1
|
Feng Y, Zhang S, Suo D, Fu T, Li Y, Li Z, Wang C, Fan X. Integrating Metabolomics and Transcriptomics to Analyse and Reveal the Regulatory Mechanisms of Mung Bean Polyphenols on Intestinal Cell Damage Under Different Heat Stress Temperatures. Nutrients 2024; 17:88. [PMID: 39796522 PMCID: PMC11722878 DOI: 10.3390/nu17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Polyphenols represent a new strategy of dietary intervention for heat stress regulation. METHODS The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels. RESULTS Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways. Under the heat stresses of 39 °C, 41 °C, and 43 °C, the key pathways regulated by mung bean polyphenols on intestinal epithelial Mode-k cells were choline metabolism, pyrimidine metabolism, and the retrograde endorphin signalling pathway in cancer, respectively. FoxO, Rap1, and PI3K-Akt signalling pathways were the key environmental regulatory signalling pathways. Mung bean polyphenols can alleviate heat stress-induced cells at 39 °C by inhibiting cell apoptosis and promoting lipid and amino acid accumulation. Mung bean polyphenols can alleviate the threat of cell death caused by heat stress at 41 °C by regulating heat shock proteins, inhibiting mitochondrial function and some nerve disease-related genes. The threat of cell death by heat stress at 43 °C can be alleviated by regulating nerve-related genes. CONCLUSIONS This study confirmed that mung bean polyphenols can regulate heat stress. The results provide a reference for analysing the mechanism of dietary polyphenol regulating heat stress.
Collapse
Affiliation(s)
- Yuchao Feng
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Decheng Suo
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Tianxin Fu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Ying Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Zetong Li
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| |
Collapse
|
2
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
Affiliation(s)
- Zineb Touzout
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| | - Naima Abdellaoui
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria.
| | - Assia Siham Hadj-Hamou
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| |
Collapse
|
3
|
El-Demerdash FM, Karhib MM, Ghanem NF, Abdel-Daim MM, El-Sayed RA. Echinacea purpurea root extract mitigates hepatotoxicity, genotoxicity, and ultrastructural changes induced by hexavalent chromium via oxidative stress suppression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26760-26772. [PMID: 38459283 PMCID: PMC11052792 DOI: 10.1007/s11356-024-32763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Environmental and occupational exposure to hexavalent chromium (CrVI) is mostly renowned as a possible hepatotoxic in mammals. Echinacea purpurea (L.) Moench, a phenolic-rich plant, is recurrently used for its therapeutic properties. Therefore, this investigation was done to explore whether E. purpurea (EP) root extract would have any potential health benefits against an acute dose of CrVI-induced oxidative damage and hepatotoxicity. Results revealed that GC-MS analysis of EP root extract has 26 identified components with a significant amount of total phenolic and flavonoid contents. Twenty-four Male Wistar rats were divided into four groups: control, EP (50 mg/kg BW/day for 21 days), CrVI (15 mg/kg BW as a single intraperitoneal dosage), and EP + CrVI, respectively. Rats treated with CrVI displayed a remarkable rise in oxidative stress markers (TBARS, H2O2, PCC), bilirubin, and lactate dehydrogenase activity, and a marked decrease in enzymatic and non-enzymatic antioxidants, transaminases, and alkaline phosphatase activities, and serum protein level. Also, CrVI administration induced apoptosis and inflammation in addition to histological and ultrastructural abnormalities in the liver tissue. The examined parameters were improved significantly in rats pretreated with EP and then intoxicated with CrVI. Conclusively, EP had a potent antioxidant activity and could be used in the modulation of CrVI-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Alexandria, Egypt.
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Nora F Ghanem
- Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, Pharmacy Program, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
4
|
Akbel E, Kucukkurt I, Ince S, Demirel HH, Acaroz DA, Zemheri-Navruz F, Kan F. Investigation of protective effect of resveratrol and coenzyme Q 10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol Res (Camb) 2024; 13:tfad123. [PMID: 38173543 PMCID: PMC10758596 DOI: 10.1093/toxres/tfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
It is seen that cyclophosphamide, which is used in treating many diseases, especially cancer, causes toxicity in studies, and its metabolites induce oxidative stress. This study aimed to investigate the protective effects of resveratrol and Coenzyme Q10, known for their antioxidant properties, separately and together, against oxidative stress induced by cyclophosphamide. In this study, 35 Wistar albino male rats were divided into five groups. Groups; Control group, cyclophosphamide (CP) group (CP as 75 mg kg i.p. on day 14), coenzyme Q10 (CoQ10) + CP group (20 mg/kg i.p. CoQ10 + 75 mg kg i.p. CP), resveratrol (Res) + CP group (20 mg/kg i.p. Res + 75 mg/kg i.p. CP), CoQ10 + Res + CP group (20 mg/kg i.p Res + 20 mg/kg i.p CoQ10 and 75 mg/kg i.p.CP). At the end of the experiment, the cholesterol, creatinine and urea levels of the group given CP increased, while a decrease was observed in the groups given Res and CoQ10. Malondialdehyde level was high, glutathione level, superoxide dismutase and catalase activities were decreased in the blood and all tissues (liver, kidney, brain, heart and testis) of the CP given group. DNA damage and histopathological changes were also observed. In contrast, Res and CoQ10, both separately and together, reversed the CP-induced altered level and enzyme activities and ameliorated DNA damage and histopathological changes. In this study, the effects of Res and CoQ10 against CP toxicity were examined both separately and together.
Collapse
Affiliation(s)
- Erten Akbel
- Usak Health Training School, Usak University, 64200, Uşak, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74110, Bartın, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Ghaeini Hesarooeyeh Z, Basham A, Sheybani-Arani M, Abbaszadeh M, Salimi Asl A, Moghbeli M, Saburi E. Effect of resveratrol and curcumin and the potential synergism on hypertension: A mini-review of human and animal model studies. Phytother Res 2024; 38:42-58. [PMID: 37784212 DOI: 10.1002/ptr.8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Resveratrol (RES) and curcumin (CUR) are two of the most extensively studied bioactive compounds in cardiovascular research from the past until today. These compounds have effectively lowered blood pressure by downregulating the renin-angiotensin system, exerting antioxidant effects, and exhibiting antiproliferative activities on blood vessels. This study aims to summarize the results of human and animal studies investigating the effects of CUR, RES, and their combination on hypertension and the molecular mechanisms involved. The published trials' results are controversial regarding blood pressure reduction with different doses of RES and CUR, highlighting the need to address this issue.
Collapse
Affiliation(s)
- Zahra Ghaeini Hesarooeyeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ayoub Basham
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahshid Abbaszadeh
- Student Research Committee, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
7
|
Khalifa NE, Noreldin AE, Khafaga AF, El-Beskawy M, Khalifa E, El-Far AH, Fayed AHA, Zakaria A. Chia seeds oil ameliorate chronic immobilization stress-induced neurodisturbance in rat brains via activation of the antioxidant/anti-inflammatory/antiapoptotic signaling pathways. Sci Rep 2023; 13:22409. [PMID: 38104182 PMCID: PMC10725506 DOI: 10.1038/s41598-023-49061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic immobilization stress plays a key role in several neuropsychiatric disorders. This investigation assessed the possible ameliorative effect of chia seed oil (CSO) against the neurodisturbance-induced in rats by chronic immobilization. Rats were randomly allocated into control, CSO (1 ml/kg b.wt./orally), restrained (6 h/day), CSO pre-restraint, and CSO post-restraint for 60 days. Results revealed a significant reduction in serum corticosterone level, gene expression of corticotrophin-releasing factor, pro-inflammatory cytokines, and oxidative biomarkers in restrained rats treated with CSO. The histopathological findings revealed restoring necrosis and neuronal loss in CSO-treated-restraint rats. The immunohistochemical evaluation revealed a significant reduction in the immuno-expression of caspase-3, nuclear factor kappa B, interleukin-6, and cyclooxygenase-2 (COX-2), and an elevation of calbindin-28k and synaptophysin expression compared to non-treated restraint rats. The molecular docking showed the CSO high affinity for several target proteins, including caspase-3, COX-2, corticotropin-releasing hormone binding protein, corticotropin-releasing factor receptors 1 and 2, interleukin-1 receptor types 1 and 2, interleukin-6 receptor subunits alpha and beta. In conclusion, CSO emerges as a promising candidate against stress-induced brain disruptions by suppressing inflammatory/oxidative/apoptotic signaling pathways due to its numerous antioxidant and anti-inflammatory components, mainly α-linolenic acid. Future studies are necessary to evaluate the CSO therapeutic impacts in human neurodisturbances.
