1
|
Shin HE, Won CW, Kim M. Circulating small non-coding RNA profiling for identification of older adults with low muscle strength and physical performance: A preliminary study. Exp Gerontol 2024; 197:112598. [PMID: 39343252 DOI: 10.1016/j.exger.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Small non-coding RNAs (ncRNAs) have recently emerged as potential biomarkers of sarcopenia. However, previous studies have rarely explored the association of small ncRNAs with sarcopenic components, especially muscle strength and physical performance. We aimed to examine circulating small ncRNA profiles to detect low muscle strength and physical performance in older adults. METHODS Ninety-eight older adults were randomly selected from Korean Frailty and Aging Cohort Study and classified into the "Normal," "Low muscle strength (MS) only," "Low physical performance (PP) only," and "Low MS and PP" groups by Asian Working Group for Sarcopenia 2019 criteria. We used high-throughput sequencing to delineate small ncRNA profiles in plasma. Differentially expressed small ncRNAs were analyzed to reveal distinct patterns based on muscle strength and physical performance status. RESULTS In "Low MS and PP" group, 119 miRNAs, 86 piRNAs, 92 snoRNAs, 106 snRNAs, and 15 tRNAs were differentially expressed compared to "Normal" group (p < 0.05). After Benjamini-Hochberg adjustment, 39 miRNAs, 2 piRNAs, 75 snoRNAs, 48 snRNAs, and 15 tRNAs showed differential expression in "Low MS and PP" group compared to than "Normal" group (adjusted p < 0.05). No significant differences were observed in comparisons between the other groups (adjusted p > 0.05). CONCLUSION The expression of circulating small ncRNAs were comprehensively characterized, revealing distinct signatures in older adults with both low muscle strength and physical performance compared to normal individuals. Although preliminary, this characterization can advance small ncRNA research on age-related declines in muscle strength and physical performance by providing foundational data for further investigation.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Shin HE, Jang JY, Jung H, Won CW, Kim M. MicroRNAs as commonly expressed biomarkers for sarcopenia and frailty: A systematic review. Exp Gerontol 2024; 197:112600. [PMID: 39349187 DOI: 10.1016/j.exger.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Coexistent sarcopenia and frailty is more strongly associated with adverse health outcomes than each condition alone. As the importance of coexistent sarcopenia and frailty increases, exploring their underlying mechanisms is warranted. Recently, noncoding ribonucleic acids (RNAs) have been suggested as potential biomarkers of sarcopenia and frailty. This systematic review aimed to summarize noncoding RNAs commonly expressed in sarcopenia and frailty, and to search the predicted target genes and biological pathways of them. METHODS We systematically searched the literatures on PubMed, Embase, Cochrane Library, Web of Science, and Scopus for literature published till November 15, 2023. A total of 7,202 literatures were initially retrieved. After de-duplication, 34 studies (26 sarcopenia-related and 8 frailty-related) were full-text reviewed, and 15 studies (11 sarcopenia-related and 4 frailty-related) were finally included. RESULTS miR-29a-3p, miR-29b-3p, and miR-328 were identified as commonly expressed in same direction in sarcopenia and frailty. These microRNAs (miRNAs), identified in the literature search using PubMed, modulate transforming growth factor-β signaling via extracellular matrix components and calcineurin/nuclear factor of activated T cells 3 signaling via sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a, which are involved in regulating skeletal muscle fibrosis and the growth of slow-twitch muscle fibers, respectively. miR-155-5p, miR-486, and miR-23a-3p were also commonly expressed in two conditions, although in different or conflicting directions. CONCLUSION In this systematic review, we highlight the potential of shared miRNAs that exhibit consistent expression patterns as biomarkers for the early diagnosis and progression assessment of both sarcopenia and frailty.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heeeun Jung
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Ziaei R, Shahdadian F, Bagherniya M, Karav S, Sahebkar A. Nutritional factors and physical frailty: Highlighting the role of functional nutrients in the prevention and treatment. Ageing Res Rev 2024; 101:102532. [PMID: 39374829 DOI: 10.1016/j.arr.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Physical frailty, an age-related decline in the physiological capacity and function of various organs, is associated with higher vulnerability to unfavorable health outcomes. The mechanisms proposed for physical frailty including increased inflammation and oxidative stress are closely related to nutritional status. In addition to traditional nutritional factors such as protein malnutrition and nutrient deficiencies, emerging evidence has focused on the role of functional nutrients including polyphenols, carotenoids, probiotics, prebiotics, omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs), β-hydroxy-β-methylbutyrate (HMB), coenzyme Q10 (CoQ10), and L-carnitine in modifying the risk of physical frailty syndrome. Although several clinical trials have suggested the beneficial effects of supplementation with polyphenols, HMB, and prebiotics on frailty indices, the current evidence is still not robust to support recommendations on the routine clinical use of such functional nutrients for the management of frailty. Similarly, the association between CoQ10 and frailty was mainly assessed in observational studies, and more randomized controlled trials are needed in this regard. A limited number of studies have reported the beneficial effect of L-carnitine supplementation on frailty indices. Since carnitine is mainly found in skeletal muscle and its measurement is thus challenging due to ethical constraints, it is necessary to examine the effect of different doses of L-carnitine on frailty and its indices in future studies. A large number of interventional studies evaluated the impact of n-3 PUFA supplementation on physical frailty in the elderly and many of them reported improved physical performance following supplementation, especially when combined with resistance training programs. Although promising findings from experimental and observational studies have been reported on functional nutrients, high-quality evidence from randomized controlled trials as well as detailed mechanistic studies are still required to affirm their role in the prevention and/or treatment of physical frailty. This review aims to describe the current state of research on functional nutrients that may modify the development or prognosis of frailty syndrome.
Collapse
Affiliation(s)
- Rahele Ziaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sinclair AJ, Laosa O, Antonio Carnicero J, Rodriguez-Mañas L, Álvarez-Bustos A. Disability and Quality of Life Measures in older frail and prefrail people with type 2 diabetes. The MIDFRAIL-Study. Diabetes Res Clin Pract 2024; 214:111797. [PMID: 39074514 DOI: 10.1016/j.diabres.2024.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
AIM To explore the individual response to a multimodal intervention on quality of life (QOL) and disability. METHODS 843 (77.83 years, 50.65 % men) prefrail and frail individuals ≥ 70 years with type 2 diabetes mellitus. Participants were randomized to the usual care group (UCG) or the multicomponent intervention (IG). Intervention consisted in 16-week progressive resistance training program, 7 educational sessions and the achievement of HbA1c (7-8 %, 53-64 mmol/mol)) and BP (<150 mmHg) targets. QOL (EuroQol EQ-5D-5L), basic (Barthel Index, BI) and instrumental (Lawton and Brody Index) activities of daily living (ADL) were assessed. Multivariate binomial and multinomial logistic regression models were used to explore the effect of the IG, and adherence on the outcomes studied. RESULTS The IG was associated with a significant higher probability of improvement in the QOL [OR(95 %CI): 1.75 (1.20, 2.54), p-value 0.004] and a lower probability of deterioration in QoL [0.61 (0.87, 0.54), 0.006] and Barthel Index [0.59 (0.37, 0.93), 0.023]. A high adherence (≥93 %) was needed to achieve benefits in the QOL while > 84.38 % was needed for achieving the benefits in Barthel Index. CONCLUSIONS IG has proven to be effective in increasing QOL and avoiding the worsening of QOL and basic ADL.
