1
|
Garba SA, Shaari K, Abdul Manap MR, Lee SY, Abdulazeez I, Mohd Faudzi SM. Quantitative analysis of selected alkaloids of Mitragyna speciosa using 1H quantitative nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:803-813. [PMID: 39189504 DOI: 10.1002/mrc.5477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
Mitragyna speciosa is a perennial plant native to Asia, well known for its psychoactive properties. Its major alkaloid mitragynine is known to have sedative and euphoric effects. Hence, the plant has been a subject of abuse, leading to addiction, necessitating efficient analytical methods to detect its psychoactive constituents. However, current chromatography-based methods for detecting the alkaloids are time consuming and costly. Quantitative nuclear magnetic resonance (qNMR) spectroscopy emerges as a promising alternative due to its nondestructive nature, structural insights, and short analysis time. Hence, a rapid and precise qNMR method was developed to quantify selected major psychoactive alkaloids in various parts of M. speciosa. Mitragynine, specioliatine, and speciogynine were quantified in relation to the integral value of the -OCH3 groups of the alkaloids and the internal standard 1,4-dinitrobenzene. The precision and reproducibility of the method gave a relative standard deviation (RSD) of 2%, demonstrating the reliability of the method. In addition, the method showed excellent specificity, sensitivity, high linearity range (R2 = 0.999), and limits of detection (LOD) and quantification (LOQ) values. The analysis revealed that the red-veined M. speciosa leaves contained higher levels of mitragynine (32.34 mg/g), specioliatine (16.84 mg/g) and speciogynine (7.69 mg/g) compared to the green-veined leaves, stem bark, or fruits.
Collapse
Affiliation(s)
- Suleiman Abubakar Garba
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Chemistry Department, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Nigeria
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Soo Yee Lee
- School of Food Studies & Gastronomy, Faculty of Social Sciences & Leisure Management, Taylor's University, Subang Jaya, Malaysia
- Food Security & Nutrition Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Isah Abdulazeez
- Chemistry Department, School of Secondary Education Sciences, Federal College of Education Zaria, Tudun Wada, Nigeria
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Han MM, Tangpromphan P, Kaewchada A, Jaree A. Recovery and partial isolation of ⍺-mangostin from mangosteen pericarpsvia sequential extraction and precipitation. PLoS One 2024; 19:e0310453. [PMID: 39453921 PMCID: PMC11508469 DOI: 10.1371/journal.pone.0310453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/01/2024] [Indexed: 10/27/2024] Open
Abstract
This study introduced an innovative sequential extraction methodology designed for the efficient recovery of alpha-mangostin (⍺-M) from mangosteen pericarps. Alpha-mangostin, renowned for its pharmacological properties including anti-inflammatory, anti-cancer, and anti-bacterial effects, has garnered significant attention across diverse industries. The proposed method of sequential extraction achieved 73% recovery and a yield of 46.75 mg/g based on the weight/weight percentage of the mass of ⍺-M extracted from the sequence and the mass of raw material. Furthermore, the purity of the dried product was 67.9%. The sequence solvent extraction system, comprising water, hexane, and acetonitrile, plays a pivotal role in enhancing the efficacy of the extraction process. Notably, this methodology offers a cost-effective alternative to conventional extraction methods. It reduces the need for complex equipment and processes, positioning it as a resource-efficient extraction technique in comparison to existing methodologies. This novel sequential extraction method presents a promising avenue for the economical and sustainable recovery of alpha-mangostin (⍺-M) from pericarps.
Collapse
Affiliation(s)
- Moh Moh Han
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Preuk Tangpromphan
- Center for High-Value Products from Bioresources, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Amaraporn Kaewchada
- Department of Agro-Industrial, Food, and Environmental Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Attasak Jaree
- Center for High-Value Products from Bioresources, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Heywood J, Smallets S, Paustenbach D. Beneficial and adverse health effects of kratom (Mitragyna speciosa): A critical review of the literature. Food Chem Toxicol 2024; 192:114913. [PMID: 39134135 DOI: 10.1016/j.fct.2024.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
Used in Southeast Asia for generations, kratom gained popularity in the United States and elsewhere over the past several decades. Derived from Mitragyna speciosa, kratom preparations including leaves, teas, powders, capsules, and extracts may yield stimulant, analgesic, and opioid-like effects that occur dose-dependently based on concentrations of kratom's key alkaloids, mitragynine and 7-hydroxymitragynine. Such effects are responsible for kratom's potential as a reduced-harm alternative to opiates and as a withdrawal treatment. But these properties are also associated with tolerance development and addictive potential. Given mitragynine and 7-hydroxymitragynine activity on cytochrome P450 isoforms and opioid receptors, adverse effects among polysubstance users are a concern. Current literature on the toxicology of kratom is reviewed, including product alkaloid concentrations, in vitro and in vivo data, epidemiological evidence, and human case data. The potential harms and benefits of kratom products are discussed within an exposure assessment framework, and recommendations for industry are presented. Current evidence indicates that kratom may have therapeutic potential in some persons and that products present few risks with typical, non-polysubstance use. However, few studies identified alkaloid doses at which adverse effects were expected in humans or animals. Such research is needed to inform future assessments of kratom's risks and benefits.
Collapse
Affiliation(s)
- J Heywood
- Paustenbach and Associates, 1550 Wewatta Street, Suite 200, Denver, CO, USA.
| | - S Smallets
- Paustenbach and Associates, 1550 Wewatta Street, Suite 200, Denver, CO, USA
| | - D Paustenbach
- Paustenbach and Associates, 970 West Broadway, Suite E, Jackson, WY, USA
| |
Collapse
|
4
|
Müller CP, Yang Y, Singh D, Lenz B, Müller E. [Kratom-From natural remedy to addictive drug and back]. DER NERVENARZT 2024; 95:824-829. [PMID: 39085520 DOI: 10.1007/s00115-024-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Kratom/ketum is a psychoactive herbal preparation that has been used for a long time as a remedy and performance-enhancing substance in Southeast Asia. The advancement of globalization is making kratom increasingly more available in the western world, where it is becoming increasingly more used. OBJECTIVE The current research on kratom and its ingredients is presented. MATERIAL AND METHODS An overview of the use and effects of kratom is exemplary given on the basis of reports. The instrumentalization of the drug and its consequences up to the development of addiction are discussed. RESULTS Consumption is accompanied by several instrumentalizeable effects so that kratom is used as a therapeutic substance in the self-management of pain, anxiety and depression as well as other substance addictions. Another benefit comes from the performance-enhancing effects on physical work and in a social context. Consumption is usually well controlled, rarely escalates and has few and mostly mild aversive side effects. The danger arises from consumption particularly when there is an escalation of the dose and from mixed consumption with other psychoactive substances. The main alkaloid mitragynine and the more potent 7‑hydroxy-mitragynine are considered mainly responsible for the effect. Both have a complex pharmacology that involves partial µ‑opioid receptor agonism. DISCUSSION Epidemiological, clinical and neurochemical studies have shown that kratom only has a limited addictive drug profile, which might suggest a medical use as a remedy or substitute in addiction treatment.
Collapse
Affiliation(s)
- Christian P Müller
- Bereich Suchtmedizin, Klinik für Psychiatrie und Psychosomatik, Universitätsklinikum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Deutschland.
- Institut für Psychopharmakologie, Zentralinstitut für Seelische Gesundheit, Ruprecht-Karls-Universität Heidelberg, Mannheim, Deutschland.
| | - Yuting Yang
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Bernd Lenz
- Department für Süchtiges Verhalten und Suchtmedizin, Zentralinstitut für Seelische Gesundheit, Ruprecht-Karls-Universität Heidelberg, Mannheim, Deutschland
| | - Elisabeth Müller
- Department für Psychiatrie und Psychotherapie, Paracelsus Medizinische Privatuniversität, Nürnberg, Deutschland
| |
Collapse
|
5
|
Rhee J, Shin I, Kim J, Lee J, Cho B, Kim J, Park M, Kim E. LC-MS-MS method for mitragynine and 7-hydroxymitragynine in hair and its application in authentic hair samples of suspected kratom abusers. J Anal Toxicol 2024; 48:429-438. [PMID: 38780234 DOI: 10.1093/jat/bkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Kratom is a natural psychoactive product known primarily in Southeast Asia, including Thailand, Malaysia, etc. It is also known as krathom, kakuam, ithang, thom (Thailand), biak-biak, ketum (Malaysia) and mambog (Philippines) and is sometimes used as an opium substitute. It is stimulant at doses of 1-5 g, analgesic at doses of 5-15 g and euphoric and sedative at doses of >15 g. Mitragynine is the most abundant indole compound in kratom (Mitragyna speciosa) and is metabolized in humans to 7-hydroxymitragynine, the more active metabolite. Adverse effects include seizures, nausea, vomiting, diarrhea, tachycardia, restlessness, tremors, hallucinations and death. There are few studies on the analytical method for the detection of mitragynine and 7-hydroxymitragynine in hair. Therefore, this study proposes a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the analysis of kratom in hair. Hair samples were first weighed to ∼10 mg and washed with methanol. Then the washed hair samples were cut into pieces and incubated in methanol with stirring and heating (16 h/38℃). Extracts were then analyzed by LC-MS-MS. This method was validated by determining the limit of detection (LOD), limit of quantification, linearity, intra- and inter-day accuracy and precision, recovery and matrix effects. The intra- and inter-day precision (CV%) and accuracy (bias%) were within ±20%, which was considered acceptable. Using this newly developed LC-MS-MS method, the simultaneous detection of mitragynine and 7-hydroxymitragynine in six authentic hair samples was achieved to provide the direct evidence of kratom use in the past. Mitragynine concentrations ranged from 16.0 to 2,067 pg/mg (mean 905.3 pg/mg), and 7-hydroxymitragynine concentrations ranged from 0.34 to 15 pg/mg (mean 7.4 pg/mg) in six authentic hair samples from kratom abusers. This may be due to the higher sensitivity of the LOD in this study, with values of 0.05 pg/mg for mitragynine and 0.2 pg/mg for 7-hydroxymitragynine in hair.