Collapse
Affiliation(s)
- Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed El-Beskawy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Abdel-Hasseb A Fayed
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Abdeldayem Zakaria
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
8
|
El-Nagar MMF, Elsisi AE. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-кB pathway. Food Chem Toxicol 2023; 180:114008. [PMID: 37660944 DOI: 10.1016/j.fct.2023.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bromoxynil octanoate (BO) is a herbicide necessary for plant growth and production. However, it may cause damage to environment and humans. This study aimed to investigate the potential testicular toxicity of BO and its possible underlying mechanisms. Male Albino (Sprague Dawley) rats were administered BO in different doses (5, 10, 20, and 40 mg/kg/BW; P.O.) daily for 21 days. Testicular function was evaluated by determining count and viability of epididymal sperm, and testosterone. In addition, the following parameters were assessed; MDA, NO, and H2O2 as oxidative stress markers; SOD, CAT, GPx, GST, and GSH as antioxidant markers; NF-ĸB-P65 and IL-18 as inflammatory markers; caspase-9 and caspase-3 as apoptotic markers; gene expression of NF-ĸB-P65, TNF-α, BAX, Bcl-2, and caspase-3; and histopathological examination of epididymis and testis sections. The results showed a significant (P < 0.05) increase in MDA, NO, H2O2, IL-18, and caspase-9 content, NF-ĸB-P65, TNF-α, Bax, and Caspase-3 expression as compared to control. Furthermore, the count and viability of epididymal sperm, testosterone level, SOD, CAT, GPx, GST, and GSH content, and Bcl-2 expression showed a significant (P < 0.05) decrease as compared to control. In conclusion BO-induced testicular damage by altering oxidation, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maysa M F El-Nagar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
9
|
He Y, Wang H, Lin S, Chen T, Chang D, Sun Y, Wang C, Liu Y, Lu Y, Song J, Li S, Xu W, Lin Y, Zheng Y, Zhou X, Huang Q, Huang M. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade. Biomed Pharmacother 2023; 165:115279. [PMID: 37544281 DOI: 10.1016/j.biopha.2023.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease that has no viable treatment. Curcumin (Cur) and resveratrol (Res) are two natural products that have been studied for their potential to ameliorate MAFLD. However, while these compounds have been investigated individually, their combined use and the potential for a synergistic or augmented effect remain unexplored. This study aims to investigate the effect of curcumin (Cur) and resveratrol (Res) as a potential combination therapy on MAFLD. Cur, Res and Cur+Res were tested in palmitic acid (PA)-induced-HepG2 cells. MAFLD model was established using Goto-Kakizaki rats. The animals were treated with vehicle control (model group), Cur (150 mg/kg), Res (150 mg/kg), Cur+Res (150 mg/kg, 8:2, w/w), or metformin (Met, positive control, 400 mg/kg/day) via oral gavage for 4 weeks. Wistar rats were used as the control group. Network pharmacology was conducted to elucidate the molecular actions of Cur and Res, followed by q-PCR and immunoblotting in vivo. Cur+Res exhibited synergistic effects in reducing triglyceride, total cholesterol and lipid accumulation in PA-induced HepG2 cells. The combination also markedly attenuated hepatic steatosis in the MAFLD rats. Network pharmacology illustrated that the interaction of Cur and Res was associated with the modulation of multiple molecular targets associated with the PI3K/AKT/mTOR and HIF-1 signaling pathways. Experimental results confirmed that Cur+Res nomalised the gene targets and protein expressions in the PI3K/AKT/mTOR and HIF-1 signaling pathways, including PI3K, mTOR, STAT-3, HIF-1α, and VEGF. The present study demonstrated an advanced effect of Cur and Res in combination to attenuate MAFLD, and the mechanism is at least partly associated with the modulation of the PI3K/AKT/mTOR and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Yuhui He
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Huan Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Shiling Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Tao Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yibin Sun
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Chenxiang Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350100, China
| | - Shaohua Li
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yanxiang Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia.
| | - Qiumei Huang
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China.
| |
Collapse
|
10
|
Zhuang J, Jiang Z, Chen D, Li J, Crabbe MJC, Qiu M, Zheng Y, Qu W. Thyroid-Disrupting Effects of Exposure to Fipronil and Its Metabolites from Drinking Water Based on Human Thyroid Follicular Epithelial Nthy-ori 3-1 Cell Lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6072-6084. [PMID: 37022920 DOI: 10.1021/acs.est.2c08627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fipronil is a broad-spectrum insecticide used for plants and poultry. Owing to its widespread use, fipronil and its metabolites (fipronil sulfone, fipronil desulfinyl, and fipronil sulfide), termed FPM, can be frequently detected in drinking water and food. Fipronil can affect the thyroid function of animals, but the effects of FPM on the human thyroid remain unclear. We employed human thyroid follicular epithelial Nthy-ori 3-1 cells to examine combined cytotoxic responses, thyroid-related functional proteins including the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), deiodinases I-III (DIO I-III), and the nuclear factor erythroid-derived factor 2-related factor 2 (NRF2) pathway induced by FPM of 1-1000-fold concentrations detected in school drinking water collected from a heavily contaminated area of the Huai River Basin. Thyroid-disrupting effects of FPM were evaluated by examining biomarkers of oxidative stress and thyroid function and tetraiodothyronine (T4) levels secreted by Nthy-ori 3-1 cells after FPM treatment. FPM activated the expression of NRF2, HO-1 (heme oxygenase 1), TPO, DIO I, and DIO II but inhibited NIS expression and increased the T4 level of thyrocytes, indicating that FPM can disrupt the function of human thyrocytes through oxidative pathways. Given the adverse impact of low FPM concentrations on human thyrocytes, supportive evidence from rodent studies, and the critical importance of thyroid hormones on development, the effects of FPM on the neurodevelopment and growth of children warrant priority attention.
Collapse
Affiliation(s)
- Jianhui Zhuang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dawei Chen
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, U.K
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer's disease. Inflammopharmacology 2023; 31:717-730. [PMID: 36933175 DOI: 10.1007/s10787-023-01173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer's disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.
Collapse
|
13
|
Individual and Combined Antioxidant Activity of Spices and Spice Phenolics. Antioxidants (Basel) 2023; 12:antiox12020308. [PMID: 36829866 PMCID: PMC9952251 DOI: 10.3390/antiox12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The present study investigated the interaction effects (additive, synergistic, and antagonistic) of different groups of spices, their constituent phenolic compounds, and synthetic antioxidants on the total phenol (TP) content and antioxidant activity, as measured by the ferric-reducing antioxidant power (FRAP) of the mixtures. The results showed that there was an additive effect in all the groups studied, except for the group containing turmeric or curcumin. The groups containing turmeric or curcumin showed a moderate synergistic effect. Among the groups of spices, the highest summated TP (50.6 mg GAE/mL) and FRAP (106.2 mg Trolox/mL) values were observed in the group containing clove, cinnamon, pimento, rosemary, oregano, and cardamom. In the case of the groups of pure phenolics, the highest summated TP (364.96 mg GAE/mL) and FRAP (1124.25 mg Trolox/mL) values were observed in the group containing eugenol, acetyl eugenol, caffeic acid, and protocatechuic acid. The summated and combined TP and FRAP values of the samples correlated highly with the correlation coefficients (r2) of 0.976 and 0.988, respectively, inferring an additive nature of the interaction effect in most of the groups studied. The interactions of phenolics in mixtures are very complex, being affected by a number of factors, and requires more investigations. The current study will add considerable knowledge to the existing literature to understand the diversity and mechanisms of interactions.
Collapse
|
14
|
Umoren E, Asiwe JN, Okon IA, Levi Amangieka A, Nyenke CU, Nnamudi AC, Modo EU, Bassey AIL, Nwikue G, Etim OE. Terminalia catappa attenuates phenylhydrazine-induced anaemia and hepato-renal toxicity in male Wistar rat by boosting blood cells, modulation of lipoproteins and up-regulation of in vivo antioxidant armouries. Biomarkers 2023; 28:302-312. [PMID: 36625008 DOI: 10.1080/1354750x.2023.2166588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM This study investigated the haematinic, antihyperlipidaemic, hepato-renal protective effects of Terminalia catappa aqueous leaf extract on male Wistar rats exposed to phenylhydrazine toxicity. METHODS Animals were exposed to phenylhydrazine (PHZ) 50 mg/kg intraperitoneal for two consecutive days thereafter, treated with T. catappa extract (100 mg/kg and 200 mg/kg) orally for 21 days. After the experimentation, animals were sedated with ketamine (70 mg/kg) and euthanized by cervical dislodgement. Blood and organs were collected for haematology and biochemical studies following standard laboratory methods. RESULTS Our study showed that T. catappa significantly increased erythrocytes, haemoglobin, haematocrit and high density lipoprotein as well as down-regulating leukocytes, thrombocytes, ALP AST, ALT creatinine, urea, total cholesterol as well as low density lipoprotein. The liver, kidney and spleen antioxidant defence were also up-regulated against the adverse effect caused by phenylhydrazine exposure. CONCLUSION Terminalia catappa attenuated Phenylhydrazine-induced anaemia and hepato-renal toxicity in male Wistar rat by boosting blood cells, modulation of lipoproteins and up-regulation of in vivo antioxidant armouries.