Collapse
Affiliation(s)
- Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), and King'College, London, UK.
| | - Olga Laosa
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Institute of Health Carlos III, Madrid, Spain; Instituto de Investigación IdiPaz, Madrid, Spain
| | - Jose Antonio Carnicero
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Institute of Health Carlos III, Madrid, Spain; Instituto de Investigación IdiPaz, Madrid, Spain
| | - Leocadio Rodriguez-Mañas
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Institute of Health Carlos III, Madrid, Spain; Instituto de Investigación IdiPaz, Madrid, Spain; Service of Geriatrics, Hospital Universitario de Getafe, Madrid, Spain
| | - Alejandro Álvarez-Bustos
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Institute of Health Carlos III, Madrid, Spain; Instituto de Investigación IdiPaz, Madrid, Spain
| |
Collapse
|
5
|
Ramonfaur D, Buckley LF, Arthur V, Yang Y, Claggett BL, Ndumele CE, Walker KA, Austin T, Odden MC, Floyd JS, Sanders-van Wijk S, Njoroge J, Kizer JR, Kitzman D, Konety SH, Schrack J, Liu F, Windham BG, Palta P, Coresh J, Yu B, Shah AM. High Throughput Plasma Proteomics and Risk of Heart Failure and Frailty in Late Life. JAMA Cardiol 2024; 9:649-658. [PMID: 38809565 PMCID: PMC11137660 DOI: 10.1001/jamacardio.2024.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Importance Heart failure (HF) and frailty frequently coexist and may share a common pathobiology, although the underlying mechanisms remain unclear. Understanding these mechanisms may provide guidance for preventing and treating both conditions. Objective To identify shared pathways between incident HF and frailty in late life using large-scale proteomics. Design, Setting, and Participants In this cohort study, 4877 aptamers (Somascan v4) were measured among participants in the community-based longitudinal Atherosclerosis Risk In Communities (ARIC) cohort study at visit 3 (V3; 1993-1995; n = 10 638) and at visit 5 (V5; 2011-2013; n = 3908). Analyses were externally replicated among 3189 participants in the Cardiovascular Health Study (CHS). Data analysis was conducted from February 2022 to June 2023. Exposures Protein aptamers, measured at study V3 and V5. Main Outcomes and Measures Outcomes assessed included incident HF hospitalization after V3 and after V5, prevalent frailty at V5, and incident frailty between V5 and visit 6 (V6; 2016-2017; n = 4131). Frailty was assessed using the Fried criteria. Analyses were adjusted for age, gender, race, field center, hypertension, diabetes, smoking status, body mass index, estimated glomerular filtration rate, prevalent coronary heart disease, prevalent atrial fibrillation, and history of myocardial infarction. Mendelian randomization (MR) analysis was performed to assess potential causal effects of candidate proteins on HF and frailty. Results A total of 4877 protein aptamers were measured among 10 638 participants at V3 (mean [SD] age, 60 [6] years; 4886 [46%] men). Overall, 286 proteins were associated with incident HF after V3 (822 events; P < 1.0 × 10-5), 83 of which were also associated with incident after V5 (336 events; P < 1.7 × 10-4). Among HF-free participants at V5 (n = 3908; mean [SD] age, 75 [5] years; 1861 [42%] men), 48 of 83 HF-associated proteins were associated with prevalent frailty (223 cases; P < 6.0 × 10-4), 18 of which were also associated with incident frailty at V6 (152 cases; P < 1.0 × 10-3). These proteins enriched fibrosis and inflammation pathways and demonstrated stronger associations with incident HF with preserved ejection fraction (HFpEF) than HF with reduced ejection fraction. All 18 proteins were associated with both prevalent frailty and incident HF in CHS. MR identified potential causal effects of several proteins on frailty and HF. Conclusions and Relevance In this study, the proteins associated with risk of HF and frailty enrich for pathways related to inflammation and fibrosis as well as risk of HFpEF. Several of these proteins could potentially contribute to the shared pathophysiology of frailty and HF.
Collapse
Affiliation(s)
- Diego Ramonfaur
- University of Texas Southwestern Medical Center, Dallas
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | - Yimin Yang
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Chiadi E. Ndumele
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Thomas Austin
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Michelle C. Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Sandra Sanders-van Wijk
- Division of Cardiology, Department of Medicine, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Joyce Njoroge
- Division of Cardiology, Department of Medicine, Stanford University Medical Center, Palo Alto, California
| | - Jorge R. Kizer
- Division of Cardiology, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, San Francisco, California
| | - Dalane Kitzman
- Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Jennifer Schrack
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fangyu Liu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Priya Palta
- University of North Carolina School of Medicine, Chapel Hill
| | - Josef Coresh
- Departments of Medicine and Population Health, NYU Langone Health, New York, New York
| | - Bing Yu
- The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Amil M. Shah
- University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
6
|
El Assar M, Rodríguez-Sánchez I, Álvarez-Bustos A, Rodríguez-Mañas L. Biomarkers of frailty. Mol Aspects Med 2024; 97:101271. [PMID: 38631189 DOI: 10.1016/j.mam.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Several biomarkers have been proposed to identify frailty, a multisystemic age-related syndrome. However, the complex pathophysiology and the absence of a consensus on a comprehensive and universal definition make it challenging to pinpoint a singular biomarker or set of biomarkers that conclusively characterize frailty. This review delves into the main laboratory biomarkers, placing special emphasis on those associated with various pathways closely tied to the frailty condition, such as inflammation, oxidative stress, mitochondrial dysfunction, metabolic and endocrine alterations and microRNA. Additionally, we provide a summary of different clinical biomarkers encompassing different tools that have been proposed to assess frailty. We further address various imaging biomarkers such as Dual Energy X-ray Absorptiometry, Bioelectrical Impedance analysis, Computed Tomography and Magnetic Resonance Imaging, Ultrasound and D3 Creatine dilution. Intervention to treat frailty, including non-pharmacological ones, especially those involving physical exercise and nutrition, and pharmacological interventions, that include those targeting specific mechanisms such as myostatin inhibitors, insulin sensitizer metformin and with special relevance for hormonal treatments are mentioned. We further address the levels of different biomarkers in monitoring the potential positive effects of some of these interventions. Despite the availability of numerous biomarkers, their performance and usefulness in the clinical arena are far from being satisfactory. Considering the multicausality of frailty, there is an increasing need to assess the role of sets of biomarkers and the combination between laboratory, clinical and image biomarkers, in terms of sensitivity, specificity and predictive values for the diagnosis and prognosis of the different outcomes of frailty to improve detection and monitoring of older people with frailty or at risk of developing it, being this a need in the everyday clinical practice.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain.
| |
Collapse
|
7
|
Polidori MC. Aging hallmarks, biomarkers, and clocks for personalized medicine: (re)positioning the limelight. Free Radic Biol Med 2024; 215:48-55. [PMID: 38395089 DOI: 10.1016/j.freeradbiomed.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
The rapidly increasing aging prevalence, complexity, and heterogeneity pose the scientific and medical communities in front of challenges. These are delivered by gaps between basic and translational research, as well as between clinical practice guidelines to improve survival and absence of evidence on personalized strategies to improve functions, wellbeing and quality of life. The triumphs of aging science sheding more and more light on mechanisms of aging as well as those of medical and technological progress to prolong life expectancy are clear. Currently, and in the next two to three decades, all efforts must be put in a closer interdisciplinary dialogue between biogerontologists and geriatricians to enable real-life measures of aging phenotypes to be used to uncover the physiological - and therefore translational - relevance of newly discovered aging clocks, biomarkers, and hallmarks.
