1
|
Chen Y, Dou Z, Zhang BT, Zhou Z, Wang J. Quantitative response of the spatial distribution of diesel oil to freezing and thawing temperatures in groundwater. WATER RESEARCH 2024; 261:121997. [PMID: 39002420 DOI: 10.1016/j.watres.2024.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024]
Abstract
The mobilization and redistribution of organic contaminants in groundwater is the basis and key to explore its dynamic evolution and appropriate remediation. The naturally occurring diametrical temperature gradient during freezing and thawing cycle leads to distinct behaviors of organic contaminants in groundwater. In this study, the pore-scale distribution of diesel oil in the porous media was quantitatively divided into capillary fluid state (CFS) and free fluid state (FFS) based on multiphase flow dynamics, employing low-field nuclear magnetic resonance (LF-NMR) technology. The pore-scale distribution of diesel oil depends not only on the freezing and thawing cycle but also on the temperature gradient according to LF-NMR results. The content of diesel oil in the CFS generally increases with a positive temperature gradient (e.g. freezing) compared to a negative temperature gradient (e.g. thawing), while the content of diesel oil in the FFS generally decreases. This dependence of the temperature gradient on pore-scale distribution of the diesel oil is positively correlated with the particle size of the porous medium. Furthermore, the pore-scale distribution of the diesel oil during the freezing and thawing cycle is influenced by the kinematic viscosity of the diesel oil. There is an exponential relationship between the diesel oil content and the kinematic viscosity, independent of the freezing or thawing process. During the freezing process, the diesel oil migrates from FFS to CFS, while this migration is reversed during the thawing process. The reverse migration of the diesel oil between the freezing and thawing processes leads to a spatial redistribution of the diesel oil, which is controlled by both the fluid energy and the capillary force. The present work provide meaningful guidance for the remediation of groundwater contamination in cold regions.
Collapse
Affiliation(s)
- Yongqiang Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| | - Zhi Dou
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China.
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhifang Zhou
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| |
Collapse
|
2
|
Mayans B, Antón-Herrero R, García-Delgado C, Delgado-Moreno L, Guirado M, Pérez-Esteban J, Escolástico C, Eymar E. Bioremediation of petroleum hydrocarbons polluted soil by spent mushroom substrates: Microbiological structure and functionality. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134650. [PMID: 38776816 DOI: 10.1016/j.jhazmat.2024.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Spent mushroom substrate (SMS) holds valuable microbiota that can be useful in remediating polluted soils with hydrocarbons. However, the microorganisms behind the bioremediation process remain uncertain. In this work, a bioremediation assay of total petroleum hydrocarbons (TPHs) polluted soil by SMS application was performed to elucidate the microorganisms and consortia involved in biodegradation by a metabarcoding analysis. Untreated polluted soil was compared to seven bioremediation treatments by adding SMS of Agaricus bisporus, Pleurotus eryngii, Pleurotus ostreatus, and combinations. Soil microbial activity, TPH biodegradation, taxonomic classification, and predictive functional analysis were evaluated in the microbiopiles at 60 days. Different metagenomics approaches were performed to understand the impact of each SMS on native soil microbiota and TPHs biodegradation. All SMSs enhanced the degradation of aliphatic and aromatic hydrocarbons, being A. bisporus the most effective, promoting an efficient consortium constituted by the bacterial families Alcanivoraceae, Alcaligenaceae, and Dietziaceae along with the fungal genera Scedosporium and Aspergillus. The predictive 16 S rRNA gene study partially explained the decontamination efficacy by observing changes in the taxonomic structure of bacteria and fungi, and changes in the potential profiles of estimated degradative genes across the different treatments. This work provides new insights into TPHs bioremediation.
