1
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Namba MD, Xie Q, Park K, Jackson JG, Barker JM. EcoHIV Infection Modulates the Effects of Cocaine Exposure Pattern and Abstinence on Cocaine Seeking and Neuroimmune Protein Expression in Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589615. [PMID: 38659915 PMCID: PMC11042347 DOI: 10.1101/2024.04.15.589615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) remain persistent public health dilemmas throughout the world. One major hurdle for treating CUD is the increase in cocaine craving and seeking behavior that occurs over a protracted period of abstinence, an effect known as the incubation of craving. Little is known about how HIV may modulate this process. Thus, we sought to examine the impact of chronic HIV infection on the incubation of cocaine craving and associated changes in the central and peripheral immune systems. Here, mice were inoculated with EcoHIV, which is a chimeric HIV-1 construct that produces chronic HIV infection in mice. EcoHIV- and sham-infected mice were conditioned with cocaine daily or intermittently in a conditioned place preference (CPP) paradigm, followed by 1 or 21 days of forced abstinence prior to assessing preference for the cocaine-paired chamber. Under both conditioning regimens, sham mice exhibited incubation of cocaine CPP after 21 days of abstinence. EcoHIV-infected mice conditioned daily with cocaine showed enhanced cocaine seeking at both abstinence timepoints, whereas infected mice conditioned intermittently showed a reversal of the incubation effect, with higher cocaine seeking after 1 day of abstinence compared to 21 days. Analysis of corticolimbic CX3CL1-CX3CR1 and glutamate receptor expression revealed alterations in medial prefrontal cortex (mPFC) CX3CL1 and nucleus accumbens (NAc) GluN2A receptors that correlated with cocaine seeking following daily cocaine exposure. Moreover, examination of peripheral immune markers showed that the effect of abstinence and EcoHIV infection on these measures depended on the cocaine exposure regimen. Altogether, these results highlight the importance of cocaine abstinence and exposure pattern as critical variables that modulate HIV-associated neuroimmune outcomes and relapse vulnerability.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Graduate Program in Pharmacology and Physiology, College of Medicine, Drexel University
| | - Kyewon Park
- Center for AIDS Research (CFAR), University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua G. Jackson
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M. Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
4
|
McLaurin KA, Cranston MN, Li H, Mactutus CF, Harrod SB, Booze RM. Synaptic dysfunction is associated with alterations in the initiation of goal-directed behaviors: Implications for HIV-1-associated apathy. Exp Neurol 2022; 357:114174. [PMID: 35863502 PMCID: PMC9990912 DOI: 10.1016/j.expneurol.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023]
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) exhibit an increased prevalence of neuropsychiatric comorbities (e.g., apathy) relative to their seronegative counterparts. Given the profound functional consequences associated with apathy, characterizing the multidimensional neuropsychiatric syndrome, and associated neural mechanisms, following chronic HIV-1 viral protein exposure remains a critical need. HIV-1-associated apathy was examined by quantifying goal-directed behaviors, indexed using voluntary wheel running, during the diurnal and nocturnal cycle. Apathetic behaviors in the HIV-1 transgenic (Tg) rat were characterized by a profound decrease in the number of running bouts during both the diurnal and nocturnal cycle, supporting a prominent deficit in the self-initiation of spontaneous behaviors. Additionally, HIV-1 Tg animals exhibited a decreased reinforcing efficacy of voluntary wheel running during the nocturnal cycle. Following the completion of voluntary wheel running, synaptic dysfunction in medium spiny neurons (MSNs) of the nucleus accumbens core (NAcc) was examined as a potential neural mechanism underlying HIV-1-associated apathy. HIV-1 Tg animals displayed prominent synaptic dysfunction in MSNs of the NAcc, characterized by enhanced dendritic branching complexity and a population shift towards an immature dendritic spine phenotype relative to control animals. Synaptic dysfunction, which accounted for 42.0% to 68.5% of the variance in the number of running bouts, was strongly associated with the self-initiation of spontaneous behaviors. Establishment of the relationship between synaptic dysfunction and apathy affords a key target for the development of novel therapeutics and cure strategies for affective alterations associated with HIV-1.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael N Cranston
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven B Harrod
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
5
|
Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain. Viruses 2022; 14:v14061268. [PMID: 35746739 PMCID: PMC9230035 DOI: 10.3390/v14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.
