphthylene (Ace) had the lowest concentration at 0.120 µg/L in Northern Zaafarana. Carcinogenic PAHs (CAR) ranged from 8.67 µg/L at Ras Gharib to 29.62 µg/L at Suez, highlighting the urgent need for regulatory measures. Confirmatory ratios pointed to industrial and shipping influences as petrogenic sources. Elevated total organic carbon (TOC) levels in Suez Bay indicated aggravated organic pollution, exacerbated by oil rigs and refineries. The ecological risk assessment highlighted substantial risks, particularly in Suez, necessitating immediate interventions to combat PAH contamination and preserve the environmental balance of the Red Sea. The dominant metals in water samples were arranged in descending order as follows: Pb > Fe > Cr > Cu > Zn > Mn > Cd > Ni. The study evaluated environmental and human health risks using a multifaceted approach, including cluster analysis, principal component analysis, and various indices (HPI, RI, MI, HQ, HI, and CR). Most water samples exhibited high pollution risks, surpassing permissible limits for HPI (> 100) and MI (> 6). Notably, HI oral values indicated significant non-carcinogenic risks for adults and children. While HI values for adults suggested low-risk dermal contact, those for children showed a substantial proportion in the high-risk category. Most water samples displayed CR values exceeding 1 × 10-4 for Cd, Cr, and Pb, indicating vulnerability to carcinogenic effects in both age groups. Monte Carlo simulations reinforced these findings, revealing a significant carcinogenic impact on children and adults. The identified clusters, reflective of industrial, petroleum-related, and urban runoff contamination sources, were consistently validated and clarified through PCA, enhancing the reliability of the findings. In light of these results, urgent and comprehensive water treatment measures are imperative to mitigate carcinogenic and non-carcinogenic health risks. These insights provide a foundation for implementing targeted management strategies to effectively address the challenges of heavy metal contamination in the Red Sea.
Collapse
Affiliation(s)
- F Alshaima Sayed
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, 62511, Egypt
- Shenzhen Key Laboratory of Green, Efficient, and Intelligent Construction of underground metro station, Shenzhen University, Shenzhen , China
| | - Mohamed Hamdy Eid
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary.
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | | | - Essam A Mohamed
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Mostafa R Abukhadra
- Shenzhen Key Laboratory of Green, Efficient, and Intelligent Construction of underground metro station, Shenzhen University, Shenzhen , China
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
6
|
Yan Y, Yang Y. Revealing the synergistic spatial effects in soil heavy metal pollution with explainable machine learning models. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136578. [PMID: 39577285 DOI: 10.1016/j.jhazmat.2024.136578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The identification of factors that affect changes in the heavy metal content of soil is the basis for reducing or preventing soil heavy metal pollution. In this research, 16 environmental factors were selected, and the influences of soil heavy metal spatial distribution factors and the synergy amongst space factors were evaluated using a geographic detector (GD) and the extreme gradient boosting (XGBoost)-Shapley additive explanations (SHAP) model. Three heavy metal elements, namely, Cd, Cu and Pb, in the study region were examined. The following results were obtained. (1) XGBoost demonstrated high accuracy in predicting the spatial distributions of soil heavy metals, with each heavy metal having an R2 value of over 0.6. (2) Geological type map (Geomap) and enterprise density considerably affected the concentrations of Cd, Cu and Pb in soil in the GD and XGBoost-SHAP models. In addition, cross-detection revealed strong explanatory power when natural and human factors were combined. (3) Under the same geological background, the different trends of gross domestic product effects on heavy metals indicated that pollution control measures were effective in economically developed areas, and the economy and the environment could be balanced. Meanwhile, the interaction between the normalised difference vegetation index and enterprise density showed that vegetation could alleviate heavy metal pollution in the region. This study supports strategic decision-making, serving as a reference for the global management of soil heavy metal contamination, sustainable ecological development and assurance of people's health and well-being.
Collapse
Affiliation(s)
- Yibo Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China.
| | - Yong Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
7
|
Ma X, Song Z, Wang YP, Wang S, Zhan ZW, He D. Heavy metal dynamics in riverine mangrove systems: A case study on content, migration, and enrichment in surface sediments, pore water, and plants in Zhanjiang, China. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106832. [PMID: 39531745 DOI: 10.1016/j.marenvres.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Mangroves serve a crucial role as metal accumulators in tropical and subtropical marine ecosystems, particularly in riverine mangroves, which frequently interact with terrestrial sources. In this study, we focused on the Gaoqiao and Jiuzhou Rivers within the Zhanjiang mangrove forest in Guangdong, China, and collected leaves and surface sediments from the dominant mangrove plant, Aegiceras corniculatum, near the riverbanks. We focused on seven heavy metals (Cr, Cu, Zn, As, Cd, Pb, and Hg) in mangrove leaves, surface sediments, and pore water due to their environmental significance and frequent occurrence in mangrove ecosystems. We employed multivariate statistical methods and pollution indicators to assess the potential sources and risk levels of heavy metals in these sediments. Our results reveal that the concentrations of the seven heavy metals in the sediments of the Gaoqiao and Jiuzhou Rivers varied significantly, ranging from 0.03 mg/kg to 100.00 mg/kg. Cd posed the highest ecological risk, followed by Hg and As. The comprehensive potential ecological risk in the Gaoqiao River was lower than that in the Jiuzhou River, likely due to the distribution of industrial enterprises (such as printing and cement plants) in the upper reaches of the Jiuzhou River. Additionally, the heavy metal content in the leaves of A. corniculatum and in pore water within surface sediments ranged from 0.01 to 51.58 mg/kg and 0.001 to 133.70 μg/L, respectively. A significant correlation was observed between the heavy metal concentrations in the A. corniculatum leaves and those in the pore water. Notably, the leaves of A. corniculatum exhibited a remarkable Hg-enrichment capability, highlighting its potential as a mercury accumulator. Most heavy metals in A. corniculatum leaves, pore water, and sediment were concentrated in the middle and upper reaches of the river, primarily due to anthropogenic terrestrial inputs from residential production activities upstream. Consequently, heavy metal pollution in riverine mangroves is primarily associated with human activities such as aquaculture, agricultural planting, and industrial production.
Collapse
Affiliation(s)
- Xuemei Ma
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiguang Song
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yao-Ping Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Sibo Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhao-Wen Zhan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ding He
- Department of Ocean Science and the Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Jing Y, Zhang T, Hu F, Liu G, Sun M. Single and combined effects of phenanthrene and cadmium on oxidative stress and detoxification related biomarkers in clams (Meretrix meretrix). Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110050. [PMID: 39378974 DOI: 10.1016/j.cbpc.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Biomarkers concerning antioxidant reactions and detoxification metabolics were evaluated in Meretrix meretrix exposed to cadmium (Cd, 10 μg/L) and phenanthrene (PHE, 100 μg/L) individually and in combination (10 μg/L Cd + 100 μg/L PHE) for 7 days. The accumulation of Cd and PHE measured in the digestive gland, gill, mantle, and axe foot of the clam showed significant increase in combination treatment and it was higher than the single Cd or single PHE treatment. The activities of oxidative stress-related enzymes, the expression of Cu/Zn SOD, and the content of MDA increased after Cd and PHE exposure in the digestive gland and gill at most cases. In the digestive gland, CAT gene expression was significantly induced in Cd-single group and significantly inhibited in PHE-single group and Cd-PHE mixed group at both day 3 and day 7; in the gill, CAT gene expression was significantly inhibited in all groups at day 3 and except for Cd-single group at day 7. MT expression was significantly induced in Cd-single and Cd-PHE mixed groups at day 7, while hsp70 expression was significantly inhibited in PHE-single and Cd-PHE mixed groups at day 7. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, MT and hsp70 were sensitive to cadmium and PHE in a water environment, and can be used as indicators of marine heavy metal pollution.
Collapse
Affiliation(s)
- Yuanyuan Jing
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Tianwen Zhang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Ming Sun
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China.
| |
Collapse
|
9
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
10
|
Wang M, Chen Q, Cui J, Yu Z, Wang W, Sun Z, Chen Q. Distribution, ecological risk, and sediment-influencing mechanisms of heavy metals in surface sediments along the intertidal gradient in typical mangroves in Hainan, China. MARINE POLLUTION BULLETIN 2024; 206:116677. [PMID: 39018823 DOI: 10.1016/j.marpolbul.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
The relative importance of each sediment physicochemical property to sediment heavy-metal (HM) contents has not yet been quantitatively evaluated. Differences in the HM contents of mangrove surface sediments among the high, middle, and low intertidal zones, and their quantitative relationships to sediment physicochemical properties, were investigated in Dongzhaigang and Qinglan Harbor reserves, Hainan, China. In both reserves, the Cu and Ni concentrations increased significantly from the low to high intertidal zones; the patterns of change in the Mn and Pb contents were opposite in the two reserves. The Cr concentration was significantly lower and the Pb concentration was significantly higher in the dry season than in the wet season. Ecological risks of HM were higher in Dongzhaigang than in Qinglan Harbor. Regression and redundancy (hierarchical partitioning) analyses showed that the sediment total sulfur, nitrogen and potassium contents and pH were key factors affecting the HM contents of mangrove surface sediments.
