1
|
Ahmad SM, Neng NR, Queirós CR, Gaspar H, Nogueira JMF. Bar adsorptive microextraction and liquid chromatography-diode array detection of synthetic cannabinoids in oral fluid. Anal Bioanal Chem 2024; 416:6307-6316. [PMID: 39259273 PMCID: PMC11541396 DOI: 10.1007/s00216-024-05517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
In recent years, synthetic cannabinoids (SCs) have become a major public health issue. For this reason, there is a need for innovative analytical methods that allow its monitoring in biological matrices. In this work, we propose a novel methodology to screen eight SCs (AM-694, cumyl-5F-PINACA, MAM-2201, 5F-UR-144, JWH-018, JWH-122, UR-144 and APINACA) in oral fluids. A bar adsorptive microextraction method followed by microliquid desorption combined with high-performance liquid chromatography with diode array detection (BAµE-µLD/HPLC-DAD) was developed to monitor the target SCs. The main factors affecting the BAµE technology were fully optimized for oral fluid analysis. Under optimized experimental conditions, the proposed methodology showed good linear dynamic ranges from 20.0 to 2000.0 µg L-1 (r2 > 0.99, relative residuals < 15%), limits of detection between 2.0 and 5.0 µg L-1 and suitable average recovery yields (87.9-100.5%) for the eight studied SCs. The intra- and interday accuracies (bias ≤ ± 14.7%) and precisions (RSD ≤ 14.9%) were also evaluated at three spiking levels. The validated methodology was then assayed to oral fluid samples collected from several volunteers. The proposed analytical approach showed remarkable performance and could be an effective alternative for routine monitoring of the target compounds in oral fluid.
Collapse
Affiliation(s)
- Samir M Ahmad
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuno R Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Cláudio R Queirós
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - José Manuel F Nogueira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
2
|
Tettey JNA, Crean C, Rodrigues J, Angeline Yap TW, Lee Wendy Lim J, Shirley Lee HZ, Ching M. United Nations Office on Drugs and Crime: Recommended methods for the Identification and Analysis of Synthetic Cannabinoid Receptor Agonists in Seized Materials. Forensic Sci Int Synerg 2021; 3:100129. [PMID: 33665591 PMCID: PMC7902557 DOI: 10.1016/j.fsisyn.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Justice N A Tettey
- Laboratory and Scientific Services, United Nations Office on Drugs and Crime, Vienna, Austria
| | - Conor Crean
- United Nations Office on Drugs and Crime, Vienna, Austria
| | - Joao Rodrigues
- United Nations Office on Drugs and Crime, Vienna, Austria
| | | | | | | | - Mei Ching
- Health Sciences Authority, Singapore
| |
Collapse
|
3
|
Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol 2020; 50:359-382. [PMID: 32530350 DOI: 10.1080/10408444.2020.1762539] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The word "cannabinoid" refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2", synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as "not for human consumption" to circumvent legislation, their legal status varies by country with many government institutions currently pushing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxications in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than natural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially leading to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
4
|
Presley BC, Logan BK, Jansen-Varnum SA. Phase I metabolism of synthetic cannabinoid receptor agonist PX-1 (5F-APP-PICA) via incubation with human liver microsomes and UHPLC-HRMS. Biomed Chromatogr 2020; 34:e4786. [PMID: 31863591 DOI: 10.1002/bmc.4786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023]
Abstract
Studies of the metabolic and pharmacological profiles of indole carboxamide synthetic cannabinoids (a prevalent class of new psychoactive substances) are critical in ensuring that their use can be detected through bioanalytical testing. We have determined the in vitro Phase I metabolism of one such compound, PX-1 (5F-APP-PICA), and appropriate markers to demonstrate human consumption. PX-1 was incubated with human liver microsomes, followed by analysis of the extracts via high-resolution mass spectrometry. A total of 10 metabolites were identified, with simultaneous defluorination and monohydroxylation of the pentyl side chain as the primary biotransformation product (M1). Additional metabolites formed were hydroxylation products of the indole and benzyl moieties, distal amide hydrolysis, N-desfluoropentyl, and carboxypentyl metabolites. Three monohydroxylated metabolites specific to PX-1 were identified and are reported for the first time in this study. The primary metabolite, M1, was further oxidized to M5, a carboxypentyl metabolite. M8 is PX-1 specific, possessing an intact fluoropentyl side chain. These three metabolites are the most suitable for implementation into bioanalytical assays for demonstrating PX-1 consumption. The findings of this study can be used by analytical scientists and medical professionals to determine PX-1 ingestion and predict the metabolites of synthetic cannabinoids sharing structural elements.
Collapse
Affiliation(s)
| | - Barry K Logan
- The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, Willow Grove, PA, USA
| | | |
Collapse
|
5
|
Cho B, Cho HS, Kim J, Sim J, Seol I, Baeck SK, In S, Shin DH, Kim E. Simultaneous determination of synthetic cannabinoids and their metabolites in human hair using LC-MS/MS and application to human hair. Forensic Sci Int 2020; 306:110058. [DOI: 10.1016/j.forsciint.2019.110058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
6
|
Abdel-Hay KM, Belal TS, Abiedalla Y, Thaxton-Weissenfluh A, DeRuiter J, Smith F, Clark CR. Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Infrared (GC-IR) Analyses of the Chloro-1- n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Cannabinoids. APPLIED SPECTROSCOPY 2019; 73:433-443. [PMID: 30347999 DOI: 10.1177/0003702818809998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The analytical differentiation of the indole ring regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles is described in this report. The regioisomeric chloroindole precursor compounds, N- n-pentyl chloroindole synthetic intermediates, and the target chloro-substituted naphthoylindoles showed the equivalent gas chromatographic elution order based on the position of chlorine substitution on the indole ring. The regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles yield electron ionization mass spectra having equivalent major fragments resulting from cleavage of the groups attached to the central indole nucleus. Fragment ions occur at m/z 127 and 155 for the naphthyl and naphthoyl cations common to all indoles having the naphthoyl group substituted at the indole-3 position. Fragments resulting from the loss of the naphthoyl and/or n-pentyl groups from the molecular radical cation yield the cations at m/z 318, 304, 248, and 178. The characteristic (M-17)+ fragment ion at m/z 358 resulting from the loss of OH radical is significant in the mass spectra of all these compounds with 1-naphthoyl groups substituted at the indole-3 position. The vapor phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers.