Collapse
Affiliation(s)
- Begoña Mayans
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Department of Organic and Bio-Organic Chemistry, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas-Madrid, Spain
| | - Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Laura Delgado-Moreno
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Guirado
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Javier Pérez-Esteban
- Department of Organic and Bio-Organic Chemistry, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas-Madrid, Spain
| | - Consuelo Escolástico
- Department of Organic and Bio-Organic Chemistry, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas-Madrid, Spain
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Delanau C, Aspray T, Pawlett M, Coulon F. Investigating the influence of sulphur amendment and temperature on microbial activity in bioremediation of diesel-contaminated soil. Heliyon 2024; 10:e30235. [PMID: 38707471 PMCID: PMC11066420 DOI: 10.1016/j.heliyon.2024.e30235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
This study investigated the effectiveness of incorporating sulphur (S) with nitrogen (N) and phosphorus (P) for enhancing microbial activity in diesel-contaminated soil during ex-situ bioremediation. While N and P amendments are commonly used to stimulate indigenous microorganisms, the potential benefits of adding S have received less attention. The study found that historically contaminated soil with a moderate concentration of total petroleum hydrocarbons (TPH; 1270 mg/kg) did not have nutrient limitation, and incubation temperature was found to be more critical for enhancing microbial activity. However, soil spiked with an additional 5000 mg/kg of diesel showed increased activity following NP and NPS amendment. Interestingly, NPS amendment at 10 °C resulted in higher microbial activity than at 20 °C, indicating the potential for a tailored nutrient amendment approach to optimize bioremediation in cold conditions. Overall, this study suggests that incorporating S with N and P can enhance microbial activity in diesel-contaminated soil during ex-situ bioremediation. Furthermore, the study highlights the importance of considering incubation temperature in designing a nutrient amendment approach for bioremediation, especially in cold conditions. These findings can guide the design and implementation of future effective bioremediation strategies for petroleum hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Clara Delanau
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Thomas Aspray
- Environmental Reclamation Services Ltd, Westerhill Road, Bishopbriggs, Glasgow, G64 2QH, Scotland, United Kingdom
| | - Mark Pawlett
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
4
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
5
|
Semenova EM, Tourova TP, Babich TL, Logvinova EY, Sokolova DS, Loiko NG, Myazin VA, Korneykova MV, Mardanov AV, Nazina TN. Crude Oil Degradation in Temperatures Below the Freezing Point by Bacteria from Hydrocarbon-Contaminated Arctic Soils and the Genome Analysis of Sphingomonas sp. AR_OL41. Microorganisms 2023; 12:79. [PMID: 38257905 PMCID: PMC10818417 DOI: 10.3390/microorganisms12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Intensive human activity in the Arctic region leads to hydrocarbon pollution of reservoirs and soils. Isolation of bacteria capable of growing at low temperatures and degrading oil and petroleum products is of scientific and practical value. The aim of this work was to study the physiology and growth in oil at temperatures below 0 °C of four strains of bacteria of the genera Pseudomonas, Rhodococcus, Arthrobacter, and Sphingomonas-previously isolated from diesel-contaminated soils of the Franz Josef Land archipelago-as well as genomic analysis of the Sphingomonas sp. AR_OL41 strain. The studied strains grew on hydrocarbons at temperatures from -1.5 °C to 35 °C in the presence of 0-8% NaCl (w/v). Growth at a negative temperature was accompanied by visual changes in the size of cells as well as a narrowing of the spectrum of utilized n-alkanes. The studied strains were psychrotolerant, degraded natural biopolymers (xylan, chitin) and n-alkanes of petroleum, and converted phosphates into a soluble form. The ability to degrade n-alkanes is rare in members of the genus Sphingomonas. To understand how the Sphingomonas sp. AR_OL41 strain has adapted to a cold, diesel-contaminated environment, its genome was sequenced and analyzed. The Illumina HiSeq 2500 platform was used for AR_OL41 genome strain sequencing. The genome analysis of the AR_OL41 strain showed the presence of genes encoding enzymes of n-alkane oxidation, pyruvate metabolism, desaturation of membrane lipids, and the formation of exopolysaccharides, confirming the adaptation of the strain to hydrocarbon pollution and low habitat temperature. Average nucleotide identity and digital DNA-DNA hybridization values for genomes of the AR_OL41 strain with that of the phylogenetically relative Sphingomonas alpine DSM 22537T strain were 81.9% and 20.9%, respectively, which allows the AR_OL41 strain to be assigned to a new species of the genus Sphingomonas. Phenomenological observations and genomic analysis indicate the possible participation of the studied strains in the self-purification of Arctic soils from hydrocarbons and their potential for biotechnological application in bioremediation of low-temperature environments.
