1
|
Li R, Cui S, Song T, Zhang J, Zhang H, Wang J. Research Progress on Cereal Protein-Based Films: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4483-4496. [PMID: 39960453 DOI: 10.1021/acs.jafc.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Recently, to address plastic pollution and food safety issues, the development of biodegradable materials has become a research hotspot. Cereal proteins have been widely used in natural biodegradable packaging films due to their excellent hydrophobicity and film-forming ability, including wheat gluten protein, zein, rice protein, and oat protein. Although pure cereal protein-based films have the disadvantages of insufficient stability and lack of functionality, a variety of measures have been taken to enhance the performance of the films to expand the application range of cereal protein-based films. This Review briefly reviews the fabrication process of cereal protein-based films. The interaction of various additives (plasticizers, biopolymers, nanoparticles, bioactive ingredients, and indicators) with cereal proteins is highlighted. Four methods for fabricating cereal protein-based films (casting, extrusion, electrospinning, and 3D printing) are summarized. Additionally, the impact of several novel technologies on the performance improvement of cereal protein-based films, including ultrasonic, cold plasma, and high-pressure treatment, is discussed. Finally, the application scenarios of cereal protein-based films in active and smart food packaging are discussed, and the challenges of stability and safety of these packaging films are pointed out. In conclusion, this Review identifies the development potential of cereal protein-based films in food packaging fields.
Collapse
Affiliation(s)
- Rumeng Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Sa Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Junhui Zhang
- COFCO Nutrition and Health Research Institute Co. Ltd., Beijing 102209, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
2
|
Salinas J, Martinez-Gallardo MR, Jurado MM, Suarez-Estrella F, Lopez-Gonzalez JA, Estrella-Gonzalez MJ, Toribio AJ, Carpena-Istan V, Lopez MJ. Construction of versatile plastic-degrading microbial consortia based on ligninolytic microorganisms associated with agricultural waste composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125333. [PMID: 39615570 DOI: 10.1016/j.envpol.2024.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024]
Abstract
The accumulation of plastic in ecosystems is one of the most critical environmental concerns today. Plastic biodegradation using individual microbial cultures has shown limited success, which can be improved by employing microbial consortia with appropriate enzymatic capabilities. This study aims to assemble and characterize microbial consortia using ligninolytic fungi and bacteria isolated from an agricultural waste composting process, with the goal of enhancing the efficiency of plastic biodegradation. The compost microbiome demonstrated plastic-degrading functionality, particularly during the raw material and cooling phases. Ligninolytic microorganisms from compost were characterized for enzymes related to plastic degradation and their ability to colonize plastic films. The genera Bacillus, Pseudomonas, Fusarium, Aspergillus, Scedosporium, and Pseudallescheria exhibited a wide range of activities associated with plastic biodegradation, making them candidates for consortia assembly. The biodegradation of polyethylene using single and consortium cultures revealed that consortia, particularly those combining Bacillus subtilis RBM2 with Fusarium oxysporum RHM1, enhanced degradation efficiency. Additionally, consortia targeting multiple plastics, including virgin and recycled linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), and polystyrene (PS), showed varying levels of success, with bacterial-bacterial combinations such as Pseudomonas aeruginosa RBM21 and Bacillus subtilis RBM2 demonstrating broad-spectrum plastic degradation. These findings underscore the potential of compost-derived microorganisms for plastic biodegradation and suggest that utilizing microbial consortia offers a promising approach to tackling plastic pollution.
Collapse
Affiliation(s)
- Jesus Salinas
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Maria R Martinez-Gallardo
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Macarena M Jurado
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain.
| | - Francisca Suarez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Juan A Lopez-Gonzalez
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Maria J Estrella-Gonzalez
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Ana J Toribio
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Victor Carpena-Istan
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| | - Maria J Lopez
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120, Almeria, Spain
| |
Collapse
|
3
|
Li D, Li J, Liang D, Wu Y, Xie C, Yin M, Zhu Y, Wu Y, Du L, Yue J, Li J, Guo W. Effects of degradable and non-degradable microplastics on SPNEDPR-AGS system: Sludge characteristics, nutrient transformation, key enzyme, and microbial community. BIORESOURCE TECHNOLOGY 2025; 418:131917. [PMID: 39622421 DOI: 10.1016/j.biortech.2024.131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
The environmental risk of microplastics (MPs) in aerobic granular sludge (AGS) system is unclear. This study evaluates the effects of non-biodegradable polyvinyl chloride microplastics (PVC-MPs) and biodegradable polylactic acid microplastics (PLA-MPs) on AGS systems. The results showed that both destroyed the performance of AGS systems, with PVC-MPs achieving this by disrupting the AGS structure, while PLA-MPs mainly by causing the expansion of filamentous bacteria induced through the stimulation by lactic acid metabolite (R0: 5.52 ± 0.49 μg/L; RPLA5: 11.67 ± 0.56 μg/L). Moreover, both MPs inhibited nitrogen removal by disrupting partial nitrification and endogenous denitrification and suppressed key microbes such as Candidatus Competibacter and Nitrosomonas. Metabolic pathway analysis and molecular docking have further confirmed the mechanisms by which MPs affect critical metabolic pathways and key enzymes. Consequently, the hazards of biodegradable MPs to the stable operation of sewage treatment plants should also be of concern.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongbo Liang
- China Urban Construction Design & Research Institute CO., LTD., Beijing 100120, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Chaofan Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Muchen Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Junhui Yue
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Azim H, Johnston AL, Nixon M, Woodliffe JL, Theunissen R, Suresh R, Sivapalan S, Bobo J, Licence P. Collaborating for Impact: Navigating Partnerships and Overcoming Challenges across the Sustainable Development Goals. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:1164-1173. [PMID: 39886474 PMCID: PMC11776104 DOI: 10.1021/acssuschemeng.4c10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 02/01/2025]
Abstract
We illustrate the importance of early career perspectives and diverse partnerships to develop solutions and overcome key challenges to achieve the Sustainable Development Goals.