Collapse
Affiliation(s)
- Mengli Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Qian Chen
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Jingyi Cui
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Zhouwei Yu
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Wenjuan Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Zhongyi Sun
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Quan Chen
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
11
|
Feng G, Gong S. Functional Genes and Transcripts Indicate the Existent and Active Microbial Mercury-Methylating Community in Mangrove Intertidal Sediments of an Urbanized Bay. Microorganisms 2024; 12:1245. [PMID: 38930626 PMCID: PMC11205478 DOI: 10.3390/microorganisms12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mercury (Hg) methylation in mangrove sediments can result in the accumulation of neurotoxic methylmercury (MeHg). Identification of Hg methyltransferase gene hgcA provides the means to directly characterize the microbial Hg-methylating consortia in environments. Hitherto, the microbial Hg-methylating community in mangrove sediments was scarcely investigated. An effort to assess the diversity and abundance of hgcA genes and transcripts and link them to Hg and MeHg contents was made in the mangrove intertidal sediments along the urbanized Shenzhen Bay, China. The hgcA genes and transcripts associated with Thermodesulfobacteria [mainly Geobacteraceae, Syntrophorhabdaceae, Desulfobacterales, and Desulfarculales (these four lineages were previously classified into the Deltaproteobacteria taxon)], as well as Euryarchaeota (mainly Methanomicrobia and Theionarchaea) dominated the hgcA-harboring communities, while Chloroflexota, Nitrospirota, Planctomycetota, and Lentisphaerota-like hgcA sequences accounted for a small proportion. The hgcA genes appeared in greater abundance and diversity than their transcript counterparts in each sampling site. Correlation analysis demonstrated that the MeHg content rather than Hg content significantly correlated with the structure of the existent/active hgcA-harboring community and the abundance of hgcA genes/transcripts. These findings provide better insights into the microbial Hg methylation drivers in mangrove sediments, which could be helpful for understanding the MeHg biotransformation therein.
Collapse
Affiliation(s)
- Guofang Feng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Shenzhen Key Lab of Industrial Water Saving & Municipal Sewage Reclamation Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
12
|
Hu C, Liu Y, Fang X, Zhou Z, Yu Y, Sun Y, Shui B. Assessing heavy metal pollution in sediments from the northern margin of Chinese mangrove areas: Sources, ecological risks, and health impacts. MARINE POLLUTION BULLETIN 2024; 200:116069. [PMID: 38335629 DOI: 10.1016/j.marpolbul.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
With the rapid economic development of coastal cities, the discharge of substantial amounts of heavy metal pollutants poses a serious hazard to mangroves; however, the potential sources of heavy metals and the resulting health risks are not fully understood. In this study, we analyzed the contents, sources, and ecological and health risks of heavy metal contamination in mangrove sediments from the northern margin of China. The accumulation of heavy metals in mangroves was primarily driven by five potential sources, namely agricultural (33.5 %), natural sources (21.3 %), industrial (19.1 %), aquaculture (14.3 %), and traffic (11.8 %). The assessment of health risks using a probabilistic approach demonstrated that noncarcinogenic risks were within acceptable limits for all populations. It was worth noting that both noncarcinogenic and carcinogenic risks were greater in children than in adults. Analysis of source-oriented health risks revealed that agricultural sources and As and Cd were priority sources and elements of pollution requiring attention.
Collapse
Affiliation(s)
- Chengye Hu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongtian Liu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuehe Fang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeyu Zhou
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yang Yu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiyi Sun
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bonian Shui
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
13
|
Sardenne F, Le Loc'h F, Bodin N, Mve-Beh JH, Munaron JM, Mbega JD, Nzigou AR, Sadio O, Budzinski H, Leboulanger C. Persistent organic pollutants and trace metals in selected marine organisms from the Akanda National Park, Gabon (Central Africa). MARINE POLLUTION BULLETIN 2024; 199:116009. [PMID: 38217912 DOI: 10.1016/j.marpolbul.2023.116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Akanda National Park (ANP) is composed of mangrove ecosystems bordering Libreville, Gabon's capital. The contamination of aquatic resources from the ANP by persistent organic pollutants (POPs) and trace metals (TMs) was never evaluated. To provide a basis for their monitoring in the ANP, five species (two fish, two mollusks, and one crustacean) were analyzed from three sampling sites in 2017. Contamination levels for POPs and TMs were below maximum acceptable limits for seafood, including Cd and Pb. No DDT was found in any sample. Inter-specific differences were more obvious than the differences among sites, although the results may be biased by an unbalanced sampling design. The oyster Crassostrea gasar was the most contaminated species, making this species a good candidate to assess environmental contamination in the area. The studied species also contained essential elements, such as Fe, Zn and Mn at interesting levels in a nutritional point of view.
Collapse
Affiliation(s)
- Fany Sardenne
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France.
| | - François Le Loc'h
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France
| | - Nathalie Bodin
- Sustainable Ocean Seychelles, BeauBelle, Mahé, Seychelles
| | - Jean-Hervé Mve-Beh
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France; Institut de Recherches Agronomiques et Forestières, CENAREST (Laboratoire d'Hydrobiologie et d'Ichtyologie), BP 2246 Libreville, Gabon
| | | | - Jean-Daniel Mbega
- Institut de Recherches Agronomiques et Forestières, CENAREST (Laboratoire d'Hydrobiologie et d'Ichtyologie), BP 2246 Libreville, Gabon
| | | | - Oumar Sadio
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, Dakar, Sénégal
| | | | | |
Collapse
|
14
|
Hou W, Wang Q, Xiang Z, Jia N, Hu J, Wu Z, Dong W. Comprehensive assessment of occurrence, temporal-spatial variations, and ecological risks of heavy metals in Jiaozhou Bay, China: A comprehensive study. MARINE POLLUTION BULLETIN 2024; 198:115883. [PMID: 38056294 DOI: 10.1016/j.marpolbul.2023.115883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Heavy metals play a significant role in marine ecosystems, exerting notable impacts on the environment and human health. In this study, water, sediment, and aquatic organism samples from Jiaozhou Bay were investigated to comprehensively assess the distribution, temporal-spatial variations, and ecological risks of heavy metals. The results indicate that pollution from industrial wastewater discharge contributes to regional differences in the distribution of heavy metals, possibly being a major source of Zn, Cr, Cd, and Hg (r > 0.7, p < 0.05). Biological and physicochemical processes influence the distribution of Zn, Cr, and Pb in the water and sediment. Hg exhibits a polluted state in both the water and sediment, with As and Hg being the two highest-risk heavy metals in water and sediment, respectively. Among the organisms, crustaceans show significantly higher levels of heavy metal content and accumulation compared to mollusks and fish (p < 0.05), and the bioamplification of heavy metals occurs in the sediment-Rapana venosa-Portunus trituberculatus biological pathway. Portunus trituberculatus, Charybdis japonica, Oratosquilla oratoria, and Octopus ocellatus could pose risks to human health, especially for children and vulnerable populations. This study aims to enhance our understanding of the current status of heavy metal pollution in Jiaozhou Bay and to provide a scientific basis and favorable support for the ecological environmental protection and prevention of ecological risks associated with heavy metal pollution in Jiaozhou Bay and other bays in China.