Collapse
Affiliation(s)
- Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Ekaterina Y. Logvinova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Nataliya G. Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| | - Vladimir A. Myazin
- Institute of North Industrial Ecology Problems–Subdivision of the Federal Research Centre “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia;
- Agrarian and Technological Institute, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maria V. Korneykova
- Institute of North Industrial Ecology Problems–Subdivision of the Federal Research Centre “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia;
- Agrarian and Technological Institute, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (E.M.S.); (T.P.T.); (T.L.B.); (E.Y.L.); (D.S.S.); (N.G.L.)
| |
Collapse
|
6
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
7
|
Chen Y, Dou Z, Zhou Z, Wang J. Volatilization behavior of diesel oil-water-glass bead system exposed to freeze-thaw cycles. WATER RESEARCH 2023; 244:120433. [PMID: 37572461 DOI: 10.1016/j.watres.2023.120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Volatilization plays an important role in the attenuation and redistribution of petroleum products in contaminated porous media. However, the volatilization behavior of petroleum products exposed to freeze-thaw cycles is not well understood. In this study, we investigated the volatilization behavior of diesel oil-water-glass bead systems under different freeze-thaw cycles. Low-field nuclear magnetic resonance (LF-NMR) was used to quantitatively and spatially monitor the mass loss of the diesel oil-water-glass bead system during volatilization. The mechanism of the influence of freeze-thaw cycles on volatilization in the diesel oil-water-glass bead system was analyzed. The results show that the freeze-thaw cycles have a significant effect on the volatilization rate of diesel oil and water. As the number of freeze-thaw cycles increases, the volatilization rate of diesel oil shows an overall downward trend while the volatilization rate of water shows an overall upward trend. The volatilization loss of the liquids (both diesel oil and water) is mainly due to the volatilization loss of water, indicating that water is more volatile than diesel oil in the diesel oil-water system. The spatial distribution of the diesel oil signal monitored by LF-NMR showed that diesel oil volatilizes mainly in the upper layer of the sample, associating with the preferential volatilization loss in the large pores. The lumped parameter λ related to the characteristic volatilization length LV was introduced to characterize the volatilization rate of diesel oil and water with the increase of volatilization time. For a diesel oil-water-glass bead system exposed to freeze-thaw cycles, the 1/ LV of diesel oil decreases exponentially and rapidly with increasing volatilization time, while the 1/ LV of water decreases almost linearly and slowly with increasing volatilization time. This different dependence of 1/ LV on volatilization time leads to the individual volatilization behavior of diesel oil and water.
Collapse
Affiliation(s)
- Yongqiang Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| | - Zhi Dou
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China.
| | - Zhifang Zhou
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098 China
| |
Collapse
|
8
|
Yuan X, Zhang J, Chang F, Wang X, Zhang X, Luan H, Qi G, Guo S. Effects of nitrogen reduction combined with bio-organic fertilizer on soil bacterial community diversity of red raspberry orchard. PLoS One 2023; 18:e0283718. [PMID: 37432967 DOI: 10.1371/journal.pone.0283718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/15/2023] [Indexed: 07/13/2023] Open
Abstract
Understanding soil bacterial diversity under nitrogen reduction is necessary for the crucial role in soil nitrogen cycling. However, the effects of combined fertilization on soil chemical properties, microbial community structure, and yield are unknown. This study was conducted to investigate the effect of nitrogen fertilizer reduction with bio-organic fertilizer on soil bacterial community diversity of red raspberry orchard. Six treatments were set in this study: NF-100%, NF-75%, NF-50%, NF-25% and CF, no nitrogen fertilizer and bio-organic fertilizer for CK. The bacterial community structures of soil were analyzed by 16S rRNA gene amplification high-throughput sequencing technology. Nitrogen fertilizer reduction with bio-organic fertilizer increased soil organic matter (SOM), total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), and reduced soil pH. NF-50% and NF-25% treatments increased the yield of red raspberry. Nitrogen reduction combined with bio-organic fertilizer increased the relative abundance of copiotrophic bacteria and decreased the relative abundance of oligotrophic bacteria. The increase in copiotrophic bacteria in the soil of red raspberry orchard could indicate an increase in soil nutrient availability, which have positive implications for soil fertility and production. However, nitrogen fertilizer reduction with bio-organic fertilizer altered the abundance and diversity of soil bacteria, which was reduced compared to CF treatments. The PCoA analysis of the soil bacterial community showed that the community structure of NF-25% treatment was more different from other treatments, indicating that the fertilization method changed the community structure of soil bacteria. The results of a redundancy analysis showed that SOM, pH, AN, TN, and AP were the main factors affecting the microbial community structure. Overall, the reduction of nitrogen fertilizer with bio-organic fertilizer significantly increased the soil nutrient content, reduced the relative abundance and diversity of soil bacteria, increased the relative abundance of beneficial bacteria in the soil, changed the bacterial community structure of soil, increased production and created suitable soil conditions for the red raspberry growth.