Collapse
Affiliation(s)
- Hiba Azim
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Amy-Louise Johnston
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Morag Nixon
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - John Luke Woodliffe
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | - Reshma Suresh
- Amrita
School for Sustainable Development, Amrita
Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Subarna Sivapalan
- School
of Education, Faculty of Arts and Social Sciences, University of Nottingham, Jalan Broga, 43500 Semenyih, Malaysia
| | - Jack Bobo
- Food Systems
Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Peter Licence
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Kuroda K, Yamamoto K, Isshiki R, Tokizawa R, Shiiba C, Hino S, Yamano N, Usui E, Miyakawa T, Miura T, Kamino K, Tamaki H, Nakayama A, Narihiro T. Metagenomic and metatranscriptomic analyses reveal uncharted microbial constituents responsible for polyhydroxybutyrate biodegradation in coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137202. [PMID: 39827799 DOI: 10.1016/j.jhazmat.2025.137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Polyhydroxybutyrate (PHB) has attracted attention as a representative polymer for biodegradable plastics produced by microorganisms. Since information regarding the fate of PHB released into the environment is limited, it is necessary to identify them based on metagenomic information. We estimated the PHB biodegradability in coastal water samples collected from 15 near shore sites around Japan using oxygen consumption as an indicator in laboratory-scale incubation experiments and conducted 16S rRNA gene-based microbial community profiling. The PHB-biodegradation-rate was significantly positively correlated with the diversity indices of the microbial community in seawater prior to incubation, indicating that seawater with higher diversity is more advantageous for biodegradation. We identified 41 operational taxonomic units exhibiting a significant positive correlation between their abundance and PHB-degradation-rates; these included several microorganisms with hitherto unreported PHB-degrading ability. Next, we analyzed gene expression patterns over incubation time using seawater samples employing metagenomic and metatranscriptomic approaches. Fifty-seven putative extracellular PHB/PHA depolymerase genes were found in 38 metagenomic bins and their expression changed with increasing biodegradation rates, indicating that PHB released into the marine environment is subject to degradation by phylogenetically diverse PHB-depolymerase-producing bacteria. These findings should contribute to expanding the knowledge on degradation of biodegradable plastics by complex marine microbial ecosystems.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Rino Isshiki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Riho Tokizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Chisato Shiiba
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Shodai Hino
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Naoko Yamano
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Erika Usui
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyo Miyakawa
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kei Kamino
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsuyoshi Nakayama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
| |
Collapse
|
6
|
Amirian V, Russel M, Yusof ZNB, Chen JE, Movafeghi A, Kosari-Nasab M, Zhang D, Szpyrka E. Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution. World J Microbiol Biotechnol 2025; 41:24. [PMID: 39762597 DOI: 10.1007/s11274-024-04243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms. Thus, environmentally friendly and sustainable solutions for their removal are urgently needed. In this context, both natural and engineered bacterial and algal communities have played a crucial role in the degradation of various phthalic acid esters present in water and soil. When algae-bacteria co-culture is compared to a singular algae or bacteria system, this symbiotic system shows superior performance in the removal of dibutyl phthalates and diethyl phthalates from synthetic wastewater. This review provides an optimistic outlook for co-culture systems by in-depth examining single microorganisms, namely bacteria and algae, as well as algae-bacterial consortiums for phthalates degradation, which will draw attention to species co-existence for the removal of various pollutants from the environment. In addition, further development and research, particularly on the mechanisms, genes involved in the degradation of phthalic acid esters, and interactions between bacterial and algal species, will lead to the discovery of more adaptable species as well as the production of targeted species to address the environmental pollution crisis and provide a green, efficient, and sustainable approach to environmental protection. Discrepancies in knowledge and potential avenues for exploration will enhance the existing body of literature, enabling researchers to investigate this field more comprehensively.
Collapse
Affiliation(s)
- Veghar Amirian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Mohammad Russel
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China.
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Putra University Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Jit Ern Chen
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Bandar Sunway, 47500, Malaysia
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Morteza Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Dayong Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland
| |
Collapse
|
7
|
Dubey AP, Thalla AK. Bioprospecting indigenous bacteria from landfill leachate for enhanced polypropylene microplastics degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137139. [PMID: 39798314 DOI: 10.1016/j.jhazmat.2025.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Plastic pollution, especially microplastics (MPs), is a severe environmental threat. Due to the significant environmental issues posed by plastics, it is critical to use an effective and sustainable degradation technique. The study aimed to isolate and identify Indigenous bacterial strains from landfill leachate (LL) to evaluate its potential for degrading Polypropylene microplastics (PPMPs). The investigation identified two bacterial strains, Pseudomonas aeruginosa, and novel Staphylococcus haemolyticus, through 16S rRNA analysis, capable of decomposing PPMPs. Following a 30-day treatment period, it was noted that Staphylococcus haemolyticus reduced the dry weight of PPMPs by 25.46 % ± 1.35 %, whereas Pseudomonas aeruginosa strain reduced it by 7.01 % ± 0.85 %. Multiple tests, including weight loss, pH, optical density, total biomass yield, and BATH test of the medium, validated the growth of bacterial strains. The biochemical characteristics of the isolated strains were assessed through Biochemical tests. The study also investigated the surface, chemical, and structural changes in treated PPMPs using Scanning electron microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), and Ion Chromatography (IC) tests. The Fourier Transform Infrared Spectroscopy (FTIR) study also showed the creation of alcohol, methyl, as well as carbonyl groups due to hydrolysis and oxidation by both bacterial strains. This study implies that the Staphylococcus haemolyticus and Pseudomonas aeruginosa bacterial strains are secure and efficient for PPMP bioremediation.
Collapse
Affiliation(s)
- Ankit Prakashvir Dubey
- Bioprocesses Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India.
| | - Arun Kumar Thalla
- Bioprocesses Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India.
| |
Collapse
|
8
|
Dos Santos RR, Montagnolli RN, Faez R. Biodegradation profile and soil microbiota interactions of poly(vinyl alcohol)/starch-based fertilizers. Int J Biol Macromol 2025; 287:138395. [PMID: 39647743 DOI: 10.1016/j.ijbiomac.2024.138395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Enhanced efficiency fertilizers (EEFs) are critical for sustainable agriculture, providing essential nutrients while minimizing environmental impact. However, developing EEFs that effectively degrade after use remains a significant challenge. This study investigates the biodegradation and nutrient release profiles of EEFs composed of poly(vinyl alcohol) (PVA) and starch-nutrient microspheres. EEFs were developed using a dual-layered approach: spray drying to create starch-nutrient microspheres, followed by melt processing with PVA to form pastilles. A 100-day soil biodegradation test monitored CO2 release as an indicator of microbial activity and material degradation. Comprehensive analyses, including chemical (FTIR), thermal (DSC), and morphological (SEM) assessments, were conducted. The increased CO band intensity (~1640 cm-1) after biodegradation indicated early stages of PVA degradation, accompanied by a rise in the glass transition temperature (Tg). Thermal analysis revealed nutrient release, as evidenced by a decrease in KNO3 peaks. Starch-based EEFs enhanced CO2 release and mycelial coverage, suggesting that starch-containing materials facilitated PVA degradation by improving microbial adhesion. This study underscores the potential of biodegradable EEFs to enhance soil health and reduce pollution, thereby contributing significantly to sustainable agriculture.
Collapse
Affiliation(s)
- Rodrigo R Dos Santos
- Laboratory of Polymeric Materials and Biosorbents, Universidade Federal de São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Renato N Montagnolli
- Laboratory of Agricultural and Molecular Microbiology, Universidade Federal de São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Roselena Faez
- Laboratory of Polymeric Materials and Biosorbents, Universidade Federal de São Carlos, UFSCar, 13600970 Araras, SP, Brazil.
| |
Collapse
|
9
|
Wu H, Li H, Li Z, Liu X, Li Q, Cheng M, Gong J. Interfacial engineering-based colonization of biofilms on polyethylene terephthalate (PET) surfaces: Implications for whole-cell biodegradation of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178002. [PMID: 39708756 DOI: 10.1016/j.scitotenv.2024.178002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Microplastic pollution has become a significant environmental issue. One of the most important sources and components of microplastics is polyester fabric - polyethylene terephthalate (PET). Because the catalytic depolymerization of PET typically requires specific conditions such as alkaline environments, specific solvents, or high temperatures, there is an urgent need for a simpler, eco-friendly solution with high degradation efficiency for managing the vast amounts of PET textile waste. In this study, Comamonas testosterone F4, which we screened and cultivated to grow using PET as the sole carbon source, was utilized as a whole-cell biocatalyst. The bioprocess was optimized through interfacial engineering, which leveraged dynamic supramolecular interactions and molecular recognition at the PET-enzyme interface. Biofilms were more effectively formed on the surfaces of PET@Span-80 and PET@TRE. Through supramolecular interactions, Span-80 and Trehalose lipids (TRE), which serve as host and guest chemicals, readily adhere to the PET surface. Compared to untreated PET fibers, PET surfaces treated with biodegradable surfactants showed increased hydrophilicity, which facilitated bacterial colonization and enhanced bacterial and enzymatic activity on PET. Furthermore, combining PET@Span-80 and a strategy for renewing bacterial cultures (RBC) resulted in a high-efficiency degradation effect over an extended degradation period. The weight loss of PET increased from 2.23 % to 5.67 % after four weeks of degradation. A more efficient method for the biodegradation of PET was proposed by our team. The developed interfacial enhancement system provides a practical approach to accelerate the degradation of PET fabric waste, thereby mitigating the substantial environmental impact of polyester textile waste.