Collapse
Affiliation(s)
- Jongsook Rhee
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Ilchung Shin
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Jihyun Kim
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Juseun Lee
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Byungsuk Cho
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| | - Junghyun Kim
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Meejung Park
- Toxicology & Narcotics Division, National Forensic Service Seoul Institute, 139 Jiyang-ro, Yangcheon-gu, Seoul 08036, Republic of Korea
| | - Eunmi Kim
- Forensic Science Department, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Republic of Korea
| |
Collapse
|
6
|
Liang Z, Guo Y, Ellin N, King TI, Berthold EC, Mukhopadhyay S, Sharma A, McCurdy CR, Prentice BM. Formation of multiple ion types during MALDI imaging mass spectrometry analysis of Mitragyna speciosa alkaloids in dosed rat brain tissue. Talanta 2024; 274:125923. [PMID: 38569366 DOI: 10.1016/j.talanta.2024.125923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.
Collapse
Affiliation(s)
- Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Nicholas Ellin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Sushobhan Mukhopadhyay
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Ameline A, Gheddar L, Arbouche N, Blanchot A, Raul JS, Kintz P. Testing for Kratom alkaloids in fingernail clippings - not only mitragynine. J Pharm Biomed Anal 2024; 243:116078. [PMID: 38489958 DOI: 10.1016/j.jpba.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Kratom (Mitragyna speciosa) is a species of large tree that grows in Southeast Asia and is part of the Rubiaceae family. Its fresh leaves are harvested for their medicinal properties and used for their psychoactive effects. Kratom contains many biologically active alkaloids, including mitragynine and 7-OH-mitragynine, which are considered the two most important psychoactive components and constitute approximately 66% and 2% of the total alkaloid content. Other alkaloids are present in the plant, such as speciogynine, speciociliatine and paynantheine, but have less psychoactive activity. Over the past decade, the sale of kratom powder has increased on the Internet. This led to a significant increase in forensic cases. Given the lack of data existing in the literature, and the total absence of data in nails, the authors report a study to determine the best target alkaloids for documenting kratom consumption in this matrix. Fingernail clippings from a supposed kratom powder user were analyzed after liquid-liquid extraction, chromatography separation using a HSS C18 column and performed on an ultra-high performance liquid chromatography coupled to a tandem mass spectrometer. In the specimen, mitragynine was quantified at 229 pg/mg, speciogynine and paynantheine were both quantified at 2 pg/mg, and speciociliatine was quantified at 19 pg/mg. 7-OH-mitragynine was not detected. The interpretation of these concentrations is complex, since there is currently no reference in the literature, as this is the first identification of mitragynine and other kratom alkaloids in nails. Nevertheless, in view of the high concentration of mitragynine, the subject seems to be a repetitive user of kratom. According to the measured concentrations, it seems that mitragynine remains the best target to document kratom consumption, but the identification of the other alkaloids would enhance the specificity of the test.
Collapse
|
8
|
Keresteš O, Pohanka M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. BIOSENSORS 2023; 13:599. [PMID: 37366964 DOI: 10.3390/bios13060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
Collapse
Affiliation(s)
- Ondřej Keresteš
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Citti C, Laganà A, Capriotti AL, Montone CM, Cannazza G. Kratom: The analytical challenge of an emerging herbal drug. J Chromatogr A 2023; 1703:464094. [PMID: 37262932 DOI: 10.1016/j.chroma.2023.464094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.
Collapse
Affiliation(s)
- Cinzia Citti
- Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| |
Collapse
|
10
|
Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, Yusof NSM, Mansor SM, Baharum SN, Ng CL. Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. Leaves. PLoS One 2023; 18:e0283147. [PMID: 36943850 PMCID: PMC10030037 DOI: 10.1371/journal.pone.0283147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
Collapse
Affiliation(s)
- Rubashiny Veeramohan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Arief Izzairy Zamani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Leave a Nest Malaysia Sdn Bhd, Cyberjaya, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Fauzi Abd Razak
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | | | | | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Leksungnoen N, Andriyas T, Ngernsaengsaruay C, Uthairatsamee S, Racharak P, Sonjaroon W, Kjelgren R, Pearson BJ, McCurdy CR, Sharma A. Variations in mitragynine content in the naturally growing Kratom ( Mitragyna speciosa) population of Thailand. FRONTIERS IN PLANT SCIENCE 2022; 13:1028547. [PMID: 36388525 PMCID: PMC9648690 DOI: 10.3389/fpls.2022.1028547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
We analyzed the content of mitragynine (MG) found in kratom leaves (Mitragyna speciosa) and the influence of different environmental conditions (air and soil variables) on the yield in various regions of Thailand. The content of MG in kratom leaves ranged from 7.5 - 26.6 mg g-1 of dry leaf weight. Canonical correspondence analysis showed that the most significant environmental variables affecting the MG content among the various regions were light intensity, relative humidity, soil volumetric water content (VW), soil pH, and calcium. This study is a first step towards providing information about environmental conditions suitable to maximize the quality and quantity of bioactive alkaloids in kratom. Future studies should focus on leaf collection and the post-harvest processes in order to assure the desired alkaloidal content in finished products, when produced under suitable environmental conditions identified in this study.
Collapse
Affiliation(s)
- Nisa Leksungnoen
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
- Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Tushar Andriyas
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Suwimon Uthairatsamee
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Phruet Racharak
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Roger Kjelgren
- The University of Florida (UF)/Institute of Food and Agricultural Sciences (IFAS) Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Brian J. Pearson
- The University of Florida (UF)/Institute of Food and Agricultural Sciences (IFAS) Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Abstract
Foods and pharmaceuticals play key roles in public health and welfare and ensuring that these products meet their quality assurance standards is a top priority in health and medical care. Quality assurance of natural products is essential in pharmaceutical sciences because the outset of a medicine is a natural, crude drug. Regulatory science underpins scientific regulations and is closely related to the quality assurance of foods and pharmaceuticals to ensure their safety and efficacy. During my time at the National Institute of Health Sciences, Japan, from 1986 to present, the regulatory science of natural products has been my main research focus. This review discusses 24 studies related to the regulatory science of natural food additives, 26 related to foods, 23 related to borderline products, 16 related to illicit psychotropic mushrooms, plants, and agents, and 57 related to herbal medicines. In later sections, the regulatory science for ethical Kampo products with new dosage forms and herbal medicines that use Kampo extracts as active pharmaceutical ingredients are discussed. My experience from the early twenty-first century in research projects on the bioequivalence of Kampo products and the development of ephedrine alkaloid-free Ephedra Herb extract demonstrate that regulatory science is crucial for developing new drugs.
Collapse
Affiliation(s)
- Yukihiro Goda
- National Institute of Health Sciences, 25-26 Tonomachi 3-chome, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| |
Collapse
|
13
|
Manwill PK, Flores-Bocanegra L, Khin M, Raja HA, Cech NB, Oberlies NH, Todd DA. Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products. PLANTA MEDICA 2022; 88:838-857. [PMID: 35468648 PMCID: PMC9343938 DOI: 10.1055/a-1795-5876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many consumers are turning to kratom (Mitragyna speciosa) to self-manage pain and opioid addiction. In the United States, an array of capsules, powders, and loose-leaf kratom products are readily available. Additionally, several online sites supply live kratom plants. A prerequisite to establishing quality control and quality assurance standards for the kratom industry, or understanding how alkaloid levels effect clinical outcomes, is the identification and quantitation of major and minor alkaloid constituents within available products and preparations. To this end, an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynine, speciogynine, isopaynantheine, speciociliatine, and mitraciliatine) and 6 oxindole alkaloids (isomitraphylline, isospeciofoleine, speciofoline, corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products. These commercial products shared a qualitatively similar alkaloid profile, with 12 - 13 detected alkaloids and high levels of the indole alkaloid mitragynine (13.9 ± 1.1 - 270 ± 24 mg/g). The levels of the other major alkaloids (paynantheine, speciociliatine, speciogynine, mitraciliatine, and isopaynantheine) and the minor alkaloids varied in concentration from product to product. The alkaloid profile of US-grown M. speciosa "Rifat" showed high levels of the indole alkaloid speciogynine (7.94 ± 0.83 - 11.55 ± 0.18 mg/g) and quantifiable levels of isomitraphylline (0.943 ± 0.033 - 1.47 ± 0.18 mg/g). Notably, the alkaloid profile of a US-grown M. speciosa seedling was comparable to the commercial products with a high level of mitragynine (15.01 ± 0.20 mg/g). This work suggests that there are several M. speciosa chemotypes.