Collapse
Affiliation(s)
- Xu Yuan
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jiaan Zhang
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Feiyang Chang
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Xinyue Wang
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Xuemei Zhang
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Haoan Luan
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Guohui Qi
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Suping Guo
- Institute of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| |
Collapse
|
9
|
Adekomaya O, Majozi T. Promoting natural cycle and environmental resilience: A pathway toward sustainable development. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Microbial Communities of Seawater and Coastal Soil of Russian Arctic Region and Their Potential for Bioremediation from Hydrocarbon Pollutants. Microorganisms 2022; 10:microorganisms10081490. [PMID: 35893548 PMCID: PMC9332119 DOI: 10.3390/microorganisms10081490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The development of Arctic regions leads to pollution of marine and coastal environments with oil and petroleum products. The purpose of this work was to determine the diversity of microbial communities in seawater, as well as in littoral and coastal soil, and the potential ability of their members to degrade hydrocarbons degradation and to isolate oil-degrading bacteria. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, the dominance of bacteria in polar communities was shown, the proportion of archaea did not exceed 2% (of the total number of sequences in the libraries). Archaea inhabiting the seawater belonged to the genera Nitrosopumilus and Nitrosoarchaeum and to the Nitrososphaeraceae family. In the polluted samples, members of the Gammaproteobacteria, Alphaproteobacteria, and Actinomycetes classes predominated; bacteria of the classes Bacteroidia, Clostridia, Acidimicrobiia, Planctomycetia, and Deltaproteobacteria were less represented. Using the iVikodak program and KEGG database, the potential functional characteristics of the studied prokaryotic communities were predicted. Bacteria were potentially involved in nitrogen and sulfur cycles, in degradation of benzoate, terephthalate, fatty acids, and alkanes. A total of 19 strains of bacteria of the genera Pseudomonas, Aeromonas, Oceanisphaera, Shewanella, Paeniglutamicibacter, and Rhodococcus were isolated from the studied samples. Among them were psychrotolerant and psychrophilic bacteria growing in seawater and utilizing crude oil, diesel fuel, and motor oils. The data obtained suggest that the studied microbial communities could participate in the removal of hydrocarbons from arctic seawater and coastal soils and suggested the possibility of the application of the isolates for the bioaugmentation of oil-contaminated polar environments.