Collapse
Affiliation(s)
- M Cristina Polidori
- Aging Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Herderstraße 52, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress- Responses in Aging- Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Virto N, Río X, Angulo-Garay G, García Molina R, Avendaño Céspedes A, Cortés Zamora EB, Gómez Jiménez E, Alcantud Córcoles R, Rodriguez Mañas L, Costa-Grille A, Matheu A, Marcos-Pérez D, Lazcano U, Vergara I, Arjona L, Saeteros M, Lopez-de-Ipiña D, Coca A, Abizanda Soler P, Sanabria SJ. Development of Continuous Assessment of Muscle Quality and Frailty in Older Patients Using Multiparametric Combinations of Ultrasound and Blood Biomarkers: Protocol for the ECOFRAIL Study. JMIR Res Protoc 2024; 13:e50325. [PMID: 38393761 PMCID: PMC10924264 DOI: 10.2196/50325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Frailty resulting from the loss of muscle quality can potentially be delayed through early detection and physical exercise interventions. There is a demand for cost-effective tools for the objective evaluation of muscle quality, in both cross-sectional and longitudinal assessments. Literature suggests that quantitative analysis of ultrasound data captures morphometric, compositional, and microstructural muscle properties, while biological assays derived from blood samples are associated with functional information. OBJECTIVE This study aims to assess multiparametric combinations of ultrasound and blood-based biomarkers to offer a cross-sectional evaluation of the patient frailty phenotype and to track changes in muscle quality associated with supervised exercise programs. METHODS This prospective observational multicenter study will include patients aged 70 years and older who are capable of providing informed consent. We aim to recruit 100 patients from hospital environments and 100 from primary care facilities. Each patient will undergo at least two examinations (baseline and follow-up), totaling a minimum of 400 examinations. In hospital environments, 50 patients will be measured before/after a 16-week individualized and supervised exercise program, while another 50 patients will be followed up after the same period without intervention. Primary care patients will undergo a 1-year follow-up evaluation. The primary objective is to compare cross-sectional evaluations of physical performance, functional capacity, body composition, and derived scales of sarcopenia and frailty with biomarker combinations obtained from muscle ultrasound and blood-based assays. We will analyze ultrasound raw data obtained with a point-of-care device, along with a set of biomarkers previously associated with frailty, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Additionally, we will examine the sensitivity of these biomarkers to detect short-term muscle quality changes and functional improvement after a supervised exercise intervention compared with usual care. RESULTS At the time of manuscript submission, the enrollment of volunteers is ongoing. Recruitment started on March 1, 2022, and ends on June 30, 2024. CONCLUSIONS The outlined study protocol will integrate portable technologies, using quantitative muscle ultrasound and blood biomarkers, to facilitate an objective cross-sectional assessment of muscle quality in both hospital and primary care settings. The primary objective is to generate data that can be used to explore associations between biomarker combinations and the cross-sectional clinical assessment of frailty and sarcopenia. Additionally, the study aims to investigate musculoskeletal changes following multicomponent physical exercise programs. TRIAL REGISTRATION ClinicalTrials.gov NCT05294757; https://clinicaltrials.gov/ct2/show/NCT05294757. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50325.
Collapse
Affiliation(s)
- Naiara Virto
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Xabier Río
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Garazi Angulo-Garay
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Rafael García Molina
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Avendaño Céspedes
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Enfermería de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elisa Belen Cortés Zamora
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Gómez Jiménez
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Ruben Alcantud Córcoles
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodriguez Mañas
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Geriatrics Department, University Hospital of Getafe, Getafe, Spain
| | | | - Ander Matheu
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Biodonostia, Health Research Institute, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Marcos-Pérez
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Uxue Lazcano
- Biodonostia, Health Research Institute, Donostia, Spain
| | - Itziar Vergara
- Biodonostia, Health Research Institute, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Osakidetza, Health Care Department, Research Unit APOSIs, Gipuzkoa, Spain
- Research Network in Chronicity, Primary Care and Health Promotion (RICAPPS), Barakaldo, Spain
| | - Laura Arjona
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
| | - Morelva Saeteros
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
| | | | - Aitor Coca
- Department of Physical Activity and Sports Sciences, Faculty of Health Sciences, Euneiz University, Vitoria-Gasteiz, Spain
| | - Pedro Abizanda Soler
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Sergio J Sanabria
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
9
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
10
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P. Measuring healthy ageing: current and future tools. Biogerontology 2023; 24:845-866. [PMID: 37439885 PMCID: PMC10615962 DOI: 10.1007/s10522-023-10041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Human ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
Affiliation(s)
- Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal.
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal.
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
11
|
Dent E, Hanlon P, Sim M, Jylhävä J, Liu Z, Vetrano DL, Stolz E, Pérez-Zepeda MU, Crabtree DR, Nicholson C, Job J, Ambagtsheer RC, Ward PR, Shi SM, Huynh Q, Hoogendijk EO. Recent developments in frailty identification, management, risk factors and prevention: A narrative review of leading journals in geriatrics and gerontology. Ageing Res Rev 2023; 91:102082. [PMID: 37797723 DOI: 10.1016/j.arr.2023.102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Frailty is an age-related clinical condition characterised by an increased susceptibility to stressors and an elevated risk of adverse outcomes such as mortality. In the light of global population ageing, the prevalence of frailty is expected to soar in coming decades. This narrative review provides critical insights into recent developments and emerging practices in frailty research regarding identification, management, risk factors, and prevention. We searched journals in the top two quartiles of geriatrics and gerontology (from Clarivate Journal Citation Reports) for articles published between 01 January 2018 and 20 December 2022. Several recent developments were identified, including new biomarkers and biomarker panels for frailty screening and diagnosis, using artificial intelligence to identify frailty, and investigating the altered response to medications by older adults with frailty. Other areas with novel developments included exercise (including technology-based exercise), multidimensional interventions, person-centred and integrated care, assistive technologies, analysis of frailty transitions, risk-factors, clinical guidelines, COVID-19, and potential future treatments. This review identified a strong need for the implementation and evaluation of cost-effective, community-based interventions to manage and prevent frailty. Our findings highlight the need to better identify and support older adults with frailty and involve those with frailty in shared decision-making regarding their care.