Collapse
Affiliation(s)
- Preston K. Manwill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manead Khin
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Dr. Nicholas H. Oberlies University of North Carolina at GreensboroDepartment of Chemistry and
Biochemistry301 McIver St. – Sullivan Science Building27402 Greensboro
NCUSA+ 1 33 63 34 54 74+ 1 33 63 34 54 02
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Correspondence Dr. Daniel A Todd University of North Carolina at GreensboroDepartment of Chemistry and
Biochemistry301 McIver St. – Sullivan Science Building27402 Greensboro
NCUSA+ 1 33 63 34 47 68+ 1 33 63 34 54 02
| |
Collapse
|
14
|
Sim YS, Chong ZY, Azizi J, Goh CF. Development and validation of a gradient HPLC-UV method for mitragynine following in vitro skin permeation studies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123316. [PMID: 35700649 DOI: 10.1016/j.jchromb.2022.123316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
Abstract
Mitragynine is a promising candidate for pain relief and opiate replacement but the investigations for drug delivery are lacking. This study aims to investigate the potential of mitragynine to be delivered through the skin with an emphasis on developing and validating a gradient HPLC-UV analytical method to determine mitragynine in the samples collected during in vitro skin permeation studies. The optimised method involves a gradient elution using a C18 column with a mobile phase comprising acetonitrile and 0.1 %v/v of formic acid (0-1 min: 30:70 to 70:30 (v/v) and hold up to 4 min; 4-6 min: return to 30:70 (v/v) and hold up to 10 min) at a flow rate of 1.2 mL/min. This method was validated based on the standards set by the International Council on Harmonisation guidelines. The method showed mitragynine elution at ∼ 4 min with adequate linearity (R2 ≥ 0.999 for concentration ranges of 0.5-10 and 10-175 μg/mL) and acceptable limits of detection and quantification at 0.47 and 1.43 μg/mL, respectively. The analytical performance is robust with excellent precision and accuracy. This method was used to evaluate the in vitro skin permeation of mitragynine (5 %w/v) from simple solvent systems over 48 hr. The results showed a cumulative amount of mitragynine permeated at ∼ 11 μg/cm2 for dimethyl sulfoxide and ∼ 4 μg/cm2 for propylene glycol. The study not only addressed the issues of the currently available HPLC-UV methods that limit the direct application but also affirmed the potential of mitragynine to be delivered through the skin.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Zan Yang Chong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality. Animals (Basel) 2022; 12:ani12131637. [PMID: 35804536 PMCID: PMC9264776 DOI: 10.3390/ani12131637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to see how dried Mitragyna speciosa Korth leaves (DKTL) affected growth, hematological parameters, carcass characteristics, muscle chemical composition, and fatty acid profile in finishing goats. In a randomized complete block design, twenty crossbred males (Thai Native x Boer) weaned goats (17.70 ± 2.50 kg of initial body weight (BW)) were provided to the experimental animals (5 goats per treatment) for 90 days. Individual dietary treatments of 0, 2.22, 4.44, and 6.66 g/d of DKTL on a dry matter basis were given to the goats. The diets were provided twice daily as total mixed rations ad libitum. In comparison to the control diet, DKTL supplementation had no effect on BW, average daily gain (ADG), feed conversion ratio (FCR), carcass composition, meat pH, or meat color (p > 0.05). After DKTL treatment, the hot carcass weight, longissimus muscle area, oleic acid (C18:1n9), monounsaturated fatty acid (MUFA), and protein content increased, but saturated fatty acids (SFA) and ether extract decreased (p < 0.05). To summarize, DKTL supplementation can improve goat meat quality.
Collapse
|
16
|
Zhang M, Sharma A, León F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ. Plant growth and phytoactive alkaloid synthesis in kratom [Mitragyna speciosa (Korth.)] in response to varying radiance. PLoS One 2022; 17:e0259326. [PMID: 35472200 PMCID: PMC9041851 DOI: 10.1371/journal.pone.0259326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/27/2022] [Indexed: 01/22/2023] Open
Abstract
Leaves harvested from kratom [Mitragyna speciosa (Korth.)] have a history of use as a traditional ethnobotanical medicine to combat fatigue and improve work productivity in Southeast Asia. In recent years, increased interest in the application and use of kratom has emerged globally, including North America, for its potential application as an alternative source of medicine for pain management and opioid withdrawal syndrome mitigation. Although the chemistry and pharmacology of major kratom alkaloids, mitragynine and 7-hydroxymitragynine, are well documented, foundational information on the impact of plant production environment on growth and kratom alkaloids synthesis is unavailable. To directly address this need, kratom plant growth, leaf chlorophyll content, and alkaloid concentration were evaluated under three lighting conditions: field full sun (FLD-Sun), greenhouse unshaded (GH-Unshaded), and greenhouse shaded (GH-Shaded). Nine kratom alkaloids were quantified using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Greenhouse cultivation generally promoted kratom height and width extension by 93-114% and 53-57%, respectively, compared to FLD-Sun. Similarly, total leaf area and leaf number were increased by 118-160% and 54-80% under such conditions. Average leaf size of plants grown under GH-Shaded was 41 and 69% greater than GH-Unshaded and FLD-Sun, respectively; however, no differences were observed between GH-Unshaded and FLD-Sun treatments. At the termination of the study, total leaf chlorophyll a+b content of FLD-Sun was 17-23% less than those grown in the greenhouse. Total leaf dry mass was maximized when cultivated in the greenhouse and was 89-91% greater than in the field. Leaf content of four alkaloids to include speciociliatine, mitraphylline, corynantheidine, and isocorynantheidine were not significantly impacted by lighting conditions, whereas 7-hydroxymitragynine was below the lower limit of quantification across all treatments. However, mitragynine, paynantheine, and corynoxine concentration per leaf dry mass were increased by 40%, 35%, and 111%, respectively, when cultivated under GH-Shaded compared to FLD-Sun. Additionally, total alkaloid yield per plant was maximized and nearly tripled for several alkaloids when plants were cultivated under such conditions. Furthermore, rapid, non-destructive chlorophyll evaluation correlated well (r2 = 0.68) with extracted chlorophyll concentrations. Given these findings, production efforts where low-light conditions can be implemented are likely to maximize plant biomass and total leaf alkaloid production.
Collapse
Affiliation(s)
- Mengzi Zhang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Bonnie Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, United States of America
| | - Roger Kjelgren
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, United States of America
| | - Brian J. Pearson
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
| |
Collapse
|
17
|
Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objectives of the present study were to examine the influence of supplementation with dried kratom leaf (DKTL) on the performance, hematology, and nitrogen balance in goats. Four 12-month-old male crossbred (Thai Native x Anglo Nubian) goats with an initial body weight (BW) of 24.63 ± 0.95 kg were allocated randomly to receive four different levels of DKTL using a 4 × 4 Latin square design. The DKTL was added to a total mixed ration (TMR) diet with doses of 0, 2.22, 4.44, and 6.66 g/day to investigate the treatment’s efficacy. The DKTL was high in secondary metabolites, including mitragynine, total phenolics, total tannins, flavonoids, and saponins. There were quadratic effects on total DMI in terms of kg/day (p = 0.04), %BW (p = 0.05), and g/kg BW.75 (p = 0.02). DKTL increased apparent digestibility with quadratic effects (DM; p = 0.01, OM; p = 0.01, CP; p = 0.04, NDF; p = 0.01, and ADF; p = 0.01). The pH value was within the rumen’s normal pH range, whereas NH3-N and BUN concentrations were lower with DKTL supplementation, and also reduced cholesterol (CHOL, p = 0.05) and low-density lipoprotein (LDL, p = 0.01). The protozoa population decreased linearly as DKTL levels increased (p < 0.01), whereas Fibrobacter succinogenes increased quadratically at 0 h (p = 0.02), and mean values increased linearly (p < 0.01). The average value of acetic acid (C2) and methane production (CH4) decreased linearly (p < 0.05) when DKLT was added to the diet, whereas the quantity of propionic acid (C3) increased linearly (p = 0.01). Our results indicate that DKTL could be a great alternative supplement for goat feed. We believe that DKTL could provide opportunities to assist the goat meat industry in fulfilling the demands of health-conscious consumers.