Collapse
|
11
|
Li L, Zhang Z, Wang Y, Xu J. Efficient removal of heavily oil-contaminated soil using a combination of fenton pre-oxidation with biostimulated iron and bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114590. [PMID: 35114514 DOI: 10.1016/j.jenvman.2022.114590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Crude oil contamination severely deteriorates soils quality. Bioremediation utilizing soil indigenous organisms could be employed to decompose petroleum hydrocarbons thanks to its low cost and minor environmental disturbance. However, slow kinetics limit the successful application of this biotechnique. Pretreating oil-contaminated soils with Fenton pre-oxidation could accelerate the subsequent bioremediation process. This study was to explore the mechanisms behind the rapid propagation of indigenous petroleum-degrading bacteria (IPDB) and the efficient degradation of total petroleum hydrocarbons (TPH) in soil after Fenton pre-oxidation with biostimulated iron. Biostimulated iron and non-biostimulated iron were used in the experiments, where Fenton pre-oxidation was combined with the bioremediation of oil-contaminated soil (TPH = 13221 mg/kg). Although the amount of Fenton pre-oxidized TPH (3331-3775 mg/kg) was similar with biostimulated and non-biostimulated irons, the biodegradation of TPH after Fenton pre-oxidation with biostimulated iron (5840 mg/kg) was much higher than that with non-biostimulated iron (3034-4034 mg/kg). Moreover, abundant nutrients and a high population of residual IPDB were found after Fenton pre-oxidation with biostimulated iron, which benefited stable consumption of NH3-N and dissolved organic carbon (DOC) by IPDB during the subsequent bioremediation. However, Fenton pre-oxidation with non-biostimulated iron either resulted in greater damage to IPDB or produced fewer nutrients, thereby failing to ensure the continuous propagation of IPDB during the subsequent bioremediation. Therefore, we propose that Fenton pre-oxidation with biostimulated iron should be applied to heavily oil-contaminated soils prior to bioremediation.
Collapse
Affiliation(s)
- Lu Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710129, Xi'an, PR China.
| | - Zena Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129, Xi'an, PR China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129, Xi'an, PR China.
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Xi'an, PR China.
| |
Collapse
|
12
|
Semenova EM, Babich TL, Sokolova DS, Dobriansky AS, Korzun AV, Kryukov DR. Microbial Diversity of Hydrocarbon-Contaminated Soils of the Franz Josef Land Archipelago. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Raffa CM, Vergnano A, Chiampo F, Godio A. Integrated use of chemical and geophysical monitoring to study the diesel oil biodegradation in microcosms with different operative conditions. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1263-1276. [PMID: 34900264 PMCID: PMC8617148 DOI: 10.1007/s40201-021-00681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/20/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to monitor the aerobic bioremediation of diesel oil-contaminated soil by measuring: a) the CO2 production; 2) the fluorescein production; 3) the residual diesel oil concentration. Moreover, the complex dielectric permittivity was monitored through an open-ended coaxial cable. Several microcosms were prepared, changing the water content (u% = 8-15% by weight), the carbon to nitrogen ratio (C/N = 20-450), and the soil amount (200 and 800 g of dry soil). The cumulative CO2 and fluorescein production showed similar trends, but different values since these two parameters reflect different features of the biological process occurring within each microcosm. The diesel oil removal efficiency depended on the microcosm characteristics. After 84 days, in the microcosms with 200 g of dry soil, the highest removal efficiency was achieved with a water content of 8% by weight and C/N = 120, while in the microcosms with 800 g of dry soil the best result was achieved with the water content equal to 12% by weight and C/N = 100. In the tested soil, the bioremediation process is efficient if the water content is in the range 8-12% by weight, and C/N is in the range 100-180; under these operative conditions, the diesel oil removal efficiency was about 65-70% after 84 days. The dielectric permittivity was monitored in microcosms with 200 g of dry soil. The open-ended coaxial cable detected significant variations of both the real and the imaginary component of the dielectric permittivity during the bioremediation process, due to the physical and chemical changes that occurred within the microcosms.