Collapse
Affiliation(s)
- Elsa Dent
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, Australia
| | - Peter Hanlon
- School of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Faculty of Social Sciences, Unit of Health Sciences and Gerontology Research Center, University of Tampere, Tampere, Finland
| | - Zuyun Liu
- Second Affiliated Hospital and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Erwin Stolz
- Institute of Social Medicine and Epidemiology, Medical University of Graz, Graz, Austria
| | - Mario Ulises Pérez-Zepeda
- Instituto Nacional de Geriatría, Dirección de Investigación, ciudad de México, Mexico; Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan Edo. de México
| | | | - Caroline Nicholson
- Centre for Health System Reform & Integration, Mater Research Institute-University of Queensland, Brisbane, Australia
| | - Jenny Job
- Centre for Health System Reform & Integration, Mater Research Institute-University of Queensland, Brisbane, Australia
| | - Rachel C Ambagtsheer
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, Australia
| | - Paul R Ward
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, Australia
| | - Sandra M Shi
- Hinda and Arthur Marcus Institute for Aging, Hebrew Senior Life, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Quan Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Emiel O Hoogendijk
- Department of Epidemiology & Data Science and Department of General Practice, Amsterdam UMC, Location VU University Medical Center, Amsterdam, Netherlands; Amsterdam Public Health research institute, Ageing & Later Life Research Program, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Robinson O, Lau CE. How do metabolic processes age: Evidence from human metabolomic studies. Curr Opin Chem Biol 2023; 76:102360. [PMID: 37393706 DOI: 10.1016/j.cbpa.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Metabolomics, the global profiling of small molecules in the body, has emerged as a promising analytical approach for assessing molecular changes associated with ageing at the population level. Understanding root metabolic ageing pathways may have important implications for managing age-related disease risk. In this short review, relevant studies published in the last few years that have made valuable contributions to this field will be discussed. These include large-scale studies investigating metabolic changes with age, metabolomic clocks, and metabolic pathways associated with ageing phenotypes. Recent significant advances include the use of longitudinal study designs, populations spanning the whole life course, standardised analytical platforms of enhanced metabolome coverage and development of multivariate analyses. While many challenges remain, recent studies have demonstrated the considerable promise of this field.
Collapse
Affiliation(s)
- Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, United Kingdom; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, United Kingdom.
| | - ChungHo E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, United Kingdom
| |
Collapse
|
13
|
Leghissa M, Carrera Á, Iglesias CA. Machine learning approaches for frailty detection, prediction and classification in elderly people: A systematic review. Int J Med Inform 2023; 178:105172. [PMID: 37586309 DOI: 10.1016/j.ijmedinf.2023.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Frailty in older people is a syndrome related to aging that is becoming increasingly common and problematic as the average age of the world population increases. Detecting frailty in its early stages or, even better, predicting its appearance can greatly benefit health in later years of life and save the healthcare system from high costs. Machine Learning models fit the need to develop a tool for supporting medical decision-making in detecting or predicting frailty. METHODS In this review, we followed the PRISMA methodology to conduct a systematic search of the most relevant Machine Learning models that have been developed so far in the context of frailty. We selected 41 publications and compared them according to their purpose, the type of dataset used, the target variables, and the results they obtained, highlighting their shortcomings and strengths. RESULTS The variety of frailty definitions allows many problems to fall into this field, and it is often challenging to compare results due to the differences in target variables. The data types can be divided into gait data, usually collected with sensors, and medical records, often in the context of aging studies. The most common algorithms are well-known models available from every Machine Learning library. Only one study developed a new framework for frailty classification, and only two considered Explainability. CONCLUSIONS This review highlights some gaps in the field of Machine Learning applied to the assessment and prediction of frailty, such as the need for a universal quantitative definition. It emphasizes the need for close collaboration between medical professionals and data scientists to unlock the potential of data collected in hospital and clinical settings. As a suggestion for future work, the area of Explainability, which is crucial for models in medicine and health care, was considered in very few studies.
Collapse
Affiliation(s)
- Matteo Leghissa
- Universidad Politécnica de Madrid, Av. Complutense, 30, 28040, Madrid, Spain.
| | - Álvaro Carrera
- Universidad Politécnica de Madrid, Av. Complutense, 30, 28040, Madrid, Spain.
| | - Carlos A Iglesias
- Universidad Politécnica de Madrid, Av. Complutense, 30, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Nagy D, Hricisák L, Walford GP, Lékai Á, Karácsony G, Várbíró S, Ungvári Z, Benyó Z, Pál É. Disruption of Vitamin D Signaling Impairs Adaptation of Cerebrocortical Microcirculation to Carotid Artery Occlusion in Hyperandrogenic Female Mice. Nutrients 2023; 15:3869. [PMID: 37764653 PMCID: PMC10534509 DOI: 10.3390/nu15183869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin D deficiency contributes to the pathogenesis of age-related cerebrovascular diseases, including ischemic stroke. Sex hormonal status may also influence the prevalence of these disorders, indicated by a heightened vulnerability among postmenopausal and hyperandrogenic women. To investigate the potential interaction between sex steroids and disrupted vitamin D signaling in the cerebral microcirculation, we examined the cerebrovascular adaptation to unilateral carotid artery occlusion (CAO) in intact, ovariectomized, and hyperandrogenic female mice with normal or functionally inactive vitamin D receptor (VDR). We also analyzed the morphology of leptomeningeal anastomoses, which play a significant role in the compensation. Ablation of VDR by itself did not impact the cerebrocortical adaptation to CAO despite the reduced number of pial collaterals. While ovariectomy did not undermine compensatory mechanisms following CAO, androgen excess combined with VDR inactivity resulted in prolonged hypoperfusion in the cerebral cortex ipsilateral to the occlusion. These findings suggest that the cerebrovascular consequences of disrupted VDR signaling are less pronounced in females, providing a level of protection even after ovariectomy. Conversely, even short-term androgen excess with lacking VDR signaling may lead to unfavorable outcomes of ischemic stroke, highlighting the complex interplay between sex steroids and vitamin D in terms of cerebrovascular diseases.
Collapse
Affiliation(s)
- Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Guillaume Peter Walford
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
| | - Ágnes Lékai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
| | - Gábor Karácsony
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary;
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
- Workgroup for Science Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (G.P.W.); (Á.L.); (G.K.); (Z.B.)
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
15
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P, Andrade RP, Calado S, Faleiro ML, Matos C, Marques N, Marreiros A, Nzwalo H, Pais S, Palmeirim I, Simão S, Joaquim N, Miranda R, Pêgas A, Sardo A. Measuring healthy ageing: current and future tools. Biogerontology 2023. [DOI: https:/doi.org/10.1007/s10522-023-10041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 09/01/2023]
Abstract
AbstractHuman ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
|
16
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Henning T, Kochlik B, Ara I, González-Gross M, Fiorillo E, Marongiu M, Cucca F, Rodriguez-Artalejo F, Carnicero Carreño JA, Rodriguez-Mañas L, Grune T, Weber D. Patterns of Dietary Blood Markers Are Related to Frailty Status in the FRAILOMIC Validation Phase. Nutrients 2023; 15:nu15051142. [PMID: 36904142 PMCID: PMC10005398 DOI: 10.3390/nu15051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The influence of nutritional factors on frailty syndrome is still poorly understood. Thus, we aimed to confirm cross-sectional associations of diet-related blood biomarker patterns with frailty and pre-frailty statuses in 1271 older adults from four European cohorts. Principal component analysis (PCA) was performed based on plasma levels of α-carotene, β-carotene, lycopene, lutein + zeaxanthin, β-cryptoxanthin, α-tocopherol, γ-tocopherol and retinol. Cross-sectional associations between biomarker patterns and frailty status, according to Fried's frailty criteria, were assessed by using general linear models and multinomial logistic regression models as appropriate with adjustments for the main potential confounders. Robust subjects had higher concentrations of total carotenoids, β-carotene and β-cryptoxanthin than frail and pre-frail subjects and had higher lutein + zeaxanthin concentrations than frail subjects. No associations between 25-Hydroxyvitamin D3 and frailty status were observed. Two distinct biomarker patterns were identified in the PCA results. The principal component 1 (PC1) pattern was characterized by overall higher plasma levels of carotenoids, tocopherols and retinol, and the PC2 pattern was characterized by higher loadings for tocopherols, retinol and lycopene together and lower loadings for other carotenoids. Analyses revealed inverse associations between PC1 and prevalent frailty. Compared to participants in the lowest quartile of PC1, those in the highest quartile were less likely to be frail (odds ratio: 0.45, 95% CI: 0.25-0.80, p = 0.006). In addition, those in the highest quartile of PC2 showed higher odds for prevalent frailty (2.48, 1.28-4.80, p = 0.007) than those in the lowest quartile. Our findings strengthen the results from the first phase of the FRAILOMIC project, indicating carotenoids are suitable components for future biomarker-based frailty indices.