Collapse
|
18
|
Ahmad I, Prabowo WC, Arifuddin M, Fadraersada J, Indriyanti N, Herman H, Purwoko RY, Nainu F, Rahmadi A, Paramita S, Kuncoro H, Mita N, Narsa AC, Prasetya F, Ibrahim A, Rijai L, Alam G, Mun’im A, Dej-adisai S. Mitragyna Species as Pharmacological Agents: From Abuse to Promising Pharmaceutical Products. Life (Basel) 2022; 12:life12020193. [PMID: 35207481 PMCID: PMC8878704 DOI: 10.3390/life12020193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
Mitragyna is a genus belonging to the Rubiaceae family and is a plant endemic to Asia and Africa. Traditionally, the plants of this genus were used by local people to treat some diseases from generation to generation. Mitragyna speciosa (Korth.) Havil. is a controversial plant from this genus, known under the trading name “kratom”, and contains more than 40 different types of alkaloids. Mitragynine and 7-hydroxymitragynine have agonist morphine-like effects on opioid receptors. Globally, Mitragyna plants have high economic value. However, regulations regarding the circulation and use of these commodities vary in several countries around the world. This review article aims to comprehensively examine Mitragyna plants (mainly M. speciosa) as potential pharmacological agents by looking at various aspects of the plants. A literature search was performed and information collected using electronic databases including Scopus, ScienceDirect, PubMed, directory open access journal (DOAJ), and Google Scholar in early 2020 to mid-2021. This narrative review highlights some aspects of this genus, including historical background and botanical origins, habitat, cultivation, its use in traditional medicine, phytochemistry, pharmacology and toxicity, abuse and addiction, legal issues, and the potential of Mitragyna species as pharmaceutical products.
Collapse
Affiliation(s)
- Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (M.A.); (J.F.); (N.I.); (N.M.)
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
- Correspondence:
| | - Wisnu Cahyo Prabowo
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Muhammad Arifuddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (M.A.); (J.F.); (N.I.); (N.M.)
| | - Jaka Fadraersada
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (M.A.); (J.F.); (N.I.); (N.M.)
| | - Niken Indriyanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (M.A.); (J.F.); (N.I.); (N.M.)
| | - Herman Herman
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (F.N.); (G.A.)
| | - Anton Rahmadi
- Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Mulawarman, Samarinda 75119, Indonesia;
| | - Swandari Paramita
- Research Center of Natural Products from Tropical Rainforest (PUI-PT OKTAL), Department of Community Medicine, Faculty of Medicine, Universitas Mulawarman, Samarinda 75119, Indonesia;
| | - Hadi Kuncoro
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Nur Mita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (M.A.); (J.F.); (N.I.); (N.M.)
| | - Angga Cipta Narsa
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Fajar Prasetya
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Arsyik Ibrahim
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Laode Rijai
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia; (W.C.P.); (H.H.); (H.K.); (A.C.N.); (F.P.); (A.I.); (L.R.)
| | - Gemini Alam
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (F.N.); (G.A.)
| | - Abdul Mun’im
- Laboratory of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
| | - Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
19
|
Hartley C, Bulloch M, Penzak SR. Clinical Pharmacology of the Dietary Supplement, Kratom (Mitragyna speciosa). J Clin Pharmacol 2021; 62:577-593. [PMID: 34775626 DOI: 10.1002/jcph.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022]
Abstract
Kratom (Mitragyna speciosa) consists of over 40 alkaloids with two of them, mitragynine (MG) and 7-OH-mitragynine (7-OH-MG) being the main psychoactive compounds. MG and 7-OH-MG each target opioid receptors and have been referred to as atypical opioids. They exert their pharmacologic effects on the μ, δ, and κ opioid receptors. In addition, they affect adrenergic, serotonergic, and dopaminergic pathways. Kratom has been touted as an inexpensive, legal alternative to standard opioid replacement therapy such as methadone and buprenorphine. Other uses for kratom include chronic pain, attaining a "legal high," and numerous CNS disorders including anxiety depression and post-traumatic stress disorder (PTSD). Kratom induces analgesia and mild euphoria with a lower risk of respiratory depression or adverse central nervous system effects compared to traditional opioid medications. Nonetheless, kratom has been associated with both physical and psychological dependence with some individuals experiencing classic opioid withdrawal symptoms upon abrupt cessation. Kratom use has been linked to serious adverse effects including liver toxicity, seizures, and death. These risks are often compounded by poly-substance abuse. Further, kratom may potentiate the toxicity of coadministered medications through modulation of cytochrome P450, P-glycoprotein, and uridine diphosphate glucuronosyltransferase enzymes (UGDT). In 2016 the U.S. Drug Enforcement Administration (DEA) took steps to classify kratom as a federal schedule 1 medication; however, due to public resistance, this plan was set aside. Until studies are conducted that define kratom's role in treating opioid withdrawal and/or other CNS conditions, kratom will likely remain available as a dietary supplement for the foreseeable future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chad Hartley
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| | - Marilyn Bulloch
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| | - Scott R Penzak
- Department of Pharmacy Practice, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, 36849, United States
| |
Collapse
|
20
|
Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S. Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of Its Cytotoxicity and Antinociceptive Activity. Molecules 2021; 26:molecules26123704. [PMID: 34204457 PMCID: PMC8234130 DOI: 10.3390/molecules26123704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/29/2023] Open
Abstract
Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53–2.91 g) and showed a constant mitragynine content (6.53–7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.
Collapse
Affiliation(s)
- Yong Sean Goh
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia
- Correspondence: ; Tel.: +604-6533287
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia;
| | - Rameshkumar Santhanam
- BioSES Research Interest Group, Faculty of Science and Marine Environment, Universiti MalaysiaTerengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800 USM, Penang, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
| |
Collapse
|
21
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
22
|
Zhang M, Sharma A, León F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ. Effects of Nutrient Fertility on Growth and Alkaloidal Content in Mitragyna speciosa (Kratom). FRONTIERS IN PLANT SCIENCE 2020; 11:597696. [PMID: 33408731 PMCID: PMC7779599 DOI: 10.3389/fpls.2020.597696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
Leaves harvested from the Southeast Asian tree Mitragyna speciosa (kratom) have a history of use as a traditional ethnobotanical source of medicine to combat fatigue, improve work productivity, and to reduce opioid-related withdrawal symptoms. Kratom leaves contain an array of alkaloids thought to be responsible for the bioactivity reported by users. Interest in the consumptive effects of kratom has led to its recent popularity and use in North America, Western Europe, and Australia. Although the chemistry and pharmacology of select kratom alkaloids are understood, studies have not examined the influence of production environment on growth and alkaloidal content. To directly address this need, 68 kratom trees were vegetatively propagated from a single mother stock to reduce genetic variability and subjected to four varying fertilizer application rates. Leaves were analyzed for chlorophyll concentration, biomass, and alkaloidal content to understand the physiological response of the plant. While increasing rates of fertilizer promoted greater plant growth, relationships with alkaloidal content within leaves were highly variable. Fertility rate had little influence on the concentration of mitragynine, paynantheine, speciociliatine, mitraphylline, and corynoxine per leaf dry mass. 7-Hydroxymitragynine was below the lower limit of quantification in all the analyzed leaf samples. Low to medium rates of fertilizer, however, maximized concentrations of speciogynine, corynantheidine, and isocorynantheidine per leaf dry mass, suggesting a promotion of nitrogen allocation for secondary metabolism occurred for these select alkaloids. Strong correlations (r 2 = 0.86) between extracted leaf chlorophyll and rapid, non-destructive chlorophyll evaluation (SPAD) response allowed for development of a reliable linear model that can be used to diagnose nutrient deficiencies and allow for timely adjustment of fertilization programs to more accurately manage kratom cultivation efforts. Results from this study provide a greater understanding of the concentration and synthesis of nine bioactive alkaloids in fresh kratom leaves and provide foundational information for kratom cultivation and production.
Collapse
Affiliation(s)
- Mengzi Zhang
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Bonnie Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Roger Kjelgren
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Brian J. Pearson
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| |
Collapse
|
23
|
Ogata J, Kawamura M, Hakamatsuka T, Kikura-Hanajiri R. [Discrimination of Kratom Products by an Improved PCR-RFLP Method]. YAKUGAKU ZASSHI 2020; 140:1501-1508. [PMID: 33268690 DOI: 10.1248/yakushi.20-00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Japan, mitragynine, 7-hydroxymitragynine and Mitragyna speciosa Korth. (M. speciosa, "Kratom") were controlled as Designated Substances under the Pharmaceutical and Medical Device Act from March 2016. In this study, the origins of 16 Kratom products obtained from the illegal drug market in Japan were investigated by DNA analyses and LC-MS analyses. When the PCR-restriction fragment length polymorphism (RFLP) was performed using the restriction enzyme XmaI (as reported by Sukrong et al. to be able to distinguish M. speciosa), the same DNA fragment patterns were obtained from all 16 products. On the other hand, as a result of the identification of the plant species of each product by nucleotide sequence analyses, the sequences of M. speciosa were detected in only 14 products. Despite the facts that mitragynine and 7-hydroxymitragynine were detected also in the other two products by the LC-MS analyses, M. speciosa DNAs were not amplified from these products by the PCR. Moreover, the DNA amplicons of the other psychotropic plant (Mesembryanthemum sp., e.g. "Kanna") were detected. This plant PCR amplicon has the restriction site for the XmaI at the same position of the M. speciosa PCR amplicon and it is difficult to distinguish "Kratom" and "Kanna" by the conventional PCR-RFLP. When the restriction enzyme XhoI was used simultaneously with the Xmal, the specific DNA fragment was only observed from the M. speciosa amplicon and it was possible to distinguish both species using this improved PCR-RFLP method. This method is useful to identify the origin of Kratom products distributed in the illegal drug market.