Collapse
Affiliation(s)
- Haodong Wu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Huiqin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; Hebei Green Textile Technology Innovation Center, Xingtai, Hebei 055550, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Meilin Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China.
| |
Collapse
|
10
|
Dar MA, Palsania P, Satya S, Dashora M, Bhat OA, Parveen S, Patidar SK, Kaushik G. Microplastic pollution: A global perspective in surface waters, microbial degradation, and corresponding mechanism. MARINE POLLUTION BULLETIN 2025; 210:117344. [PMID: 39615341 DOI: 10.1016/j.marpolbul.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Plastics are incredibly useful materials that have many benefits for both society and individual daily lives. However, the extensive utilization of plastic and plastic-derived products has led to plastic pollution in various environmental compartments across the world at alarming levels. Due to different biogeochemical processes, this plastic waste is broken down into tiny, omnipresent, and long-lasting fragments known as microplastics (<5 mm), which are causing great concern among scientists. Microplastics tend to bioaccumulate, contain toxic chemicals, and have other pollutants and pathogens adsorbed on their surface, thus having adverse effects on organisms. Globally dispersed, microplastics can now be found in almost every environmental niche. Therefore, the purpose of this paper is to give an overview of the research that has been done on this topic, summarize the evidence of microplastic pollution in surface waters, and discuss the analytical summary of recent findings on the microbial degradation of microplastics and effects of various parameters on its degradation as well as the potential degradation mechanism of microplastics. A summary of the most recent and relevant literature is provided on microplastic pollution and microorganisms that can break down various microplastics are classified according to their types including bacteria, fungi, and algae. The environmental factors influencing microplastic degradation and the associated degradation effects are therefore generalized. Additionally, a brief discussion of the mechanism underlying the microbial-mediated degradation of microplastics is provided. This review serves as a reference for upcoming research looking into efficient ways to reduce microplastic pollution.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shalni Satya
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Milap Dashora
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Ommer Ahad Bhat
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Sana Parveen
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Shailesh Kumar Patidar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
11
|
Li S, Peng W, Guo Y, Li S, Wang Q. Current status of microplastic pollution and the latest treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177467. [PMID: 39522775 DOI: 10.1016/j.scitotenv.2024.177467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
With the widespread use of plastics globally, the issue of microplastic (MP) pollution has escalated into a significant social and environmental concern. This paper seeks to comprehensively review the environmental hazards associated with MPs and to present the latest analytical techniques and countermeasures. By analyzing the global distribution of MPs and the hazards they pose to the human body, it is found that MPs come from a variety of sources and are widely distributed, and that their hazards cover the whole body, but there is a lack of specific dose analyses and acute toxicity analyses. To address the challenges of industrial-scale MP treatment, numerous advanced theories and methods have been developed, providing valuable insights for effective remediation. Despite these advancements, notable limitations persist, particularly in the treatment of MPs in residential water supplies. Furthermore, this review identifies promising approaches in the utilization of microorganisms and the synergistic mechanisms of enzymes for MP pollution mitigation. Additionally, the urgent need for the development of standardized methods and a comprehensive legal framework for the isolation and detection of MPs across various environmental media is underscored, providing novel perspectives on the study of MPs.
Collapse
Affiliation(s)
- Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenkang Peng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Sumei Li
- Department of Environment, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Colombini G, Senouci F, Rumpel C, Houot S, Biron P, Felbacq A, Dignac MF. Coarse microplastic accumulation patterns in agricultural soils during two decades of different urban composts application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125076. [PMID: 39374761 DOI: 10.1016/j.envpol.2024.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Plastic pollution, a global threat to environmental and human health, is now ubiquitous in the environment, including agricultural soils receiving urban compost amendments. Yet, the accumulation pattern of microplastics in soils are still to be disentangled, with regards to their sources and/or their physical properties such as morphotypes. The aim of this study was to identify the accumulation patterns of coarse microplastics (CMP) resulting from the long-term amendment of soil with urban waste composts. To this end, we used a field experiment receiving three different urban composts derived from municipal solid waste, biowaste, and a mixture of sewage sludge and green waste. We isolated 1417 coarse microplastic particles from a 21-year archive of soil and compost samples, using density fractionation followed by oxidation, and used Py-GC/MS for polymer identification. Different compost types led to different coarse microplastics accumulation levels. The accumulation pattern showed increasing CMP contents in soils over time. After 21 years of experiment, the calculated number of CMP was in accordance with the estimated values for all three compost types but it was not the case for the CMP mass. No difference of evolution pattern was found between films and fragments. We proposed that biotic transport or abiotic weathering and fragmentation could explain such differences in CMP evolution pattern.
Collapse
Affiliation(s)
- Gabin Colombini
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France.
| | - Fatima Senouci
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France
| | - Cornelia Rumpel
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France
| | - Sabine Houot
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Biron
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France
| | - Axel Felbacq
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France
| | - Marie-France Dignac
- IRD, INRAE, CNRS, UMR Institute for Ecology and Environmental Sciences of Paris (iEES-Paris), 75005, Paris, France
| |
Collapse
|
13
|
Flores-Díaz A, Alatriste-Mondragón F, Rittmann B, Rangel-Mendez R, Ontiveros-Valencia A. Biotransformation of microplastics from three-layer face masks by nitrifying-denitrifying consortia. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136161. [PMID: 39423648 DOI: 10.1016/j.jhazmat.2024.136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
COVID-19 increased microplastics (MP) contamination due to the extensive use of single-use personal protective equipment, particularly three-layer face masks. MP from face masks enter wastewater treatment plants (WWTPs), which were not designed to remove them. We utilized nitrifying-denitrifying microbial consortia and synthetic urban wastewater to evaluate the biotransformation of MP from each layer of three-layer face masks made of polypropylene (PP). The biotransformation carried out by the nitrifying-denitrifying consortia altered the surface of the outer, middle, and inner layers, as a consequence of the chemical modification of the PP-MP structure. Abiotic controls did not show changes on the physicochemical and thermal properties of PP-MP. Biotic tests showed increments in both the carbonyl and hydroxyl indices of the three layers in 42 days. The outer layer showed the greatest degree of biotransformation, which was consistent with morphological changes detected by scanning electron microscopy and in physicochemical properties such as crystallinity, evaporation, and fusion temperature. The nitrifying-denitrifying consortia, which removed 99 % of the total nitrogen from the synthetic urban wastewater, had several genera with proven capacity to biotransform MP such as Cephaloticoccus and Pseudomonas.