Collapse
Affiliation(s)
- Carla Maria Raffa
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Andrea Vergnano
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Fulvia Chiampo
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Alberto Godio
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
14
|
Ghani MU, Asghar HN, Niaz A, Ahmad Zahir Z, Nawaz MF, Häggblom MM. Efficacy of rhizobacteria for degradation of profenofos and improvement in tomato growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:463-473. [PMID: 34304658 DOI: 10.1080/15226514.2021.1952927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides are widely used for managing pathogens and pests for sustainable agricultural output to feed around seven billion people worldwide. After their targeted role, residues of these compounds may build up and persist in soils and in the food chain. This study evaluated the efficiency of bacterial strains capable of plant growth promotion and biodegradation of profenofos. To execute this, bacteria were isolated from an agricultural area with a history of repeated application of profenofos. The profenofos degrading bacterial strains with growth-promoting characteristics were identified based on biochemical and molecular approaches through partial 16S ribosomal rRNA gene sequencing. The results revealed that one strain, Enterobacter cloacae MUG75, degraded over 90% profenofos after 9 days of incubation. Similarly, plant growth was significantly increased in plants grown in profenofos (100 mg L-1) contaminated soil inoculated with the same strain. The study demonstrated that inoculation of profenofos degrading bacterial strains increased plant growth and profenofos degradation. Novelty statementPesticides are extensively applied in the agriculture sector to overcome pest attacks and to increase food production to fulfill the needs of the growing world population. Residues of these pesticides can persist in the environment for long periods, may enter the groundwater reservoirs and cause harmful effects on living systems highlighting the need for bioremediation of pesticide-contaminated environments. Microbes can use pesticides as a source of carbon and energy and convert them into less toxic and non-toxic products. Application of profenofos degrading rhizobacteria in interaction with the plants in the rhizosphere can remediate the pesticide-contaminated soils and minimize their uptake into the food chain. Hence, this approach can improve soil health and food quality without compromising the environment.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Ahmadnezhad Z, Vaezihir A, Schüth C, Zarrini G. Combination of zeolite barrier and bio sparging techniques to enhance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. CHEMOSPHERE 2021; 273:128555. [PMID: 33087257 DOI: 10.1016/j.chemosphere.2020.128555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 05/21/2023]
Abstract
Adsorption and bioremediation are effective processes for remediation of benzene, toluene, and ethylbenzene (BTE) through Permeable Reactive Barriers (PRBs). A few researches focus on adsorption of natural zeolite because of its hydrophilic property. On the other hand, PRBs need to be replaced by fresh materials after a while when all the possible absorption positions were filled up. We tried to find a way to increase the efficiency of PRB, elongation of its replacement period and of course decreasing the cost of remediation. Equipping of PRB with microbial degradation system was the idea. The present study describes the performances of natural Clinoptilolite-Heulandite Zeolite (CH-Z) and three new strains (safe and low-cost media) utilized in a PRB for removing BTE from contaminated shallow groundwater. First, batch tests were conducted to recognize the optimal removal conditions for utilization of C-HZ and strains to remediate BTE compounds. Then, an aerobic PRB system filled with a natural zeolite was designed and investigated in a continuous flow sand-tank model to assess the efficiency of combined PRBs (zeolite + biosparging), for BTE-contaminated groundwater. Batch experiments showed that the BTE removal of zeolite was 89%, as well as, a consortium of three bacterial strains, Variovorax sp. OT16, Pseudomonas balearica OT17, and Ornithinibacillus sp. OT18 efficiently removed the BTE mixture. The process of BTE removal in the PRB under continuous-flow condition was divided into three phases: Phase I, in which the barrier was made of the only zeolite, and in Phases II and III the reactor was fed by microorganisms. This experiment revealed that in Phases I, the concentrations of BTE decrease (92%) due to zeolite adsorption. In Phase II and III, the degradation process became the principal removal mechanism (68% and 81%, respectively). Consequently, this research showed high ability of C-HZ in the BTE treatment, and a combination of Natural Zeolite, with a biological degradation system (CH-Z -PRB) improves the efficiency of BTE remediation. However, the slow biodegradation rates and the continuous injection of BTE in the model confirmed that longer time was needed for the PRB to function optimally. Finally, the combined method of CH-Z- BIO PRB showed the great potential in the restriction of the BTE migration that can be used at the field-scale after up-scaling.