Collapse
Affiliation(s)
- Jun Ogata
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences
| | - Maiko Kawamura
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences
| | - Takashi Hakamatsuka
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences
| |
Collapse
|
24
|
Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS, McIntosh S, Raja HA, Graf TN, Hemby SE, Paine MF, Oberlies NH, Cech NB. Chemical composition and biological effects of kratom (Mitragyna speciosa): In vitro studies with implications for efficacy and drug interactions. Sci Rep 2020; 10:19158. [PMID: 33154449 PMCID: PMC7645423 DOI: 10.1038/s41598-020-76119-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
The safety and efficacy of kratom (Mitragyna speciosa) for treatment of pain is highly controversial. Kratom produces more than 40 structurally related alkaloids, but most studies have focused on just two of these, mitragynine and 7-hydroxymitragynine. Here, we profiled 53 commercial kratom products using untargeted LC-MS metabolomics, revealing two distinct chemotypes that contain different levels of the alkaloid speciofoline. Both chemotypes were confirmed with DNA barcoding to be M. speciosa. To evaluate the biological relevance of variable speciofoline levels in kratom, we compared the opioid receptor binding activity of speciofoline, mitragynine, and 7-hydroxymitragynine. Mitragynine and 7-hydroxymitragynine function as partial agonists of the human µ-opioid receptor, while speciofoline does not exhibit measurable binding affinity at the µ-, δ- or ƙ-opioid receptors. Importantly, mitragynine and 7-hydroxymitragynine demonstrate functional selectivity for G-protein signaling, with no measurable recruitment of β-arrestin. Overall, the study demonstrates the unique binding and functional profiles of the kratom alkaloids, suggesting potential utility for managing pain, but further studies are needed to follow up on these in vitro findings. All three kratom alkaloids tested inhibited select cytochrome P450 enzymes, suggesting a potential risk for adverse interactions when kratom is co-consumed with drugs metabolized by these enzymes.
Collapse
Affiliation(s)
- D A Todd
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - J J Kellogg
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - E D Wallace
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
- Department of Chemistry, The University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Khin
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - L Flores-Bocanegra
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - R S Tanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - S McIntosh
- Department of Basic Pharmaceutical Sciences, High Point University, High Point, NC, 27268, USA
| | - H A Raja
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - T N Graf
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - S E Hemby
- Department of Basic Pharmaceutical Sciences, High Point University, High Point, NC, 27268, USA
| | - M F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - N H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA
| | - N B Cech
- Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., 301 McIver St., Greensboro, NC, 27402, USA.
| |
Collapse
|
25
|
Eastlack SC, Cornett EM, Kaye AD. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review. Pain Ther 2020; 9:55-69. [PMID: 31994019 PMCID: PMC7203303 DOI: 10.1007/s40122-020-00151-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Kratom, or Mitragyna, is a tropical plant indigenous to Southeast Asia, with unique pharmacological properties. It is commonly consumed by preparing the leaves into decoction or tea, or by grinding them into a powder. Recent evidence has revealed that kratom has physiological effects similar to opioids, including pain relief and euphoria, as well as stimulant properties, which together raise potential concern for dependence and addiction. Moreover, growing evidence suggests that the prevalence of kratom use is increasing in many parts of the world, raising important considerations for healthcare providers. This manuscript will discuss the most current epidemiology, pharmacology, toxicity, and management related to kratom, while seeking to provide a contemporary perspective on the issue and its role in the greater context of the opioid epidemic.
Collapse
Affiliation(s)
- Steven C Eastlack
- LSU Health Sciences Center School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University School of Medicine, 1501 Kings Hwy, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University School of Medicine, 1501 Kings Hwy, Shreveport, LA, 71103, USA
- Tulane School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
26
|
Lanzarotta A, Thatcher MD, Lorenz LM, Batson JS. Detection of Mitragynine in
Mitragyna Speciosa
(Kratom) Using Surface‐Enhanced Raman Spectroscopy with Handheld Devices. J Forensic Sci 2020; 65:1443-1449. [DOI: 10.1111/1556-4029.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Lanzarotta
- Forensic Chemistry Center Office of Regulatory Science Office of Regulatory Affairs U.S. Food & Drug Administration Cincinnati OH45237
| | - Michael D. Thatcher
- Forensic Chemistry Center Office of Regulatory Science Office of Regulatory Affairs U.S. Food & Drug Administration Cincinnati OH45237
| | - Lisa M. Lorenz
- Forensic Chemistry Center Office of Regulatory Science Office of Regulatory Affairs U.S. Food & Drug Administration Cincinnati OH45237
| | - JaCinta S. Batson
- Forensic Chemistry Center Office of Regulatory Science Office of Regulatory Affairs U.S. Food & Drug Administration Cincinnati OH45237
| |
Collapse
|
27
|
Meier U, Mercer-Chalmers-Bender K, Scheurer E, Dussy F. Development, validation, and application of an LC-MS/MS method for mitragynine and 7-hydroxymitragynine analysis in hair. Drug Test Anal 2020; 12:280-284. [PMID: 31833662 DOI: 10.1002/dta.2746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022]
Abstract
The entire scalp hair of a self-declared Kratom consumer of 3 grams per day was acquired during an ethical committee approved study. As no values of the concentration in hair of the two Kratom alkaloids mitragynine or 7-hydroxymitragynine were found in the literature, an already established method for the analysis of benzodiazepines/z-substances was extended for the detection of mitragynine and 7-hydroxymitragynine with LC-MS/MS, and successfully validated. The limits of detection and quantification for mitragynine were 2 pg/mg and 4 pg/mg, respectively. Those of 7-hydroxymitragynine were 20 pg/mg and 30 pg/mg, respectively. The method was applied to the entire scalp hair, divided in 91 regions, of the study participant. A narrow mitragynine concentration distribution with values between 1054 pg/mg and 2244 ng/mg (mean 1517 ng/mg) and no clear scalp region associated distribution pattern was obtained. 7-Hydroxymitragynine was not detected in any hair sample. After validation, the method was established as routine and subsequently 300 samples (mainly abstinence controls for drugs of abuse) were analyzed, allowing the investigation of the prevalence of Kratom consumption in our population. None of the analyzed routine hair samples were positive for mitragynine or 7-hydroxymitragynine, providing no evidence that Kratom consumption is prevalent in the investigated population.
Collapse
Affiliation(s)
- Ulf Meier
- Department of Biomedical Engineering, University of Basel Institute of Forensic Medicine, Switzerland
| | | | - Eva Scheurer
- Department of Biomedical Engineering, University of Basel Institute of Forensic Medicine, Switzerland
| | - Franz Dussy
- Department of Biomedical Engineering, University of Basel Institute of Forensic Medicine, Switzerland
| |
Collapse
|
28
|
Bioanalytical method development and validation of corynantheidine, a kratom alkaloid, using UPLC-MS/MS, and its application to preclinical pharmacokinetic studies. J Pharm Biomed Anal 2019; 180:113019. [PMID: 31838282 DOI: 10.1016/j.jpba.2019.113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
Abstract
Corynantheidine, a minor alkaloid found in Mitragyna speciosa (Korth.) Havil, has been shown to bind to opioid receptors and act as a functional opioid antagonist, but its unique contribution to the overall properties of kratom remains relatively unexplored. The first validated bioanalytical method for the quantification of corynantheidine in rat plasma is described. The method was linear in the dynamic range from 1-500 ng/mL, requires a small plasma sample volume (25 μL), and a simple protein precipitation method for extraction of the analyte. The separation was achieved with Waters BEH C18 2.1 × 50 mm column and the 3-minute gradient of 10 mM ammonium acetate buffer (pH = 3.5) and acetonitrile as mobile phase. The method was validated in terms of accuracy, precision, selectivity, sensitivity, recovery, stability, and dilution integrity. It was applied to the analysis of the male Sprague Dawley rat plasma samples obtained during pharmacokinetic studies of corynantheidine administered both intravenously (I.V.) and orally (P.O.) (2.5 mg/kg and 20 mg/kg, respectively). The non-compartmental analysis performed in Certara Phoenix® yielded the following parameters: clearance 884.1 ± 32.3 mL/h, apparent volume of distribution 8.0 ± 1.2 L, exposure up to the last measured time point 640.3 ± 24.0 h*ng/mL, and a mean residence time of 3.0 ± 0.2 h with I.V. dose. The maximum observed concentration after a P.O. dose of 213.4 ± 40.4 ng/mL was detected at 4.1 ± 1.3 h with a mean residence time of 8.8 ± 1.8 h. Absolute oral bioavailability was 49.9 ± 16.4 %. Corynantheidine demonstrated adequate oral bioavailability, prolonged absorption and exposure, and an extensive extravascular distribution. In addition, imaging mass spectrometry analysis of the brain tissue was performed to evaluate the distribution of the compound in the brain. Corynantheidine was detected in the corpus callosum and some regions of the hippocampus.