Collapse
Affiliation(s)
- Thorsten Henning
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marcela González-Gross
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- CIBER on Physiopathology of Obesity and Nutrition, CIBEROBN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 09042 Monserrato, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, CIBERESP and IMDEA-Food Institute, Universidad Autonoma de Madrid, CEI UAM + CSIC, 28029 Madrid, Spain
| | - Jose Antonio Carnicero Carreño
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Foundation, Getafe University Hospital, 28905 Getafe, Spain
| | - Leocadio Rodriguez-Mañas
- CIBER of Frailty and Healthy Aging, CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Division of Geriatrics, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Correspondence:
| |
Collapse
|
18
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
19
|
Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Marzetti E. Anorexia of Aging: Metabolic Changes and Biomarker Discovery. Clin Interv Aging 2022; 17:1761-1767. [PMID: 36483084 PMCID: PMC9726216 DOI: 10.2147/cia.s325008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/24/2022] [Indexed: 08/04/2023] Open
Abstract
The age-associated decrease in appetite and food intake is referred to as "anorexia of aging". Older adults with anorexia show changes in the quantity/quality of energy supplied to the organism which eventually may cause a mismatch between ingested calories and physiological energy demands. Therefore, a state of malnutrition and impaired metabolism may ensue which renders older people more vulnerable to stressors and more prone to incur negative health outcomes. These latter cover a wide range of conditions including sarcopenia, low engagement in physical activity, and more severe consequences such as disability, loss of independence, hospitalization, nursing home placement, and mortality. Malnutrition has been recognized by the European Society of Clinical Nutrition (ESPEN) among the chief risk factors for the development of frailty. Frailty refers to a state of increased vulnerability to stressors stemming from reduced physiologic reserve, and according to ESPEN, is also nutrition-based. Alike frailty, anorexia is highly prevalent among older adults, and its multifactorial nature includes metabolic changes that develop in older age and possibly underly the condition. Circulating factors, including hormones (eg, cholecystokinin, ghrelin, leptin, and inflammatory and microbial mediators of gut dysbiosis), have been proposed as biomarkers for this condition to support early identification and develop personalized nutritional interventions. Additional studies are needed to untangle the interrelationship between gut microbiota and appetite regulation in older adults operating through brain-gut crosstalk. Furthermore, the contribution of the genetic background to appetite regulation and specific nutritional needs warrants investigation. Here, we provide an overview on anorexia of aging in the context of age-related metabolic changes. A special focus is placed on candidate biomarkers that may be used to assist in the early identification of anorexia of aging and in the development of personalized nutritional counseling.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
20
|
Picca A, Calvani R, Coelho-Júnior HJ, Marini F, Landi F, Marzetti E. Circulating Inflammatory, Mitochondrial Dysfunction, and Senescence-Related Markers in Older Adults with Physical Frailty and Sarcopenia: A BIOSPHERE Exploratory Study. Int J Mol Sci 2022; 23:14006. [PMID: 36430485 PMCID: PMC9692456 DOI: 10.3390/ijms232214006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisystem derangements encompassing musculoskeletal, stress, and metabolic response have been described in older adults with physical frailty and sarcopenia (PF&S). Whether PF&S is also associated with markers of cellular senescence has yet to be explored. To address this research question, we quantified the serum levels of selected inflammatory, mitochondrial, and senescence-associated secretory phenotype (SASP)-related factors in 22 older adults with PF&S (mean age 75.5 ± 4.7 years; 81.8% women) and 27 nonPF&S controls (mean age 75.0 ± 4.4 years; 62.9% women) and evaluated their association with PF&S. Markers of inflammation (interleukin (IL)1-β, IL6, and tumor necrosis factor α (TNF-α)), matrix remodeling (Serpin E1, intercellular adhesion molecule 1 (ICAM-1), and tissue inhibitor of metalloproteinases 1 (TIMP-1)), mitochondrial dysfunction (growth/differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21)), Activin A, and glial fibrillary acidic protein (GFAP) were assayed. Serum levels of TNF-α and those of the SASP-related factors ICAM-1 and TIMP-1 were found to be higher, while IL1-β and IL6 were lower in PF&S participants compared with controls. Partial least squares discriminant analysis allowed discrimination of PF&S from nonPF&S participants with 74.0 ± 3.4% accuracy. Markers that significantly contributed to the classification were ICAM-1, TIMP-1, TNF-α, GFAP, and IL6. Future studies are warranted to establish whether inflammatory and SASP-related pathways are causally linked to the development and progression of PF&S, and may represent new targets for interventions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
21
|
Gordon EH, Hubbard RE. Frailty: understanding the difference between age and ageing. Age Ageing 2022; 51:6668713. [PMID: 35973066 DOI: 10.1093/ageing/afac185] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
In the past, illness and dependence were viewed as inevitable consequences of old age. Now, we understand that there is a difference between age (the passing of chronological time) and ageing (the increased risk of adverse outcomes over time). Over the last 50 years, 'frailty' research has established that ageing is heterogeneous, variable and malleable. Significant advances have been made in frailty measurement (description of clinical features and development of clinical models), mechanisms (insights into pathogenesis) and management (development of interventions to reduce and/or prevent progression). Subsequently, the concept of frailty has informed health policy and clinical practice and started to change perceptions of older age held by the general public and the health sector. Here, we overview key achievements in frailty research and clinical practice and highlight the considerable number of known unknowns that may be addressed in the future.