Collapse
Affiliation(s)
- Wanli Hou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Qixiang Wang
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China
| | - Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Ning Jia
- National Marine Hazard Mitigation Service, Beijing 100194, China
| | - Jingwen Hu
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China
| | - Zhihong Wu
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China
| | - Wenlong Dong
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China.
| |
Collapse
|
15
|
Varshney S, Bhattacharya A, Gupta A. Halo-alkaliphilic microbes as an effective tool for heavy metal pollution abatement and resource recovery: challenges and future prospects. 3 Biotech 2023; 13:400. [PMID: 37982082 PMCID: PMC10651602 DOI: 10.1007/s13205-023-03807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
The current study presents an overview of heavy metals bioremediation from halo-alkaline conditions by using extremophilic microorganisms. Heavy metal remediation from the extreme environment with high pH and elevated salt concentration is a challenge as mesophilic microorganisms are unable to thrive under these polyextremophilic conditions. Thus, for effective bioremediation of extreme systems, specialized microbes (extremophiles) are projected as potential bioremediating agents, that not only thrive under such extreme conditions but are also capable of remediating heavy metals from these environments. The physiological versatility of extremophiles especially halophiles and alkaliphiles and their enzymes (extremozymes) could conveniently be harnessed to remediate and detoxify heavy metals from the high alkaline saline environment. Bibliometric analysis has shown that research in this direction has found pace in recent years and thus this review is a timely attempt to highlight the importance of halo-alkaliphiles for effective contaminant removal in extreme conditions. Also, this review systematically presents insights on adaptive measures utilized by extremophiles to cope with harsh environments and outlines the role of extremophilic microbes in industrial wastewater treatment and recovery of metals from waste with relevant examples. Further, the major challenges and way forward for the effective applicability of halo-alkaliphilic microbes in heavy metals bioremediation from extremophilic conditions are also highlighted.
Collapse
Affiliation(s)
- Shipra Varshney
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016 India
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh 201313 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078 India
| |
Collapse
|
16
|
Zheng R, Liu Y, Zhang Z. Trophic transfer of heavy metals through aquatic food web in the largest mangrove reserve of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165655. [PMID: 37478931 DOI: 10.1016/j.scitotenv.2023.165655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Understanding the mechanism of trophic transfer of heavy metal through the aquatic food web is critical to ecological exposure risk assessments in mangrove ecosystems. Zhanjiang Mangrove National Nature Reserve (ZMNNR) is the largest and biologically richest mangrove reserve in China, but has been exposed to heavy metal pollutants caused by the progressive industrialization and urbanization. We collected a variety of aquatic consumers, and primary producers, as well as sediments from the ZMNNR and analyzed them for heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) concentrations, and for both δ13C and δ15N values to establish the trophic levels. The trophic magnification factors (TMF) of Cd, Cu and Zn are 0.19 (p < 0.01), 0.07 (p < 0.01) and 0.33 (p < 0.05), respectively, indicating significant biodilution in a simplified food web composed of bivalves, crustaceans and fish. There are also potential tendencies of biodilution for Cr, Ni and Pb. Comparison of heavy metals in representative fish and shrimp in the ZMNNR with those in worldwide mangroves indicate a low risk level for aquatic consumers in our ecosystem. Quantitative source tracking is conducted based on principal component analysis and cluster analysis, which indicate that Cr, Ni and Pb are mainly originated from natural geological processes, Cu and Zn from shrimp farming and agriculture activities, and Cd from the deposition of aerosol released by regional metal smelting industry.
Collapse
Affiliation(s)
- Renyu Zheng
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China
| | - Yarong Liu
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China
| | - Zhaohui Zhang
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China.
| |
Collapse
|
17
|
Zhang L, Fang S, Hong W, Shen Z, Li S, Fang W. Differences in pathogenic community assembly processes and their interactions with bacterial communities in river and lake ecosystems. ENVIRONMENTAL RESEARCH 2023; 236:116847. [PMID: 37558117 DOI: 10.1016/j.envres.2023.116847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Pathogenic bacterial infections caused by water quality degradation are one of the most widespread environmental problems. Clarifying the structure of pathogens and their assembly mechanisms in lake ecosystems is vital to prevent the infestation of waterborne pathogens and maintain human health. However, the composition and assembly mechanisms of pathogenic bacterial communities in river and lake ecosystems are still poorly understood. In this study, we collected 17 water and 17 sediment samples from Lake Chaohu and its 11 inflow rivers. Sequencing of 16S rRNA genes was used to study bacterial pathogen communities. The results of the study showed that there was a significant difference (P < 0.05) in the composition of the pathogen community between riverine and lake habitats. Acinetobacter (36.49%) was the dominant bacterium in the river, whereas Flavobacterium (21.6%) was the most abundant bacterium in the lake. Deterministic processes (i.e., environmental filtering and species interaction) drove the assembly of pathogenic bacterial communities in the lake habitat, while stochastic processes shaped river pathogenic bacterial communities. Spearman correlation analysis showed that the α-diversity of bacterial communities was linearly and negatively linked to the relative abundance of pathogens. Having a higher bacterial community diversity had a suppressive effect on pathogen abundance. In addition, co-occurrence network analysis showed that bacterial communities were tightly linked to pathogenic bacteria. Pseudomonas aeruginosa and Salmonella enterica were identified as keystone species in an inflow water sampling network (W_FR), reducing the complexity of the network. These results provide a reference for assessments of water quality safety and pathogenic bacteria posing risks to human health in large freshwater lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Shuqi Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuo Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| |
Collapse
|
18
|
Hu W, Huang Y, Liu Y, Zhou X, Huang S, Chu J, Pan X. Novosphingobium beihaiensis sp. nov., a novel pesticide-tolerant bacterium isolated from mangrove sediments. Antonie Van Leeuwenhoek 2023; 116:1151-1159. [PMID: 37658956 DOI: 10.1007/s10482-023-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
A novel Novosphingobium species, designated strain B2638T, was isolated from mangrove sediments which was collected from Beibu Gulf, Beihai, P. R. China. The isolate could grow in the presence of chlorpyrifos. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Novosphingobium, showing 99.9% sequence similarity with N. decloroationis 502str22T and less than 98% similarity with other type strain of species of this genus. Molecular typing by BOX-PCR divided strain B2638T and N. declorationis 502str22T into two clusters and indicated that they were not identical. Genomic comparison referenced by values of the DNA-DNA hybridization (dDDH) and the average nucleotide identity (ANI) between strain B2638T and its close phylogenetic neighbors were 20.0-29.5% and 75.3-85.3%, respectively, that were lower than proposed thresholds for bacterial species delineation. The major fatty acids (> 10%) were identified as C18:1 ω7c, C17:1 iso ω9c and C16:0. The main polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidyl glycerol, unidentified lipid and unidentified aminolipid. Results from phenotypic, chemotaxonomic and genotypic analyses proposed that strain B2638T (= MCCC 1K07406T = KCTC 72968 T) is represented a novel species in the genus Novosphingobium, for which the names Novosphingobium beihaiensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, People's Republic of China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, People's Republic of China
| | - Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, People's Republic of China
- Life Science Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Yingjing Liu
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, People's Republic of China
- Life Science Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, People's Republic of China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, Nanning, People's Republic of China.
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, People's Republic of China.
| |
Collapse
|
19
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
20
|
Zhang LD, Song LY, Dai MJ, Liu JY, Li J, Xu CQ, Guo ZJ, Song SW, Liu JW, Zhu XY, Zheng HL. Inventory of cadmium-transporter genes in the root of mangrove plant Avicennia marina under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132321. [PMID: 37597395 DOI: 10.1016/j.jhazmat.2023.132321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ming-Jin Dai
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jin-Yu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing-Wen Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
21
|
Yang W, Long C, Xie C, Lu J, Wang X, Zhang C, Zhang L, Chen S, Sun Y. Spatial and temporal change of tetrabromobisphenol A and hexabromocyclododecane in mangrove sediments from the Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2023; 194:115399. [PMID: 37573817 DOI: 10.1016/j.marpolbul.2023.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Spatial and temporal trends of tetrabromobisphenol (TBBPA) and hexabromocyclododecane (HBCD) in mangrove sediments from the Pearl River Estuary (PRE) in South China were evaluated. Concentrations of TBBPA and HBCD in mangrove sediments ranged from 0.23 to 13.3 and 0.36 to 54.7 ng g-1 dry weight. The highest TBBPA concentration was seen in Guangzhou mangrove wetland near a dockyard and a ferry terminal where TBBPA is utilized in the coatings for the shipbuilding industry. The rapid development of building might elucidate the higher concentrations of HBCD in Shenzhen mangrove sediments. γ-HBCD and α-HBCD was the two main diastereoisomer of HBCD in mangrove sediments with contributions of 56.1 % and 34.0 %. Sediments from the three PRE mangrove ecosystems were selectively enriched for (-)-γ-HBCD. TBBPA concentrations in mangrove sediments from Guangzhou rose during 2012-2015 and declined from 2015 to 2021. HBCD concentrations in the PRE mangrove sediments exhibited an increasing trend from 2012 to 2021.