Collapse
|
29
|
Lo Faro AF, Di Trana A, La Maida N, Tagliabracci A, Giorgetti R, Busardò FP. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J Pharm Biomed Anal 2019; 179:112945. [PMID: 31704129 DOI: 10.1016/j.jpba.2019.112945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
New psychoactive substances (NPS) can be divided into two main groups: synthetic molecules and active principles of natural origin. With respect to this latter group, a wide range of alkaloids contained in plants, mainly from Asia and South America, can be included in the class of NPS of natural origin. The majority NPS of natural origin presents stimulant and/or hallucinogenic effects (e.g. Catha edulis and Ayahuasca, respectively) while few of them show sedative and relaxing properties (e.g. kratom). Few information is available in relation to the analytical identification of psychoactive principles contained in the plant material. Moreover, to our knowledge, scarce data are present in literature, about the characterization and quantification of the parent drug in biological matrices from intoxication and fatality cases. In addition, the metabolism of natural active principles has not been yet fully investigated for most of the psychoactive substances from plant material. Consequently, their identification is not frequently performed and produced metabolites are often unknown. To fill this gap, we reviewed the currently available analytical methodologies for the identification and quantification of NPS of natural origin in plant material and, whenever possible, in conventional and non-conventional biological matrices of intoxicated and dead subjects. The psychoactive principles contained in the following plants were investigated: Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Ipomoea violacea, Mandragora officinarum, Mitragyna speciosa, Pausinystalia yohimbe, Piper methisticum, Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium tortuosum, Lactuca virosa. From the results obtained, it can be evidenced that although several analytical methods for the simultaneous quantification of different molecules from the same plants have been developed and validated, a comprehensive method to detect active compounds from different natural specimens both in biological and non-biological matrices is still lacking.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Nunzia La Maida
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Adriano Tagliabracci
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy.
| |
Collapse
|
30
|
Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, Schifano F, Sikka K, Körber S, Hendricks A. Characteristics of deaths associated with kratom use. J Psychopharmacol 2019; 33:1102-1123. [PMID: 31429622 DOI: 10.1177/0269881119862530] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kratom (Mitragyna speciosa Korth) use has increased in Western countries, with a rising number of associated deaths. There is growing debate about the involvement of kratom in these events. AIMS This study details the characteristics of such fatalities and provides a 'state-of-the-art' review. METHODS UK cases were identified from mortality registers by searching with the terms 'kratom', 'mitragynine', etc. Databases and online media were searched using these terms and 'death', 'fatal*', 'overdose', 'poisoning', etc. to identify additional cases; details were obtained from relevant officials. Case characteristics were extracted into an Excel spreadsheet, and analysed employing descriptive statistics and thematic analysis. RESULTS Typical case characteristics (n = 156): male (80%), mean age 32.3 years, White (100%), drug abuse history (95%); reasons for use included self-medication, recreation, relaxation, bodybuilding, and avoiding positive drug tests. Mitragynine alone was identified/implicated in 23% of cases. Poly substance use was common (87%), typically controlled/recreational drugs, therapeutic drugs, and alcohol. Death cause(s) included toxic effects of kratom ± other substances; underlying health issues. CONCLUSIONS These findings add substantially to the knowledge base on kratom-associated deaths; these need systematic, accurate recording. Kratom's safety profile remains only partially understood; toxic and fatal levels require quantification.
Collapse
Affiliation(s)
- John M Corkery
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Hugh Claridge
- National Programme on Substance Abuse Deaths, Population Health Research Institute, St George's, University of London, London, UK
| | - Christine Goodair
- National Programme on Substance Abuse Deaths, Population Health Research Institute, St George's, University of London, London, UK
| | - Duccio Papanti
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Laura Orsolini
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Kanav Sikka
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Sophie Körber
- Department of Pharmaceutical Science, University of Basel, Basel, Switzerland
| | - Amy Hendricks
- Retired Forensic Pathology Technician, Santa Clara County, CA, USA
| |
Collapse
|
31
|
Sharma A, Kamble SH, León F, Chear NJY, King TI, Berthold EC, Ramanathan S, McCurdy CR, Avery BA. Simultaneous quantification of ten key Kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal 2019; 11:1162-1171. [PMID: 30997725 DOI: 10.1002/dta.2604] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022]
Abstract
Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.5). The developed method was linear over a concentration range of 1-200 ng/mL for each alkaloid. The total analysis time per sample was 22.5 minutes. The analytical method was validated for accuracy, precision, robustness, and stability. After successful validation, the method was applied for the quantification of kratom alkaloids in alkaloid-rich fractions, ethanolic extracts, lyophilized teas, and commercial products. Mitragynine (0.7%-38.7% w/w), paynantheine (0.3%-12.8% w/w), speciociliatine (0.4%-12.3% w/w), and speciogynine (0.1%-5.3% w/w) were the major alkaloids in the analyzed kratom products/extracts. Minor kratom alkaloids (corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine) were also quantified (0.01%-2.8% w/w) in the analyzed products; however mitraphylline was below the lower limit of quantification in all analyses.
Collapse
Affiliation(s)
- Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Nelson J-Y Chear
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bonnie A Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Fowble KL, Musah RA. A validated method for the quantification of mitragynine in sixteen commercially available Kratom (Mitragyna speciosa) products. Forensic Sci Int 2019; 299:195-202. [PMID: 31059866 DOI: 10.1016/j.forsciint.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 02/04/2023]
Abstract
The recent rise in the recreational use of plant-based "legal highs" has prompted the development of methods for the identification of the bulk material, and quantification of their psychoactive components. One of these plants is Mitragyna speciosa, commonly referred to as Kratom. While traditional use of this plant was primarily for medicinal purposes, there has been a rise in its recreational use, and as a self-prescribed medication for opioid withdrawal. Although Kratom contains many alkaloids, mitragynine and 7-hydroxymitragynine are unique psychoactive biomarkers of the species, and are responsible for its psychoactive effects. A rapid validated method for the quantification of mitragynine in Kratom plant materials by direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) is presented. It has a linear range of 5-100 μg mL-1, and a lower limit of quantification of 5 μg mL-1. The protocol was applied to determination of the mitragynine content of 16 commercially available Kratom plant products purchased online. The mitragynine amounts in these materials ranged from 2.76 to 20.05 mg g-1 of dried plant material. The utilization of DART-HRMS affords a mechanism not only for the preliminary identification of bulk plant material as being M. speciosa-derived (with no sample preparation required), but also provides the opportunity to quantify its psychoactive components using the same technique.
Collapse
Affiliation(s)
- Kristen L Fowble
- University at Albany-State University of New York, Department of Chemistry, 1400 Washington Ave, Albany, NY 12222, United States
| | - Rabi A Musah
- University at Albany-State University of New York, Department of Chemistry, 1400 Washington Ave, Albany, NY 12222, United States.
| |
Collapse
|
33
|
Singh D, Narayanan S, Grundmann O, Dzulkapli EB, Vicknasingam B. Effects of Kratom ( Mitragyna Speciosa Korth.) Use in Regular Users. Subst Use Misuse 2019; 54:2284-2289. [PMID: 31347441 DOI: 10.1080/10826084.2019.1645178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Mitragyna speciosa (Korth.) or kratom is an indigenous medicinal plant of Southeast Asia. Kratom is widely reported to have dose-dependent effects based on available literature, but to our knowledge, this has not been established conclusively. Objective: This study sought to evaluate if kratom use produces dose-dependent effects, with a stimulant effect at low doses and a sedative effect at high doses, in a sample of regular kratom users. Methods: A total of 63 regular kratom users participated in this cross-sectional study. The Brief-Biphasic Alcohol Effects Scale (B-BAES) was used to determine subjects self-report kratom use experiences. Results: Almost all in the sample were male (98%, n = 62/63), and the majority of subjects were Malays (94%, n = 59/63). The mean age of the subjects in the sample was 43.8 years (SD = 12.1). Seventy-five percent (n = 47/63) have >5 years kratom use history, and 65% (n = 41/63) consumed >3 glasses of kratom daily. Results from first test showed no significant difference in the stimulant (t61 =0.371, p < .331) and sedative effects (t61 =502, p < .759) between those who consumed >3 glasses a day or less than this amount, regardless of duration of use. In the second test, no significant differences in the mean scores were found among those who consumed >3 glasses daily or less than this amount among short-term or long-term uses. Conclusions: Daily kratom use produced both stimulant and sedative effects but they were not statistically significantly associated with the dose consumed, both among short-term and long-term users in our sample.