Collapse
Affiliation(s)
- Zeinab Ahmadnezhad
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| | - Abdorreza Vaezihir
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
| | - Christoph Schüth
- Hydrogeology, Geoscience Group, Technische Universität Darmstadt, Germany
| | - Gholamreza Zarrini
- Department of Animal Biology, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| |
Collapse
|
16
|
Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA. Bibliometric Analysis of Hydrocarbon Bioremediation in Cold Regions and a Review on Enhanced Soil Bioremediation. BIOLOGY 2021; 10:biology10050354. [PMID: 33922046 PMCID: PMC8143585 DOI: 10.3390/biology10050354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Anthropogenic activities in cold regions require petroleum oils to support various purposes. With the increased demand of petroleum, accidental oil spills are generated during transportation or refuelling processes. Soil is one of the major victims in petroleum pollution, hence studies have been devoted to find solutions to remove these petroleum hydrocarbons. However, the remote and low-temperature conditions in cold regions hindered the implementation of physical and chemical removal treatments. On the other hand, biological treatments in general have been proposed as an innovative approach to attenuate these hydrocarbon pollutants in soils. To understand the relevancy of biological treatments for cold regions specifically, bibliometric analysis has been applied to systematically analyse studies focused on hydrocarbon removal treatment in a biological way. To expedite the understanding of this analysis, we have summarised these biological treatments and suggested other biological applications in the context of cold conditions. Abstract The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
Collapse
Affiliation(s)
- How Swen Yap
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
17
|
Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA. A Review and Bibliometric Analysis on Applications of Microbial Degradation of Hydrocarbon Contaminants in Arctic Marine Environment at Metagenomic and Enzymatic Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1671. [PMID: 33572432 PMCID: PMC7916232 DOI: 10.3390/ijerph18041671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
Collapse
Affiliation(s)
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
- National Antarctic Research Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.V.); (N.A.S.)
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.V.); (N.A.S.)
- National Antarctic Research Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
| |
Collapse
|
18
|
Mafiana MO, Bashiru MD, Erhunmwunsee F, Dirisu CG, Li SW. An insight into the current oil spills and on-site bioremediation approaches to contaminated sites in Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4073-4094. [PMID: 33188631 DOI: 10.1007/s11356-020-11533-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land oil spills in Nigeria have a long history of contaminating the soil, groundwater, vegetation, and streams with spill extension being the primary of numerous ordeals. These have left the host communities of oil fields and pipelines in crucial need of soil rehabilitation. Thus, this review provides insights into the current state of land oil spills and the effectiveness of on-site remediation approaches across communities. A total of 44 incidents of land oil spills of ≥ 500 bbl, amounting to 53,631 bbl between 2011 and 2019, was recorded by the Shell Petroleum Development Company, which primarily attributed to 83% of the total sabotage. Over 73% of the 53,631 bbl spills were unrecovered from the spill areas, which had deleterious impacts on farmlands, fishponds, rivers, and residential areas. Remediation by enhanced natural attenuation (RENA) is a feasible technique for restoring petroleum hydrocarbon-contaminated sites, but it might be ineffective when limited to tiling, windrows, and fertilizer applications due to the presence of non-biodegradable residues and contaminants beyond the aeration depth. However, bioremediation techniques ranging from non-supplemented in-situ and fertilizer supplemented in-situ to mixed in-situ and ex-situ bio-cells supplemented RENA are feasible approaches for spill sites. However, challenging limitations with regard to RENA application failures in the region include delayed responses to spill emergency, large amounts of un-recovered spilled oil, and un-implemented legislative guidelines for spill cleanup. Nevertheless, the temperature, moisture, nutrient, oxygen, and pH of the soil are essential parameters to be considered when implementing a landfarming remediation approach.
Collapse
Affiliation(s)
- Macdonald Ogorm Mafiana
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Department of Biology Education, Federal College of Education (Technical), Omoku, 510103, Rivers State, Nigeria.
| | - Mustapha Dimah Bashiru
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | | | - Chimezie Gabriel Dirisu
- Department of Biology Education, Federal College of Education (Technical), Omoku, 510103, Rivers State, Nigeria
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, de Oliveira VM. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front Microbiol 2020; 11:561506. [PMID: 33072021 PMCID: PMC7530279 DOI: 10.3389/fmicb.2020.561506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023] Open
Abstract
Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.