Collapse
Affiliation(s)
- Weiyan Yang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Chuyue Long
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chenmin Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiaxun Lu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaodong Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Canchuan Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shejun Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuxin Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Yang Q, Shen X, Jiang H, Luan T, Yang Q, Yang L. Key factors influencing pollution of heavy metals and phenolic compounds in mangrove sediments, South China. MARINE POLLUTION BULLETIN 2023; 194:115283. [PMID: 37451044 DOI: 10.1016/j.marpolbul.2023.115283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Concentrations of heavy metals (HMs) and phenolic compounds with factors which potentially affected their spatial distribution were investigated in mangrove sediments, South China. Compared to Qi'ao, Futian sediments exhibited higher levels of Pb and nonylphenol (NP), but lower levels of Co and Ni. Seasonal variation showed higher concentrations of Pb, Cr, Co, NP and bisphenol A (BPA), while lower concentration of methylparaben (MP) in wet than dry season. Contaminant levels in sediments collected at different tidal heights showed insignificant variations, except for Zn and NP. MP was found negatively correlated with nearly all HMs and BPA, whereas the latter exhibited positive correlations with each other. Sedimentary total carbon, total nitrogen, C/N and N/P ratios were screened as the most influential factors affecting the distribution of these contaminants. Additionally, both salinity and total phosphate exhibited positive, while both pH and sedimentary particle size registered negative correlation, with one or more contaminants.
Collapse
Affiliation(s)
- Qian Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Shen
- School of Mathematics & Statistics, Zhongnan University of Economics and Law, China
| | - Hejing Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Neilingding-Futian National Nature Reserve of Guangdong Province, Shenzhen, China
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Zhang L, Guo Y, Xiao K, Pan F, Li H, Li Z, Xu H. Extreme rainstorm reshuffles the spatial distribution of heavy metals and pollution risk in sediments along the mangrove tidal flat. MARINE POLLUTION BULLETIN 2023; 194:115277. [PMID: 37480789 DOI: 10.1016/j.marpolbul.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Mangroves as typical blue carbon ecosystems exhibit a high level of heavy metal accumulation capability. In this study, we investigated how extreme rainstorm effects the spatial variability and pollution risk of sediment heavy metals (i.e., Fe, Mn, Cr, Cu, Zn, Cd, Pb, As and Hg) at different compartments of a typical tidal flat, including the bare mudflat, mangrove zone, and tidal creek in Shenzhen Bay, China. The results showed that the extreme rainstorm can change the sediment particle size, which further regulated the spatial distribution, and source-sink pattern of heavy metals. Due to the strong rainstorm flushing, the concentrations of most heavy metals increased toward the sea and the comprehensive pollution level increased by 8.3 % after the extreme rainstorm. This study contributes to better understanding of how extreme rainstorm regulates heavy metal behavior in mangrove sediments to achieve sustainable development of mangroves under the pressures of extreme weather events.
Collapse
Affiliation(s)
- Licong Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yuehua Guo
- CCCC-FHEC Ecological Engineering Co. Ltd., Shenzhen 518107, PR China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Feng Pan
- College of the Environment & Ecology, Xiamen University Xiamen 361102, PR China
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhenyang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hualin Xu
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518048, PR China
| |
Collapse
|
24
|
Lam KL, Tam NFY, Xu SJL, Mo WY, Chan PL, Lee FWF. Intra- and inter-habitat variation in sediment heavy metals, antibiotics and ecological risks in Mai Po RAMSAR, China. MARINE POLLUTION BULLETIN 2023; 193:115178. [PMID: 37354831 DOI: 10.1016/j.marpolbul.2023.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Distribution of heavy metals (HMs) and antibiotics (ABs) in surface sediments of three habitats: mudflat, mangrove and gei wai (inter-tidal shrimp ponds), at Mai Po RAMSAR were determined with inductively coupled plasma and liquid chromatograph tandem - mass spectrometry, respectively. Eight HMs (Cr, As, Pb, Cd, Mn, Ni, Cu and Zn), and ten ABs (tetracyclines, quinolones, macrolides and sulphonamides) were detected in all habitats, with relatively lower concentration in gei wai. Ecological risk assessment based on PNEC revealed that HMs posed a higher ecological risk to microorganisms than ABs. All metals except Mn were above their respective threshold effect levels according to sediment quality guidelines, indicating their potential toxicity to benthos. The enrichment factor and geo-accumulation index on background values suggested sediments were moderately polluted by Zn, Cu and Cd, possibly from anthropogenic inputs. This study implies that HMs pollution must be prevented through proper regulation of agricultural and industrial discharge.
Collapse
Affiliation(s)
- Kit-Ling Lam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Wing-Yin Mo
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Ping-Lung Chan
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China.
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
25
|
Liu Z, Wan X, Zhang C, Cai M, Pan Y, Li M. Deep sequencing reveals comprehensive insight into the prevalence, mobility, and hosts of antibiotic resistance genes in mangrove ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117580. [PMID: 36857890 DOI: 10.1016/j.jenvman.2023.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mangrove receives aquaculture wastewater and urban sewage, and thus is a potential reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of a comprehensive profile of ARGs in mangrove ecosystems. We used metagenomic techniques to uncover the occurrence, host range, and potential mobility of ARGs in six mangrove ecosystems in southeastern China. Based on deep sequencing data, a total of 348 ARG subtypes were identified. The abundant ARGs were associated with acriflavine, bacitracin, beta-lactam, fluoroquinolone, macrolide-lincosamide-streptogramin, and polymyxin. Resistance genes tetR, aac(6')-Iae, aac(3)-IXa, vanRA, vanRG, and aac(3)-Ig were proposed as ARG indicators in mangrove ecosystems that can be used to evaluate the abundance of 100 other co-occurring ARGs quantitatively. Remarkably, 250 of 348 identified ARG subtypes were annotated as mobile genetic elements-associated ARGs, indicating a high potential risk of propagation of ARGs in mangrove ecosystems. By surveying the distribution of ARGs in 6281 draft genomes, more than 42 bacterial phyla were identified as the putative hosts of the ARGs. Among them, 21.97% were potentially multidrug-resistant hosts, including human and animal opportunistic pathogens. This research adds to our understanding of the distribution and spread of antibiotic resistomes in mangrove ecosystems, helping improve ARG risk assessment and management worldwide.
Collapse
Affiliation(s)
- Zongbao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Mingwei Cai
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yueping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Upadhyay SK, Rani N, Kumar V, Mythili R, Jain D. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook. Microbiol Res 2023; 273:127419. [PMID: 37276759 DOI: 10.1016/j.micres.2023.127419] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vinay Kumar
- Divisional Forest Office, Social Forestry Division Fatehpur, Uttar Pradesh, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Chennai 600077, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| |
Collapse
|
27
|
Ding Q, Liu H, Lin R, Wang Z, Jian S, Zhang M. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107786. [PMID: 37257408 DOI: 10.1016/j.plaphy.2023.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China; Dongguan Research Institute of Forestry/Forest Ecosystem Research Station in City Cluster of the Pearl River Estuary, Dongguan, 523106, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
28
|
Guo Z, Liu J, Zeng H, Xiao X, Liu M, Hong H, Lu H, Yan C. Variation of glomalin-metal binding capacity in 1 m soil profiles from mangrove forests to mudflat and affected factor analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160890. [PMID: 36521615 DOI: 10.1016/j.scitotenv.2022.160890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Glomalin-related soil protein (GRSP) plays an important role in soil metal sequestration in coastal wetlands. Additionally, it can release dissolved organic matter (GDOM) in water-soaked condition. The purpose of this study was to clarify the variation of GRSP's heavy metal immobilisation capacity at soil profiles of coastal wetland, and explore the compositional characteristics of GDOM and its influence on the heavy metals' environmental behaviour. The results indicated that the metal immobilisation capacity of GRSP decreased with increasing burial depth. The contributions of GRSP to soil Cr, As, and Pb were higher in both mangrove soils (K. obovata and A. marina forests) than in the mudflat. Oxygen-containing functional groups of GRSP (CO, -COO-, etc.) played a positive role in heavy metals accumulation. Redundancy analysis (RDA) showed that high soil pH was not conducive to the enrichment of heavy metals by GRSP. Besides, the concentrations of GRSP-Fe showed a significant positive correlation with the concentrations of other metals (Cu, As, and Pb) in GRSP. It is speculated that the Fe minerals in GRSP contributed the enrichment of heavy metals. Based on PARAFAC modelling, four fluorescent components of GDOM were identified, including three humic-like fluorescent components and one tyrosine-like fluorescent component. The contributions of GDOM to GRSP-bound heavy metals fluctuated between 4.05 % and 88.80 %, which could enhance the fluidity of heavy metals in water and weaken the soil heavy metal immobilisation capacity of GRSP. High salinity exerted an inhibitory effect on the heavy metal content of the GDOM. This study comprehensively explored the potential of GRSP to immobilise heavy metals in wetland soils and highlighted the potential heavy metal risks associated with the GDOM component in water, which could contribute to the multidimensional assessment and control of heavy metal pollution in coastal wetlands.