Collapse
Affiliation(s)
- Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Eshal Bin Dzulkapli
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | |
Collapse
|
34
|
Boffa L, Ghè C, Barge A, Muccioli G, Cravotto G. Alkaloid Profiles and Activity in Different Mitragyna speciosa Strains. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitragyna speciosa (K.) H. (Kratom) is a tree that possesses stimulant and opioid-like analgesic effects, and is indigenous to Southeast Asia and Indochina, where it has seen widespread use for hundreds of years. The principal pharmacologically active alkaloids in kratom leaves include mitragynine (MG), 7-hydroxymitragynine (HMG), speciociliatine (SC), speciogynine (SG) and paynantheine (P). The pharmacological effects induced and their potency can vary dramatically according to variations in the proportions of alkaloid compounds present, which are related to geographic origin, stage of maturity and ecotype. Much of the analgesic and opiate-like psychoactive effect of kratom has been associated with the MG and HMG detected in M. speciosa (K.). H. Five different strains of M. speciosa (K.) H., which present differing vein colours and geographic origin, have been studied herein; red vein strains from Thailand, Malaysia and Bali, named Red Thai, Red Malay and Red Bali, a white vein strain from Borneo (White Borneo) and a green vein strain from Malaysia (Green Malay) were included in the study. Plant leaves were extracted under magnetic stirring at room temperature in a MeOH/H2O 1:1 mixture. Purified alkaloids were isolated in a number of organic extraction steps, from either aqueous basic or acidic phases, that culminated in precipitation (yields between 0.94 and 1.43%). These samples have been analysed using HPLC-DAD, HPLC-MS, HPLC-MS/MS and GC-MS to optimize the identification and quantification of the principal alkaloids present in the different strains. 24 alkaloids were detected in Red Bali whereas 11 compounds were found in the other varieties. Red Thai, Red Bali, Green Malay and White Borneo strains had a higher w/w percentage for MG than for P, while P was more abundant in Red Malay. The Green Malay variety (GMK) showed the highest w/w percentages for MG and total alkaloids in its extracts (59.7 and 94.9% respectively). The Green Malay variety was therefore chosen for in vivo pharmacological studies. The Green Malay extract has shown remarkable and significant antinociceptive and anti-inflammatory activity in mouse hot plate and carrageenan-induced paw edema tests.
Collapse
Affiliation(s)
- Luisa Boffa
- Laboratory of Organic Chemistry. Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Corrado Ghè
- Laboratory of Experimental Pharmacology. Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Alessandro Barge
- Laboratory of Organic Chemistry. Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Giampiero Muccioli
- Laboratory of Experimental Pharmacology. Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Giancarlo Cravotto
- Laboratory of Organic Chemistry. Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| |
Collapse
|
35
|
PCR-reverse dot blot of the nucleotide signature sequences of mat K for the identification of Mitragyna speciosa , a narcotic species. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Basiliere S, Bryand K, Kerrigan S. Identification of five Mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:11-19. [PMID: 29459087 DOI: 10.1016/j.jchromb.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
Mitragyna speciosa (Kratom) is a psychoactive plant that has recently emerged as a recreational drug. Mitragyna alkaloids are not within the scope of traditional forensic toxicology screening methods, which may contribute to under-reporting. Solid phase extraction (SPE) and liquid chromatography-quadrupole/time of flight mass spectrometry (LC-Q/TOF-MS) were used to identify five alkaloids in urine. Target analytes included the two known psychoactive compounds, mitragynine and 7-hydroxymitragynine, in addition to speciociliatine, speciogynine, and paynantheine. Two deuterated internal standards (mitragynine-D3 and 7-hydroxymitragynine-D3) were employed. Using traditional reversed phase chromatography all compounds and isomers were separated in 10 min. The procedure was validated in accordance with the Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation. Extraction efficiencies were 63-96% and limits of quantitation were 0.5-1 ng/mL. Precision, bias and matrix effects were all within acceptable thresholds, with the exception of 7-hydroxymitragynine, which is notably unstable and unsuitable for quantitative analysis. In this paper we present a simultaneous quantitative analytical method for mitragynine, speciociliatine, speciogynine and paynantheine, and a qualitative assay for 7-hydroxymitragynine in urine using high resolution mass spectrometry (HRMS).
Collapse
Affiliation(s)
- Stephanie Basiliere
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, United States
| | - Kelsie Bryand
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, United States
| | - Sarah Kerrigan
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, United States.
| |
Collapse
|
37
|
Limsuwanchote S, Putalun W, Tanaka H, Morimoto S, Keawpradub N, Wungsintaweekul J. Development of an immunochromatographic strip incorporating anti-mitragynine monoclonal antibody conjugated to colloidal gold for kratom alkaloids detection. Drug Test Anal 2017; 10:1168-1175. [PMID: 29287305 DOI: 10.1002/dta.2354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Abstract
A lateral flow-based immunochromatographic strip was developed for the rapid detection of mitragynine (MG), a dominant alkaloid found in the leaves of kratom. Monoclonal antibody (mAb) against MG (anti-MG mAb) was conjugated to colloidal gold and used as a recognition probe. MG-ovalbumin conjugate (MG-OVA) and goat anti-mouse IgG were immobilized on the strip to produce a test zone and control zone, respectively. Based on the principle of a competitive assay, MG in a test sample competed with MG-OVA resident in the test zone to bind with colloidal gold-anti-MG mAb, resulting in an inverse relation of color intensity at the test zone and MG amount. The limit of detection (LOD) of the immunochromatographic strip is determined at 1 mg/mL of MG by visual assessment and 0.60 mg/mL by Image J analysis. The developed immunochromatographic strip can determine MG in kratom cocktails and kratom leaf samples. It could serve as a rapid and simple diagnostic kit for the detection of MG in kratom samples.
Collapse
Affiliation(s)
- Supattra Limsuwanchote
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Niwat Keawpradub
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Juraithip Wungsintaweekul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
38
|
Lee MJ, Ramanathan S, Mansor SM, Yeong KY, Tan SC. Method validation in quantitative analysis of phase I and phase II metabolites of mitragynine in human urine using liquid chromatography-tandem mass spectrometry. Anal Biochem 2017; 543:146-161. [PMID: 29248503 DOI: 10.1016/j.ab.2017.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
Abstract
A method using solid phase extraction and liquid chromatography-tandem mass spectrometry to quantitatively detect mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine in human urine samples was developed and validated. The relevant metabolites were identified using multiple reaction monitoring in positive ionization mode using nalorphine as an internal standard. The method was validated for accuracy, precision, recovery, linearity, and lower limit of quantitation. The intra- and inter-day accuracy and precision were found in the range of 83.6-117.5% with coefficient of variation less than 13%. The percentage of recovery for mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine was within the range of 80.1-118.9%. The lower limit of quantification was 1 ng/mL for mitragynine, 2 ng/mL for 16-carboxy mitragynine, and 50 ng/mL for 9-O-demethyl mitragynine. The developed method was reproducible, high precision and accuracy with good linearity and recovery for mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine in human urine.
Collapse
Affiliation(s)
- Mei Jin Lee
- Institute for Research in Molecular Medicine (INFORMM), Main Campus, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Surash Ramanathan
- Centre for Drug Research (CDR), Main Campus, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sharif Mahsufi Mansor
- Centre for Drug Research (CDR), Main Campus, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Keng Yoon Yeong
- Institute for Research in Molecular Medicine (INFORMM), Main Campus, Universiti Sains Malaysia, 11800, Penang, Malaysia; School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Soo Choon Tan
- Institute for Research in Molecular Medicine (INFORMM), Main Campus, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
39
|
Affiliation(s)
- O. Hayden Griffin
- Associate Professor, Department of Criminal Justice, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan E. Webb
- Doctoral Student, Department of Sociology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
40
|
Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 2017; 134:108-120. [PMID: 28830758 DOI: 10.1016/j.neuropharm.2017.08.026] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022]
Abstract
The leaves of Mitragyna speciosa (commonly known as kratom), a tree endogenous to parts of Southeast Asia, have been used traditionally for their stimulant, mood-elevating, and analgesic effects and have recently attracted significant attention due to increased use in Western cultures as an alternative medicine. The plant's active alkaloid constituents, mitragynine and 7-hydroxymitragynine, have been shown to modulate opioid receptors, acting as partial agonists at mu-opioid receptors and competitive antagonists at kappa- and delta-opioid receptors. Furthermore, both alkaloids are G protein-biased agonists of the mu-opioid receptor and therefore, may induce less respiratory depression than classical opioid agonists. The Mitragyna alkaloids also appear to exert diverse activities at other brain receptors (including adrenergic, serotonergic, and dopaminergic receptors), which may explain the complex pharmacological profile of raw kratom extracts, although characterization of effects at these other targets remains extremely limited. Through allometric scaling, doses of pure mitragynine and 7-hydroxymitragynine used in animal studies can be related to single doses of raw kratom plant commonly consumed by humans, permitting preliminary interpretation of expected behavioral and physiological effects in man based on this preclinical data and comparison to both anecdotal human experience and multiple epidemiological surveys. Kratom exposure alone has not been causally associated with human fatalities to date. However, further research is needed to clarify the complex mechanism of action of the Mitragyna alkaloids and unlock their full therapeutic potential. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
Affiliation(s)
- Andrew C Kruegel
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, United States.
| | - Oliver Grundmann
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32611, United States.
| |
Collapse
|
41
|
Feng LY, Battulga A, Han E, Chung H, Li JH. New psychoactive substances of natural origin: A brief review. J Food Drug Anal 2017; 25:461-471. [PMID: 28911631 PMCID: PMC9328809 DOI: 10.1016/j.jfda.2017.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Plant-based drugs of abuse are as old as recorded human history. Although traditional addictive substances, such as opium, cannabis and coca, have been controlled by the United Nations anti-drug conventions, many, if not most, natural plants with addictive or abuse liability remain elusive. Therefore, the United Nations Office on Drugs and Crime (UNODC) has warned the emerging threat from new psychoactive substances (NPS), which are mostly derived or modified from the constituents of natural origin. For example, synthetic cannabinoids and synthetic cathinones are derived from the cannabis and khat plant, respectively. In this review, we briefly discussed the chemistry, pharmacology and toxicology of five common NPS of natural origin, i.e., khat, kratom, salvia, magic mushroom and mandrake. Through the review, we hope that professionals and general public alike can pay more attention to the potential problems caused by natural NPS, and suitable control measures will be taken.