Collapse
Affiliation(s)
- Kelly J. Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabel N. Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bruna M. Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| |
Collapse
|
20
|
Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J Microbiol Biotechnol 2019; 35:99. [PMID: 31222505 DOI: 10.1007/s11274-019-2674-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to develop an effective bacterial consortium and determine their ability to overcome nitrogen limitation for the enhanced remediation of diesel-contaminated soils. Towards this, various bacterial consortia were constructed using oil-degrading and nitrogen-fixing microbes. The diesel removal efficiency of various developed consortia was evaluated by delivering the bacterial consortia to the diesel-contaminated soils. The consortium Acinetobacter sp. K-6 + Rhodococcus sp. Y2-2 + NH4NO3 resulted in the highest removal (85.3%) of diesel from the contaminated soil. The consortium containing two different oil-degrading microbes (K-6 + Y2-2) and one nitrogen-fixing microbe Azotobacter vinelandii KCTC 2426 removed 83.1% of the diesel from the soil after 40 days of treatment. The total nitrogen content analysis revealed higher amounts of nitrogen in soil treated with the nitrogen-fixing microbe when compared with that of the soil supplemented with exogenous inorganic nitrogen. The findings in this present study reveal that the consortium containing the nitrogen-fixing microbe degraded similar amounts of diesel to that degraded by the consortium supplemented with exogenous inorganic nitrogen. This suggests that the developed consortium K-6 + Y2-2 + KCTC 2426 compensated for the nitrogen limitation and eliminated the need for exogenous nitrogen in bioremediation of diesel-contaminated soils.
Collapse
|
21
|
Chaudhary DK, Jeong SW, Kim J. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. World J Microbiol Biotechnol 2018; 34:33. [PMID: 29411146 DOI: 10.1007/s11274-018-2415-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/27/2018] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate oil-degrading ability of newly isolated strain Rhodococcus Y2-2 at low temperature. Rhodococcus sp. Y2-2 was isolated from oil-contaminated soil sampled at the end of winter using a newly developed transwell plate method. In the liquid phase, the oil-degradation efficiency of strain Rhodococcus sp. Y2-2 was about 84% with an initial concentration of 1500 ppm TPH (500 ppm each of kerosene, gasoline, and diesel) when incubated for 2 weeks under optimal conditions: 10 °C, pH 7, and 0.5 g L- 1 inoculum. In the soil phase, the isolate showed 80% oil degradation efficiency using glucose as a carbon source, with an initial concentration of 4000 ppm TPH and the addition of water during 14 days of incubation at 10 °C. Additionally, the degradation efficiency of the isolate was increased by the addition of mixture of surfactant alpha olefin sulfonate and gelatin, although strain Y2-2 also produced many biosurfactant components. This study shows Rhodococcus sp. Y2-2 can degrade oil components both in liquid and soil media by consuming kerosene, gasoline, and diesel as a carbon and energy source. Therefore, the crude oil-degrading ability of Rhodococcus sp. Y2-2 at low temperature provides proper bioremediation tool to clean up oil-contaminated sites especially in cold area or during winter season.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Ecology Laboratory, Department of Life Science, College of Natural Sciences and Engineering, Kyonggi University, 154-42 Gwanggyosan-Ro, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Kunsan, South Korea
| | - Jaisoo Kim
- Ecology Laboratory, Department of Life Science, College of Natural Sciences and Engineering, Kyonggi University, 154-42 Gwanggyosan-Ro, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea.
| |
Collapse
|
22
|
Decesaro A, Machado TS, Cappellaro ÂC, Reinehr CO, Thomé A, Colla LM. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20831-20843. [PMID: 28815413 DOI: 10.1007/s11356-017-9778-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.
Collapse
Affiliation(s)
- Andressa Decesaro
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Thaís Strieder Machado
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Ângela Carolina Cappellaro
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Christian Oliveira Reinehr
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Antônio Thomé
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Luciane Maria Colla
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil.
| |
Collapse
|
23
|
Freidman BL, Gras SL, Snape I, Stevens GW, Mumford KA. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:272-282. [PMID: 27132074 DOI: 10.1016/j.jhazmat.2016.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients.
Collapse
Affiliation(s)
- Benjamin L Freidman
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, The University of Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Sally L Gras
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, The University of Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia; The ARC Dairy Innovation Hub, The University of Melbourne, VIC 3010, Australia
| | - Ian Snape
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Geoff W Stevens
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, The University of Melbourne, VIC 3010, Australia
| | - Kathryn A Mumford
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
24
|
Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Appl Microbiol Biotechnol 2016; 100:7741-50. [DOI: 10.1007/s00253-016-7595-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|