Collapse
Affiliation(s)
- Elizabeth Umoren
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, Delta State University, Abraka, Nigeria
| | - Idara Asuquo Okon
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Albert Levi Amangieka
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Clement U Nyenke
- Department of Medical Laboratory Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | | | - Emmanuel U Modo
- Department of Biochemistry, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Augustine I L Bassey
- Department of Pharmacology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Gospel Nwikue
- Department of Pharmacology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Okon E Etim
- Department of Biochemistry, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
15
|
Ziamajidi N, Daei S, Khajvand-Abedini M, Abbasalipourkabir R, Nourian A. Vitamins A, C, and E Exert Anti-apoptotic Function in the Testis of Rats After Exposure to Zinc Oxide Nanoparticles. Chonnam Med J 2023; 59:48-53. [PMID: 36794239 PMCID: PMC9900230 DOI: 10.4068/cmj.2023.59.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Some reports emphasize that zinc oxide nanoparticles (ZnO NPs) are detrimental to the reproductive organs of animals. As such, this research aimed at exploring the apoptotic potential of ZnO NPs on testis along with the beneficial role of Vitamins (V) A, C, and E against ZnO NP-induced damage. To this aim, a population of 54 healthy, male Wistar rats were used in this work and then assigned into nine groups of 6 rats as G1: Control 1 (Water); G2: Control 2 (Olive oil); G3: VA (1000 IU/kg), G4: VC (200 mg/kg), G5: VE (100 IU/kg), G6: ZnO NPs exposed animals (200 mg/kg); and G7, 8 and 9: ZnO NPs-exposed animals that were pre-treated with either VA, C, or E. Apoptosis rates were estimated by measuring the level of apoptotic regulatory markers including Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) using western blotting and qRT-PCR assays. The data indicated that ZnO NPs exposure elevates the level of Bax protein and gene expression, whereas the protein and gene expression of Bcl-2 was reduced. Further, the activation of caspase-3,7 occurred after exposure to ZnO NPs, while the above alterations were significantly alleviated in the rats that were co-treated with VA, C, or E and ZnO NPs relative to the rats in the ZnO NPs group. In summary, VA, C, and E exerted anti-apoptotic functions in the testis of rats following administration of ZnO NPs.
Collapse
Affiliation(s)
- Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Science, Hamedan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
16
|
Sakr S, Hamed A, Atef M. Betanin ameliorates fipronil-induced nephrotoxicity via activation of Nrf2-HO-1/NQO-1 pathway in albino rat model. Toxicol Res (Camb) 2022; 11:975-986. [PMID: 36569480 PMCID: PMC9773064 DOI: 10.1093/toxres/tfac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Fipronil (FPN) is phenylpyrazole insecticide extensively used to control a wide variety of pests. Betanin (BET) is a natural colorant with promising antioxidant and anti-inflammatory effects. This study aimed to investigate the potential protective effect of BET on FPN induced nephrotoxicity in adult male albino rats. Forty rats were assigned into 4 equal groups; Group I (Control); Group II (BET) received 20 mg/kg b.wt/day; Group III (FPN) received 4.8 mg/kg b.wt/day; and Group IV (BET/FPN). All treatments were given orally for 90 days. At the end of experiment, blood samples were collected for analysis of serum urea and creatinine. Kidneys were harvested for determination of kidney injury molecule-1(KIM-1) level; gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase-1 (NQO-1); oxidative stress biomarkers including malondialdehyde (MDA), protein carbonyl content (PCC), catalase activity (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH). Histopathological examination and immunohistochemical investigation of Nrf2, nuclear factor kappa B (NF-κB), and caspase-3 were also undertaken. The results revealed kidney dysfunction, downregulation of Nrf2, HO-1, and NQO-1 genes, redox imbalance, structural damage, decreased Nrf2 and increased NF-κB immune-expression, in addition to strong caspase-3 immunoreactivity in FPN-treated group. In the combined group, BET co-administration resulted in functional and structural amelioration, up-regulation of Nrf2, HO-1, and NQO-1 genes, mitigation of redox imbalance, and strong anti-inflammatory and antiapoptotic effects. In conclusion, BET via activation of Nrf2-HO-1/NQO-1 pathway, exhibits beneficial antioxidant, anti-inflammatory, and antiapoptotic effects against FPN-induced nephrotoxicity.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| | - Amira Hamed
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| | - Mona Atef
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig City, ElSharkia Governorate 44519, Egypt
| |
Collapse
|
17
|
Karthika C, Sureshkumar R, Sajini DV, Ashraf GM, Rahman MH. 5-fluorouracil and curcumin with pectin coating as a treatment regimen for titanium dioxide with dimethylhydrazine-induced colon cancer model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63202-63215. [PMID: 35459988 DOI: 10.1007/s11356-022-20208-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Colorectal cancer was inducted in Wister rats using titanium dioxide nanoparticles (TiO2NPs) and dimethylhydrazine (DMH) and treatment using 5-fluorouracil (5-FU) and curcumin (CUR), individually and following a synergistic approach. Compatibility studies are evaluated by using FT-IR spectra analysis, and Vero cell lines as well as HCT-116 cell lines are used for evaluating the synergistic approach. It was then followed by induction of colorectal cancer in rats for 70 days and treatment using 5-FU and CUR with pectin coating (individually and in combination) for 28 days. The reports state that 5-FU and CUR combination was found to be compatible. The synergistic effect was evaluated for1:1, 1:2, 1:4, and 2:1 ratio of 5-FU:CUR, where 1:4 ratio shows a CI50 value of 0.853, selected further for the animal studies. The 1:4 ratio of 5-FU and CUR (50:200) shows to be effective for the treatment of colorectal cancer within 28 days, proven using histopathology report, bodyweight analysis, and hematological reports. 5-FU and CUR (1:4) ratio with pectin coating was proven effective for the treatment of colorectal cancer induced by TiO2NPs with DMH and was found to produce a synergistic effect.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Deepak Vasudevan Sajini
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea.
- Department of Pharmacy, Southeast University, Banani Street, Dhaka, 1213, Bangladesh.
| |
Collapse
|
18
|
Seth E, Chopra M. Neuroprotective efficacy of berberine following developmental exposure to chlorpyrifos in F1 generation of Wistar rats: Apoptosis-autophagy interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155292. [PMID: 35439518 DOI: 10.1016/j.scitotenv.2022.155292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide commonly used in agriculture and household applications, is considered a developmental neurotoxicant. This study aimed to explain the neuroprotective role of Berberine (BBR) against CPF-induced autophagy dysfunction and apoptotic neurodegeneration in the developing hippocampus. F1 generation of Wistar rats was exposed to CPF (3 mg/kg b.wt.) and co-treated with BBR (10 mg/kg b.wt) in two different exposure regimens, gestational (GD9-12 and GD17-21) and lactational (PND1-20). Our results demonstrated that CPF intoxication instigated cognitive and neurobehavioral impairment, oxidant-antioxidant imbalance, and histomorphological alterations in CA1, CA3, and DG regions of the offsprings. Furthermore, mRNA expression of pro-apoptotic genes (caspase3 and Bax) was upregulated, and that of anti-apoptotic BCl2 was downregulated. In addition, exposure to CPF also activated the autophagy inhibitor (mTOR) transcription and subsequently downregulated the expression of autophagy markers beclin1 and LC3-II. In contrast, gestational and lactational co-treatment of BBR significantly upregulated the enzymatic anti-oxidant bar of the hippocampus and attenuated histological alterations. Moreover, BBR co-treatments reduced apoptotic neurodegeneration in the hippocampal region by regulating the expression of apoptotic genes and upregulated the levels of autophagy, confirmed by ultrastructural studies, decreased gene expression and immunostaining of mTOR and increased, and increased expression gene expression and immunostaining of LC3-II positive cells. Our results confirm that treatment with BBR induces autophagy, which plays a neuroprotective role in CPF-induced developmental neuronal apoptosis in the F1 generation of Wistar rats by regulating the balance between autophagy and apoptosis.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
Su Y, Guo C, Chen Q, Guo H, Wang J, Kaihang M, Chen D. Novel multifunctional bionanoparticles modified with sialic acid for stroke treatment. Int J Biol Macromol 2022; 214:278-289. [PMID: 35716787 DOI: 10.1016/j.ijbiomac.2022.06.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022]
Abstract
Oxidative stress and inflammation are two key pathophysiological mechanisms that lead to neuronal apoptosis and brain damage following ischemia/reperfusion (I/R) injury. Because of their complex pathological mechanisms and the presence of the blood-brain barrier, the treatment of I/R is severely limited. Inspired by the fact that Macrophage membranes (MM) can cross the blood-brain barrier, we have developed a new multifunctional bionic particle (MSAOR@Cur). The modification of Sialic acid (SA) on the surface of Angelica polysaccharides (APS), the attachment of Resveratrol (Res) using the ROS-responsive bond oxalate bond as a linker arm, constitutes amphiphilic nanoparticles with an inner core encapsulated with curcumin (SAOR@Cur), and finally the use of MM camouflage to integrate the neuroprotection of APS, the free radical scavenging of Res, and the anti-inflammation of curcumin (Cur) in one strategy. Interestingly, the experimental results show that MSAOR@Cur can successfully deliver curcumin to the area of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Jinqiu Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Mu Kaihang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
20
|
Ahmed MM, Hussein MMA, Saber T, Abd-Elhakim YM. Palliative Effect of Resveratrol against Nanosized Iron Oxide-Induced Oxidative Stress and Steroidogenesis-Related Genes Dysregulation in Testicular Tissue of Adult Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138171. [PMID: 35805830 PMCID: PMC9266693 DOI: 10.3390/ijerph19138171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The nano-sized iron oxide (Fe2O3-NPs) is one of the most used engineered nanomaterials worldwide. This study investigated the efficacy of natural polyphenol resveratrol (RSV) (20 mg/kg b.wt, orally once daily) to alleviate the impaired sperm quality and testicular injury resulting from Fe2O3-NPs exposure (3.5 or 7 mg/kg b.wt, intraperitoneally once a week) for eight weeks. Spermiograms, sexual hormonal levels, oxidative stress indicators, and lipid peroxidation biomarker were assessed. Moreover, the steroidogenesis-related genes mRNA expressions were evaluated. The results showed that RSV substantially rescued Fe2O3-NPs-mediated sperm defects. Additionally, the Fe2O3-NPs-induced depressing effects on sperm motility and viability were markedly counteracted by RSV. Moreover, RSV significantly restored Fe2O3-NPs-induced depletion of testosterone, follicle-stimulated hormone, luteinizing hormone, and testicular antioxidant enzymes but reduced malondialdehyde content. Furthermore, the Fe2O3-NPs-induced downregulation of steroidogenesis-related genes (3 β-HSD, 17 β-HSD, and Nr5A1) was significantly counteracted in the testicular tissue of RSV-treated rats. These findings concluded that RSV could limit the Fe2O3-NPs-induced reduced sperm quality and testicular injury most likely via their antioxidant activity and steroidogenesis-related gene expression modulation.