Collapse
|
6
|
Kota NK, Vigorito M, Krishnan V, Chang SL. Using IPA tools to characterize molecular pathways underlying the involvement of IRF7 in antiviral response to HIV. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2022; 1:23-35. [PMID: 36827648 PMCID: PMC9923504 DOI: 10.1515/nipt-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
Objectives Interferon Regulatory Factors (IRFs) regulate transcription of type-I interferons (IFNs) and IFN-stimulated genes. We previously reported that IFN-regulatory factor 7 (IRF7) is significantly upregulated in the brain of HIV-1 transgenic (HIV-1Tg) rats compared to F344 control rats in a region dependent manner [Li MD, Cao J, Wang S, Wang J, Sarkar S, Vigorito M, et al. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat. PLoS One 2013]. The RNA deep-sequencing data were deposited in the NCBI SRA database with Gene Expression Omnibus (GEO) number GSE47474. Our current study utilized QIAGEN CLC Genomics Workbench and Ingenuity Pathway Analysis (IPA) to identify molecular pathways underlying the involvement of IRF7 in the HIV antiviral response. Methods The differential RNA expression data between HIV-1Tg and F344 rats as well as HAND+ and HIV+ cognitively normal patients was collected from GSE47474 and GSE152416, respectively. The "Core Expression Data Analysis" function identified the significant canonical pathways in the datasets with or without IRF7 and its 455 associated molecules. Results It was found that IRF7 and its 455 associated molecules altered the expression of pathways involving neurotransmission, neuronal survival, and immune function. Conclusions This in-silico study reveals that IRF7 is involved in the promotion of macrophage activity, neuronal differentiation, the modulation of the Th-1/Th-2 ratio, and the suppression of HIV-1 translation. Furthermore, we demonstrate that bioinformatics tools such as IPA can be employed to simulate the complete knockout of a target molecule such as IRF7 to study its involvement in biological pathways.
Collapse
Affiliation(s)
- Nikhil K. Kota
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Michael Vigorito
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Psychology, Seton Hall University, South Orange, NJ, USA
| | - Velu Krishnan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| |
Collapse
|
7
|
Salahuddin MF, Qrareya AN, Mahdi F, Moss E, Akins NS, Li J, Le HV, Paris JJ. Allopregnanolone and neuroHIV: Potential benefits of neuroendocrine modulation in the era of antiretroviral therapy. J Neuroendocrinol 2022; 34:e13047. [PMID: 34651359 PMCID: PMC8866218 DOI: 10.1111/jne.13047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.
Collapse
Affiliation(s)
- Mohammed F. Salahuddin
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Alaa N. Qrareya
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Emaya Moss
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Nicholas S. Akins
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jing Li
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Hoang V. Le
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jason J. Paris
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| |
Collapse
|
8
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
9
|
Nass SR, Lark ARS, Hahn YK, McLane VD, Ihrig TM, Contois L, Napier TC, Knapp PE, Hauser KF. HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Horm Behav 2021; 133:105008. [PMID: 34171549 PMCID: PMC8277758 DOI: 10.1016/j.yhbeh.2021.105008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
Many persons infected with HIV-1 (PWH) and opioid-dependent individuals experience deficits in sociability that interfere with daily living. Sociability is regulated by the prefrontal cortico-hippocampal-amygdalar circuit. Within this circuit HIV-1 trans-activator of transcription (HIV-1 Tat) and opioids can increase dendritic pathology and alter neuronal firing. Changes in sociability are also associated with dysregulation of hypothalamic neuropeptides such as oxytocin or corticotropin releasing factor (CRF) in the prefrontal cortico-hippocampal-amygdalar circuit. Accordingly, we hypothesized that the interaction of HIV-1 Tat and morphine would impair inter-male social interactions and disrupt oxytocin and CRF within the PFC and associated circuitry. Male mice were exposed to HIV-1 Tat for 8 weeks and administered saline or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of HIV-1 Tat exposure. Tat attenuated aggressive interactions with an unknown intruder, whereas morphine decreased both non-aggressive and aggressive social interactions in the resident-intruder test. However, there was no effect of Tat or morphine on non-reciprocal interactions in the social interaction and novelty tests. Tat, but not morphine, decreased oxytocin levels in the PFC and amygdala, whereas both Tat and morphine decreased the percentage of oxytocin-immunoreactive neurons in the hypothalamic paraventricular nucleus (PVN). In Tat(+) or morphine-exposed mice, regional levels of CRF and oxytocin correlated with alterations in behavior in the social interaction and novelty tests. Overall, decreased expression of oxytocin in the prefrontal cortico-hippocampal-amygdalar circuit is associated with morphine- and HIV-Tat-induced deficits in social behavior.