Collapse
Affiliation(s)
- Ling-Yi Feng
- Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Altansuvd Battulga
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
| | - Eunyoung Han
- College of Pharmacy, Duksung Women's University, Seoul,
South Korea
| | - Heesun Chung
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon,
South Korea
| | - Jih-Heng Li
- Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung,
Taiwan
| |
Collapse
|
42
|
Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:302-325. [PMID: 28330725 DOI: 10.1016/j.jep.2017.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Mitragyna (Rubiacaeae) has been traditionally used in parts of Africa, Asia and Oceania. In recent years, there has been increased interest in species of Mitragyna with the introduction of products to western markets and regulatory uncertainty. AIM OF THE STUDY This paper reviewed the traditional ethnomedicinal uses of leaves for species belonging to the genus Mitragyna with reference to the botany and known chemistry in order to highlight areas of interest for products currently being sold as kratom. MATERIALS AND METHODS A literature search was conducted using Web of Science, Google Scholar, the Royal Museum for Central Africa, Internet Archive, Hathi Trust, and Biodiversity Heritage Library search engines in the spring of 2015, fall of 2016 and winter of 2017 to document uses of bark, leaf and root material. RESULTS Leaves of M. speciosa (kratom) had the most common documented ethnomedicinal uses as an opium substitute or remedy for addiction. Other species of Mitragyna were reportedly used for treating pain, however the mode of preparation was most often cited as topical application. Other uses of Mitragyna included treatment of fever, skin infections, and as a mild anxiolytic. CONCLUSIONS Mitragyna species have been used medicinally in various parts of the world and that there is significant traditional evidence of use. Modern products that include formulations as topical application of liniments, balms or tinctures may provide effective alternatives for treatment of certain types of pains. Future research is required to establish safety and toxicology limits, medicinal chemistry parameters and the potential for different physiological responses among varying genetic populations to support regulatory requirements for Mitragyna spp.
Collapse
Affiliation(s)
- Paula N Brown
- Natural Health Products and Food Research Group, British Columbia Institute of Technology, 4355 Mathissi Place, Burnaby, British Columbia, Canada V5G 4S8; Department of Biology, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Jensen A Lund
- Natural Health Products and Food Research Group, British Columbia Institute of Technology, 4355 Mathissi Place, Burnaby, British Columbia, Canada V5G 4S8; Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7.
| |
Collapse
|
43
|
Fuenffinger N, Ritchie M, Ruth A, Gryniewicz-Ruzicka C. “Evaluation of ion mobility spectrometry for the detection of mitragynine in kratom products”. J Pharm Biomed Anal 2017; 134:282-286. [DOI: 10.1016/j.jpba.2016.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022]
|
44
|
Lydecker AG, Sharma A, McCurdy CR, Avery BA, Babu KM, Boyer EW. Suspected Adulteration of Commercial Kratom Products with 7-Hydroxymitragynine. J Med Toxicol 2016; 12:341-349. [PMID: 27752985 DOI: 10.1007/s13181-016-0588-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Kratom (Mitragyna speciosa), a plant native to Southeast Asia, has been used for centuries for its stimulant and opium-like effects. Mitragynine and 7-hydroxymitragynine, exclusive to M. speciosa, are the alkaloids primary responsible for Kratom's biologic and psychoactive profile, and likely contribute to its problematic use. We purchased several commercially available Kratom analogs for analysis and through our results, present evidence of probable adulteration with the highly potent and addictive plant alkaloid, 7-hydroxymitragynine. METHODS A simple and sensitive LC-MS/MS method was developed for simultaneous quantification of mitragynine and 7-hydroxymitragynine in methanol extract of marketed Kratom supplements. RESULTS We found multiple commercial Kratom products to have concentrations of 7-hydroxymitragynine that are substantially higher than those found in raw M. speciosa leaves. CONCLUSIONS We have found multiple packaged commercial Kratom products likely to contain artificially elevated concentrations of 7-hydroxymitragynine, the alkaloid responsible for M. speciosa's concerning mechanistic and side effect profile. This study describes a unique form of product adulteration, which stresses the importance of increased dietary supplement oversight of Kratom-containing supplements.
Collapse
Affiliation(s)
- Alicia G Lydecker
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA.
| | - Abhisheak Sharma
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, 104A Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
| | - Christopher R McCurdy
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 417 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
| | - Bonnie A Avery
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, 104A Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA.,Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 417 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
| | - Kavita M Babu
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Edward W Boyer
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| |
Collapse
|
45
|
Griffin OH, Daniels JA, Gardner EA. Do You Get What You Paid For? An Examination of Products Advertised as Kratom. J Psychoactive Drugs 2016; 48:330-335. [DOI: 10.1080/02791072.2016.1229876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Limsuwanchote S, Putalun W, Keawpradub N, Tanaka H, Morimoto S, Wungsintaweekul J. Anti-mitragynine monoclonal antibody-based ELISA for determination of alkaloids in the kratom cocktail. Forensic Toxicol 2016. [DOI: 10.1007/s11419-016-0332-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Oliveira AS, Fraga S, Carvalho F, Araújo AM, Pereira CC, Teixeira JP, de Lourdes Bastos M, de Pinho PG. Chemical characterization and in vitro cyto- and genotoxicity of ‘legal high’ products containing Kratom (Mitragyna speciosa). Forensic Toxicol 2016. [DOI: 10.1007/s11419-015-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst 2016; 140:4932-48. [PMID: 26031385 DOI: 10.1039/c5an00797f] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New psychoactive substances (NPSs), sometimes referred to as "legal highs" in more colloquial environments/the media, are a class of compounds that have been recently made available for abuse (not necessarily recently discovered) which provide similar effects to the traditional well studied illegal drugs but are not always controlled under existing local, regional or international drug legislation. Following an unprecedented increase in the number of NPSs in the last 5 years (with 101 substances discovered for the first time in 2014 alone) its, occasionally fatal, consequences have been extensively reported in the media. Such NPSs are typically marketed as 'not for human consumption' and are instead labelled and sold as plant food, bath salts as well as a whole host of other equally nondescript aliases in order to bypass legislative controls. NPSs are a new multi-disciplinary research field with the main emphasis in terms of forensic identification due to their adverse health effects, which can range from minimal to life threatening and even fatalities. In this mini-review we overview this recent emerging research area of NPSs and the analytical approaches reported to provide detection strategies as well as detailing recent reports towards providing point-of-care/in-the-field NPS ("legal high") sensors.
Collapse
Affiliation(s)
- Jamie P Smith
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | | | | |
Collapse
|
49
|
Screening and Identification of Mitragynine and 7-Hydroxymitragynine in Human Urine by LC-MS/MS. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2020253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Neng NR, Ahmad SM, Gaspar H, Nogueira JMF. Determination of mitragynine in urine matrices by bar adsorptive microextraction and HPLC analysis. Talanta 2015; 144:105-9. [PMID: 26452798 DOI: 10.1016/j.talanta.2015.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022]
Abstract
Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of the psychoactive alkaloid mitragynine (MG) in human urine matrices. By using a modified N-vinylpyrrolidone polymer (P2) sorbent phase, high selectivity and efficiency is achieved. Assays performed by BAµE(P2)-LD/HPLC-DAD on 25 mL water samples spiked at the 8.0 µg L(-1) level yielded average recoveries around 100% of MG, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), appropriated detection limits of 0.10 µg L(-1) and linear dynamic ranges (0.6-24.0 μg L(-1)) with convenient determination coefficients of 0.9924. By using the standard addition method, the application of the present methodology for the determination of MG in human urine matrices after Kratom consumer, allowed very good performances. The proposed methodology proved to be a suitable alternative to monitor MG in biological fluid matrices, showing to be easy to implement, reliable, sensitive and requiring low sample volumes, when compared with other sorbent-based methods.
Collapse
Affiliation(s)
- N R Neng
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - S M Ahmad
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - H Gaspar
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|