Collapse
Affiliation(s)
- Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
| | - Mohamed M. A. Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
- Correspondence:
| |
Collapse
|
21
|
Alsayadi AI, Abutaha N, Almutairi BO, Al-Mekhlafi FA, Wadaan MA. Evaluating the efficacy of an innovative herbal formulation (HF6) on different human cancer cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51768-51777. [PMID: 35249198 DOI: 10.1007/s11356-022-19529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Cancer is reported to be the leading cause of death and illness worldwide. This research aims to evaluate the phytochemicals, antioxidant, cytotoxic, and apoptotic activities of the polyherbal formulation HF6. HF6 was prepared by blending equal quantities of plants powder, namely, Curcuma longa, Salvia officinalis, Cinnamomum zeylanicum, Capsicum annuum, Zingiber officinale, and Syzygium aromaticum, and later extracted using hexane (HF6H), chloroform (HF6C), ethyl acetate (HF6E), and methanol (HF6M) in Soxhlet apparatus. Among the four different extracts, only the hexane extract (HF6H) was significantly effective. The HF6H extract showed antioxidant and anticancer potentials against different cancer cell lines, and moderate cytotoxicity against non-cancer cells, rendering it a promising remedy. In addition, it exerted tremendous cytotoxic effects on MCF-7, Huh-7, HCT116, MDA-MB-231, LoVo, and HepG2 cells with IC50 values of 2.02, 4.5, 6.9, 11.4, 23.5, and 34.7 µg/mL, respectively. The morphological hallmarks of apoptosis such as the rounding of cells, loss of contact with neighboring cells, formation of cell membrane blebbing, and microspike protrusion were detected using several different techniques. DAPI staining revealed apoptotic nuclear morphology such as condensation and DNA fragmentation. The morphological changes of MCF7 cells were also analyzed by AO/EB fluorescence staining. MCF7-stained green cells were viable cells, whereas the treated cells showed fragmented green nuclei representing early apoptosis. The phytochemical screening of HF6H showed positive results regarding the presence of alkaloids, polyphenols, flavonoids, and sterols. The GC-MS (gas chromatography-mass spectrometry) analysis of the HF6H extract indicated the presence of 12 compounds, mainly trans-caryophyllene (21.55%), cis-isoeugenol (18.42%), acetyleugenol (17.53%), alpha farnesene (10.0%), and zingiberene (8.55%). However, further investigation could be carried out to examine the toxicity of the extract on animal models.
Collapse
Affiliation(s)
- Ahmed I Alsayadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nael Abutaha
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fahd A Al-Mekhlafi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
22
|
Ndufeiya-Kumasi LC, Abarikwu SO, Ohanador R, Omoregie ES. Curcumin improves the protective effects of quercetin against atrazine-induced testicular injury in adult Wistar rats. Andrologia 2022; 54:e14445. [PMID: 35437774 DOI: 10.1111/and.14445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the beneficial protective effect of cotreatment of curcumin (CUR) and quercetin (QUE) on atrazine (ATZ)-induced testicular toxicity in rats. ATZ challenge diminished luteinizing hormone, follicular stimulating hormone, testosterone and myeloperoxidase enzyme activity, but these effects were attenuated on co-treatment with CUR and QUE. Also, co-treatment of CUR + QUE was better than separate administration of QUE at diminishing malondialdehyde and glutathione and improving tumour necrosis factor-α concentration, germ cell numbers (spermatogonia, spermatocytes and round spermatids) and epididymal sperm quality. Histologically, smaller sized tubules with degenerated epithelia and few germ cells were seen in the seminiferous tubules of the ATZ group whereas CUR + QUE pretreatment improved the histo-morphologic features of the tubules compared to the ATZ group and was also better than separate administration of QUE. We conclude that CUR can improve the protective effects of QUE against ATZ-induced testicular injury by enhancing the levels of reproductive hormones, recovering testicular biochemical parameters and improving the histological features of the testes.
Collapse
Affiliation(s)
| | - Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Robinson Ohanador
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Ehimwenma S Omoregie
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
23
|
Hassanen EI, Hussien AM, Mehanna S, Ibrahim MA, Hassan NH. Comparative assessment on the probable mechanisms underlying the hepatorenal toxicity of commercial imidacloprid and hexaflumuron formulations in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29091-29104. [PMID: 34993831 PMCID: PMC8993790 DOI: 10.1007/s11356-021-18486-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/30/2021] [Indexed: 05/26/2023]
Abstract
Pesticides are viewed as a major wellspring of ecological contamination and causing serious risky consequences for people and animals. Imidacloprid (IM) and hexaflumuron (HFM) are extensively utilized insect poisons for crop assurance on the planet. A few investigations examined IM harmfulness in rodents, but its exact mechanism hasn't been mentioned previously as well as the toxicity of HFM doesn't elucidate yet. For this reason, the present study was designed to explore the mechanism of each IM and HFM-evoked rat liver and kidney toxicity and to understand its molecular mechanism. 21 male Wistar albino rats were divided into 3 groups, as follows: group (1), normal saline; group (2), IM; and group (3), HFM. Both insecticides were orally administered every day for 28 days at a dose equal to 1/10 LD50 from the active ingredient. After 28 days postdosing, rats were anesthetized to collect blood samples then euthanized to collect liver and kidney tissue specimens. The results showed marked changes in walking, body tension, alertness, and head movement with a significant reduction in rats' body weight in both IM and HFM receiving groups. Significant increases in MDA levels and decrease of GHS levels were recorded in liver and kidney homogenates of either IM or HFM groups. Liver and kidney tissues obtained from both pesticide receiving groups showed extensive histopathological alterations with a significant increase in the serum levels of ALT, AST, urea, and creatinine and a decrease in total proteins, albumin, and globulin levels. In addition, there was upregulation of the transcript levels of casp-3, JNK, and HO-1 genes with strong immunopositivity of casp-3, TNF-ὰ, and NF-KB protein expressions in the liver and kidneys of rats receiving either IM or HFM compared with the control group. In all studied parameters, HFM caused hepatorenal toxicity more than those induced by IM. We can conclude that each IM and HFM provoked liver and kidneys damage through overproduction of ROS, activation of NF-KB signaling pathways and mitochondrial/JNK-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sally Mehanna
- Department of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
25
|
Li X, Liu X, Ding X, Liu X, Cao N, Deng Y, Hou Y, Yu W. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats. Oral Dis 2022; 29:1812-1825. [PMID: 35146845 DOI: 10.1111/odi.14148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Periodontitis is closely associated with kidney disease and reactive oxygen species (ROS) involvement. Mitochondria are the primary source of both endogenous ROS and renal energy. We investigated whether resveratrol (RSV) prevents renal injury and mitochondrial dysfunction in periodontitis rats. METHODS Thirty male Wistar rats were divided into control, experimental periodontitis (Ep), and Ep-RSV groups. To induce periodontitis, a steel ligature was placed on the cervix of the bilateral first maxillary molars. RSV (50 mg/kg/d) to the Ep-RSV group and vehicle to the Ep and control groups were gavaged. After 8 weeks, alveolar bone loss, pocket depth, gingival blood index, and tooth mobility were assessed. Oxidative stress parameters, mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial ROS, adenosine triphosphate (ATP), sirtuin 1 (SIRT1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were analysed in renal. Renal function and histology were also evaluated. RESULTS Compared with the control group, the Ep group showed renal structural destruction, elevated oxidative stress levels, mitochondrial structure destruction, MMP loss, mitochondrial ROS accumulation, ATP reduction, and decreased SIRT1 and PGC-1α levels. RSV prevented these destruction (p < .05). However, there was no significant impairment in renal function (p > .05). CONCLUSIONS Periodontitis induced mitochondrial dysfunction in renal tissues. Resveratrol exerts a preventive effect on periodontitis-induced kidney injury by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- X Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Ding