Collapse
Affiliation(s)
- Zhenli Guo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Hongli Zeng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Xilin Xiao
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Min Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
29
|
Sreelekshmi S, Harikrishnan M, Nandan SB, Sreelakshmi MN, Philomina J, Neethu KV. Ecological risk assessment and phytomanagement of trace metals in the sediments of mangroves associated with the Ramsar sites of Kerala, southern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30530-30547. [PMID: 36434464 DOI: 10.1007/s11356-022-24375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The study investigated trace metal accumulation in the sediments of three major mangrove ecosystems associated with the Ramsar sites of Kerala state, the ecological risks they pose, and the absorption, accumulation, and translocation of metals in five dominant mangrove species, as these systems are heavily impacted by anthropogenic interventions. The trace metal concentrations (mg kg-1) in the sediment of different mangrove habitats of Kerala ranged from 20 to 295 for Cu, 65 to 350 for Zn, 72 to 151 for Pb, 11 to 210 for Ni, 42 to 228 for Mn, 0 to 6 for Cd,124 to 565 for Cr, and 0 to 2.9 for Ag. An overall enrichment of metals was recorded in sediment, exceeding the prescribed effects range median (ERM) of consensus-based sediment quality guidelines (SQGs) for Cu and Cr concentrations at Munroe Island and Ni at Vypin, indicating a detrimental risk to biota in the sediments. Principal component analysis and a higher geoaccumulation index indicated the contribution of trace metals from industries, agricultural runoff, and urban waste disposal. The ecological risk index suggested that cadmium poses a very high risk to the mangrove ecosystem at Vypin. Furthermore, the bioconcentration factor for various trace metals in Avicennia marina and Lumnitzera racemosa in Ayiramthengu was > 2, suggesting that these species can accumulate trace metals, particularly Cr, Cd, and Pb. Further, our findings suggest that A. marina may be considered as an efficient metal trap for Cd in aerial parts, as indicated by the significant translocation factor (> 1) combined with the bioconcentration factor. Therefore, the study revealed that Munroe island and Vypin had a considerable level of contamination for toxic metals and Avicennia marina could be a promising candidate species for the phytoremediation of these trace metals in the coastal settings of Kerala state.
Collapse
Affiliation(s)
- Suseela Sreelekshmi
- School of Industrial Fisheries, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Mahadevan Harikrishnan
- School of Industrial Fisheries, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Sivasankaran Bijoy Nandan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Muraleedharan Nair Sreelakshmi
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Joseph Philomina
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, India
| | - Kariyil Veettil Neethu
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
30
|
Yadav KK, Gupta N, Prasad S, Malav LC, Bhutto JK, Ahmad A, Gacem A, Jeon BH, Fallatah AM, Asghar BH, Cabral-Pinto MMS, Awwad NS, Alharbi OKR, Alam M, Chaiprapat S. An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment: A critical review. MARINE POLLUTION BULLETIN 2023; 188:114569. [PMID: 36708616 DOI: 10.1016/j.marpolbul.2022.114569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Mangroves provide various ecosystem services, carbon sequestration, biodiversity depository, and livelihoods. They are most abundant in marine and coastal ecosystems and are threatened by toxic contaminants like heavy metals released from various anthropogenic activities. However, they have significant potential to survive in salt-driven environments and accumulate various pollutants. The adverse effects of heavy metals have been extensively studied and recognized as toxic to mangrove species. This study sheds light on the dynamics of heavy metal levels, their absorption, accumulation and transport in the soil environment in a mangrove ecosystem. The article also focuses on the potential of mangrove species to remove heavy metals from marine and coastal environments. This review concludes that mangroves are potential candidates to clean up contaminated water, soil, and sediments through their phytoremediation ability. The accumulation of toxic heavy metals by mangroves is mainly through roots with limited upward translocation. Therefore, promoting the maintenance of biodiversity and stability in the coastal environment is recommended as an environmentally friendly and potentially cost-effective approach.
Collapse
Affiliation(s)
- Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lal Chand Malav
- ICAR-National Bureau of Soil Survey & Land Use Planning, Regional Centre, Udaipur 313001, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, Taif 21944, Saudi Arabia
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Manawwer Alam
- Department of Chemistry, College of Science, Kind Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
31
|
Chen W, Sang S, Shao L, Li Y, Li T, Gan L, Liu L, Wang D, Zhou L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol Spectr 2023; 11:e0368322. [PMID: 36507672 PMCID: PMC9927264 DOI: 10.1128/spectrum.03683-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Liyi Shao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yusen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Tongzhou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lihong Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Distribution fractions and potential ecological risk assessment of heavy metals in mangrove sediments of the Greater Bay Area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45859-45871. [PMID: 36708483 DOI: 10.1007/s11356-023-25551-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
The restoration of mangrove in coastal wetlands of China has been started since the 1990s. However, various pollutants, especially for heavy metals (HMs), contained in wastewater might present a significant risk to mangrove forests during the restoration. In this study, sediments of five typical mangrove wetlands with varying restoration years and management measures in the Greater Bay Area were collected to evaluate the distribution fractions and potential ecological risk of HMs. Cd (0.2-1.6 mg/kg) was found in high concentrations in the exchangeable fraction (37.8-71.5%), whereas Cu (54.2-94.8 mg/kg), Zn (157.6-332.6 mg/kg), Cr (57.7-113.6 mg/kg), Pb (36.5-89.9 mg/kg), and Ni (29.7-69.5 mg/kg) primarily presented in residual fraction (30.8-91.9%). According to the geo-accumulation index (Igeo) analysis, sediment Cd presented a high level of pollution (3 ≤ Igeo ≤ 4), while Zn and Cu were associated with moderately pollution (1 ≤ Igeo ≤ 2). Besides, high ecological risk of Cd was found in sediments of five mangroves, with risk assessment code (RAC) ranging from 45.9 to 84.2. Redundancy analysis revealed that the content of NO3--N was closely related to that of HMs in sediments and, pH value and NO3--N concentration affected the distribution of HMs geochemical fractions. High concentration of HMs in QA and NS sampling sites was caused by the formerly pollutants discharge, resulting in these sediments still with a higher HM pollution level after the plant of mangrove for a long period. Fortunately, strict drainage standards for industrial activities in Shenzhen significantly availed for decreasing HMs contents in mangrove sediments. Therefore, future works on mangrove conversion and restoration should be linked to the water purification in the GBA.
Collapse
|
33
|
Yang L, Yang Q, Lin L, Luan T, Tam NFY. Characterization of benthic biofilms in mangrove sediments and their variation in response to nutrients and contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159391. [PMID: 36240915 DOI: 10.1016/j.scitotenv.2022.159391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Diatom-dominated biofilms and associated extracellular polymeric substances (EPS) may adapt to the stress of long-term exposure to nutrients and anthropogenic contaminants. However, such interactions in contaminated mangrove sediments have rarely been reported. Based on the in situ characterization of biofilm components and environmental factors, the present study aimed to explore the key factors involved in shaping sediment biofilms through correlational and multivariate analyses. The pennate diatom Navicula is the core taxon that plays a crucial role in balancing the abundance of Nitzschia and Cyclotella, and is the main producer of bound-polysaccharides. The taxa composition shifts in a high N/P matrix, with the populations of pennate diatoms increasing but that of centric diatoms decreasing. High nutrient concentrations yield more number of diatoms and elevated levels of EPS. Bacteria are the main consumers of EPS and tend to be more symbiotic with Nitzschia than the other two diatom taxa. Some bound-polysaccharides dominated by arabinose and glucose units are transformed into the colloidal fraction, whereas other conservative ones serve as structural materials in concert with the bound-proteins. The planktonic phase of Cyclotella breaks down the structural EPS secreted by pennate diatoms in a process that directly affects the dynamic renewal of benthic biofilms. Most heavy metals as well as bisphenol A inhibit the abundance of bacteria and diatoms but enhance most EPS fractions except bound-polysaccharides. The response of structural EPS to specific contaminants varies, exhibiting increases in Co and Ni levels but decreases in nonylphenol and methylparaben levels. The present study improves our understanding of the microbial carbon loop of benthic biofilms in mangrove ecosystems under stress by nutrients and mixed contaminants.