Collapse
Affiliation(s)
- Karim M Abdel-Hay
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- 2 Department of Chemistry, College of Science, Eastern Kentucky University, Richmond, KY, USA
- 3 Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tarek S Belal
- 3 Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Younis Abiedalla
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- 4 Department of Medicinal Chemistry, Faculty of Pharmacy, Omar Al-Mukhtar University, El-Beida, Libya
| | - Amber Thaxton-Weissenfluh
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack DeRuiter
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Forrest Smith
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- 1 Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
DURMUS H, DURMAZEL S, ÜZER A, GÖKDERE B, ERÇAG E, APAK R. Colorimetric Determination of (Aminoalkyl)indole-containing Synthetic Cannabimimetics. ANAL SCI 2018; 34:1419-1425. [DOI: 10.2116/analsci.18p305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hasan DURMUS
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa
| | - Selen DURMAZEL
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa
| | - Aysem ÜZER
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa
| | - Bahar GÖKDERE
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa
| | | | - Resat APAK
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa
- Turkish Academy of Sciences (TUBA)
| |
Collapse
|
8
|
Noble C, Cannaert A, Linnet K, Stove CP. Application of an activity‐based receptor bioassay to investigate the in vitro activity of selected indole‐ and indazole‐3‐carboxamide‐based synthetic cannabinoids at CB1 and CB2 receptors. Drug Test Anal 2018; 11:501-511. [DOI: 10.1002/dta.2517] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Carolina Noble
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's Vej 11 2100 Copenhagen Denmark
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
- Laboratory of ToxicologyNational Institute of Criminalistics and Criminology Vilvoordsesteenweg 100 1120 Brussels Belgium
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's Vej 11 2100 Copenhagen Denmark
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| |
Collapse
|
9
|
Thaxton-Weissenfluh A, Belal TS, DeRuiter J, Smith F, Abiedalla Y, Neel L, Abdel-Hay KM, Clark CR. GC-MS and GC-IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles: Regioisomeric Designer Cannabinoids. J Chromatogr Sci 2018; 56:779-788. [PMID: 29920587 DOI: 10.1093/chromsci/bmy059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/23/2018] [Indexed: 11/13/2022]
Abstract
The indole ring regioisomeric methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles represent indole ring-substituted analogs of the synthetic cannabinoid JWH-018. The electron ionization mass spectra show equivalent regioisomeric major fragments resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)+ fragment ion at m/z 354 resulting from the loss of OH group is significant in the mass spectra of all four compounds. Fragmentation of the naphthoyl and/or pentyl groups yields the cations at m/z 314, 300, 244 and 216. The vapor-phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers. Gas chromatographic separations on a capillary column containing a film of trifluoropropylmethyl polysiloxane (Rtx-200) provided excellent resolution of these compounds, their precursor indoles and intermediate pentylindoles. The elution order appears related to the degree of crowding of indole ring substituents.
Collapse
Affiliation(s)
- Amber Thaxton-Weissenfluh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Tarek S Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Jack DeRuiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Younis Abiedalla
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Omar Al-Mukhtar University, El-Beida, Libya
| | - Logan Neel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Karim M Abdel-Hay
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
The ongoing challenge of novel psychoactive drugs of abuse. Part I. Synthetic cannabinoids (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the past decade, the world has experienced a large increase in the number of novel compounds appearing on the illicit drug market for recreational purposes. Such substances are designed to circumvent governmental regulations; the illegal drug manufacturers take a known psychoactive compound reported in the scientific literature and slightly modify its chemical structure in order to produce analogues that will mimic the pharmacological activity of the original substance. Many of these novel substances are sold via the Internet. Among the various chemical classes, synthetic cannabinoid receptor modulators, commonly referred to as “synthetic cannabinoids” have been at the forefront, as demonstrated by the frequency of drug seizures, numerous severe toxic effects, and fatalities associated with some of these substances. This review presents the chemical structures of relevant synthetic cannabinoids and describes their mechanism of action, pharmacological features, metabolic pathways, and structure-activity relationships. It illustrates the approaches used in forensic testing, both for bulk analysis (drug seizures) and for analytical toxicology (biological matrices) and discusses aspects of regulation surrounding this drug class. This report is intended to provide pertinent information for the purposes of informing scientific, medical, social, and governmental bodies about this ever-evolving recreational drug class and the challenges it poses worldwide.
Collapse
|
11
|
Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Arch Pharm Res 2018; 41:691-710. [PMID: 30039377 DOI: 10.1007/s12272-018-1055-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023]
Abstract
Synthetic cannabinoids, a new class of psychoactive substances, are potent agonists of cannabinoid receptors, which mimic the psychoactive effects of the principal psychoactive component of cannabis, ∆9-tetrahydrocannabinol. Despite governmental scheduling as illicit drugs, new synthetic cannabinoids are being produced. The abuse of synthetic cannabinoids with several drugs containing different chemical groups has resulted in large numbers of poisonings. This has increased the urgency for forensic and public health laboratories to identify the metabolites of synthetic cannabinoids and apply this knowledge to the development of analytical methods and for toxicity prediction. It is necessary to determine whether synthetic cannabinoids are involved in drug-metabolizing enzyme-mediated drug-drug interactions. This review describes the metabolic pathways of 13 prevalent synthetic cannabinoids and various drug-metabolizing enzymes responsible for their metabolism, including cytochrome P450 (CYP), UDP-glucuronosyltransferases (UGTs), and carboxylesterases. The inhibitory effects of synthetic cannabinoids on CYP and UGT activities are also reviewed to predict the potential of synthetic cannabinoids for drug-drug interactions. The drug-metabolizing enzymes responsible for metabolism of synthetic cannabinoids should be characterized and the effects of synthetic cannabinoids on CYP and UGT activities should be determined to predict the pharmacokinetics of synthetic cannabinoids and synthetic cannabinoid-induced drug-drug interactions in the clinic.