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - N Cao
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - Y Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - Y Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - W Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| |
Collapse
|
26
|
Ibrahim KA, Abdelgaid HA, Eleyan M, Mohamed RA, Gamil NM. Resveratrol alleviates cardiac apoptosis following exposure to fenitrothion by modulating the sirtuin1/c-Jun N-terminal kinases/p53 pathway through pro-oxidant and inflammatory response improvements: In vivo and in silico studies. Life Sci 2022; 290:120265. [PMID: 34968465 DOI: 10.1016/j.lfs.2021.120265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Fenitrothion (FNT), a commonly used organophosphate, can cause oxidative damage and apoptosis on various organs. However, the underlying mechanisms for FNT-induced cardiotoxicity did not formally report. Here, we have evaluated the possible ameliorative roles of resveratrol (RSV) against FNT-induced cardiac apoptosis in male rats through the sirtuin1 (SIRT1)/c-Jun N-terminal kinase (c-JNK)/p53 pathway concerning pro-oxidant and inflammatory cytokines. Forty-eight male rats were equally grouped into control, RSV (20 mg/kg), 5-FNT (5 mg/kg), 10-FNT (10 mg/kg), 20-FNT (20 mg/kg), 5-FNT-RSV, 10-FNT-RSV, and 20-FNT-RSV where all doses administrated by gavage for four weeks. The present findings demonstrated that RSV markedly diminished the level of hyperlipidemia and elevation in lactate dehydrogenase (LDH), total creatine kinase (CK-T), and troponin T (TnT) levels following FNT intoxication. Furthermore, RSV significantly reduced FNT-induced cardiac oxidative injury by reducing malondialdehyde (MDA) level and improving the levels of glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and acetylcholinesterase (AchE). Also, the levels of interleukin-1β (IL1β,), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly attenuated in the co-treated groups. Moreover, RSV alleviated the histopathological changes promoted by FNT and repaired the transcript levels of SIRT1, c-JNK, and caspase-9/3 along with p53 immunoreactivity. In silico study revealed that the free binding energies of RSV complexes with protein and DNA sequences of SIRT1 were lower than docked complexes of FNT. Therefore, RSV reserved myocardial injury-induced apoptosis following exposure to FNT by modulating the SIRT1/c-JNK/p53 pathway through cellular redox status and inflammatory response improvements.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt.
| | - Hala A Abdelgaid
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Cairo 11796, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, 4051, Palestine
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Noha M Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| |
Collapse
|
27
|
Lebda MA, Elmassry IH, Taha NM, Elfeky MS. Nanocurcumin alleviates inflammation and oxidative stress in LPS-induced mastitis via activation of Nrf2 and suppressing TLR4-mediated NF-κB and HMGB1 signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8294-8305. [PMID: 34482462 DOI: 10.1007/s11356-021-16309-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is hydrophobic and rapidly eliminated from the body. However, nanoformulation of curcumin significantly improves its pharmacological activity by enhancing its hydrophobicity and oral bioavailability. Our study aimed to investigate the possible antioxidant and anti-inflammatory effects of nanocurcumin as a prophylactic against LPS-induced coliform mastitis in rat model, where LPS was extracted from a field strain of Escherichia coli (bovine mastitis isolate). The study was conducted on twenty lactating Wistar female rats divided into four equal groups, and the mastitis model was initiated by injection of LPS through the duct of the mammary gland. The results showed that nanocurcumin significantly attenuated the lipid peroxidation (MDA), oxidized glutathione, the release of pro-inflammatory cytokines (TNF-α and IL-1β), and the gene expression of TLR4, NF-κB p65, and HMGB1. Meanwhile, it improved the reduced glutathione level and Nrf2 activity and preserved the normal alveolar architecture. These findings suggested that nanocurcumin supplementation can be a promising potential protective approach for coliform mastitis.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed S Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
28
|
History of Grape in Anatolia and Historical Sustainable Grape Production in Erzincan Agroecological Conditions in Turkey. SUSTAINABILITY 2022. [DOI: 10.3390/su14031496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Anatolian peninsula has long been linked with the origins of viticulture and winemaking. Erzincan province in Anatolia hosted many civilizations in the past, and each civilization used grapes for different purposes. From past to present, viticulture carried out with the famous ‘Karaerik’ grape (Vitis vinifera L.) on old traditional Baran training system to avoid cold damage occurred in winter months. During the old civilizations, the cultivar was used only for wine production, but after the first period of the 1900s, this situation changed, and the cultivar was used for table consumption because wine is banned by Islam. The archaeological findings in Erzincan province revealed the cultivar has existed in the province for centuries, and in each historical period, the cultivar was used sustainably, added value to the region, and brought cultural heritage from generation to generation. Grape production in Erzincan province has been a symbol of abundance, fertility and productivity since mythological times. The historical facts indicated that viticulture and winemaking had been a dispensable part of the Erzincan economy and rural development. The vineyards apply the same sustainable management practices from which they receive their grapes. The traditional Baran training system is used for all vineyards. The viticulture in the province has been strongly committed to improving environmental and social sustainability throughout history.
Collapse
|
29
|
Mitra S, Tareq AM, Das R, Emran TB, Nainu F, Chakraborty AJ, Ahmad I, Tallei TE, Idris AM, Simal-Gandara J. Polyphenols: A first evidence in the synergism and bioactivities. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2026376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Bgc Trust University Bangladesh, Chittagong, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar, Indonesia
| | | | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (Rcams), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, E32004, Spain
| |
Collapse
|
30
|
Grover M, Behl T, Sehgal A, Singh S, Sharma N, Virmani T, Rachamalla M, Farasani A, Chigurupati S, Alsubayiel AM, Felemban SG, Sanduja M, Bungau S. In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules 2021; 26:molecules26247509. [PMID: 34946592 PMCID: PMC8705887 DOI: 10.3390/molecules26247509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Curcuma longa plant is endowed with multiple traditional and therapeutic utilities and is here explored for its phytochemical constituents and cytotoxic potential. Turmeric rhizomes were extracted from three different solvents and screened for the presence of different phytochemical constituents, observation of which indicated that the polar solvents favoured extraction of greater versatile phytochemical constituents. These extracts were investigated for their cytotoxic potential by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on three different of cell lines including SCC-29B (oral cancer cell line), DU-145 (prostate cancer cell line) and the Vero cell line (healthy cell line/non-cancerous cell line). This assay was performed by taking three extracts from isolated curcuminoids and a pure bioactive compound bisdemethoxycurcumin (BD). Bisdemethoxycurcumin was isolated from curcuminoids and purified by column and thin-layer chromatography, and its structural characterisation was performed with different spectroscopic techniques such as FTIR, NMR (1H Proton and 13C Carbon-NMR) and LC-MS. Amongst the extracts, the ethanolic extracts exhibited stronger cytotoxic potential against the oral cancer cell line (SCC-29B) with an IC50value of 11.27 μg/mL, and that this was too low of a cytotoxicity against the Vero cell line. Although, curcuminoids have also shown a comparable cytotoxic potential against SCC-29B (IC50 value 16.79 μg/mL), it was not as potent against the ethanolic extract, and it was even found to be cytotoxic against healthy cell lines at a very low dose. While considering the isolated compound, bisdemethoxycurcumin, it also possessed a cytotoxic potential against the prostate cancer cell line (DU-145) (IC50 value of 93.28 μg/mL), but was quite safe for the healthy cell line in comparison to doxorubicin.