Collapse
Affiliation(s)
- Emily H Gordon
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Ruth E Hubbard
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
deFilippi CR, Damluji AA. At the Crossroad Between Skeletal and Cardiac Muscle Cells. Circulation 2022; 145:1780-1783. [PMID: 35696457 DOI: 10.1161/circulationaha.122.059935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Abdulla A Damluji
- From the Inova Heart and Vascular Institute, Falls Church, VA (C.R.d.F., A.A.D.).,Johns Hopkins University School of Medicine, Baltimore, MD (A.A.D.)
| |
Collapse
|
23
|
Sabbatinelli J, Castiglione S, Macrì F, Giuliani A, Ramini D, Vinci MC, Tortato E, Bonfigli AR, Olivieri F, Raucci A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: a retrospective cohort study. Cardiovasc Diabetol 2022; 21:95. [PMID: 35668468 PMCID: PMC9169316 DOI: 10.1186/s12933-022-01535-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advanced glycation end-products (AGEs) and their interaction with the receptor for advanced glycation end-products (RAGE) play a pivotal role in the development and progression of type 2 diabetes. In this retrospective cohort study, we explored the association of circulating levels of soluble RAGE (sRAGE) isoforms, i.e., endogenous secretory esRAGE and cleaved cRAGE, AGEs and their respective ratios with 15-year all-cause mortality in type 2 diabetes. METHODS Baseline AGEs and sRAGE isoforms concentration were measured by ELISA in 362 patients with type 2 diabetes and in 125 age- and gender-matched healthy control subjects (CTR). Independent predictors of mortality were determined using Cox proportional-hazards models and used to build and validate a nomogram for all-cause mortality prediction in type 2 diabetes. RESULTS AGEs, total sRAGE, cRAGE and the AGEs/sRAGE and AGEs/esRAGE ratios were significantly increased in patients with type 2 diabetes compared to CTR (p < 0.001). In CTR subjects, but not in type 2 diabetes patients, a significant negative correlation between cRAGE and age was confirmed (p = 0.003), whereas the AGEs/sRAGE (p = 0.032) and AGEs/cRAGE (p = 0.006) ratios were positively associated with age. At an average follow-up of 15 years (4,982 person-years), 130 deaths were observed. The increase in the AGEs/cRAGE ratio was accompanied by a higher risk of all-cause mortality in patients with type 2 diabetes (HR per each SD increment = 1.30, 95% CI 1.15-1.47; p < 0.001). Moreover, sRAGE was associated with the development of major adverse cardiovascular events (MACE) in type 2 diabetes patients without previous MACE (OR for each SD increase: 1.48, 95% CI 1.11-1.89). A nomogram based on age, sex, HbA1c, systolic blood pressure, and the AGEs/cRAGE ratio was built to predict 5-, 10- and 15-year survival in type 2 diabetes. Patients were categorized into quartiles of the monogram scores and Kaplan-Meier survival curves confirmed the prognostic accuracy of the model (log-rank p = 6.5 × 10- 13). CONCLUSIONS The ratio between AGEs and the cRAGE isoform is predictive of 15-year survival in patients with type 2 diabetes. Our data support the assessment of circulating AGEs and soluble RAGE isoforms in patients with type 2 diabetes as predictors of MACE and all-cause mortality.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Stefania Castiglione
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Deborah Ramini
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Tortato
- Metabolic Diseases and Diabetology Department, IRCCS INRCA, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Angela Raucci
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
24
|
Frailty in rodents: Models, underlying mechanisms, and management. Ageing Res Rev 2022; 79:101659. [PMID: 35660004 DOI: 10.1016/j.arr.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Frailty is a clinical geriatric syndrome characterized by decreased multisystem function and increased vulnerability to adverse outcomes. Although numerous studies have been conducted on frailty, the underlying mechanisms and management strategies remain unclear. As rodents share homology with humans, they are used extensively as animal models to study human diseases. Rodent frailty models can be classified broadly into the genetic modification and non-genetic modification models, the latter of which include frailty assessment models (based on the Fried frailty phenotype and frailty index methods) and induced frailty models. Such models were developed for use in investigating frailty-related physiological changes at the gene, cellular, molecular, and system levels, including the organ system level. Furthermore, exercise, diet, and medication interventions, in addition to their combinations, could improve frailty status in rodents. Rodent frailty models provide novel and effective tools for frailty research. In the present paper, we review research progress in rodent frailty models, mechanisms, and management, which could facilitate and guide further clinical research on frailty in older adults.
Collapse
|
25
|
Picca A, Calvani R, Marzetti E. Multisystem derangements in frailty and sarcopenia: a source for biomarker discovery. Curr Opin Clin Nutr Metab Care 2022; 25:173-177. [PMID: 35238804 DOI: 10.1097/mco.0000000000000828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Multisystem derangements, encompassing metabolic, musculoskeletal and stress-response systems, occur during aging and are associated with the development of physical frailty and sarcopenia. These modular changes are relevant sources for the identification of biomarkers for the two conditions. Here, we provide an up-to-date overview on existing biomarkers of physical frailty and sarcopenia and discuss emerging approaches for biomarker discovery. RECENT FINDINGS Inflammatory, metabolic and hematologic markers are shared between physical frailty and sarcopenia. Gut microbial derivatives and damage-associated molecular patterns transferred via extracellular vesicles have been indicated as possible gut-muscle axis regulators and candidate markers of physical frailty and sarcopenia. SUMMARY Mediators of metabolic, musculoskeletal and stress-response system dysregulation are shared by physical frailty and sarcopenia and indicate the existence of common pathophysiological pathways. Multiplatform biomarker analyses have been proposed as an innovating approach for tracking the multifaceted and dynamic nature of physical frailty and sarcopenia. Upon validation, the identified biomarkers may support diagnostic makeup and tracking of the two conditions in both research and clinical settings.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS
| | | | - Emanuele Marzetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS
- Università Cattolica del Sacro Cuore, Department of Geriatrics and Orthopedics, Rome, Italy
| |
Collapse
|
26
|
Ratiner K, Abdeen SK, Goldenberg K, Elinav E. Utilization of Host and Microbiome Features in Determination of Biological Aging. Microorganisms 2022; 10:668. [PMID: 35336242 PMCID: PMC8950177 DOI: 10.3390/microorganisms10030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
The term 'old age' generally refers to a period characterized by profound changes in human physiological functions and susceptibility to disease that accompanies the final years of a person's life. Despite the conventional definition of old age as exceeding the age of 65 years old, quantifying aging as a function of life years does not necessarily reflect how the human body ages. In contrast, characterizing biological (or physiological) aging based on functional parameters may better reflect a person's temporal physiological status and associated disease susceptibility state. As such, differentiating 'chronological aging' from 'biological aging' holds the key to identifying individuals featuring accelerated aging processes despite having a young chronological age and stratifying them to tailored surveillance, diagnosis, prevention, and treatment. Emerging evidence suggests that the gut microbiome changes along with physiological aging and may play a pivotal role in a variety of age-related diseases, in a manner that does not necessarily correlate with chronological age. Harnessing of individualized gut microbiome data and integration of host and microbiome parameters using artificial intelligence and machine learning pipelines may enable us to more accurately define aging clocks. Such holobiont-based estimates of a person's physiological age may facilitate prediction of age-related physiological status and risk of development of age-associated diseases.