Collapse
|
12
|
Belal TS, Thaxton-Weissenfluh A, DeRuiter J, Smith F, Abiedalla Y, Abdel-Hay KM, Clark CR. Differentiation of methylated indole ring regioisomers of JWH-007: GC–MS and GC–IR studies. Forensic Chem 2018. [DOI: 10.1016/j.forc.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Grenet E, Waser J. Iridium- and Rhodium-Catalyzed Directed C-H Heteroarylation of Benzaldehydes with Benziodoxolone Hypervalent Iodine Reagents. Org Lett 2018; 20:1473-1476. [PMID: 29466016 DOI: 10.1021/acs.orglett.8b00337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The C-H heteroarylation of benzaldehydes with indoles and pyrroles was realized using the benziodoxolone hypervalent iodine reagents indole- and pyrroleBX. Functionalization of the aldehyde C-H bond using either an o-hydroxy or amino directing group and catalyzed by an iridium or a rhodium complex allowed the synthesis of salicyloylindoles and (2-sulfonamino)benzoylindoles, respectively, with good to excellent yields (74-98%). This new transformation could be carried out under mild conditions (rt to 40 °C) and tolerated a broad range of functionalities, such as ethers, halogens, carbonyls, or nitro groups.
Collapse
Affiliation(s)
- Erwann Grenet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO , BCH 4306, 1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO , BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Banister SD, Olson A, Winchester M, Stuart J, Edington AR, Kevin RC, Longworth M, Herrera M, Connor M, McGregor IS, Gerona RR, Kassiou M. The chemistry and pharmacology of synthetic cannabinoid SDB-006 and its regioisomeric fluorinated and methoxylated analogs. Drug Test Anal 2018; 10:1099-1109. [PMID: 29350472 DOI: 10.1002/dta.2362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Synthetic cannabinoids are the largest and most structurally diverse class of new psychoactive substances, with manufacturers often using isomerism to evade detection and circumvent legal restriction. The regioisomeric methoxy- and fluorine-substituted analogs of SDB-006 (N-benzyl-1-pentyl-1H-indole-3-carboxamide) were synthesized and could not be differentiated by gas chromatography-mass spectrometry (GC-MS), but were distinguishable by liquid chromatography-quadrupole time-of-flight-MS (LC-QTOF-MS). In a fluorescence-based plate reader membrane potential assay, SDB-006 acted as a potent agonist at human cannabinoid receptors (CB1 EC50 = 19 nM). All methoxy- and fluorine-substituted analogs showed reduced potency compared to SDB-006, although the 2-fluorinated analog (EC50 = 166 nM) was comparable to known synthetic cannabinoid RCS-4 (EC50 = 146 nM). Using biotelemetry in rats, SDB-006 and RCS-4 evoked comparable reduction in body temperature (~0.7°C at a dose of 10 mg/kg), suggesting lower potency than the recent synthetic cannabinoid AB-CHMINACA (>2°C, 3 mg/kg).
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander Olson
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Matthew Winchester
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jordyn Stuart
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Amelia R Edington
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard C Kevin
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - Marco Herrera
- Department of Immunology, Stanford University, Stanford, California, USA
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Iain S McGregor
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Banister SD, Connor M. The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins. Handb Exp Pharmacol 2018; 252:165-190. [PMID: 29980914 DOI: 10.1007/164_2018_143] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have proliferated as new psychoactive substances (NPS) over the past decade. Relative to other classes of NPS, SCRAs are structurally heterogeneous; however, most SCRAs act as potent, high-efficacy agonists of cannabinoid type 1 and type 2 receptors (CB1 and CB2, respectively). Characterization of the pharmacology and toxicology of these substances is hindered by the dynamic nature of the SCRA marketplace. Beyond basic pharmacological profiling at CB1 and CB2 receptors, very little is known about the acute or chronic effects of SCRAs. Many of the effects of SCRAs are qualitatively similar to those of the Δ9-tetrahydrocannabinol (Δ9-THC) found in cannabis. However, unlike Δ9-THC, SCRAs are frequently associated with serious adverse effects, including cardiotoxicity, nephrotoxicity, and death. This chapter will provide an overview of the structure and function of the primary target for SCRAs, the CB1 receptor, and survey the structure-activity relationships of the historical SCRAs that served as templates for the earliest generations of NPS.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Hruba L, McMahon LR. Apparent Affinity Estimates and Reversal of the Effects of Synthetic Cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by Rimonabant in Rhesus Monkeys. J Pharmacol Exp Ther 2017; 362:278-286. [PMID: 28533288 PMCID: PMC5502382 DOI: 10.1124/jpet.117.240572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Synthetic cannabinoids have been prohibited due to abuse liability and toxicity. Four such synthetic cannabinoids, AM-2201 ([1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-ylmethanone), CP-47,497 (2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol), JWH-122 [(4-methylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone], and JWH-250 [2-(2-methoxyphenyl)-1-(1-pentylindol-3-yl)ethanone], were tested for their capacity to produce CB1 receptor-mediated discriminative stimulus effects in two groups of rhesus monkeys. One group (n = 4) discriminated Δ9-tetrahydrocannabinol (∆9-THC; 0.1 mg/kg i.v.), and a second group (n = 4) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving 1 mg/kg/12 hours of ∆9-THC. AM-2201, JWH-122, CP-47,497, JWH-250, and ∆9-THC increased ∆9-THC lever responding. Duration of action was 1-2 hours for AM-2201, JWH-122, and JWH-250 and 4-5 hours for CP-47,497 and ∆9-THC. Rimonabant (1 mg/kg) surmountably antagonized the discriminative stimulus effects of all cannabinoid agonists; the magnitude of rightward shift was 10.6-fold for AM-2201, 10.7-fold for JWH-122, 11.0-fold for CP-47,497, and 15.7-fold for JWH-250. The respective pKB values were not significantly different: 6.61, 6.65, 6.66, and 6.83. In ∆9-THC-treated monkeys discriminating rimonabant, AM-2201 (0.1 and 0.32 mg/kg), JWH-122 (0.32 and 1 mg/kg), JWH-250 (1 and 3.2 mg/kg), and CP-47,497 (0.32, 1, and 3.2 mg/kg) produced not only rate-decreasing effects that were reversed by rimonabant, but also dose-dependent, rightward shifts in the rimonabant discrimination dose-effect function. These results show striking similarity in the CB1 receptor mechanism mediating the subjective effects of AM-2201, JWH-122, JWH-250, and CP-47,497. For products containing AM-2201 and JWH-122, a short duration of action could lead to more frequent use; moreover, inattention to differences in potency among synthetic cannabinoids could underlie unexpected toxicity. Rapid reversal of effects by intravenous rimonabant has potential value in emergency situations.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lance R McMahon