Collapse
Affiliation(s)
- Madhuri Grover
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
- Correspondence: or (T.B.); (S.B.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: or (T.B.); (S.B.)
| |
Collapse
|
31
|
Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65872-65884. [PMID: 34322799 DOI: 10.1007/s11356-021-15664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the view that oxidative stress and brain demyelination play an important role in the pathogenesis of schizophrenia. Resveratrol is a powerful antioxidant with neuroprotective effects. This study aimed to assess the effect of resveratrol on schizophrenia-like behaviors and possible brain demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist, and the underlying neuroprotective mechanism. Resveratrol (40 mg/kg/day/, intraperitoneal) was administered to mice for 14 days. MK-801 (1 mg/kg/day, intraperitoneal) was injected into the mice 4 h after the resveratrol administration for 14 days. The open-field and elevated-plus maze tests were performed to detect behavior changes on the 15th day. Following the behavioral tests, the expression of the myelin basic protein (MBP) was measured with the real-time PCR (RT-PCR) method, while total oxidant capacity (TOS) and total antioxidant capacity (TAS), which are the biomarkers of oxidative damage, were measured with the ELISA method. Hematoxylin-eosin staining was also used to identify stereological and pathological changes in the brain. According to the results obtained, this study showed for the first time that resveratrol prevented glial cell infiltration induced in the brain by MK-801 and shrinkage of nerve cell nuclei in the hippocampus and corpus callosum. However, the resveratrol administrations did not correct behavioral disorders and demyelination of schizophrenia. Although resveratrol partially prevented oxidative damage in the brain in the mice that were injected with MK-801, it was determined that this effect was not statistically significant. These results showed that resveratrol administration partially protects tissues against MK-801-induced neurodegeneration, and resveratrol may be used in combination with different antioxidants or at different doses in future studies.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey.
| | | |
Collapse
|
32
|
Esfahani M, Rahbar AH, Soleimani Asl S, Mehri F. Resveratrol: a panacea compound for diazinon-induced renal toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Esfahani
- Department of Clinical Biochemistry, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Department of Clinical Biochemistry, Payame Noor University of Isfahan, Isfahan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences (Hemmat Pardis), Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Chitosan/Selenium Nanoparticles Attenuate Diclofenac Sodium-Induced Testicular Toxicity in Male Rats. CRYSTALS 2021. [DOI: 10.3390/cryst11121477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detrimental effect of diclofenac sodium (Diclo-Na) on male reproductive organs is reported upon in this paper. Chitosan is a polysaccharide composed of various amounts of glucosamine. Chitosan nanoparticles (CH-NPs) have attracted much attention owing to their biomedical activity. Selenium (Se) has a vital role in nutrition, plays an important role in enhancing male reproduction, and has a wide range of free radical scavenging activities. However, the study of the impact of chitosan nanoparticles in combination with Se (IV) (CH-NPs/Se) on male reproductive toxicity associated with Diclo-Na administration is lacking in recent literature. The current study assessed the ameliorative effects of complexes of CH-NPs/Se (IV) on Diclo-Na and the ways in which they alter reproductive toxicity in male rats. Male rats were treated for 30 days successively, either with Diclo-Na (10 mg/kg) or co-treated with a CH-NPs/Se complex (280 mg/kg). Sperm characteristics, marker enzymes of testicular function, LH, FSH, and testosterone were evaluated in addition to oxidative stress markers and histological alterations. CH-NPs/Se significantly alleviated Diclo-Na-induced decline in sperm count and motility, testicular function enzymes, and levels of LH and testosterone in serum. Additionally, CH-NPs/Se co-administration at 280 mg/Kg, inhibited the Diclo-Na-induced decline of antioxidant enzyme activities and elevated oxidative stress indices and reactive free radicals in testicular homogenates of male rats. CH-NPs/Se (280 mg/kg) alone improved Diclo-Na and ameliorated histological damages in exposed rats. In conclusion, chitosan improved testicular function in Diclo-Na-treated rats by enhancing the testosterone hormone levels, ameliorating testicular tissue, and inhibiting markers of oxidative stress in male rats.
Collapse
|
34
|
Li X, Lin H, Zhang X, Jaspers RT, Yu Q, Ji Y, Forouzanfar T, Wang D, Huang S, Wu G. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway. J Cell Mol Med 2021; 25:11278-11289. [PMID: 34786818 PMCID: PMC8650043 DOI: 10.1111/jcmm.17054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS)‐induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative‐damaged osteoblast. Osteoblastic MC3T3‐E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C‐Jun N‐terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 μM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS‐induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS‐induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.
Collapse
Affiliation(s)
- Xumin Li
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, PR China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Richard T Jaspers
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Qihao Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yinghui Ji
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Dongyun Wang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Shengbin Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| |
Collapse
|
35
|
Seif M, Deabes M, El-Askary A, El-Kott AF, Albadrani GM, Seif A, Wang Z. Ephedra sinica mitigates hepatic oxidative stress and inflammation via suppressing the TLR4/MyD88/NF-κB pathway in fipronil-treated rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62943-62958. [PMID: 34218381 DOI: 10.1007/s11356-021-15142-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Ephedra sinica (ES) is a promising medicinal plant with a wide range of pharmacological aspects, including antioxidant and anti-inflammatory properties. Fipronil (FN) is a popularly used systemic insecticide in agriculture and veterinary applications. FN exposure can result in a variety of negative health consequences. The study aimed to explore the prophylactic effects of Ephedra sinica extract (ESE) against hepatotoxicity in FN-treated rats by following the TLR4/ MyD88/ NF-κB pathway. ESE was tested for polyphenolic and antioxidant activity. Forty rats were separated into four groups and given orally by FN (10 mg/kg B.W.) and/or ESE (150 mg/kg B.W.). Blood and tissue samples were collected at the end of the experiment and prepared for pathophysiological, gene expression, and pathological analysis. ESE showed strong antioxidant activity, as well as reduced levels of hepatic MDA and oxidative stress markers (H2O2, NO). Hepatic SOD and CAT activities were increased even further. Furthermore, in FN-treated rats, ESE improved liver functions (ALT, AST, ALP, and LDH) and recovered the lipid profile (Cho, TriG, HDL, and LDL). Moreover, by inhibiting TLR4/ MyD88/ NF-κB induction, ESE alleviated hepatic pathological changes and decreased FN-induced elevations of TNF-α, IL-6, and IL-1β mRNA/protein levels. These findings suggested that ESE mitigated FN-induced hepatotoxicity via combating oxidative stress and relieving inflammation.
Collapse
Affiliation(s)
- Mohamed Seif
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Division, National Research Centre, Dokki, Giza, P.O, 12622, Egypt.
| | - Mohamed Deabes
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Division, National Research Centre, Dokki, Giza, P.O, 12622, Egypt
| | - Ahmad El-Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Amr Seif
- Faculty of Medicine, Assuit University, Asyut, 71516, Egypt
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
36
|
Abd-Elhakim YM, Moustafa GG, El-Sharkawy NI, Hussein MMA, Ghoneim MH, El Deib MM. The ameliorative effect of curcumin on hepatic CYP1A1 and CYP1A2 genes dysregulation and hepatorenal damage induced by fenitrothion oral intoxication in male rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104959. [PMID: 34802538 DOI: 10.1016/j.pestbp.2021.104959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
This research aimed to assess curcumin (CUR) effects on fenitrothion (FNT), a broad-spectrum organophosphate insecticide, -induced hepatorenal damage. Thirty adult male Wistar rats were allocated at random to five equal groups orally administered distilled water containing 1% carboxyl methylcellulose, corn oil (1 mL/rat), CUR (100 mg/kg b.wt.), FNT (5 mg/kg b.wt.), or CUR + FNT. CUR and FNT were dosed three times a week for two months. At the end of this trial, blood and tissue samples (liver and kidney) were subjected to molecular, biochemical, and histopathological assessments. The results revealed that CUR significantly diminished the FNT-induced up-regulation of hepatic CYP1A1 and CYP1A2 transcriptional levels. Moreover, CUR significantly suppressed the increment of the serum levels of hepatic alanine aminotransferase, gamma-glutamyl transferase, and kidney damage indicators (urea and creatinine) in FNT-intoxicated rats. Furthermore, in the hepatic and renal tissues, CUR remarkably restored the FNT-associated depletion of the antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S transferase, catalase, and superoxide dismutase). In addition, CUR notably reduced the FNT-induced increment in malondialdehyde content in the hepatic and renal tissues. Besides, the pathological aberrations in liver and kidney tissues resulting from FNT exposure were significantly abolished in FNT + CUR treated rats. Overall, CUR could be an effective ameliorative agent against negative pesticide impacts like FNT.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mervat H Ghoneim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Maha M El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Taheri Zadeh Z, Esmaeilpour K, Aminzadeh A, Heidari MR, Joushi S. Resveratrol Attenuates Learning, Memory, and Social Interaction Impairments in Rats Exposed to Arsenic. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9993873. [PMID: 34621902 PMCID: PMC8492247 DOI: 10.1155/2021/9993873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Arsenic (As) toxicity has deleterious effects on human health causing disorder in the brain. The aim of this study was to investigate the possible neuroprotective effect of resveratrol (RSV) on arsenic-induced neurotoxicity in rats. Neurotoxicity in rats was developed by treating As 10 mg/kg/day for 21 days orally. Animals were put into seven groups: control, vehicle, As, As+RSV10, As+RSV20 mg/kg, RSV10, and RSV20 mg/kg. Behavioral assessments such as the social interaction test, novel object recognition test, elevated plus maze, open field, the Morris water maze, in addition to assessment of biomarkers such as ferric reducing ability of plasma assay, glutathione assay, and malondialdehyde assay, were used to evaluate the effects of RSV on cognitive impairment and molecular changes induced by As. The results showed that cognitive performance impaired in As rats. RSV20 mg/kg significantly could ameliorate behavioral changes like spatial learning in days 3 and 4 (p < 0.05), recognition learning and memory (p < 0.01), disabilities in motor coordination and stress (p < 0.05), increased anxiety (p < 0.05), and social interaction deficit (sociability (p < 0.001) and social memory (p < 0.05)). RSV20 mg/kg also attenuated molecular modifications like decreased antioxidant power (p < 0.001), reduced glutathione content (p < 0.05), and increased malondialdehyde level (p < 0.05) induced by As. In addition to oxidative stress assessments, RSV10 mg/kg could significantly increase FRAP (p < 0.01) and GSH (p < 0.05); however, MDA was not significantly increased. Our current behavioral findings suggest that RSV has neuroprotective effects against AS toxicity.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Synergistic Protective Effect of Curcumin and Resveratrol against Oxidative Stress in Endothelial EAhy926 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2661025. [PMID: 34518768 PMCID: PMC8434903 DOI: 10.1155/2021/2661025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Curcumin (C) and resveratrol (R) are two well-known nutraceuticals with strong antioxidant activity that can protect cells from oxidative stress. This study aims to investigate the synergy of CR combinations in protecting human endothelial EAhy926 cells against H2O2-induced oxidative stress and its related mechanisms. C and R as individual compounds as well as CR combinations at different ratios were screened for their protective effects against H2O2 (2.5 mM) induced cell death assessed by cell viability assays. The synergistic interaction was analysed using the combination index model. The effects of optimal CR combinations on caspase-3 activity, ROS level, SOD activity, NAD cellular production, expression of Nrf2 and HO-1, and Nrf2 translocation were determined. CR combinations produced a synergistic protection against that of H2O2-induced changes in cell viability, caspase-3 activity, and ROS production. The strongest effect was observed for CR with the ratio of 8 : 2. Further experiments showed that CR 8 : 2 exhibited significantly greater effects in increasing Nrf2 translocation and expressions of Nrf2 and HO-1 proteins, as well as SOD activity and total cellular NAD production, than that of C or R alone. The findings demonstrate that combination of C and R produced a strong synergy in activity against H2O2-induced oxidative stress in EAhy926 cells. The mechanism of this synergy involves the activation of Nrf2-HO-1 signaling pathway and promotion of antioxidant enzymes. Further studies on CR synergy may help develop a new combination therapy for endothelial dysfunction and other conditions related to oxidative stress.