Collapse
Affiliation(s)
- Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qian Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510600, China
| | - Li Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Nora F Y Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Guo Y, Ke X, Zhang J, He X, Li Q, Zhang Y. Distribution, Risk Assessment and Source of Heavy Metals in Mangrove Wetland Sediments of Dongzhai Harbor, South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1090. [PMID: 36673847 PMCID: PMC9859084 DOI: 10.3390/ijerph20021090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Heavy metals are common environmental contaminants that are toxic, non-biodegradable, and bioaccumulative. They can bioaccumulate through the food chain and present a risk to both public health and ecology. Therefore, this study takes the mangrove wetland of Dongzhai Harbor as an example. The concentrations of heavy metals such as As, Cd, Cr, Cu, Ni, Pb, and Zn in the surface sediments of mangrove wetlands were measured to reveal their distribution, the contamination level was assessed, and the sources of contamination were analyzed. The distribution of Cr, Zn, Ni, Pb, Cu, and Cd concentrations are: Yanfeng East River > Sanjiang River > Yanzhou River > Yanfeng West River, while the As concentration in the Yanfeng West River is greater than that in the Yanfeng East River. According to the correlation analysis, the concentrations of Cr, Zn, Ni, Cu, and Cd are significantly and positively correlated with total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), and salinity (SAL) and shared a significantly negative correlation with pH. There is moderate contamination risk of As and slight contamination risk of Cd, Cr, Cu, Ni, Pb, and Zn in most regions within the study area. Cd, Cr, Cu, Ni, Pb, and Zn exhibit the same sources, which are mainly influenced by human sources such as aquaculture, agricultural cultivation, and livestock farming, while the source of As comes from aquaculture.
Collapse
Affiliation(s)
- Yuan Guo
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianzhong Ke
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Jingxian Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xinhui He
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Yanpeng Zhang
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| |
Collapse
|
35
|
Zhang X, Chen Z, Yu Y, Liu Z, Mo L, Sun Z, Lin Z, Wang J. Response of bacterial diversity and community structure to metals in mangrove sediments from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157969. [PMID: 35985575 DOI: 10.1016/j.scitotenv.2022.157969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Human activities have given rise to metal contamination in the constituents of mangrove ecosystems, posing a critical threat to sediment microorganisms; hence, it is of great importance to comprehend the effects of metals on the microbial communities in mangrove sediments. This study was the first to explore the response of the bacterial diversity and community structure to nine metals (As, Co, Cr, Cu, Mn, Ni, Pb, V and Zn) and organic matter fractions (including total organic carbon (TOC), total nitrogen (TN), and total sulfur (TS)) in mangrove wetlands from Zhanjiang, China, using 16S rRNA high-throughput sequencing technology and Spearman correlation analysis. The results showed that these nine metals were scattered differently in different mangrove sediments, and the metals and organic matter fractions jointly affected the bacterial communities in the sediments. Several metals displayed significant positive correlations with the abundances of the phylum Bacteroidetes and the genera Actibacter and Sphingobacterium but significant negative correlations with the abundances of two genera Holophaga and Caldithrix. Furthermore, the abundances of the phylum Actinobacteria and many bacterial genera showed significant positive or negative responses to the levels of the three organic matter fractions. Interestingly, the levels of a number of bacterial genera that exhibited increased abundance with high levels of metals and TS might be reduced with high TOC and TN, and vice versa: the levels of genera that exhibited decreased abundance with high levels of metals and TS might be increased with high TOC and TN. Overall, many bacterial groups showed different response patterns to each metal or organic matter fraction, and these metals together with organic matter fractions influenced the bacterial diversity and community structure in mangrove sediments.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Youkai Yu
- Institute for Innovation and Entrepreneurship, Loughborough University, London E20 3BS, UK
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhongmei Lin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
36
|
Wei Y, Ding D, Qu K, Sun J, Cui Z. Ecological risk assessment of heavy metal pollutants and total petroleum hydrocarbons in sediments of the Bohai Sea, China. MARINE POLLUTION BULLETIN 2022; 184:114218. [PMID: 36242800 DOI: 10.1016/j.marpolbul.2022.114218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals and organic pollutants like total petroleum hydrocarbons (TPHs) in coastal marine sediments are receiving extensive attention, as they may pose a serious threat to the aquatic environment and ecosystem health. To date, however, data on the long-term variations in the levels of sedimentary heavy metals and TPHs as well as their ecological risks are relatively limited. Here, we conducted 12 cruises spanning 3 years in the Bohai Sea and obtained ~1400 sediment samples to explore the long-term variations of heavy metals (i.e., Hg, As, Cu, Zn, Pb, Cd) and TPHs, and to assess their potential ecological risks. The results suggested that the ranges for the levels of Hg, As, Cu, Zn, Pb, Cd, and TPHs in sediments between 2019 and 2021 were <0.01-0.07, 0.23-10.72, 8.07-20.67, 25.52-46.55, 10.94-28.19, 0.14-0.56, and 9.14-18.41 mg kg-1, respectively. Based on the single factor evaluation (Fi) for sediment quality, we found that most of the evaluation factors in the study area met the requirements of sediment quality standard (i.e., Fi < 1), except for the factor of metal Cd in some cases. The implication is that the sediment in the Bohai Sea was fairly clean in terms of heavy metals and TPHs. However, the concentration of metal Cd exceeded the sediment quality standard during May 2019 and 2020 (i.e., Fi > 1), indicating that Cd could be identified as a major pollutant in surface sediments. Also, based on the ecological risk assessment (Ei) of heavy metal pollutants, we found that the metal Cd had reached a level with potential ecological risk in some cases (80 ≤ Ei < 160). As such, we further suggested that the Cd contamination might have a potential risk on the Bohai Sea' ecosystem.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
37
|
Cepeda D, González-Casarrubios A, Sánchez N, Spedicato A, Michaud E, Zeppilli D. Two new species of mud dragons (Scalidophora: Kinorhyncha) inhabiting a human-impacted mangrove from Mayotte (Southwestern Indian Ocean). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Zhao P, Sanganyado E, Wang T, Sun Z, Jiang Z, Zeng M, Huang Z, Li Y, Li P, Bi R, Liu W. Accumulation of nutrients and potentially toxic elements in plants and fishes in restored mangrove ecosystems in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155964. [PMID: 35588846 DOI: 10.1016/j.scitotenv.2022.155964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are highly dynamic ecosystems that offer important services such as maintaining biodiversity, filtering pollutants, and providing habitats for fishes. We investigated the uptake and accumulation of nutrients and potentially toxic elements in mangrove plants and fish to better understand the role of mangrove restoration in maintaining mangrove biota quality. In mangrove plants, the average bioconcentration factors of nutrients and potentially toxic elements were in the order P > Pb > Mn > Mg > Se > Zn > Hg > Cu > Cd > As > Co > Cr > Ni > Fe > V > Sb, where only P (all plant species) and Pb (Sonneratia apetala Buchanan-Hamilton) had a BCF > 1.0 in mangrove plants. In general, Sonneratia spp. had better performances than Kandelia candel (Linn.) Druce, Aegiceras corniculatum (Linn.) Blanco and Acanthus ilicifolius L. Sp. in terms of nutrient uptake and toxic metal(loid)s accumulation, and the best uptake capacity was found in S. apetala. Fast growth and easy adaptation make S. apetala suitable for a restored mangrove ecosystem, but continual management is needed to prevent its suppression of mangrove species diversity. The concentration of As, Cd, Hg, Cu, Cr and Pb in the mangrove sediment were 30-220% higher than the Chinese National Standard of Marine Sediment Quality Class I limits, suggesting that the sediments were unsuitable for aquaculture and nature reserves. Although a higher toxic metal(loid)s concentration in the sediment was found, the target hazard quotient (THQ) of this toxic metal(loid)s in 5 mangrove habitat fishes was <1.0, except THQ of Pb in Boleophthalmus pectinirostris Linnaeus was 1.17, and THQ of Cr in Bostrychus sinensis Lacépède was 1.12. The low THQ (less than 1.0) of mangrove habitat fishes suggested that the restored mangrove system could alleviate the bioaccumulation of toxic metal(loid)s in mangrove fish.
Collapse
Affiliation(s)
- Puhui Zhao
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Edmond Sanganyado
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zewei Sun
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ziyang Jiang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Mingrui Zeng
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zhangxun Huang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Yifan Li
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ping Li
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ran Bi
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| | - Wenhua Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| |
Collapse
|
39
|
Li Y, Huang R, Hu L, Zhang C, Xu X, Song L, Wang Z, Pan X, Christakos G, Wu J. Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics. MARINE POLLUTION BULLETIN 2022; 181:113912. [PMID: 35870383 DOI: 10.1016/j.marpolbul.2022.113912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Sediments are considered to be important sinks of microplastics, but the enrichment process of microplastics by blue carbon ecosystems is poorly studied. This study analyzed the spatial distribution and temporal changes, assessed the polymer types and morphological characteristics of microplastics in sediments of five ecosystems, i.e. forests, paddy fields, mangroves, saltmarshes and bare beaches on Ximen Island, Yueqing Bay, China. The trapping effect of blue carbon (mangrove and saltmarsh) sediments on microplastic was further explored. Temporal trends in microplastic abundance showed a significant increase over the last 20 years, with the enrichment of microplastics in mangrove and saltmarsh sediments being 1.7 times as high as that in bare beach, exhibiting blue carbon vegetations have strong enrichment effect on microplastics. The dominant color, shape, size, and polymer type of microplastics in sediments were transparent, fibers and fragments, <1 mm, and polyethylene, respectively. Significant differences in the abundance and characteristics of microplastics between intertidal sediments and terrestrial soils reveal that runoff input is the main source of microplastics. This study provided the evidence of blue carbon habitats as traps of microplastics.