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
17
|
Inomata A, Ogata A, Tada Y, Nagasawa A, Yuzawa K, Ando H, Kubo Y, Takahashi H, Kaihoko F, Tanaka K, Nakajima J, Suzuki A, Uemura N, Moriyasu T, Watanabe D, Ishihara K, Usami T, Kamei S, Kohno Y. Inhalation Exposure Method for Illegal Drugs. YAKUGAKU ZASSHI 2017; 137:1005-1015. [DOI: 10.1248/yakushi.17-00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Akio Ogata
- Tokyo Metropolitan Institute of Public Health
| | - Yukie Tada
- Tokyo Metropolitan Institute of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | - Daisuke Watanabe
- Health and Safety Division, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government
| | - Kei Ishihara
- Health and Safety Division, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government
| | - Takashi Usami
- Health and Safety Division, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government
| | - Satoru Kamei
- Health and Safety Division, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government
| | - Yasuaki Kohno
- Health and Safety Division, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government
| |
Collapse
|
18
|
Identification of the synthetic cannabinoid N-(2-phenyl-propan-2-yl)-1-(4-cyanobutyl)-1H-indazole-3-carboxamide (CUMYL-4CN-BINACA) in a herbal mixture product. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0372-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Inhibition of cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferases by MAM-2201 in human liver microsomes. Arch Pharm Res 2017; 40:727-735. [PMID: 28484907 DOI: 10.1007/s12272-017-0917-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 02/03/2023]
Abstract
MAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors and is increasingly used as an illicit recreational drug. The inhibitory effects of MAM-2201 on major drug-metabolizing enzymes such as cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) have not yet been investigated although it is widely abused, sometimes in combination with other drugs. We evaluated the inhibitory effects of MAM-2201 on eight major human CYPs (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six UGTs (UGTs 1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) of pooled human liver microsomes; we thus explored potential MAM-2201-induced drug interactions. MAM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, and UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with K i values of 5.6, 5.4 and 5.0 µM, respectively. MAM-2201 exhibited mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-de-ethylation with K i and k inact values of 1.0 µM and 0.0738 min-1, respectively. In human liver microsomes, MAM-2201 (50 µM) negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7. Based on these in vitro results, we conclude that MAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP3A4, and UGT1A3.
Collapse
|
20
|
Kim JH, Kwon SS, Kong TY, Cheong JC, Kim HS, In MK, Lee HS. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes. Molecules 2017; 22:molecules22030443. [PMID: 28287454 PMCID: PMC6155437 DOI: 10.3390/molecules22030443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 µM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 µM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Soon-Sang Kwon
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Tae Yeon Kong
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Jae Chul Cheong
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Hee Seung Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Moon Kyo In
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| |
Collapse
|
21
|
Kong TY, Kim JH, Choi WG, Lee JY, Kim HS, Kim JY, In MK, Lee HS. Metabolic characterization of (1-(5-fluoropentyl)-1H-indol-3-yl)(4-methyl-1-naphthalenyl)-methanone (MAM-2201) using human liver microsomes and cDNA-overexpressed cytochrome P450 enzymes. Anal Bioanal Chem 2016; 409:1667-1680. [PMID: 27924364 DOI: 10.1007/s00216-016-0113-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
MAM-2201 is a synthetic cannabinoid that is increasingly found in recreational drug abusers and cases of severe intoxication. Thus, characterization of the metabolic pathways of MAM-2201 is necessary to predict individual pharmacokinetics and toxicity differences, and to avoid toxic drug-drug interactions. Collectively, 19 phase 1 metabolites of MAM-2201 were identified using liquid chromatography-Orbitrap mass spectrometry following human liver microsomal incubations in the presence of NADPH: 7 hydroxy-MAM-2201 (M1-M7), 4 dihydroxy-MAM-2201 (M8-M11), dihydrodiol-MAM-2201 (M12), N-(5-hydroxypentyl)-MAM-2201 (M13), hydroxy-M13 (M14), N-dealkyl-MAM-2201 (M15), 2 hydroxy-M15 (M16, M17), MAM-2201 N-pentanoic acid (M18), and hydroxy-M18 (M19). On the basis of intrinsic clearance values in human liver microsomes, hydroxy-MAM-2201 (M1), N-(5-hydroxypentyl)-MAM-2201 (M13), and hydroxy-M13 (M14) were the major metabolites. Based on an enzyme kinetics study using human cDNA-expressed cytochrome P450 (CYP) enzymes and an immunoinhibition study using selective CYP antibodies in human liver microsomes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 enzymes were responsible for MAM-2201 metabolism. The CYP3A4 enzyme played a prominent role in MAM-2201 metabolism, and CYP1A2, CYP2B6, CYP2C8, and CYP2C9 enzymes played major roles in the formation of some metabolites. MAM-2201 is extensively metabolized by multiple CYP enzymes, indicating that MAM-2201 and its metabolites should be used as markers of MAM-2201 abuse and toxicity. Graphical abstract In vitro metabolic pathways of MAM-2201 were characterized in human liver microsomes and recombinant CYPs using LC-HRMS analysis. Total 19 phase I metabolites were identified with predominant contribution of CYP3A4.