Collapse
|
39
|
Omidi S, Rafiee Z, Kakanejadifard A. Design and synthesis of curcumin nanostructures: Evaluation of solubility, stability, antibacterial and antioxidant activities. Bioorg Chem 2021; 116:105308. [PMID: 34509044 DOI: 10.1016/j.bioorg.2021.105308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
By coupling a quaternary pyridinium compound and curcumin (CM), a new antimicrobial agent called CP was obtained. The poor water-solubility was the most important limiting factor in the use of CM and CP. To address this problem, a hydrophilic hyperbranched polyglycerol (PG) was synthesized and reacted with CM and CP via Schiff base reaction to form two new macromolecules. Due to the presence of polymer, the solubility and stability of CM and CP increased significantly in aqueous media. Since the new macromolecules were including the hydrophilic polymeric and curcumin hydrophobic units, they self-assembled into spherical nanostructures, which were characterized by Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images. The synthetic nanostructures exhibited a controlled release of curcumin unit in the acidic environment. In vitro experiments showed that the new macromolecules are potent antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Zeinab Rafiee
- Department of Chemistry, Malayer University, Malayer, Iran
| | - Ali Kakanejadifard
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
40
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
41
|
Abd Eldaim MA, Tousson E, Soliman MM, El Sayed IET, Abdel Aleem AAH, Elsharkawy HN. Grape seed extract ameliorated Ehrlich solid tumor-induced hepatic tissue and DNA damage with reduction of PCNA and P53 protein expression in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44226-44238. [PMID: 33851294 DOI: 10.1007/s11356-021-13904-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the ameliorative potential of grape seed extract (GSE) against Ehrlich solid tumor (EST)-induced hepatic tissue alterations in mice. The control group was infused with physiological saline. The second group received GSE (50 mg/kg day by day orally) for 2 weeks. The third group was subcutaneously injected with 2.5 million of EST cells. The fourth group was injected with EST cells and treated with GSE extract simultaneously. The fifth group was injected with EST cells and kept for 2 weeks until the appearance of a solid tumor, then treated with GSE for 2 weeks. The phytochemical analysis of GSE revealed the presence of total phenols (17.442 mg GAE/g) and total flavonoid (6.687 mg CE/g) with antioxidant activity of 81.506 mg TE/g DPPH. The Ehrlich solid tumor significantly raised the activities of ALT, AST, and ALP; the level of alpha fetoprotein (AFP) in serum; and the protein expressions of hepatic proliferating cell nuclear antigen (PCNA) and tumor suppressor protein (P53), as well as induced DNA damage and pathological alterations in liver tissue. However, it significantly reduced serum albumin and total protein levels. In contrast, the co- or post-treatment of EST-bearing mice with GSE reduced the activities of ALT, AST, and ALP; the level AFP in serum; and hepatic P53 and PCNA protein expressions. In addition, it reduced EST-induced hepatic DNA damage and pathological alterations, while it increased serum albumin and total protein levels. This study suggested that GSE is a potent hepatoprotective agent and both co- and post-treatment of EST-bearing mice with GSE almost had the same effects.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt.
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | | | | | | |
Collapse
|
42
|
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res 2021; 70:939-957. [PMID: 34319417 DOI: 10.1007/s00011-021-01488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, Bucharest, Romania.,Department 5, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur, Uttar Pradesh, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
43
|
Mahmoud YK, Ali AA, Abdelrazek HMA, Aldayel TS, Abdel-Daim MM, El-Menyawy MAI. Neurotoxic Effect of Fipronil in Male Wistar Rats: Ameliorative Effect of L-Arginine and L-Carnitine. BIOLOGY 2021; 10:biology10070682. [PMID: 34356537 PMCID: PMC8301478 DOI: 10.3390/biology10070682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Insecticides are widely used in agricultural and household environments. They induce wide range of deleterious effects. Fipronil is one of the most widely used phenylpyrazoles insecticides. The neurotoxic effect of such insecticide was tested in the present study with special emphasis on cognitive deficit as well as testing the possible ameliorative impacts of L-arginine and L-carnitine. The study proposed fipronil-induced cognitive deficit as a reflection to oxidative stress and neuro-inflammation. Moreover, L-arginine and L-carnitine exerted ameliorative influence on fipronil induced oxidative stress and neuro-inflammation. Therefore, L-arginine and L-carnitine can be considered as prospective candidates for mitigation of pesticide induced neurotoxicity especially in people with high-risk exposure to pesticide. Abstract The ameliorative effect of L-arginine (LA) and L-carnitine (LC) against fipronil (FPN)-induced neurotoxicity was explored. In this case, 36 adult male rats were randomly divided into six groups: group I received distilled water, group II received 500 mg/kg LA, group III received 100 mg/kg LC, group IV received 4.85 mg/kg FPN, group V received 4.85 mg/kg FPN and 500 mg/kg LA and group VI received 4.85 mg/kg FPN and 100 mg/kg LC for 6 weeks. Cognitive performance was assessed using Barnes maze (BM). Serum corticosterone, brain total antioxidant capacity (TAC), malondialdehyde (MDA) and dopamine were measured. Histopathology and immunohistochemistry of ionized calcium-binding adaptor (Iba-1), doublecortin (DCX) and serotonin (S-2A) receptors were performed. Fipronil induced noticeable deterioration in spatial learning and memory performance. In addition, FPN significantly (p < 0.05) diminished brain antioxidant defense system and dopamine coincide with elevated serum corticosterone level. Histopathological examination revealed degenerative and necrotic changes. Furthermore, Iba-1 and DCX were significantly expressed in cortex and hippocampus whereas S-2A receptors were significantly lowered in FPN group. However, administration of LA or LC alleviated FPN-induced deteriorations. In conclusion, LA and LC could be prospective candidates for mitigation of FPN-induced neurotoxicity via their antioxidant, anti-inflammatory and neuropotentiating effects.