Collapse
Affiliation(s)
- Yaxin Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhiyin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
40
|
Dey G, Banerjee P, Maity JP, Sharma RK, Gnanachandrasamy G, Huang YH, Huang HB, Chen CY. Heavy metals distribution and ecological risk assessment including arsenic resistant PGPR in tidal mangrove ecosystem. MARINE POLLUTION BULLETIN 2022; 181:113905. [PMID: 35839665 DOI: 10.1016/j.marpolbul.2022.113905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
41
|
Zhang Z, Zhang T, Yu W, Xu J, Li J, Wu T, Liu S, Wang H, Wang Y, Shang S, Lin A. Heavy Metal Contamination in Sediments from Wetlands Invaded by Spartina alterniflora in the Yellow River Delta. TOXICS 2022; 10:toxics10070374. [PMID: 35878279 PMCID: PMC9317303 DOI: 10.3390/toxics10070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023]
Abstract
Heavy metals are major pollutants that pose threats to wetland environments. In the present study, surface sediments from wetlands vegetated by invasive species Spartina alterniflora in the Yellow River Delta were collected and determined for the mass fractions of Co, Ni, As, Cd and Pb. Results showed mass fractions of Co, Ni, As, Cd and Pb in the sediments of the S. alterniflora communities ranged from 8.5 to 16.0, 13.9−27.9, 3.2−13.8, 0.08−0.24, and 17.6−37.5 mg/kg dw, respectively, generally presenting an order of Pb > Ni > Co > As > Cd. The levels of heavy metals in sediments in the S. alterniflora communities were higher than those in the wetland vegetated by the native plant species Suaeda heteroptera. Correlations among metal elements were highly significant, suggesting that they might have the same sources. Clay and TOC were important factors affecting the spatial distribution of metals. The Igeo values of the investigated elements in the sediments were frequently lower than 0, revealing the slight pollution status of these metals. Relatively slight values of Eri and RI suggested that the potential ecological risks caused by the 5 metals were low. Our findings could provide a better understanding of the correlation between metal pollution and bio-invasion in wetland ecosystems.
Collapse
Affiliation(s)
- Zaiwang Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
- Management Center of the Yellow River Delta Sustainable Development Research Institute, Dongying 257000, China; (H.W.); (Y.W.)
- Shandong Anhe Safety Technology Research Institute Company Limited, Binzhou 256600, China
| | - Tongrui Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
| | - Wenhao Yu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
| | - Jikun Xu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
| | - Jialiang Li
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
| | - Tao Wu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
| | - Suzhe Liu
- The Second Hydrogeology Engineering Geology Brigade, Shandong Provincial Bureau of Geology and Mineral, Shandong Provincial Lubei Geo-Engineering Exploration Institute, Dezhou 253000, China;
| | - Haiyang Wang
- Management Center of the Yellow River Delta Sustainable Development Research Institute, Dongying 257000, China; (H.W.); (Y.W.)
| | - Yuxia Wang
- Management Center of the Yellow River Delta Sustainable Development Research Institute, Dongying 257000, China; (H.W.); (Y.W.)
| | - Shuai Shang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
- Correspondence: (S.S.); (A.L.)
| | - Aiguo Lin
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China; (Z.Z.); (T.Z.); (W.Y.); (J.X.); (J.L.); (T.W.)
- Management Center of the Yellow River Delta Sustainable Development Research Institute, Dongying 257000, China; (H.W.); (Y.W.)
- Correspondence: (S.S.); (A.L.)
| |
Collapse
|
42
|
Ngo-Massou VM, Kottè-Mapoko EF, Din N. Heavy metal accumulation in the edible crab Cardisoma armatum (Brachyura: Gecarcinidae) and implications for human health risks. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
43
|
Li P, Li X, Bai J, Meng Y, Diao X, Pan K, Zhu X, Lin G. Effects of land use on the heavy metal pollution in mangrove sediments: Study on a whole island scale in Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153856. [PMID: 35176367 DOI: 10.1016/j.scitotenv.2022.153856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, mangrove ecosystems at coastal zone are experiencing rapid land-use conversion, however effects of land use on the heavy metal pollution in mangrove sediments still are not clear. This study investigated the concentration and distribution of heavy metals (including chromium (Cr), zinc (Zn), lead (Pb), copper (Cu), arsenic (As) and cadmium (Cd)) in different mangrove sediments with different land-use patterns along seashore of the whole Hainan island (with the third largest mangrove area of China). The effects of land use on the accumulation of heavy metals in these mangrove sediments are also analyzed. The results showed contaminations of ∑6Metals in this study following the order of arable lands (ARAB) > aquaculture ponds (AQUA) > riverine area (RIVER) > ecological area (ECOL) > construction area (CONS). Accumulation degree of As and Cd were high in the AQUA, ARAB, and RIVER area. As metal hotspots, ARAB, RIVER and AQUA area showed the deteriorated sediment quality with high pollution load index (>1). Redundancy discriminate analysis revealed that mangrove, paddy lands and aquaculture ponds related activities correlated well with the metal pollution. The results clearly revealed that different land uses would not only change the accumulation capacity of mangrove soil for heavy metals, but also contribute different sources of heavy metal pollution. These findings do help to facilitate land-use planning and contribute to guide a better mangrove wetland management at coastal zone.
Collapse
Affiliation(s)
- Ping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinjian Li
- Central South Inventory and Planning, Institute of National Forestry and Grassland Administration, Changsha 410014, China
| | - Jiankun Bai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuchen Meng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoping Diao
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; South Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| | - Guanghui Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
44
|
Healthy collaborations are needed for mangrove land use and mosquito control. ASIAN BIOMED 2022; 16:109-110. [PMID: 37551379 PMCID: PMC10321175 DOI: 10.2478/abm-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Asian Biomedicine
- Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
45
|
Wang Y, Hong H, Qian L, Wang Q, Li J, Huang Q, Jiang Y, Lu H, Liu J, Dong Y, Li J, Yan C. Polycyclic aromatic hydrocarbons at subcritical levels as novel indicators of microbial adaptation in a pre-industrial river delta. CHEMOSPHERE 2022; 295:133858. [PMID: 35124082 DOI: 10.1016/j.chemosphere.2022.133858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Marine sediment is considered a vast sink for organic pollutants including polycyclic aromatic hydrocarbons (PAHs). However, little is known about the relationship between subcritical PAH allocation and benthic microbial patterns. Thus, we carried out a field investigation at the abandoned Yellow River Delta (AYRD) to deepen the understanding of PAHs' horizontal distribution and ecological roles on the continental shelf. The PAH level in the AYRD is relatively low and distance-independent, indicating it resulted from long-term, chronic, anthropogenic input. The combined application of diagnostic molecular ratios reported inconsistent PAH sources, which might be due to the low PAH concentrations and the complexity of contributing sources. Positive Matrix Factorization provided a more robust source classification and identified three main PAH sources-coal combustion and vehicle emissions, petrogenic process, and fossil fuels. The benthic microbiome did not show a significant response to PAHs in terms of microbial assemblage or alpha-diversity. However, Operational Taxonomic Units in some specific phyla, like Thaumarchaeota, Proteobacteria, Acidobacteria, and Chytridiomycota, correlated with the PAH source indicators, supporting the notion that PAH source indicators can act as a novel environmental indicator for microbial adaption. What's more, Microbial Ecological Networks show more connection at sites identified as biomass combustion by both Fluoranthene/(Fluoranthene + Pyrene) and Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene) compared to the ones identified as biomass combustion by Fluoranthene/(Fluoranthene + Pyrene) and petroleum combustion by Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene). Herein, we demonstrate that the PAHs' source indicator can serve as a novel indicator of the interactions between microorganisms, and thus, should be applied to the sustainable management effort in the offshore area.
Collapse
Affiliation(s)
- Yazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Academy of Environmental Planning and Design, Nanjing University, Nanjing, 210000, Jiangsu, China.