Collapse
Affiliation(s)
- Tae Yeon Kong
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Won Gu Choi
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hee Seung Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jin Young Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Moon Kyo In
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
22
|
Cannaert A, Storme J, Franz F, Auwärter V, Stove CP. Detection and Activity Profiling of Synthetic Cannabinoids and Their Metabolites with a Newly Developed Bioassay. Anal Chem 2016; 88:11476-11485. [DOI: 10.1021/acs.analchem.6b02600] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Storme
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Florian Franz
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Dunne SJ, Rosengren-Holmberg JP. Quantification of synthetic cannabinoids in herbal smoking blends using NMR. Drug Test Anal 2016; 9:734-743. [PMID: 27400773 DOI: 10.1002/dta.2032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/19/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
Abstract
Herbal smoking blends containing synthetic cannabinoids have become popular alternatives to marijuana. These products were previously sold in pre-packaged foil bags, but nowadays seizures usually contain synthetic cannabinoid powders together with unprepared plant materials. A question often raised by the Swedish police is how much smoking blend can be prepared from certain amounts of banned substance, in order to establish the severity of the crime. To address this question, information about the synthetic cannabinoid content in both the powder and the prepared herbal blends is necessary. In this work, an extraction procedure compatible with direct NMR quantification of synthetic cannabinoids in herbal smoking blends was developed. Extraction media, time and efficiency were tested for different carrier materials containing representative synthetic cannabinoids. The developed protocol utilizes a 30 min extraction step in d4 -methanol in presence of internal standard allowing direct quantitation of the extract using NMR. The accuracy of the developed method was tested using in-house prepared herbal smoking blends. The results showed deviations less than 0.2% from the actual content, proving that the method is sufficiently accurate for these quantifications. Using this method, ten synthetic cannabinoids present in sixty-three different herbal blends seized by the Swedish police between October 2012 and April 2015 were quantified. Obtained results showed a variation in cannabinoid contents from 1.5% (w/w) for mixtures containing MDMB-CHMICA to over 5% (w/w) for mixtures containing 5F-AKB-48. This is important information for forensic experts when making theoretical calculations of production quantities in legal cases regarding "home-made" herbal smoking blends. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simon J Dunne
- Drug Unit, Swedish National Forensic Centre, Linköping, Sweden
| | | |
Collapse
|
24
|
Identification of (1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (DP-UR-144) in a herbal drug product that was commercially available in the Tokyo metropolitan area. Forensic Toxicol 2016. [DOI: 10.1007/s11419-016-0327-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Abdel-Hay KM, De Ruiter J, Smith F, Alsegiani AS, Thaxton-Weissenfluh A, Clark CR. GC–MS differentiation of the six regioisomeric dimethoxybenzoyl-1-pentylindoles: Isomeric cannabinoid substances. J Pharm Biomed Anal 2016; 125:360-8. [DOI: 10.1016/j.jpba.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 11/27/2022]
|
26
|
Hermanns-Clausen M, Kithinji J, Spehl M, Angerer V, Franz F, Eyer F, Auwärter V. Adverse effects after the use of JWH-210 - a case series from the EU Spice II plus project. Drug Test Anal 2016; 8:1030-1038. [DOI: 10.1002/dta.1936] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Maren Hermanns-Clausen
- Poisons Information Center; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg; Freiburg Germany
| | - Josephine Kithinji
- Poisons Information Center; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg; Freiburg Germany
| | - Marco Spehl
- Poisons Information Center; Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg; Freiburg Germany
| | - Verena Angerer
- Institute of Forensic Medicine, Forensic Toxicology; Medical Center - University of Freiburg; Germany
- Hermann Staudinger Graduate School; University of Freiburg; Germany
| | - Florian Franz
- Institute of Forensic Medicine, Forensic Toxicology; Medical Center - University of Freiburg; Germany
- Hermann Staudinger Graduate School; University of Freiburg; Germany
| | - Florian Eyer
- Department of Clinical Toxicology, Klinikum rechts der Isar; Technical University of Munich; Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology; Medical Center - University of Freiburg; Germany
| |
Collapse
|
27
|
Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst 2016; 140:4932-48. [PMID: 26031385 DOI: 10.1039/c5an00797f] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New psychoactive substances (NPSs), sometimes referred to as "legal highs" in more colloquial environments/the media, are a class of compounds that have been recently made available for abuse (not necessarily recently discovered) which provide similar effects to the traditional well studied illegal drugs but are not always controlled under existing local, regional or international drug legislation. Following an unprecedented increase in the number of NPSs in the last 5 years (with 101 substances discovered for the first time in 2014 alone) its, occasionally fatal, consequences have been extensively reported in the media. Such NPSs are typically marketed as 'not for human consumption' and are instead labelled and sold as plant food, bath salts as well as a whole host of other equally nondescript aliases in order to bypass legislative controls. NPSs are a new multi-disciplinary research field with the main emphasis in terms of forensic identification due to their adverse health effects, which can range from minimal to life threatening and even fatalities. In this mini-review we overview this recent emerging research area of NPSs and the analytical approaches reported to provide detection strategies as well as detailing recent reports towards providing point-of-care/in-the-field NPS ("legal high") sensors.
Collapse
Affiliation(s)
- Jamie P Smith
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | | | | |
Collapse
|
28
|
Kim JH, Kim HS, Kong TY, Lee JY, Kim JY, In MK, Lee HS. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s. J Pharm Biomed Anal 2015; 119:50-8. [PMID: 26641707 DOI: 10.1016/j.jpba.2015.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse.
Collapse
Affiliation(s)
- Ju Hyun Kim
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Hee Seung Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Tae Yeon Kong
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Jin Young Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Moon Kyo In
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
29
|
Carlsson A, Lindberg S, Wu X, Dunne S, Josefsson M, Åstot C, Dahlén J. Prediction of designer drugs: synthesis and spectroscopic analysis of synthetic cannabinoid analogues of 1H-indol-3-yl(2,2,3,3-tetramethylcyclopropyl)methanone and 1H-indol-3-yl(adamantan-1-yl)methanone. Drug Test Anal 2015; 8:1015-1029. [DOI: 10.1002/dta.1904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andreas Carlsson
- Swedish National Forensic Centre - NFC; SE-581 94 Linköping Sweden
| | - Sandra Lindberg
- Swedish Defence Research Agency; FOI CBRN Defence and Security; SE-901 82 Umeå Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| | - Simon Dunne
- Swedish National Forensic Centre - NFC; SE-581 94 Linköping Sweden
| | - Martin Josefsson
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
- Department of Forensic Genetics and Forensic Toxicology; National Board of Forensic Medicine; SE-587 58 Linköping Sweden
| | - Crister Åstot
- Swedish Defence Research Agency; FOI CBRN Defence and Security; SE-901 82 Umeå Sweden
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| |
Collapse
|
30
|
Determination of XLR-11 and its metabolites in hair by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2015; 114:184-9. [DOI: 10.1016/j.jpba.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 11/24/2022]
|
31
|
Nielsen LM, Holm NB, Olsen L, Linnet K. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11. Drug Test Anal 2015; 8:792-800. [DOI: 10.1002/dta.1860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Line Marie Nielsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Jagtvej 162 DK-2100 Denmark
| | - Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
| | - Lars Olsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Jagtvej 162 DK-2100 Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
| |
Collapse
|
32
|
Kondrasenko AA, Goncharov EV, Dugaev KP, Rubaylo AI. CBL-2201. Report on a new designer drug: Napht-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate. Forensic Sci Int 2015; 257:209-213. [PMID: 26386336 DOI: 10.1016/j.forsciint.2015.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022]
Abstract
The (1)H, (13)C and (15)N nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography coupled to mass spectrometry (GC-MS) identification of a synthetic cannabinoid compound has been conducted. It was shown that this compound cannot be reliably distinguished from the closely related quinolin-8-yl indole-3-carboxylic acid derivative by an automatic search in MS library. Structural difference of the studied compound and known illicit compounds has been determined using 1D and 2D NMR spectroscopy. Analytical data for the identification of this compound were provided.