Collapse
Affiliation(s)
- Yasmina K. Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed A. Ali
- Hygiene, Zoonosis and Animal Behavior Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +2-012-23399477; Fax: +2-064-3207052
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | | |
Collapse
|
44
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
45
|
Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG. Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021; 26:molecules26123724. [PMID: 34207264 PMCID: PMC8234097 DOI: 10.3390/molecules26123724] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/03/2023] Open
Abstract
Despite not being utilized as considerably as other antidepressants in the therapy of depression, the monoamine oxidase inhibitors (MAOIs) proceed to hold a place in neurodegeneration and to have a somewhat broad spectrum in respect of the treatment of neurological and psychiatric conditions. Preclinical and clinical studies on MAOIs have been developing in recent times, especially on account of rousing discoveries manifesting that these drugs possess neuroprotective activities. The altered brain levels of monoamine neurotransmitters due to monoamine oxidase (MAO) are directly associated with various neuropsychiatric conditions like Alzheimer’s disease (AD). Activated MAO induces the amyloid-beta (Aβ) deposition via abnormal cleavage of the amyloid precursor protein (APP). Additionally, activated MAO contributes to the generation of neurofibrillary tangles and cognitive impairment due to neuronal loss. No matter the attention of researchers on the participation of MAOIs in neuroprotection has been on monoamine oxidase-B (MAO-B) inhibitors, there is a developing frame of proof indicating that monoamine oxidase-A (MAO-A) inhibitors may also play a role in neuroprotection. The therapeutic potential of MAOIs alongside the complete understanding of the enzyme’s physiology may lead to the future advancement of these drugs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
- Correspondence: (T.B.); (S.B.)
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
46
|
Pavel FM, Vesa CM, Gheorghe G, Diaconu CC, Stoicescu M, Munteanu MA, Babes EE, Tit DM, Toma MM, Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:diagnostics11061090. [PMID: 34203609 PMCID: PMC8232187 DOI: 10.3390/diagnostics11061090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/11/2023] Open
Abstract
Two different conditions are included in inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), being distinguished by chronic recurrence of gut inflammation in persons that are genetically predisposed and subjected to environmental causative factors. The normal structure of the gut microbiome and its alterations in IBD were defined in several microbial studies. An important factor in the prolonged inflammatory process in IBD is the impaired microbiome or "dysbiosis". Thus, gut microbiome management is likely to be an objective in IBD treatment. In this review, we analyzed the existing data regarding the pathophysiological/therapeutic implications of intestinal microflora in the development and evolution of IBD. Furthermore, the main effects generated by the administration of probiotics, prebiotics, fecal transplantation, and phytochemicals supplementation were analyzed regarding their potential roles in improving the clinical and biochemical status of patients suffering from Crohn's disease (CD) and ulcerative colitis (UC), and are depicted in the sections/subsections of the present paper. Data from the literature give evidence in support of probiotic and prebiotic therapy, showing effects such as improving remission rate, improving macroscopic and microscopic aspects of IBD, reducing the pro-inflammatory cytokines and interleukins, and improving the disease activity index. Therefore, the additional benefits of these therapies should not be ignored as adjuvants to medical therapy.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia C. Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
47
|
Lyons K, Wynne-Edwards KE. Sublethal, sex-specific, osmotic, and metabolic impairments in embryonic and adult round stingrays from a location exposed to environmental contamination in southern California, USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27493-27510. [PMID: 33511533 PMCID: PMC8164579 DOI: 10.1007/s11356-021-12546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Organic contaminants are known to affect a suite of physiological processes across vertebrate clades. However, despite their ancient lineage and important roles in maintaining healthy ecosystems, elasmobranchs (sharks, skates, and rays) are understudied with regard to sublethal effects of contaminant exposure on metabolic processes. Perturbations resulting from contaminant exposure can divert energy away from maintaining physiological homeostasis, particularly during energetically challenging life stages, such as pregnancy and embryonic development. Using the round stingray (Urobatis halleri) as a model elasmobranch species, we captured adult males and pregnant females (matrotrophic histotrophy) and their embryos from two populations differing in their environmental exposure to organic contaminants (primarily polychlorinated biphenyls (PCBs)). Pregnant females from the PCB-exposed population experienced significant decreases from early- to late-pregnancy in tissue mass and quality not seen in reference females. PCB-exposed pregnant females also failed to maintain plasma urea concentrations as pregnancy progressed, which was accompanied by a loss in muscle protein content. Despite the energetic demands of late-term pregnancy, females had significantly greater liver lipid content than reproductively inactive adult males. PCB-exposed adult males also had high metabolic capacity (i.e., enzyme activity) for most substrate groupings of all sex-site groups, suggesting that males may be even more negatively impacted by contaminant exposure than pregnant females. Evidence that in utero exposure to PCBs via maternal offloading impairs embryo outcomes is accumulating. Embryos from the PCB-contaminated site had lower tissue quality measures and indications that sex-based differences were manifesting in utero as males had higher metabolic capacities than females. This study indicates that accumulated PCB contaminants are not physiologically inert in the stingray.
Collapse
Affiliation(s)
- Kady Lyons
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
- Georgia Aquarium, 225 Baker St NW, Atlanta, GA, 30313, USA.
| | - Katherine E Wynne-Edwards
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
48
|
Oyovwi MO, Ben-Azu B, Tesi EP, Oyeleke AA, Uruaka CI, Rotu RA, Aya-Ebi EO. Repeated endosulfan exposure induces changes in neurochemicals, decreases ATPase transmembrane ionic-pumps, and increased oxidative/nitrosative stress in the brains of rats: Reversal by quercetin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104833. [PMID: 33993958 DOI: 10.1016/j.pestbp.2021.104833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Neurochemical and ATPase deregulations play important role in toxicant-induced neurodegeneration. Previous studies have shown that loss of ATPase ionic-pumps alters neurochemical balance via increased ammonia, oxidative and nitrosative stress. Thus, this study investigated the ameliorative potentials of quercetin on neurochemical, ATPase changes, hyperammonemia and oxidative/nitrosative status in the brains of Wistar rats exposed to endosulfan, a known toxic environmental pesticide that is casually used in many developing countries. Adult rats were divided into five treatment groups (n = 5). Groups 1-2 received normal saline and corn oil (vehicle) (10 mL/kg/day), group 3 received quercetin (20 mg/kg/day) orally for 28 days consecutively. However, animals in groups 4-5 were given endosulfan (5 mg/kg/day, p.o) for 28 days. But, from the 14th to 28th day, group 4 additionally received vehicle (10 mL/kg/day, p.o.), while group 5 was treated with quercetin (20 mg/kg/day, p.o.). Thereafter, brain levels of neurochemicals, ATPase activities, ammonia and oxidative/nitrosative stress were investigated by employing standardized biochemical assay protocols. Quercetin increased endosulfan-induced decreased levels of norepinephrine, dopamine, GABA, and decreased elevated concentrations of glutamate and serotonin. Quercetin normalized the increased levels of acetylcholinesterase and ammonia. Furthermore, quercetin significantly reversed the decrease in Na+/K+, Ca2+, Mg2+-ATPase activities induced by endosulfan. Also, quercetin increased superoxide dismutase, catalase and glutathione peroxidase activities, and reduced nitrite and peroxynitrite levels in brains of rats. These findings further provide evidence of the ameliorative potential of quercetin against endosulfan-induced neurotoxicity via attenuation of neurochemical, ATPase changes, and inhibition of acetylcholinesterase activity, ammonia release and oxidative/nitrosative stress in rat brains.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Basic Medical Sciences, Achievers University, Owo, Ondo State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Edesiri P Tesi
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Abioye A Oyeleke
- Department of Basic Medical Sciences, Achievers University, Owo, Ondo State, Nigeria
| | - Christian I Uruaka
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, Rivers State University, Port Harcourt, Rivers State, Nigeria
| | - Rotu A Rotu
- Department of Industrial safety and Environmental Management, School of Maritime Technology, Burutu, Delta State, Nigeria
| | - Eneni Okubo Aya-Ebi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
49
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
50
|
New Nanomaterials with Intrinsic Antioxidant Activity by Surface Functionalization of Niosomes with Natural Phenolic Acids. Pharmaceutics 2021; 13:pharmaceutics13060766. [PMID: 34063874 PMCID: PMC8224007 DOI: 10.3390/pharmaceutics13060766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Nanoantioxidants have emerged as smart devices able to provide improved stability and biocompatibility and sustained and targeted release of conventional antioxidants. In the current research, a new family of nanoantioxidants has been developed by covalently grafting gallic (GA), caffeic (CF) and ferulic (FR) acid on the surfaces of Tween 80 niosomes. First, empty and curcumin (CUR)-loaded vesicles were prepared using a thin-layer evaporation technique and then functionalized with phenolic acids using carbodiimide chemistry. Nanoantioxidants obtained were characterized in terms of size, polydispersity index, zeta potential, and loading efficiency. Their antioxidant activity was studied by ABTS and DPPH assays. Surface functionalization of empty and CUR-loaded vesicles provided stable vesicles with intrinsic antioxidant properties. In vitro antioxidant assays highlighted that vesicles functionalized with FR or GA exhibited better antioxidant activity compared to CF-grafted niosomes. Furthermore, vesicles loaded with CUR and functionalized with GA and CF showed an enhanced scavenging ability of ABTS and DPPH radicals, compared to the single antioxidant-loaded formulations, highlighting an important synergic effect of CUR when used in combination with GA ad CF.
Collapse
|