Collapse
Affiliation(s)
- Karina Ratiner
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Suhaib K. Abdeen
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Kim Goldenberg
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
- Division of Cancer-Microbiome Research, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Zupo R, Castellana F, De Nucci S, Sila A, Aresta S, Buscemi C, Randazzo C, Buscemi S, Triggiani V, De Pergola G, Cava C, Lozupone M, Panza F, Sardone R. Role of Dietary Carotenoids in Frailty Syndrome: A Systematic Review. Biomedicines 2022; 10:632. [PMID: 35327434 PMCID: PMC8945528 DOI: 10.3390/biomedicines10030632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Unbalanced diets and altered micronutrient intake are prevalent in the aging adult population. We conducted a systematic review to appraise the evidence regarding the association between single (α-carotene, β-carotene, lutein, lycopene, β-cryptoxanthin) or total carotenoids and frailty syndrome in the adult population. The literature was screened from study inception to December 2021, using six different electronic databases. After establishing inclusion criteria, two independent researchers assessed the eligibility of 180 retrieved articles. Only 11 fit the eligibility requirements, reporting five carotenoid entries. No exclusion criteria were applied to outcomes, assessment tools, i.e., frailty constructs or surrogates, recruitment setting, general health status, country, and study type (cohort or cross-sectional). Carotenoid exposure was taken as either dietary intake or serum concentrations. Cross-sectional design was more common than longitudinal design (n = 8). Higher dietary and plasma levels of carotenoids, taken individually or cumulatively, were found to reduce the odds of physical frailty markedly, and the evidence showed consistency in the direction of association across all selected studies. Overall, the methodological quality was rated from moderate (27%) to high (73%). Prevention of micronutrient deficiencies has some potential to counteract physical decline. Considering carotenoids as biological markers, when monitoring micronutrient status, stressing increased fruit and vegetable intake may be part of potential multilevel interventions to prevent or better manage disability.
Collapse
Affiliation(s)
- Roberta Zupo
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| | - Fabio Castellana
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| | - Sara De Nucci
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| | - Annamaria Sila
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| | - Simona Aresta
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| | - Carola Buscemi
- Department of Health Promotion, Maternal and Child Health, Internal and Specialty Medicine of Excellence (PROMISE), University of Palermo, 90127 Palermo, Italy; (C.B.); (C.R.); (S.B.)
| | - Cristiana Randazzo
- Department of Health Promotion, Maternal and Child Health, Internal and Specialty Medicine of Excellence (PROMISE), University of Palermo, 90127 Palermo, Italy; (C.B.); (C.R.); (S.B.)
| | - Silvio Buscemi
- Department of Health Promotion, Maternal and Child Health, Internal and Specialty Medicine of Excellence (PROMISE), University of Palermo, 90127 Palermo, Italy; (C.B.); (C.R.); (S.B.)
- Unit of Gastroenterology, Section of Obesity, Metabolic Diseases and Clinical Nutrition, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Vincenzo Triggiani
- Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Disease, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy;
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, 20131 Milan, Italy;
| | - Madia Lozupone
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy; (M.L.); (F.P.)
| | - Francesco Panza
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy; (M.L.); (F.P.)
| | - Rodolfo Sardone
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (F.C.); (S.D.N.); (A.S.); (S.A.); (R.S.)
| |
Collapse
|
28
|
Polidori MC, Mecocci P. Modeling the dynamics of energy imbalance: The free radical theory of aging and frailty revisited. Free Radic Biol Med 2022; 181:235-240. [PMID: 35151828 DOI: 10.1016/j.freeradbiomed.2022.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The role of oxidative stress in aging and the newly conceptualized vision of frailty is of great interest for the possibility to define a framework able to explain the several modifications observed in all biological molecules along with age. In this review, the impact of oxidative stress is considered in aging processes as well as in frailty, the geriatric concept of declined capacity to cope with any stressor, leading to a status of reduced ability to maintain the homeostatic balance. Although some pharmacological and behavioral approaches have been proposed, we are still lacking efficacious management able to prevent and avoid frailty. This represents a fundamental challenge for future research in this field.
Collapse
Affiliation(s)
- Maria Cristina Polidori
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia Hospital, Building C Floor 4, Piazzale Menghini, 1 - 06132, Perugia, Italy.
| |
Collapse
|
29
|
Ticinesi A, Nouvenne A, Cerundolo N, Prati B, Parise A, Tana C, Rendo M, Guerra A, Meschi T. Accounting for frailty and multimorbidity when interpreting high-sensitivity troponin I tests in oldest old. J Am Geriatr Soc 2021; 70:549-559. [PMID: 34792185 PMCID: PMC9299120 DOI: 10.1111/jgs.17566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Background Older patients evaluated in Emergency Departments (ED) for suspect Myocardial Infarction (MI) frequently exhibit unspecific elevations of serum high‐sensitivity troponin I (hs‐TnI), making interpretation particularly challenging for emergency physicians. The aim of this longitudinal study was to identify the interaction of multimorbidity and frailty with hs‐TnI levels in older patients seeking emergency care. Methods A group of patients aged≥75 with suspected MI was enrolled in our acute geriatric ward immediately after ED visit. Multimorbidity and frailty were measured with Cumulative Illness Rating Scale (CIRS) and Clinical Frailty Scale (CFS), respectively. The association of hs‐TnI with MI (main endpoint) was assessed by calculation of the Area Under the Receiver‐Operating Characteristic Curve (AUROC), deriving population‐specific cut‐offs with Youden test. The factors associated with hs‐TnI categories, including MI, CFS and CIRS, were determined with stepwise multinomial logistic regression. The association of hs‐TnI with 3‐month mortality (secondary endpoint) was also investigated with stepwise logistic regression. Results Among 268 participants (147 F, median age 85, IQR 80–89), hs‐TnI elevation was found in 191 cases (71%, median 23 ng/L, IQR 11–65), but MI was present in only 12 cases (4.5%). hs‐TnI was significantly associated with MI (AUROC 0.751, 95% CI 0.580–0.922, p = 0.003), with an optimal cut‐off of 141 ng/L. hs‐TnI levels ≥141 ng/L were significantly associated with CFS (OR 1.58, 95% CI 1.15–2.18, p = 0.005), while levels <141 ng/L were associated with the cardiac subscore of CIRS (OR 1.36, 95% CI 1.07–1.71, p = 0.011). CFS, but not hs‐TnI levels, predicted 3‐month mortality. Conclusions In geriatric patients with suspected MI, frailty and cardiovascular multimorbidity should be carefully considered when interpreting emergency hs‐TnI testing.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Claudio Tana
- Internal Medicine Unit and Geriatrics Clinic, SS Annunziata Hospital, Chieti, Italy
| | - Martina Rendo
- Primary Care Department, Parma District, Azienda Unità Sanitaria Locale di Parma, Parma, Italy
| | - Angela Guerra
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
30
|
Wu SE, Chiu YL, Kao TW, Chen WL. Elevated level of the soluble receptor for advanced glycation end-products involved in sarcopenia: an observational study. BMC Geriatr 2021; 21:531. [PMID: 34620111 PMCID: PMC8495916 DOI: 10.1186/s12877-021-02487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The soluble receptor for advanced glycation end products (sRAGE) has been proposed to serve as a marker for disease severity, but its role in sarcopenia, an age-related progressive loss of muscle mass and function, remains elusive. This study examines the association between sRAGE and sarcopenia. METHODS A total of 314 community-dwelling elderly adults who had their health examination at Tri-Service General Hospital from 2017 to 2019 underwent protein analysis with enzyme-linked immunosorbent assay. The relationship with sarcopenia and its detailed information, including components and diagnosis status, were examined using linear and logistic regressions. RESULTS As for sarcopenia components, low muscle mass (β = 162.8, p = 0.012) and strength (β = 181.31, p = 0.011) were significantly correlated with sRAGE, but not low gait speed (p = 0.066). With regard to disease status, confirmed sarcopenia (β = 436.93, p < 0.001), but not probable (p = 0.448) or severe sarcopenia (p = 0.488), was significantly correlated with sRAGE. In addition, females revealed a stronger association with sRAGE level by showing significant correlations with low muscle mass (β = 221.72, p = 0.014) and low muscle strength (β = 208.68, p = 0.043). CONCLUSIONS sRAGE level showed a positive association with sarcopenia, illustrating its involvement in the evolution of sarcopenia. This association is more evident in female groups, which may be attributed to the loss of protection from estrogen in postmenopausal women. Utilizing sRAGE level as a prospective marker for sarcopenia deserves further investigation in future studies.