Collapse
Affiliation(s)
- Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Yun K Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Liangru Contois
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - T Celeste Napier
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612-2847, USA; Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612-3818, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA.
| |
Collapse
|
10
|
Li H, McLaurin KA, Illenberger JM, Mactutus CF, Booze RM. Microglial HIV-1 Expression: Role in HIV-1 Associated Neurocognitive Disorders. Viruses 2021; 13:924. [PMID: 34067600 PMCID: PMC8155894 DOI: 10.3390/v13050924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The persistence of HIV-1 viral reservoirs in the brain, despite treatment with combination antiretroviral therapy (cART), remains a critical roadblock for the development of a novel cure strategy for HIV-1. To enhance our understanding of viral reservoirs, two complementary studies were conducted to (1) evaluate the HIV-1 mRNA distribution pattern and major cell type expressing HIV-1 mRNA in the HIV-1 transgenic (Tg) rat, and (2) validate our findings by developing and critically testing a novel biological system to model active HIV-1 infection in the rat. First, a restricted, region-specific HIV-1 mRNA distribution pattern was observed in the HIV-1 Tg rat. Microglia were the predominant cell type expressing HIV-1 mRNA in the HIV-1 Tg rat. Second, we developed and critically tested a novel biological system to model key aspects of HIV-1 by infusing F344/N control rats with chimeric HIV (EcoHIV). In vitro, primary cultured microglia were treated with EcoHIV revealing prominent expression within 24 h of infection. In vivo, EcoHIV expression was observed seven days after stereotaxic injections. Following EcoHIV infection, microglia were the major cell type expressing HIV-1 mRNA, results that are consistent with observations in the HIV-1 Tg rat. Within eight weeks of infection, EcoHIV rats exhibited neurocognitive impairments and synaptic dysfunction, which may result from activation of the NogoA-NgR3/PirB-RhoA signaling pathway and/or neuroinflammation. Collectively, these studies enhance our understanding of HIV-1 viral reservoirs in the brain and offer a novel biological system to model HIV-associated neurocognitive disorders and associated comorbidities (i.e., drug abuse) in rats.
Collapse
Affiliation(s)
| | | | | | | | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (H.L.); (K.A.M.); (J.M.I.); (C.F.M.)
| |
Collapse
|
11
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
13
|
Barbe MF, Loomis R, Lepkowsky AM, Forman S, Zhao H, Gordon J. A longitudinal characterization of sex-specific somatosensory and spatial memory deficits in HIV Tg26 heterozygous mice. PLoS One 2020; 15:e0244725. [PMID: 33382797 PMCID: PMC7775086 DOI: 10.1371/journal.pone.0244725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of human immunodeficiency virus associated neurological disorders is still not well understood, yet is known to result in neurological declines despite combination anti-retroviral therapy. HIV-1 transgenic (Tg26) mice contain integrated non-infectious HIV-1 proviral DNA. We sought to assess the integrity of neurocognitive function and sensory systems in HIV-1 Tg26 mice using a longitudinal design, in both sexes, to examine both age- and sex-related disease progression. General neurological reflexive testing showed only acclimation to repeated testing by all groups. Yet, at 2.5 months of age, female Tg26 +/- mice showed hyposensitivity to noxious hot temperatures, compared to wild types (both sexes) and male Tg26 +/- mice, that worsened by 10 months of age. Female Tg26 +/- mice had short-term spatial memory losses in novel object location memory testing at 2.5 and 7 months, compared to female wild types; changes not observed in male counterparts. Female Tg26 +/- mice showed mild learning deficits and short- and long-term spatial memory deficits in olfactory and visually cued Barnes Maze testing at 3 months of age, yet greater learning and memory deficits by 8 months. In contrast, male Tg26 +/- mice displayed no learning deficits and fewer spatial memory deficits (mainly heading errors in nontarget holes). Thus, greater sex-specific temperature hyposensitivity and spatial memory declines were observed in female HIV Tg26 +/- mice, than in male Tg26 +/- mice, or their wild type littermates, that increased with aging. Additionally, tibial bones were examined using ex vivo micro-CT after tissue collection at 11 months. Sex-dependent increases in bone volume and trabecular number were seen in males, matching their greater weights at this age. These results indicate that HIV-1 Tg26 mice is a promising model in which to study neuropathic mechanisms underlying peripheral pathology as well as cognitive deficits seen with HIV.
Collapse
Affiliation(s)
- Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- * E-mail: ,
| | - Regina Loomis
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Adam M. Lepkowsky
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Steven Forman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Jennifer Gordon
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
14
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
15
|
Huynh YW, Thompson BM, Larsen CE, Buch S, Guo ML, Bevins RA, Murray JE. Male HIV-1 transgenic rats show reduced cocaine-maintained lever-pressing compared to F344 wildtype rats despite similar baseline locomotion. J Exp Anal Behav 2020; 113:468-484. [PMID: 32077125 DOI: 10.1002/jeab.586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
The HIV-1 transgenic (Tg) rat model is valuable for understanding HIV-associated neurocognitive disorders (HAND) and accompanying substance use and misuse. Tg and F344/NHsd wildtype (WT) rats were allowed to self-administer intrajugular cocaine. For the first 7 sessions, neither genotype self-administered cocaine (0.1 mg/kg/infusion) on a fixed ratio 1 schedule. We thus implemented a lever-cocaine "autoshaping" session followed by a series of manipulations changing dose and reinforcement schedule. Tg rats self-administered much less cocaine than WT rats throughout the study. Of 8 Tg rats, 5 modestly increased self-administration from sessions 36-50. Of those, only 3 showed a lever discrimination. Of 10 WT rats, 8 acquired robust self-administration by session 19; all WT rats self-administered cocaine by the end of the study. WT and Tg rats had similar baseline locomotor activity in the self-administration chamber suggesting that the low levels of cocaine intake in the Tg rats did not reflect a nonspecific motor impairment in this rat strain. Concomitant measurement of activity with self-administration revealed activity increases that followed increased cocaine intake. That relation held in Tg rats. Therefore, the present study provides evidence that HIV-1 Tg rats are less sensitive to the reinforcing effects of cocaine than their F344 WT counterparts.