Collapse
Affiliation(s)
- Amairani Flores-Díaz
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Felipe Alatriste-Mondragón
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Rene Rangel-Mendez
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico.
| | - Aura Ontiveros-Valencia
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico.
| |
Collapse
|
14
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Bryson E, Anastasi A, Bricknell L, Kift R. Household dog fecal composting: Current issues and future directions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1876-1891. [PMID: 38924209 DOI: 10.1002/ieam.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Dog feces are a known source of nutrient, pathogen, and plastic pollution that can harm human and ecosystem health. Home composting may be a more environmentally sustainable method of managing dog feces and reducing this pollution. While composting is an established method for recycling animal manures into low-risk soil conditioners for food production, few studies have investigated whether household-scale compost methods can safely and effectively process dog feces for use in backyard edible gardens. A broad range of literature on in situ composting of dog feces is evaluated and compared according to scale, parameters tested, and compost methods used. Studies are analyzed based on key identified knowledge gaps: appropriate compost technologies to produce quality soil conditioner on small scales, potential for fecal pathogen disinfection in mesophilic compost conditions, and biodegradation of compostable plastic dog waste bags in home compost systems. This review also discusses how existing methods and quality standards for commercial compost can be adapted to dog fecal home composting. Priorities for future research are investigation of household-scale aerobic compost methods and potential compost amendments needed to effectively decompose dog feces and compostable plastic dog waste bags to produce a good-quality, sanitized, beneficial soil conditioner for use in home gardens. Integr Environ Assess Manag 2024;20:1876-1891. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Emily Bryson
- School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, South Australia, Australia
| | - Amie Anastasi
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Lisa Bricknell
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Ryan Kift
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
16
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
17
|
Fang X, Cai Z, Wang X, Liu Z, Lin Y, Li M, Gong H, Yan M. Isolation and Identification of Four Strains of Bacteria with Potential to Biodegrade Polyethylene and Polypropylene from Mangrove. Microorganisms 2024; 12:2005. [PMID: 39458314 PMCID: PMC11509307 DOI: 10.3390/microorganisms12102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
With the rapid growth of global plastic production, the degradation of microplastics (MPs) has received widespread attention, and the search for efficient biodegradation pathways has become a hot topic. The aim of this study was to screen mangrove sediment and surface water for bacteria capable of degrading polyethylene (PE) and polypropylene (PP) MPs. In this study, two strains of PE-degrading bacteria and two strains of PP-degrading candidate bacteria were obtained from mangrove, named Pseudomonas sp. strain GIA7, Bacillus cereus strain GIA17, Acinetobacter sp. strain GIB8, and Bacillus cereus strain GIB10. The results showed that the degradation rate of the bacteria increased gradually with the increase in degradation time for 60 days. Most of the MP-degrading bacteria had higher degradation rates in the presence of weak acid. The appropriate addition of Mg2+ and K+ was favorable to improve the degradation rate of MPs. Interestingly, high salt concentration inhibited the biodegradation of MPs. Results of scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) indicated the degradation and surface changes of PP and PE MPs caused by candidate bacteria, which may depend on the biodegradation-related enzymes laccase and lipase. Our results indicated that these four bacterial strains may contribute to the biodegradation of MPs in the mangrove environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.F.); (Z.C.); (X.W.); (Z.L.); (Y.L.); (M.L.)
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.F.); (Z.C.); (X.W.); (Z.L.); (Y.L.); (M.L.)
| |
Collapse
|
18
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
19
|
Ariaeenejad S, Barani M, Roostaee M, Lohrasbi-Nejad A, Mohammadi-Nejad G, Hosseini Salekdeh G. Enhanced pollutant degradation via green-synthesized core-shell mesoporous Si@Fe magnetic nanoparticles immobilized with metagenomic laccase. Int J Biol Macromol 2024; 278:134813. [PMID: 39154675 DOI: 10.1016/j.ijbiomac.2024.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
With rapid industrial expansion, environmental pollution from emerging contaminants has increased, posing severe ecosystem threats. Laccases offer an eco-friendly solution for degrading hazardous substances, but their use as free-form biocatalysts face challenges. This study immobilized laccase (PersiLac1) on green-synthesized Si@Fe nanoparticles (MSFM NPs) to remove pollutants like Malachite Green-containing wastewater and degrade plastic films. Characterization techniques (FTIR, VSM, XRD, SEM, EDS, BET) confirmed the properties and structure of MSFM NPs, revealing a surface area of 31.297 m2.g-1 and a pore diameter of 12.267 nm. The immobilized PersiLac1 showed enhanced activity across various temperatures and pH levels, retaining over 82 % activity after 15 cycles at 80°C with minimal leaching. It demonstrated higher stability, half-life, and decimal reduction time than free laccase. Under 1 M NaCl, its activity was 1.8 times higher than the non-immobilized enzyme. The immobilized laccase removed 98.11 % of Malachite Green-containing wastewater and retained 82.92 % activity over twenty cycles of dye removal. Additionally, FTIR and SEM confirmed superior plastic degradation under saline conditions. These findings suggest that immobilizing PersiLac1 on magnetic nanoparticles enhances its function and potential for contaminant removal. Future research should focus on scalable, cost-effective laccase immobilization methods for large-scale environmental applications.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran; Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Plant Production (IPP), Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Institute of Plant Production (IPP), Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
20
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
21
|
Macrì M, D'Albis V, Marciani R, Nardella M, Festa F. Towards Sustainable Orthodontics: Environmental Implications and Strategies for Clear Aligner Therapy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4171. [PMID: 39274561 PMCID: PMC11395928 DOI: 10.3390/ma17174171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/16/2024]
Abstract
The increasing concern over environmental sustainability has prompted various industries to reassess their practices and explore greener alternatives. Dentistry, as a significant contributor to waste generation, is actively seeking methods to minimize its environmental footprint. This paper examines the environmental implications of clear aligner therapy (CAT) in orthodontics and explores strategies to prioritize sustainability in aligner manufacturing and usage. CAT has gained popularity as a viable alternative to traditional fixed appliances due to advancements in biomaterials and computer-aided design (CAD) and manufacturing (CAM) technologies. The global market for clear aligners is expanding rapidly, with significant growth projected in the coming years. To address these challenges, this paper proposes adopting the principles of reduce, reuse, recycle, and rethink (4Rs) in orthodontic practices. Strategies such as minimizing resource consumption, incorporating recycled materials, and promoting proper aligner disposal and recycling can significantly reduce environmental harm. This paper explores emerging technologies and materials to mitigate the environmental impacts of CAT. Additionally, initiatives promoting aligner recycling and repurposing offer promising avenues for reducing plastic waste and fostering a circular economy. In conclusion, while CAT offers numerous benefits in orthodontic treatment, its environmental impact cannot be overlooked. By implementing sustainable practices and embracing innovative solutions, the orthodontic community can contribute to a more environmentally conscious future while continuing to provide quality care to patients.
Collapse
Affiliation(s)
- Monica Macrì
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo D'Albis
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Raffaele Marciani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Nardella
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Felice Festa
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
22
|
Biao W, Hashim NA, Rabuni MFB, Lide O, Ullah A. Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. CHEMOSPHERE 2024; 361:142546. [PMID: 38849101 DOI: 10.1016/j.chemosphere.2024.142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.
Collapse
Affiliation(s)
- Wang Biao
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamad Fairus Bin Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ong Lide
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aubaid Ullah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Safdar A, Ismail F, Safdar M, Imran M. Eco-friendly approaches for mitigating plastic pollution: advancements and implications for a greener future. Biodegradation 2024; 35:493-518. [PMID: 38310578 DOI: 10.1007/s10532-023-10062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Plastic pollution has become a global problem since the extensive use of plastic in industries such as packaging, electronics, manufacturing and construction, healthcare, transportation, and others. This has resulted in an environmental burden that is continually growing, which has inspired many scientists as well as environmentalists to come up with creative solutions to deal with this problem. Numerous studies have been reviewed to determine practical, affordable, and environmentally friendly solutions to regulate plastic waste by leveraging microbes' innate abilities to naturally decompose polymers. Enzymatic breakdown of plastics has been proposed to serve this goal since the discovery of enzymes from microbial sources that truly interact with plastic in its naturalistic environment and because it is a much faster and more effective method than others. The scope of diverse microbes and associated enzymes in polymer breakdown is highlighted in the current review. The use of co-cultures or microbial consortium-based techniques for the improved breakdown of plastic products and the generation of high-value end products that may be utilized as prototypes of bioenergy sources is highlighted. The review also offers a thorough overview of the developments in the microbiological and enzymatic biological degradation of plastics, as well as several elements that impact this process for the survival of our planet.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Maryem Safdar
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Imran
- Institute of Advanced Study, Shenzhen University, Shenzhen, 5180600, Guangdong Province, China.