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lu Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Key Laboratory of the Ministry of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, Guangxi, China.
| | - Qi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yongcan Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yunwei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.
| | - Jian Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
46
|
Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. SUSTAINABILITY 2022. [DOI: 10.3390/su14084433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Globally, mangrove forests are substantially declining, and a globally synthesized database containing the drivers of deforestation and drivers’ interactions is scarce. Here, we synthesized the key social-ecological drivers of global mangrove deforestation by reviewing about two hundred published scientific studies over the last four decades (from 1980 to 2021). Our focus was on both natural and anthropogenic drivers with their gradual and abrupt impacts and on their geographic coverage of effects, and how these drivers interact. We also summarized the patterns of global mangrove coverage decline between 1990 and 2020 and identified the threatened mangrove species. Our consolidated studies reported an 8600 km2 decline in the global mangrove coverage between 1990 and 2020, with the highest decline occurring in South and Southeast Asia (3870 km2). We could identify 11 threatened mangrove species, two of which are critically endangered (Sonneratia griffithii and Bruguiera hainseii). Our reviewed studies pointed to aquaculture and agriculture as the predominant driver of global mangrove deforestation though their impacts varied across global regions. Gradual climate variations, i.e., sea-level rise, long-term precipitation, and temperature changes and driven coastline erosion, salinity intrusion and acidity at coasts, constitute the second major group of drivers. Our findings underline a strong interaction across natural and anthropogenic drivers, with the strongest interaction between the driver groups aquaculture and agriculture and industrialization and pollution. Our results suggest prioritizing globally coordinated empirical studies linking drivers and mangrove deforestation and global development of policies for mangrove conservation.
Collapse
|
47
|
Xie J, Pei N, Sun Y, Chen Z, Cheng Y, Chen L, Xie C, Dai S, Zhu C, Luo X, Zhang L, Mai B. Bioaccumulation and translocation of organophosphate esters in a Mangrove Nature Reserve from the Pearl River Estuary, South China. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127909. [PMID: 34863572 DOI: 10.1016/j.jhazmat.2021.127909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the distribution and bioaccumulation of organophosphate esters (OPEs) in mangrove ecosystems. In this study, water, sediments, plants and animals were collected from Qi'ao Island Mangrove Nature Reserve to investigate the levels, bioaccumulation and biomagnification of OPEs. Concentrations of ΣOPEs in the mangrove plant Sonneratia apetala (an exotic species) were greater than those in Kandelia obovata (a native species). Translocation factors of OPEs in the two mangrove tree species were greater than 1, indicating that OPEs were mainly absorbed in aboveground tissues. Concentrations of OPEs in mangrove trees and animals were negatively correlated with their log Kow, suggesting that accumulation of OPEs in mangrove biota was influenced by hydrophobicity. A significant difference for concentrations of ΣOPEs was found among the eight mangrove animal species. Concentrations of ΣOPEs in mangrove animals were related with lipid contents, feeding habits and Kow of OPEs. Biota-sediment accumulation factor of OPEs was larger than 1, suggesting that bioaccumulation of OPEs occurred in mangrove animals. The targeted OPEs except isodecyl diphenyl phosphate were not biomagnified in mangrove animals. This study highlights bioaccumulation of OPEs in mangrove biota and suggests further concern about the ecological risk of OPEs to mangrove biota.
Collapse
Affiliation(s)
- Jinli Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhongyang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuanyue Cheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Chenmin Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouhui Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chunyou Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
48
|
Phytoextraction and Antioxidant Defense of Mangrove Seedling (Kandelia obovata) to Inorganic Arsenate Exposure. WATER 2022. [DOI: 10.3390/w14040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Increasing arsenic (As) pollution is posing potential endangerment to mangrove wetland ecosystems. Mangrove phytoextraction, translocation, and responses to As exposure must be urgently addressed. In this study, the growth and physiological response of Kandelia obovata seedlings were examined after addition of 25−200 mg kg−1 As under sediment culture conditions. Results showed that the seedling morphological variations were not significant below 100 mg kg−1 compared to the control group, indicating superoxide dismutase, peroxidase, and catalase synergetic interaction to resist the As exposure. High As concentrations (150–200 mg kg−1) inhibited the seedling growth accompanied by a significant increase in malondialdehyde content and decrease in activities of antioxidant enzymes. Toxicity symptoms and mortality appeared in 200 mg kg−1 As, presumably because the plant reached the limit of As tolerance. Besides, As accumulated mainly in roots, accounting for 87.04–97.85% of the total As, and the bioaccumulation factor (BCF) was >100%. However, the BCF and translocation factor (TF) in stems and leaves were below unity, illustrating a weak capacity of transferring As to aerial parts of the seedlings. Overall, K. obovata is a potential remediated species in polluted coastal wetlands due to high phytoextraction capacity and high tolerance to As exposure.
Collapse
|
49
|
Wang Q, Kang Q, Zhao B, Li H, Lu H, Liu J, Yan C. Effect of land-use and land-cover change on mangrove soil carbon fraction and metal pollution risk in Zhangjiang Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150973. [PMID: 34699828 DOI: 10.1016/j.scitotenv.2021.150973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Land-use and land-cover change (LULCC) is the main cause of mangrove deforestation and degradation. However, the effect of LULCC on mangrove soil organic carbon (SOC) fractions and metal pollution risks, and the difference between the effects of those two soil evolutions are largely unknown. Here, we collected soil samples from natural systems (mangroves and mudflat), land-cover changes (Spartina alterniflora invasion), and anthropogenic land-use changes (cropland and culture pond) in Zhangjiang Estuary. We determined the soil aggregate fractions (macro-aggregate, micro-aggregate, and silt-clay fraction) and the associated carbon, and heavy metal dynamics. Our findings suggested that LULCC did not remarkably affect SOC contents, but changed the soil aggregate structures. LULCC significantly increased aggregate-associated carbon fractions, especially macro-aggregate carbon fraction. The large proportion of silt-clay fraction in natural systems was corresponding to a high percentage of mineral organic carbon, indicating that LULCC decreases the mangrove SOC stability. Land-cover change promoted the accumulation of SOC, nitrogen, and heavy metals compared with uninvaded mudflat. The heavy metal contents in mangrove soil were highest among all studied soils, expect for Cd, which suggested that mangrove soil had high metal accumulation. However, land-use changes could stimulate the mobility and dynamics of metals enriched in mangrove soils; these changes, especially in cropland, will also cause a large amount of exogenous Cd being exported into the adjacent aquatic environment. Thus, mangrove shifts metal pollutant from sink to source when affected by land-use changes. The contamination index demonstrated that heavy metals have posed ecological risks, especially for Cd in cropland. Compared with mangrove, land-use change was dominated by single-element pollution, but land-cover change showed low multiple-element complex pollution. These findings elucidate the effects of LULCC on mangrove SOC fraction and metal pollution risk, and are of great significance for designing the long-term management and conservation policies for mangrove managers.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qian Kang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Bo Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hanyi Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
50
|
Xu K, Wang H, Li P. The cadmium toxicity in gills of Mytilus coruscus was accentuated by benzo(a)pyrene of higher dose but not lower dose. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109128. [PMID: 34237427 DOI: 10.1016/j.cbpc.2021.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In natural environment, the existence of interactions of toxic mixtures could induce diverse biochemical pathways and consequently exert different toxicological responses in aquatic organisms. However, little information is available on the effects of combined xenobiotics on lower aquatic invertebrates. Here, we assessed the effects of cadmium (Cd, 0.31 mg/L) as well as the mixture of Cd (0.31 mg/L) and benzo(a)pyrene (Bap, 5 or 50 μg/L) on bioaccumulation, antioxidant, lipid peroxidation (LPO) and metallothionein (MT) responses in gills of thick shell mussel Mytilus coruscus. Upon exposed to single Cd, the metal bioaccumulation, antioxidant enzymes activities, LPO and MT level significantly increased in the gills, suggesting an apparent toxicity to mussels. The interaction of Cd + 5 μg/L Bap did not significantly alter these endpoints compared to single Cd. However, once the dose of Bap elevated to 50 μg/L, the induction of bioaccumulation, antioxidant system and LPO was even more pronounced while the induction of MT was remarkably inhibited, implying an accentuated toxicity. Collectively, the current results demonstrated that 0.31 mg/L Cd exposure resulted in severe toxicity to mussels despite of the induction of MT system to alleviate the metal toxicity. Once the Cd exposure combined with Bap, the lower dose of Bap could not change the Cd toxicity while the higher dose of Bap accentuated the toxicity by inhibiting metallothionein synthesis. These findings might provide some useful clues for elucidation the mechanism of the interaction of combined xenobiotics in molluscs.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China.
| | - Haoxue Wang
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| | - Pengfei Li
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| |
Collapse
|