Collapse
Affiliation(s)
- A A Kondrasenko
- Institute of Chemistry and Chemical Technology of the Siberian Branch of Russian Academy of Sciences, 50, bld. 24 Akademgorodok, 660036 Krasnoyarsk, Russian Federation.
| | - E V Goncharov
- Expert and Criminalistics Branch of the Department of the FDCS of Russia in Krasnoyarsk Territory, 84 Mira pr., 660049 Krasnoyarsk, Russian Federation
| | - K P Dugaev
- Expert and Criminalistics Branch of the Department of the FDCS of Russia in Krasnoyarsk Territory, 84 Mira pr., 660049 Krasnoyarsk, Russian Federation
| | - A I Rubaylo
- Institute of Chemistry and Chemical Technology of the Siberian Branch of Russian Academy of Sciences, 50, bld. 24 Akademgorodok, 660036 Krasnoyarsk, Russian Federation; Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russian Federation; Krasnoyarsk Scientific Center of the Siberian Branch of Russian Academy of Sciences, 50 Akademgorodok, 660036 Krasnoyarsk, Russian Federation
| |
Collapse
|
33
|
Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M. Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 2015; 6:1445-58. [PMID: 25921407 DOI: 10.1021/acschemneuro.5b00107] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synthetic cannabinoid (SC) designer drugs featuring bioisosteric fluorine substitution are identified by forensic chemists and toxicologists with increasing frequency. Although terminal fluorination of N-pentyl indole SCs is sometimes known to improve cannabinoid type 1 (CB1) receptor binding affinity, little is known of the effects of fluorination on functional activity of SCs. This study explores the in vitro functional activities of SC designer drugs JWH-018, UR-144, PB-22, and APICA, and their respective terminally fluorinated analogues AM-2201, XLR-11, 5F-PB-22, and STS-135 at human CB1 and CB2 receptors using a FLIPR membrane potential assay. All compounds demonstrated agonist activity at CB1 (EC50 = 2.8-1959 nM) and CB2 (EC50 = 6.5-206 nM) receptors, with the fluorinated analogues generally showing increased CB1 receptor potency (∼2-5 times). Additionally, the cannabimimetic activities and relative potencies of JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135 in vivo were evaluated in rats using biotelemetry. All SCs dose-dependently induced hypothermia and reduced heart rate at doses of 0.3-10 mg/kg. There was no consistent trend for increased potency of fluorinated SCs over the corresponding des-fluoro SCs in vivo. Based on magnitude and duration of hypothermia, the SCs were ranked for potency (PB-22 > 5F-PB-22 = JWH-018 > AM-2201 > APICA = STS-135 = XLR-11 > UR-144).
Collapse
Affiliation(s)
- Samuel D. Banister
- Department
of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jordyn Stuart
- Faculty
of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Richard C. Kevin
- School
of Psychology, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amelia Edington
- Faculty
of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mitchell Longworth
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shane M. Wilkinson
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Corinne Beinat
- Department
of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexandra S. Buchanan
- Center
for Immersive and Simulation-based Learning, Stanford University School of Medicine, Stanford, California 94305, United States
- Department
of Anaesthesia, Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - David E. Hibbs
- Faculty
of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michelle Glass
- School
of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Mark Connor
- Faculty
of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Iain S. McGregor
- School
of Psychology, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Discipline
of Medical Radiation Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues. Forensic Toxicol 2015. [DOI: 10.1007/s11419-015-0282-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Abdel-Hay KM, DeRuiter J, Smith F, Belal TS, Clark CR. GC-MS analysis of the regioisomeric methoxy- and methyl-benzoyl-1-pentylindoles: Isomeric synthetic cannabinoids. Sci Justice 2015; 55:291-8. [PMID: 26385710 DOI: 10.1016/j.scijus.2015.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
Abstract
The regioisomeric 1-n-pentyl-3-(methoxybenzoyl)indoles and the 1-n-pentyl-3-(methylbenzoyl)indoles represent potential designer modifications in the synthetic cannabinoid drug category. These six compounds were prepared by a two-step synthetic method. The analytical properties and methods of regioisomeric differentiation were developed in this study. The molecular ion represents the base peak in the EI mass spectra for most of the compounds in this group. The meta- and para-isomers in each series display fragment ions at equivalent masses with some differences in relative abundance of these ions. The ortho-substituted isomers for both the methoxybenzoyl and methylbenzoyl series show a unique fragment ion occurring at M-17. Deuterium labeling for the methoxy group in the ortho-methoxybenzoyl isomer (ortho-OCD3) confirmed the ortho-substituent as the source of the hydrogen in OH (M-17) elimination. The two sets of regioisomers were well resolved by capillary gas chromatography and the elution order reflected increasing molecular linearity. In both sets of compounds the ortho-isomer eluted first and the para-isomer showed the highest retention time. The HPLC separation showed the ortho-isomer eluting first and the meta-isomer eluting last in both sets of regioisomers.
Collapse
Affiliation(s)
- Karim M Abdel-Hay
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA; Dept. of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jack DeRuiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Tarek S Belal
- Dept. of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
36
|
Nakajima J, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, Yoshida M, Kusano M, Nakayama H, Zaitsu K, Ishii A, Moriyasu T, Nakae D. Identification of N,N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0253-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci Int 2014; 244:85-91. [DOI: 10.1016/j.forsciint.2014.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/02/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022]
|
38
|
Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014; 144:12-41. [PMID: 25220897 PMCID: PMC4253059 DOI: 10.1016/j.drugalcdep.2014.08.005] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abusable designer drugs. In the early 2000s, SC became popular as "legal highs" under brand names such as Spice and K2, in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests. METHODS We present here a comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications.