| |
Collapse
|
24
|
Pham VHT, Kim J, Chang S. A Valuable Source of Promising Extremophiles in Microbial Plastic Degradation. Polymers (Basel) 2024; 16:2109. [PMID: 39125136 PMCID: PMC11314448 DOI: 10.3390/polym16152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Plastics have accumulated in open environments, such as oceans, rivers, and land, for centuries, but their effect has been of concern for only decades. Plastic pollution is a global challenge at the forefront of public awareness worldwide due to its negative effects on ecological systems, animals, human health, and national economies. Therefore, interest has increased regarding specific circular economies for the development of plastic production and the investigation of green technologies for plastic degradation after use on an appropriate timescale. Moreover, biodegradable plastics have been found to contain potential new hazards compared with conventional plastics due to the physicochemical properties of the polymers involved. Recently, plastic biodegradation was defined as microbial conversion using functional microorganisms and their enzymatic systems. This is a promising strategy for depolymerizing organic components into carbon dioxide, methane, water, new biomass, and other higher value bioproducts under both oxic and anoxic conditions. This study reviews microplastic pollution, the negative consequences of plastic use, and the current technologies used for plastic degradation and biodegradation mediated by microorganisms with their drawbacks; in particular, the important and questionable role of extremophilic multi-enzyme-producing bacteria in synergistic systems of plastic decomposition is discussed. This study emphasizes the key points for enhancing the plastic degradation process using extremophiles, such as cell hydrophobicity, amyloid protein, and other relevant factors. Bioprospecting for novel mechanisms with unknown information about the bioproducts produced during the plastic degradation process is also mentioned in this review with the significant goals of CO2 evolution and increasing H2/CH4 production in the future. Based on the potential factors that were analyzed, there may be new ideas for in vitro isolation techniques for unculturable/multiple-enzyme-producing bacteria and extremophiles from various polluted environments.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
25
|
Pires CS, Costa L, Barbosa SG, Sequeira JC, Cachetas D, Freitas JP, Martins G, Machado AV, Cavaleiro AJ, Salvador AF. Microplastics Biodegradation by Estuarine and Landfill Microbiomes. MICROBIAL ECOLOGY 2024; 87:88. [PMID: 38943017 PMCID: PMC11213754 DOI: 10.1007/s00248-024-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.
Collapse
Affiliation(s)
- Cristina S Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia G Barbosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Diogo Cachetas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José P Freitas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Vera Machado
- IPC - Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Cao Y, Bian J, Han Y, Liu J, Ma Y, Feng W, Deng Y, Yu Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. TOXICS 2024; 12:463. [PMID: 39058115 PMCID: PMC11281104 DOI: 10.3390/toxics12070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
In order to visualize the content and development patterns of microplastic biodegradation research, the American Chemical Society (ACS), Elsevier, Springer Link, and American Society for Microbiology (ASM) were searched for the years 2012-2022 using Citespace and VOSvivewer for bibliometrics and visual analysis. The biodegradation processes and mechanisms of microplastics were reviewed on this basis. The results showed a sharp increase in the number of publications between 2012 and 2022, peaking in 2020-2021, with 62 more publications than the previous decade. The University of Chinese Academy of Sciences (UCAS), Northwest A&F University (NWAFU), and Chinese Academy of Agricultural Sciences (CAAS) are the top three research institutions in this field. Researchers are mainly located in China, The United States of America (USA), and India. Furthermore, the research in this field is primarily concerned with the screening of functional microorganisms, the determination of functional enzymes, and the analysis of microplastic biodegradation processes and mechanisms. These studies have revealed that the existing functional microorganisms for microplastic biodegradation are bacteria, predominantly Proteobacteria and Firmicutes; fungi, mainly Ascomycota; and some intestinal microorganisms. The main enzymes secreted in the process are hydrolase, oxidative, and depolymerization enzymes. Microorganisms degrade microplastics through the processes of colonization, biofilm retention, and bioenzymatic degradation. These studies have elucidated the current status of and problems in the microbial degradation of microplastics, and provide a direction for further research on the degradation process and molecular mechanism of functional microorganisms.
Collapse
Affiliation(s)
- Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Jing Bian
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yuping Ma
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yuxin Deng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yaojiang Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| |
Collapse
|
27
|
Boctor J, Pandey G, Xu W, Murphy DV, Hoyle FC. Nature's Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects. Polymers (Basel) 2024; 16:1671. [PMID: 38932021 PMCID: PMC11207432 DOI: 10.3390/polym16121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer's degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Collapse
Affiliation(s)
- Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Acton, ACT 2601, Australia;
| | - Wei Xu
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C. Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
28
|
Akhigbe GE, EnochOghene AE, Olumurewa KO, Koleoso OB, Ogbonna ND. Characterization of low-density polyethylene (LDPE) films degraded using bacteria strains isolated from oil-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:3155-3161. [PMID: 37139964 DOI: 10.1080/09593330.2023.2210770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
This study assessed the low-density polyethylene (LDPE) film degradation potential of microorganisms isolated from oil-contaminated soil and also analyzed the morphological and chemical composition of LDPE films after the biodegradation period. The bacteria strains isolated from oil-contaminated soil were standardized and used to degrade the pretreated LDPE films in mineral salt media. Thereafter, they were incubated for 78 days at 37°C in an incubator shaker, and the degraded LDPE films were analyzed quantitatively and qualitatively (using scanning electron microscope (SEM) images and energy dispersal x-ray (EDX)). Isolates A32 and BTT4 amongst other bacteria isolates showed the highest LDPE film degradation activity, with a weight reduction of 71.80% and 89.72% respectively, and were identified using the 16S rRNA sequencing technique. The EDX results showed that LDPE film incubated with A32 has the highest reduction in carbon and nitrogen (23.8% and 44.9% respectively) when compared with the Control. However, LDPE film incubated with BTT4 had an increase in calcium and chlorine (139% and 40% respectively), when compared with the control. Similarly, the SEM images showed the appearance of pinholes, cracks and particles on the surfaces of LDPE films incubated with A32 and BTT4 contrary to the controls. A32 and BTT4 were identified as Proteus mirabilis (Accession number: MN124173.1) and Proteus mirabilis (Accession number: KY027145.1) respectively. Proteus mirabilis showed viable plastic biodegradation potentials and may be useful in the management of plastic waste, leading to a reduction in global plastic waste and a clean environment.
Collapse
Affiliation(s)
- Godswill E Akhigbe
- Department of Chemical Sciences, McPherson University, Seriki Sotayo, Nigeria
| | | | - Kayode O Olumurewa
- Department of Physical and Computer Sciences, McPherson University, Seriki Sotayo, Nigeria
| | | | - Ngozi D Ogbonna
- Department of Biological Sciences, McPherson University, Seriki Sotayo, Nigeria
| |
Collapse
|
29
|
Černoša A, Cortizas AM, Traoré M, Podlogar M, Danevčič T, Gunde-Cimerman N, Gostinčar C. A screening method for plastic-degrading fungi. Heliyon 2024; 10:e31130. [PMID: 38803974 PMCID: PMC11128935 DOI: 10.1016/j.heliyon.2024.e31130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
The growing amount of plastic waste requires new ways of disposal or recycling. Research into the biodegradation of recalcitrant plastic polymers is gathering pace. Despite some progress, these efforts have not yet led to technologically and economically viable applications. In this study, we show that respirometric screening of environmental fungal isolates in combination with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy can be used to identify new strains with the potential for the degradation of plastic polymers. We screened 146 fungal strains, 71 isolated from car repair shops, an environment rich in long-chain hydrocarbons, and 75 isolated from hypersaline water capable of growing at high concentrations of NaCl. When grown in a minimal medium with no carbon source, some strains produced significantly more CO2 when a pure plastic polymer was added to the medium, some only at high salinity. A selection of these strains was shown by FTIR and Raman spectroscopy to alter the properties of plastic polymers: Cladosporium sp. EXF-13502 on polyamide, Rhodotorula dairenensis EXF-13500 on polypropylene, Rhodotorula sp. EXF-10630 on low-density polyethylene and Wickerhamomyces anomalus EXF-6848 on polyethylene terephthalate. Respirometry in combination with specific spectroscopic methods is an efficient method for screening microorganisms capable of at least partial plastic degradation and can be used to expand the repertoire of potential plastic degraders. This is of particular importance as our results also show that individual strains are only active against certain polymers and under certain conditions. Therefore, efficient biodegradation of plastics is likely to depend on a collection of specialized microorganisms rather than a single universal plastic degrader.