Collapse
Affiliation(s)
- Shou-En Wu
- Department of General Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Yi-Lin Chiu
- Department of Biochemistry , National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Department of General Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Department of General Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China. .,Department of Biochemistry , National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
31
|
Ji L, Jazwinski SM, Kim S. Frailty and Biological Age. Ann Geriatr Med Res 2021; 25:141-149. [PMID: 34399574 PMCID: PMC8497950 DOI: 10.4235/agmr.21.0080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
A reliable model of biological age is instrumental in the field of geriatrics and gerontology. This model should account for the heterogeneity and plasticity of aging and also accurately predict aging-related adverse outcomes. Epigenetic age models are based on DNA methylation levels at selected genomic sites and can be significant predictors of mortality and healthy/unhealthy aging. However, the biological function of DNA methylation at selected sites is yet to be determined. Frailty is a syndrome resulting from decreased physiological reserves and resilience. The frailty index is a probability-based extension of the concept of frailty. Defined as the proportion of health deficits, the frailty index quantifies the progression of unhealthy aging. The frailty index is currently the best predictor of mortality. It is associated with various biological factors and provides insight into the biological processes of aging. Investigation of the multi-omics factors associated with the frailty index will provide further insight.
Collapse
Affiliation(s)
- Lixin Ji
- Tulane University School of Medicine, New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Sangkyu Kim
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
32
|
Muscari A, Bianchi G, Forti P, Magalotti D, Pandolfi P, Zoli M. The association of proBNPage with manifestations of age-related cardiovascular, physical, and psychological impairment in community-dwelling older adults. GeroScience 2021; 43:2087-2100. [PMID: 33987773 PMCID: PMC8492850 DOI: 10.1007/s11357-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/28/2021] [Indexed: 11/29/2022] Open
Abstract
NT-proB-type natriuretic peptide (NT-proBNP) serum concentration can be transformed by simple formulas into proBNPage, a surrogate of biological age strongly associated with chronological age, all-cause mortality, and disease count. This cross-sectional study aimed to assess whether proBNPage is also associated with other manifestations of the aging process in comparison with other variables. The study included 1117 noninstitutionalized older adults (73.1 ± 5.6 years, 537 men). Baseline measurements of serum NT-proBNP, erythrocyte sedimentation rate, hemoglobin, lymphocytes, and creatinine, which have previously been shown to be highly associated with both age and all-cause mortality, were performed. These variables were compared between subjects with and without manifestations of cardiovascular impairment (myocardial infarction (MI), stroke, peripheral artery disease (PAD), arterial revascularizations (AR)), physical impairment (long step test duration (LSTD), walking problems, falls, deficit in one or more activities of daily living), and psychological impairment (poor self-rating of health (PSRH), anxiety/depression, Mini Mental State Examination (MMSE) score < 24). ProBNPage (years) was independently associated (OR, 95% CI) with MI (1.08, 1.07-1.10), stroke (1.02, 1.00-1.05), PAD (1.04, 1.01-1.06), AR (1.06, 1.04-1.08), LSTD (1.03, 1.02-1.04), walking problems (1.02, 1.01-1.03), and PSRH (1.02, 1.01-1.02). For 5 of these 7 associations, the relationship was stronger than that of chronological age. In addition, proBNPage was univariately associated with MMSE score < 24, anxiety/depression, and falls. None of the other variables provided comparable performances. Thus, in addition to the known associations with mortality and disease count, proBNPage is also associated with cardiovascular manifestations as well as noncardiovascular manifestations of the aging process.
Collapse
Affiliation(s)
- Antonio Muscari
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giampaolo Bianchi
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paola Forti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Donatella Magalotti
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Pandolfi
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| | - Marco Zoli
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - the Pianoro Study Group
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| |
Collapse
|
33
|
Dato S, Crocco P, Rambaldi Migliore N, Lescai F. Omics in a Digital World: The Role of Bioinformatics in Providing New Insights Into Human Aging. Front Genet 2021; 12:689824. [PMID: 34178042 PMCID: PMC8225294 DOI: 10.3389/fgene.2021.689824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aging is a complex phenotype influenced by a combination of genetic and environmental factors. Although many studies addressed its cellular and physiological age-related changes, the molecular causes of aging remain undetermined. Considering the biological complexity and heterogeneity of the aging process, it is now clear that full understanding of mechanisms underlying aging can only be achieved through the integration of different data types and sources, and with new computational methods capable to achieve such integration. Recent Advances In this review, we show that an omics vision of the age-dependent changes occurring as the individual ages can provide researchers with new opportunities to understand the mechanisms of aging. Combining results from single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed during aging and disease. The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, able to investigate different biological markers and to monitor them simultaneously during the aging process with high accuracy and specificity, represents a unique opportunity offered to biogerontologists today. Critical Issues Although the capacity to produce big data drastically increased over the years, integration, interpretation and sharing of high-throughput data remain major challenges. In this paper we present a survey of the emerging omics approaches in aging research and provide a large collection of datasets and databases as a useful resource for the scientific community to identify causes of aging. We discuss their peculiarities, emphasizing the need for the development of methods focused on the integration of different data types. Future Directions We critically review the contribution of bioinformatics into the omics of aging research, and we propose a few recommendations to boost collaborations and produce new insights. We believe that significant advancements can be achieved by following major developments in bioinformatics, investing in diversity, data sharing and community-driven portable bioinformatics methods. We also argue in favor of more engagement and participation, and we highlight the benefits of new collaborations along these lines. This review aims at being a useful resource for many researchers in the field, and a call for new partnerships in aging research.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | | | - Francesco Lescai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Erusalimsky JD. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol 2021; 42:101958. [PMID: 33839083 PMCID: PMC8113049 DOI: 10.1016/j.redox.2021.101958] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
The soluble receptor for advanced glycation end-products (sRAGE) has been classically considered a sink for pro-inflammatory RAGE ligands and as such has been associated with protection from inflammatory stress and disease. An alternative, though not mutually exclusive view is that high levels of sRAGE in circulation reflect the overstimulation of cell surface RAGE which if persistent, lead to the amplification of pro-inflammatory processes and the exacerbation of pathological states. With these two scenarios in mind this review focuses on the potential role of sRAGE as a prospective biomarker of disease risk and adverse outcomes. The prognostic value of measuring sRAGE levels in blood is subjected to debate. Raised sRAGE levels may result from the overstimulation of cell surface RAGE. Raised sRAGE may reflect chronic inflammation and multimorbidity rather than a healthy state. sRAGE is a promising biomarker of disease risk and adverse outcomes.
Collapse
Affiliation(s)
- Jorge D Erusalimsky
- The Cellular Senescence and Pathophysiology Group, Cardiff Metropolitan University, Cardiff, UK.
| |
Collapse
|