Collapse
Affiliation(s)
- Marisol S Castaneto
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - David A Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie A Desrosiers
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Rebecca L Hartman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sandrine Pirard
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States.
| |
Collapse
|
39
|
Moreira APL, Martini M, de Carvalho LM. Capillary electrophoretic methods for the screening and determination of pharmacologic adulterants in herbal-based pharmaceutical formulations. Electrophoresis 2014; 35:3212-30. [DOI: 10.1002/elps.201400059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Ana Paula L. Moreira
- Graduate Programme in Pharmaceutical Sciences; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
| | - Mariele Martini
- Graduate Programme in Chemistry; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
- Department of Chemistry; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
| | - Leandro M. de Carvalho
- Graduate Programme in Pharmaceutical Sciences; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
- Graduate Programme in Chemistry; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
- Department of Chemistry; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
| |
Collapse
|
40
|
Kim J, Park Y, Park M, Kim E, Yang W, Baeck S, Lee S, Han S. Simultaneous determination of five naphthoylindole-based synthetic cannabinoids and metabolites and their deposition in human and rat hair. J Pharm Biomed Anal 2014; 102:162-75. [PMID: 25282599 DOI: 10.1016/j.jpba.2014.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/30/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022]
Abstract
The continuing appearance of new synthetic cannabinoids has been a major issue in the field of forensic and clinical toxicology. In response to that, analytical methods for synthetic cannabinoids have been increasingly established in a variety of biological matrices. Since most of synthetic cannabinoids with structure similarity share some enzymatic metabolites, making the interpretation of analytical results and the discovery of the parent drug actually ingested very complicated, the investigation on metabolites of the first generation of synthetic cannabinoids with their relatively short side chains in chemical structure could be more important. Therefore, in the present study, we developed the analytical method for AM-2201, JWH-122 and MAM-2201 with JWH-018 as a precursor and their monohydroxylated metabolites in hair matrix. Also, using a rat model, AM-2201 and its monohydroxylated metabolites were identified and then the ratios of metabolite-to-parent drug were estimated to be used as criteria on external contamination. All analytes were extracted with methanol from washed and cut hair samples and the extracts were injected into LC-MS/MS with electrospray ion source in the positive ionization mode. Matrix effect and recovery were evaluated in hair matrices and no significant variations were observed. The validation results for precision and accuracy were satisfactory in both human and rat hair. The LOD and LOQ were 0.5 pg/10mg and 1.0 pg/10mg in human hair and 0.5 pg/20mg and 1.0 pg/20mg in pigmented and non-pigmented rat hair, respectively. Additionally, as a result of the animal study, there were not significant differences in the effect of pigmentation on the distribution of AM-2201 and its monohydroxylated metabolites in hair. Wide variations were observed for the concentrations of the naphthoylindole-based synthetic cannabinoids and metabolites in authentic hair samples from nine cases; those were 0.4-59.2 pg/mg for JWH-018, 0.1-0.8 pg/mg for JWH-073, 1.7-739.0 pg/mg for AM-2201, 0.1-402.0 pg/mg for JWH-122, 0.2-276.0 pg/mg for MAM-2201, 0.2-1.1 pg/mg for JWH-018 N-COOH, 0.3-37.2 pg/mg for JWH-018 N-5-OH, 0.3 pg/mg for JWH-073 N-COOH, 0.4 pg/mg for AM-2201 N-4-OH, 0.2-3.1 pg/mg for AM-2201 N-6-OHindole and 0.1-3.5 pg/mg for JWH-122 N-5-OH. This quantitative LC-MS/MS analytical method for five naphthoylindole-based synthetic cannabinoids and their metabolites was very useful to be applied to authentic hair samples, of which their analytical results suggested the incorporation of synthetic cannabinoids in the hair matrix and provided the information on ingested parent drugs.
Collapse
Affiliation(s)
- Jihyun Kim
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea; College of Pharmacy, Chungang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Yuran Park
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea
| | - Meejung Park
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea
| | - Eunmi Kim
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea
| | - Wonkyung Yang
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea
| | - Seungkyung Baeck
- Narcotics, Forensic Toxicology & Chemistry Division, Seoul Institute, National Forensic Service, 139 Jiyangno, Yangcheon-gu, Seoul 158-707, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea.
| | - Sangbeom Han
- College of Pharmacy, Chungang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| |
Collapse
|
41
|
Temerdashev AZ, Grigor’ev IM, Rybal’chenko IV. Evolution of new narcotic substances and methods of their determination. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814090111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y. 3-Naphthoylindazoles and 2-naphthoylbenzoimidazoles as novel chemical groups of synthetic cannabinoids: chemical structure elucidation, analytical characteristics and identification of the first representatives in smoke mixtures. Forensic Sci Int 2014; 242:72-80. [PMID: 25036783 DOI: 10.1016/j.forsciint.2014.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 02/03/2023]
Abstract
By means of gas chromatography with mass spectrometry detection (GC-MS), including high resolution mass spectrometry (GC-HRMS) together with ultra-high performance liquid chromatography in combination with high resolution tandem mass spectrometry (UHPLC-HRMS), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR), structure of novel synthetic cannabinoids, namely, 1-(5-fluoropentyl)-1H-indazol-3-yl(naphthalen-1-yl)methanone, naphthalen-1-yl(1-pentyl-1H-benzo[d]imidazol-2-yl)methanone and 1-(5-fluoropentyl)-1H-benzo[d]imidazol-2-yl(naphthalen-1-yl)methanone was established. Analytical data obtained in the paper enable reliable identification of these compounds during qualitative analysis of seizures, including smoke mixtures.
Collapse
Affiliation(s)
- Vadim Shevyrin
- Ural Federal University, Institute of Chemistry and Technology, 19 Mira Str., 620002 Ekaterinburg, Russian Federation.
| | - Vladimir Melkozerov
- Expert and Criminalistic Center, Main Agency of the Ministry of the Interior of the Russian Federation, Sverdlovsk Region Branch, 17 Lenina Avenue, 620014 Ekaterinburg, Russian Federation.
| | - Alexander Nevero
- State Committee of Forensic Expertises of Republic of Belarus, 43 Kalvariyskaya Str., 220073 Minsk, Belarus.
| | - Oleg Eltsov
- Ural Federal University, Institute of Chemistry and Technology, 19 Mira Str., 620002 Ekaterinburg, Russian Federation.
| | - Yuri Morzherin
- Ural Federal University, Institute of Chemistry and Technology, 19 Mira Str., 620002 Ekaterinburg, Russian Federation.
| | - Yuri Shafran
- Ural Federal University, Institute of Chemistry and Technology, 19 Mira Str., 620002 Ekaterinburg, Russian Federation; TOSLab. Ltd., Bldg. 1, 5 Initsiativnaia Str., 121357 Moscow, Russian Federation.
| |
Collapse
|
43
|
Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol 2013; 274:17-23. [PMID: 24211273 DOI: 10.1016/j.taap.2013.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.