Collapse
Affiliation(s)
- Anja Černoša
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- InnoRenew CoE, Livade 6a, 6310 Izola, Slovenia
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast research group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782, Spain
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Mohamed Traoré
- CRETUS, EcoPast research group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782, Spain
| | - Matejka Podlogar
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tjaša Danevčič
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Cene Gostinčar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Redko V, Wolska L, Olkowska E, Tankiewicz M, Cieszyńska-Semenowicz M. Long-Term Polyethylene (Bio)Degradation in Landfill: Environmental and Human Health Implications from Comprehensive Analysis. Molecules 2024; 29:2499. [PMID: 38893375 PMCID: PMC11173707 DOI: 10.3390/molecules29112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigates the process of long-term (bio)degradation of polyethylene (PE) in an old municipal waste landfill (MWL) and its implications for environmental and human health. Advanced techniques, such as ICP-ES/MS and IC-LC, were used to analyze heavy metals and anions/cations, demonstrating significant concentration deviations from control samples. The soil's chemical composition revealed numerous hazardous organic compounds, further indicating the migration of additives from PE to the soil. Toxicological assessments, including Phytotoxkit FTM, Microtox® bioassay, and Ostracodtoxkit®, demonstrated phytotoxicity, acute toxicity, and high mortality in living organisms (over 85% for Heterocypris Incongruens). An unusual concentration of contaminants in the MWL's middle layers, linked to Poland's economic changes during the 1980s and 1990s, suggests increased risks of pollutant migration, posing additional environmental and health threats. Moreover, the infiltration capability of microorganisms, including pathogens, into PE structures raises concerns about potential groundwater contamination through the landfill bottom. This research underscores the need for vigilant management and updated strategies to protect the environment and public health, particularly in older landfill sites.
Collapse
Affiliation(s)
- Vladyslav Redko
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23 A, 80-204 Gdansk, Poland
| | - Lidia Wolska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23 A, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23 A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23 A, 80-204 Gdansk, Poland
| | - Monika Cieszyńska-Semenowicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23 A, 80-204 Gdansk, Poland
| |
Collapse
|
31
|
Wang L, Chang R, Ren Z, Meng X, Li Y, Gao M. Mature compost promotes biodegradable plastic degradation and reduces greenhouse gas emission during food waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172081. [PMID: 38554961 DOI: 10.1016/j.scitotenv.2024.172081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mature compost can promote the transformation of organic matter (OM) and reduce the emission of polluting gases during composting, which provides a viable approach to reduce the environmental impacts of biodegradable plastics (BPs). This study investigated the impact of mature compost on polybutylene adipate terephthalate (PBAT) degradation, greenhouse gas (GHG) emission, and microbial community structure during composting under two treatments with mature compost (MC) and without (CK). Under MC, visible plastic rupture was advanced from day 14 to day 10, and a more pronounced rupture was observed at the end of composting. Compared with CK, the degradation rate of PBAT in MC was increased by 4.44 % during 21 days of composting. Thermobifida, Ureibacillus, and Bacillus, as indicator species under MC treatment, played an important role in PBAT decomposition. Mature compost reduced the total global warming potential (GWP) by 25.91 % via inhibiting the activity of bacteria related to the production of CH4 and N2O. Functional Annotation of Prokaryotic Taxa (FAPROTAX) further revealed that mature compost addition increased relative abundance of bacteria related to multiple carbon (C) cycle functions such as methylotrophy, hydrocarbon degradation and cellulolysis, inhibited nitrite denitrification and denitrification, thus alleviating the emission of GHGs. Overall, mature compost, as an effective additive, exhibits great potential to simultaneously mitigate BP and GHG secondary pollution in co-composting of food waste and PBAT.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Miao Gao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
32
|
Hong HJ, Hyung JS, Lee J, Na JG. Effects of methane to oxygen ratio on cell growth and polyhydroxybutyrate synthesis in high cell density cultivation of Methylocystis sp. MJC1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33524-2. [PMID: 38713354 DOI: 10.1007/s11356-024-33524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Polyhydroxybutyrate (PHB) production through CH4 conversion by methanotrophs offers a solution for greenhouse gas emissions and plastic waste concerns. In this study, we aimed to achieve high cell density cultivation of Methylocystis sp. MJC1 for efficient PHB production. Cultivating MJC1 using CH4 and air (3:7, v/v) yielded a final cell density of 52.9 g/L with a 53.7% (28.4 g/L) PHB content after 210 h, showcasing PHB mass production potential. However, long-term cultivation led to a low volumetric productivity of 0.200 g/L/h. To address this, we conducted cultivation at various O2/CH4 ratios using O2 instead of air, which significantly improved the PHB productivity. Under high O2 conditions (O2/CH4 ratio of 1.5), biomass productivity increased 1.51-fold compared to that under low O2 conditions in the same time frame; however, PHB accumulation was delayed. Using an equal ratio of CH4 and O2 induced active cell growth and selective PHB production, achieving the highest PHB productivity (0.365 g/L/h) with a final cell density of 55.9 g/L and PHB content of 61.7% (34.5 g/L) in 162 h. This study highlighted the significance of the O2/CH4 ratio in CH4 conversion and PHB production by M. sp. MJC1.
Collapse
Affiliation(s)
- Hyo Jin Hong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji Sung Hyung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- C1 Gas Refinery R&D Center, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
- C1 Gas Refinery R&D Center, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
33
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
34
|
Salam LB. Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment. World J Microbiol Biotechnol 2024; 40:172. [PMID: 38630153 DOI: 10.1007/s11274-024-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Lateef B Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
35
|
Sathiyabama M, Boomija RV, Sathiyamoorthy T, Mathivanan N, Balaji R. Mycodegradation of low-density polyethylene by Cladosporium sphaerospermum, isolated from platisphere. Sci Rep 2024; 14:8351. [PMID: 38594512 PMCID: PMC11004025 DOI: 10.1038/s41598-024-59032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Plastic accumulation is a severe threat to the environment due to its resistivity to thermal, mechanical and biological processes. In recent years, microbial degradation of plastic waste disposal is of interest because of its eco-friendly nature. In this study, a total of 33 fungi were isolated from the plastisphere and out of which 28 fungal species showed halo zone of clearance in agarized LDPE media. The fungus showing highest zone of clearance was further used to evaluate its degradation potential. Based on morphological and molecular technique, the fungus was identified as Cladosporium sphaerospermum. The biodegradation of LDPE by C. sphaerospermum was evaluated by various methods. The exposure of LDPE with C. sphaerospermum resulted in weight loss (15.23%) in seven days, higher reduction rate (0.0224/day) and lower half-life (30.93 days). FTIR analysis showed changes in functional group and increased carbonyl index in LDPE treated with C. sphaerospermum. SEMimages evidenced the formation of pits, surface aberrations and grooves on the LDPE film treated with the fungus whereas the untreated control LDPE film showed no change. AFM analysis confirmed the surface changes and roughness in fungus treated LDPE film. This might be due to the extracellular lignolytic enzymes secreted by C. sphaerospermum grown on LDPE. The degradation of polyethylene by Short chain alkanes such as dodecane, hexasiloxane and silane were identified in the extract of fungus incubated with LDPE film through GC-MS analysis which might be due to the degradation of LDPE film by C. sphaerospermum. This was the first report on the LDPE degradation by C. sphaerospermum in very short duration which enables green scavenging of plastic wastes.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - R V Boomija
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - T Sathiyamoorthy
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| | - N Mathivanan
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| | - R Balaji
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, 600025, India
| |
Collapse
|
36
|
Mayekar PC, Auras R. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Macromol Rapid Commun 2024; 45:e2300641. [PMID: 38206571 DOI: 10.1002/marc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Poly(lactic acid) (PLA) has garnered interest due to its low environmental footprint and ability to replace conventional polymers and be disposed of in industrial composting environments. Although PLA is compostable when subjected to a suitable set of conditions, its broader acceptance in industrial composting facilities has been affected adversely due to longer degradation timeframes than the readily biodegradable organic waste fraction. PLA must be fully exposed to thermophilic conditions for prolonged periods to biodegrade, which has restricted its adoption and hindered its acceptance in industrial composting facilities, negating its home composting potential. Thus, enhancing PLA biodegradation is crucial to expand its acceptance. PLA's biodegradability is investigated in a compost matrix under mesophilic conditions at 37 °C for 180 days by biostimulating the compost environment with skim milk, gelatin, and ethyl lactate to enhance the different stages of PLA biodegradation. The evolved CO2, number average molecular weight (Mn), and crystallinity evolution are tracked. To achieve a Mn ≲ 10 kDa for PLA, the biodegradation rate is accelerated by 15% by adding skim milk, 25% by adding gelatin, and 22% by adding ethyl lactate. This work shows potential techniques to help biodegrade PLA in home composting setting by adding biostimulants.
Collapse
Affiliation(s)
- Pooja C Mayekar
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| | - Rafael Auras
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
Manjunathan J, Pavithra K, Nangan S, Prakash S, Saxena KK, Sharma K, Muzammil K, Verma D, Gnanapragasam JR, Ramasubburayan R, Revathi M. Polyethylene terephthalate waste derived nanomaterials (WDNMs) and its utilization in electrochemical devices. CHEMOSPHERE 2024; 353:141541. [PMID: 38423149 DOI: 10.1016/j.chemosphere.2024.141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/01/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.
Collapse
Affiliation(s)
- J Manjunathan
- Department of Biotechnology, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600117, India
| | - K Pavithra
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600 117, Tamilnadu, India
| | - Senthilkumar Nangan
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarkhand, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - S Prakash
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamilnadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, Tamilnadu, India
| | - Kuldeep K Saxena
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Kuldeep Sharma
- Centre for Research Impact and Outcomes, Chitkara University, Rajpura, Punjab, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Deepak Verma
- Department of Mechanical Engineering, Graphic Era Hill University, Dehradun, Uttarkhand, India
| | | | - R Ramasubburayan
- Centre for Marine Research and Conservation, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamilnadu, India.
| | - M Revathi
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600 117, Tamilnadu, India.
| |
Collapse
|
38
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
39
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
40
|
Thirumalaivasan N, Mahapatra S, Ramanathan G, Kumar A, Raja T, Muthuramamoorthy M, Pandit B, Pandiaraj S, Prakash S. Exploring antimicrobial and biocompatible applications of eco-friendly fluorescent carbon dots derived from fast-food packaging waste transformation. ENVIRONMENTAL RESEARCH 2024; 244:117888. [PMID: 38097060 DOI: 10.1016/j.envres.2023.117888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.
Collapse
Affiliation(s)
- Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sonalismita Mahapatra
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India
| | - Ganesan Ramanathan
- Postgraduate and Research Department of Microbiology, Sri Paramakalyani College, Alwarkurichi, 627412, India
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Thandavamoorthy Raja
- Material Science Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai- 77, Tamil Nadu, India
| | | | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Legnes, Madrid, Spain
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Santhiyagu Prakash
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India.
| |
Collapse
|
41
|
Kumar R, Lalnundiki V, Shelare SD, Abhishek GJ, Sharma S, Sharma D, Kumar A, Abbas M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. ENVIRONMENTAL RESEARCH 2024; 244:117707. [PMID: 38008206 DOI: 10.1016/j.envres.2023.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.
Collapse
Affiliation(s)
- Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - V Lalnundiki
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sagar D Shelare
- Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, M.S, 440019, India.
| | - Galla John Abhishek
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, 266520, Qingdao, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Deepti Sharma
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, 248007, India.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia.
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| |
Collapse
|
42
|
Adekomaya O, Majozi T. Sustainable reclamation of synthetic materials as automotive parts replacement: effects of environmental response on natural fiber vulnerabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18396-18411. [PMID: 38366320 DOI: 10.1007/s11356-024-32436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Sustaining the resilience of the environment against climate change volatilities is fast becoming a herculean task considering the vulnerabilities of the ecosystem and disruption of the global value chain. Environmental crisis emanating from improper containment of synthetic materials is a major impediment facing the world today, and the situation could get worse if urgent measures are not devised to mitigate the quantity of waste synthetic materials that find its ways to the environment. These wastes are released in the form of toxins, posing danger to the environments, causing biodiversity loss and the degradation of already battered-climate. In this paper, the authors apprise existing containment measures of synthetic waste materials taking a preliminary and on-the-spot assessment of their impacts and effectiveness of their application leading to their operation. The prospect of waste glass fiber in automotive part replacement is given utmost interest in this paper, in which, a significant quantity of glass fiber could be used as part of automotive materials to reduce their overbearing environmental carnage. By this approach, the emerging automotive parts may have their strength and durability enhanced against impact and corrosion. Mindful of the non-biodegradable properties of glass fibers, the paper captures how effective these fibers could be used as automotive parts against the traditional materials. This paper also reflects on the response of the natural fiber in terms of their sustainability, as natural forest faces severe extinction occasioned by anthropogenic activities.
Collapse
Affiliation(s)
- Oludaisi Adekomaya
- Department of Mechanical Engineering, Faculty of Engineering, Olabisi Onabanjo University, Ibogun, Ogun State, Nigeria.
- Sustainable Process Engineering, School of Chemical and Metallurgical Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, Republic of South Africa.