Collapse
|
44
|
Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013. Forensic Toxicol 2013. [DOI: 10.1007/s11419-013-0213-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Emergence and properties of spice and bath salts: a medicinal chemistry perspective. Life Sci 2013; 97:9-19. [PMID: 24113072 DOI: 10.1016/j.lfs.2013.09.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/17/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
Over the past five years the number of internet sites advertising "legal highs" has literally exploded, as have user reports of experiences (both pleasurable and frightening) with these substances and the number of emergency room visits by users. Although the majority of these "legal highs" have been described as bath salts and herbal extracts, most contain neither plant derived compounds nor components of personal hygiene products. So-called "bath salts" largely contain synthetic analogs of the natural compound Khat; spice-related materials, claimed to be "legal marijuana," are mostly synthetic analogs of cannabinoid receptor ligands that were developed as research tools. This review describes the emergence and properties of these two groups of "legal highs" from a medicinal chemist's perspective.
Collapse
|
46
|
Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y. Analytical characterization of some synthetic cannabinoids, derivatives of indole-3-carboxylic acid. Forensic Sci Int 2013; 232:1-10. [DOI: 10.1016/j.forsciint.2013.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 12/19/2022]
|
47
|
Identification of a synthetic cannabinoid A-836339 as a novel compound found in a product. Forensic Toxicol 2013. [DOI: 10.1007/s11419-013-0201-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Jang M, Yang W, Shin I, Choi H, Chang H, Kim E. Determination of AM-2201 metabolites in urine and comparison with JWH-018 abuse. Int J Legal Med 2013; 128:285-94. [DOI: 10.1007/s00414-013-0884-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
49
|
Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, Brooker L, Goebel C, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M. The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 2013; 4:1081-92. [PMID: 23551277 DOI: 10.1021/cn400035r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two novel adamantane derivatives, adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone (AB-001) and N-(adamtan-1-yl)-1-pentyl-1H-indole-3-carboxamide (SDB-001), were recently identified as cannabimimetic indoles of abuse. Conflicting anecdotal reports of the psychoactivity of AB-001 in humans, and a complete dearth of information about the bioactivity of SDB-001, prompted the preparation of AB-001, SDB-001, and several analogues intended to explore preliminary structure-activity relationships within this class. This study sought to elucidate which structural features of AB-001, SDB-001, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo. All compounds showed similar full agonist profiles at CB1 (EC50 = 16-43 nM) and CB2 (EC50 = 29-216 nM) receptors in vitro using a FLIPR membrane potential assay, with the exception of SDB-002, which demonstrated partial agonist activity at CB2 receptors. The activity of AB-001, AB-002, and SDB-001 in rats was compared to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and cannabimimetic indole JWH-018 using biotelemetry. SDB-001 dose-dependently induced hypothermia and reduced heart rate (maximal dose 10 mg/kg) with potency comparable to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC, maximal dose 10 mg/kg), and lower than that of JWH-018 (maximal dose 3 mg/kg). Additionally, the changes in body temperature and heart rate affected by SDB-001 are of longer duration than those of Δ(9)-THC or JWH-018, suggesting a different pharmacokinetic profile. In contrast, AB-001, and its homologue, AB-002, did not produce significant hypothermic and bradycardic effects, even at relatively higher doses (up to 30 mg/kg), indicating greatly reduced potency compared to Δ(9)-THC, JWH-018, and SDB-001.
Collapse
Affiliation(s)
- Samuel D. Banister
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- Brain and Mind Research Institute, NSW 2050, Australia
| | | | | | - Jordyn Stuart
- The Australian School of Advanced Medicine, Macquarie
University, NSW 2109, Australia
| | - Nadine Apetz
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Katrina English
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Lance Brooker
- Australian Sports Drug Testing Laboratory, National Measurement Institute, NSW 2073, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, National Measurement Institute, NSW 2073, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Michelle Glass
- School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Mark Connor
- The Australian School of Advanced Medicine, Macquarie
University, NSW 2109, Australia
| | - Iain S. McGregor
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- Brain and Mind Research Institute, NSW 2050, Australia
- Discipline of Medical Radiation Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
50
|
Hutter M, Moosmann B, Kneisel S, Auwärter V. Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:885-894. [PMID: 23832945 DOI: 10.1002/jms.3229] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Aminoalkylindoles, a subclass of synthetic cannabinoid receptor agonists, show an extensive and complex metabolism in vivo, and due to their structural similarity, they can be challenging in terms of unambiguous assignment of metabolic patterns in urine samples to consumed substances. The situation may even be more complicated as these drugs are usually smoked, and the high temperature exposure may lead to formation of artifacts. Typical metabolites of JWH-018 (Naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone) were reportedly detected not only in urine samples collected after consumption of JWH-018 but also after AM-2201 (1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone) use. The aim of the presented study was to evaluate if typical JWH-018 metabolites can be formed metabolically in humans and if JWH-018 may be formed artifactually during smoking of AM-2201. Therefore, one of the authors ingested 5 mg of pure AM-2201, and serum as well as urine samples were analyzed subsequently. Additionally, the smoke condensate from a cigarette laced with pure AM-2201 was investigated. In addition, urine samples of patients after known consumption of AM-2201 or JWH-018 were evaluated. The results of the study prove that typical metabolites of JWH-018 and JWH-073 are built in humans after ingestion of AM-2201. However, the N-(4-hydroxypentyl) metabolite of JWH-018, which is the major metabolite after JWH-018 use, was not detected after the self-experiment. In the smoke condensate, small amounts of JWH-018 and JWH-022 (Naphthalen-1-yl[1-(pent-4-en-1-yl)-1H-indol-3-yl]methanone) were detected. Nevertheless, the results of our study suggest that the amounts absorbed by smoking do not significantly influence the metabolic pattern in urine samples. Therefore, the N-(4-hydroxypentyl) metabolite of JWH-018 can serve as a valuable marker to distinguish consume of products containing AM-2201 from JWH-018 use.
Collapse
Affiliation(s)
- Melanie Hutter
- Institute of Forensic Medicine, Forensic Toxicology, University Medical Center Freiburg, Albertstr. 9, 79104, Freiburg, Germany
| | | | | | | |
Collapse
|