| | - Thokozani Majozi
- Sustainable Process Engineering, School of Chemical and Metallurgical Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
43
|
Mishra R, Chavda P, Kumar R, Pandit R, Joshi M, Kumar M, Joshi C. Exploring genetic landscape of low-density polyethylene degradation for sustainable troubleshooting of plastic pollution at landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168882. [PMID: 38040372 DOI: 10.1016/j.scitotenv.2023.168882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Plastic pollution increases globally due to the high volume of its production and inadequate mismanagement, leading to dumps in landfills affecting terrestrial and aquatic ecosystems. Landfills, as sink for plastics, leach various toxic chemicals and microplastics into the environment. We scrutinized the genetic expression for low-density polyethylene (LDPE) degradation via microorganisms to investigate cell viability and metabolic activities for biodegradation and genetic profiling. Samples were collected from the Pirana waste landfill at Ahmedabad, Gujarat, which is one of the largest and oldest municipal solid waste (MSW) dump sites in Asia. Results analyzed that isolated bacterial culture PN(A)1 (Bacillus cereus) is metabolically active on LDPE as carbon source during starvation conditions when incubated for up to 60 days, which was confirmed via 2,3,5-triphenyl-tetrazolium chloride (TTC) reduction test, reported cell viability and LDPE degradation. Abrasions, surface erosions, and cavity formations were analyzed via scanning electron microscopy (SEM), whereas the breakdown of high molecular polymers converted to low molecules, i.e., depolymerization, was also observed via Fourier-transform infrared (FTIR) spectroscopy over 90 days, along with changes in functional groups of carboxylic acids and aldehyde as well as the formation of polysulfide, aliphatic compounds, aromatic ethers, alcohols, and ether linkages. Further, transcriptomic analysis was performed via DESeq2 analysis to understand key gene expression patterns and pathways involved in LDPE degradation. During the initial phase of LDPE degradation, genes related to biological processes, like membrane transportation, ABC transporters, carbon and lipid metabolism, fatty acid degradation/oxidation, and TCA cycle, are likely to indicate pathways for stress response and molecular functions, like oxidoreductase, catalytic, lyase, transferase, and hydrolase activities were expressed. Interlinking between metabolic pathways indicates biodegradation process that mineralizes LDPE during subsequent incubation days. These pathways can be targeted for increasing the efficiency of LDPE degradation using microbes in future studies. Thus, considering microbial-mediated biodegradation as practical, eco-friendly, and low-cost alternatives, healthy biomes can degrade polymers in natural environments explored by understanding the genetic and enzymatic expression, connecting their role in the process to the likely metabolic pathways involved, thereby increasing the rate of their biodegradation.
Collapse
Affiliation(s)
- Roshani Mishra
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
44
|
Ueno N, Sato H. Visualization of isothermal crystallization and phase separation in poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) by low-frequency Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124052. [PMID: 38394883 DOI: 10.1016/j.saa.2024.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The visualization of the variation of the inter/intra molecular interaction (C = O⋯CH3) between poly[(R)-3-hydroxybutyrate] (PHB) and poly-L-lactic acid (PLLA) in the PHB/PLLA miscible blend during phase separation and crystallization process was successfully investigated using Raman imaging. Images of the blend were developed using high- and low-frequency Raman spectra acquired during the isothermal crystallization of the blend, and both of them were compared. The low-frequency region allowed to observe the changes in the hydrogen bonds between the molecular chains in the blend during phase separation and crystallization via a band at 75 cm-1 derived from PHB. The imaging results obtained using the band at 75 cm-1 due to hydrogen bonding (C = O⋯CH3) between molecular chains were in good agreement with the results obtained using the C = O stretching band at 1720 cm-1. Herein, we demonstrated that the low-frequency region of the Raman spectrum is more sensitive to detecting the start of the phase separation and crystallization of PHB than the corresponding high-frequency region.
Collapse
Affiliation(s)
- Nami Ueno
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan; Molecular Photoscience Research Center, Kobe University, Rokkoudai, Nada-Ku, Kobe 657-8501, Japan.
| |
Collapse
|
45
|
Kaing V, Guo Z, Sok T, Kodikara D, Breider F, Yoshimura C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168539. [PMID: 37981156 DOI: 10.1016/j.scitotenv.2023.168539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.
Collapse
Affiliation(s)
- Vinhteang Kaing
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia; Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Florian Breider
- EPFL - Ecole Polytechnique Fédérale de Lausanne, Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, station 2, CH-1015 Lausanne, Switzerland
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
46
|
Zakaria M, Bhuiyan MAR, Hossain MS, Khan NMMU, Salam MA, Nakane K. Advances of polyolefins from fiber to nanofiber: fabrication and recent applications. DISCOVER NANO 2024; 19:24. [PMID: 38321325 PMCID: PMC10847085 DOI: 10.1186/s11671-023-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Polyolefins are a widely accepted commodity polymer made from olefinic monomer consisting of carbon and hydrogen. This thermoplastic polymeric material is formed through reactive double bonds of olefins by the addition polymerization technique and it possesses a diverse range of unique features for a large variety of applications. Among the various types, polyethylene and polypropylene are the prominent classes of polyolefins that can be crafted and manipulated into diversified products for numerous applications. Research on polyolefins has boomed tremendously in recent times owing to the abundance of raw materials, low cost, lightweight, high chemical resistance, diverse functionalities, and outstanding physical characteristics. Polyolefins have also evidenced their potentiality as a fiber in micro to nanoscale and emerged as a fascinating material for widespread high-performance use. This review aims to provide an elucidation of the breakthroughs in polyolefins, namely as fibers, filaments, and yarns, and their applications in many domains such as medicine, body armor, and load-bearing industries. Moreover, the development of electrospun polyolefin nanofibers employing cutting-edge techniques and their prospective utilization in filtration, biomedical engineering, protective textiles, and lithium-ion batteries has been illustrated meticulously. Besides, this review delineates the challenges associated with the formation of polyolefin nanofiber using different techniques and critically analyzes overcoming the difficulties in forming functional nanofibers for the innovative field of applications.
Collapse
Affiliation(s)
- Mohammad Zakaria
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh.
| | - M A Rahman Bhuiyan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Shakawat Hossain
- Frontier Fiber Technology and Science, University of Fukui, Fukui, 910-8507, Japan
- Department of Textile Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - N M-Mofiz Uddin Khan
- Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Abdus Salam
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
- Department of Research and Development, Epyllion Fabrics Ltd., Epyllion Group, Gazipur, 1703, Bangladesh
| | - Koji Nakane
- Frontier Fiber Technology and Science, University of Fukui, Fukui, 910-8507, Japan
| |
Collapse
|
47
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
48
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
49
|
Redko V, Wolska L, Potrykus M, Olkowska E, Cieszyńska-Semenowicz M, Tankiewicz M. Environmental impacts of 5-year plastic waste deposition on municipal waste landfills: A follow-up study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167710. [PMID: 37832682 DOI: 10.1016/j.scitotenv.2023.167710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Depositing plastic waste has long been a prevalent method of utilization, persisting today. Plastic waste within municipal waste landfills (MWL) undergoes diverse (bio-)degradation processes, which may be a potential source of chemicals and microorganisms harmful to the environment and human health. Soil and air samples were collected from modern MWL to identify environmental contamination caused by 5 years of plastic (bio-)degradation. The pH of soil samples was higher than in the reference area (RA), which was possibly caused by alterations in soil anionic composition detected with ion chromatography. The presence of plastic additives with a toxic potential was detected in soil samples by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). With the use of thermal desorption and GC - MS, hazardous substances (phthalic anhydride, phenylmaleic anhydride, ethylbenzene, xylene) with a known impact on the human endocrine system were also detected. The number of microorganisms, both fungi, and bacteria, was highly increased in soil and air in the MWL as compared to the RA. The soil collected in the MWL area appeared to be phytotoxic, and inhibited seed germination (Phytotoxkit FTM bioassay), while acute toxicity Microtox® bioassay showed a hormetic effect towards Aliivibrio fischeri. Obtained results exhibited massive soil and air contamination, with both chemical substances and microorganisms while plastic waste undergoes (bio-)degradation. It may contribute to serious environmental contamination and pose a threat to human health.
Collapse
Affiliation(s)
- Vladyslav Redko
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Lidia Wolska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Marta Potrykus
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Ewa Olkowska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Monika Cieszyńska-Semenowicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Maciej Tankiewicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| |
Collapse
|
50
|
Putcha JP, Kitagawa W. Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species. Microbes Environ 2024; 39:ME24031. [PMID: 39085141 PMCID: PMC11427307 DOI: 10.1264/jsme2.me24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.
Collapse
Affiliation(s)
- Jyothi Priya Putcha
- Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), 2–17–2–1, Tsukisamu-Higashi, Toyohira Ward, Sapporo 062–8517, Japan
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), 2–17–2–1, Tsukisamu-Higashi, Toyohira Ward, Sapporo 062–8517, Japan
| |
Collapse
|