Collapse
Affiliation(s)
- Y Wendy Huynh
- Department of Psychology, University of Nebraska-, Lincoln
| | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-, Lincoln
| | | |
Collapse
|
16
|
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 2020; 1726:146502. [PMID: 31605699 PMCID: PMC7195807 DOI: 10.1016/j.brainres.2019.146502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Estefania Larrosa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Hoang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Bryant
- University of Maryland and Institute of Human Virology, Baltimore, MD, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Bioinformatics and Computational Biology, Servier, Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Selective Estrogen Receptor β Agonists: a Therapeutic Approach for HIV-1 Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2019; 15:264-279. [PMID: 31858373 PMCID: PMC7266801 DOI: 10.1007/s11481-019-09900-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The persistence of HIV-1 associated neurocognitive disorders (HAND) in the post-cART era, afflicting between 40 and 70% of HIV-1 seropositive individuals, supports a critical need for the development of adjunctive therapeutic treatments. Selective estrogen receptor β agonists, including S-Equol (SE), have been implicated as potential therapeutic targets for the treatment of neurocognitive disorders. In the present study, the therapeutic efficacy of 0.2 mg SE for the treatment of HAND was assessed to address two key questions in the HIV-1 transgenic (Tg) rat. First, does SE exhibit robust therapeutic efficacy when treatment is initiated relatively early (i.e., between 2 and 3 months of age) in the course of viral protein exposure? Second, does the therapeutic utility of SE generalize across multiple neurocognitive domains? Treatment with SE enhanced preattentive processes and stimulus-response learning to the level of controls in all (i.e., 100%) HIV-1 Tg animals. For sustained and selective attention, statistically significant effects were not observed in the overall analyses (Control: Placebo, n = 10, SE, n = 10; HIV-1 Tg: Placebo, n = 10, SE, n = 10). However, given our a priori hypothesis, subsequent analyses were conducted, revealing enhanced sustained and selective attention, approximating controls, in a subset (i.e., 50%, n = 5 and 80%, n = 8, respectively) of HIV-1 Tg animals treated with SE. Thus, the therapeutic efficacy of SE is greater when treatment is initiated relatively early in the course of viral protein exposure and generalizes across neurocognitive domains, supporting an adjunctive therapeutic for HAND in the post-cART era. HIV-1 transgenic (Tg) and control animals were treated with either 0.2 mg S-Equol (SE) or placebo between 2 and 3 months of age (Control: Placebo, n = 10, SE, n = 10; HIV-1 Tg: Placebo, n = 10, SE, n = 10). Neurocognitive assessments, tapping preattentive processes, stimulus response learning, sustained attention and selective attention, were conducted to evaluate the utility of SE as a therapeutic for HIV-1 associated neurocognitive disorders (HAND). Planned comparisons between HIV-1 Tg and control animals treated with placebo were utilized to establish a genotype effect, revealing prominent neurocognitive impairments (NCI) in the HIV-1 Tg rat across all domains. Furthermore, to establish the utility of SE, HIV-1 Tg animals treated with SE were compared to control animals treated with placebo. Treatment with 0.2 mg SE ameliorated NCI, to levels that were indistinguishable from controls, in at least a subset (i.e., 50–100%) of HIV-1 Tg animals. Thus, SE supports an efficacious, adjunctive therapeutic for HAND. ![]()
Collapse
|
18
|
McLaurin KA, Mactutus CF, Booze RM, Fairchild AJ. An Empirical Mediation Analysis of Mechanisms Underlying HIV-1-Associated Neurocognitive Disorders. Brain Res 2019; 1724:146436. [PMID: 31513791 PMCID: PMC7092796 DOI: 10.1016/j.brainres.2019.146436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022]
Abstract
HIV-1-associated neurocognitive disorders (HAND), characterized by alterations in the core components of cognitive function and age-related disease progression, persist in the post-cART era. However, the neurobehavioral mechanisms that mediate alterations in the core components of cognitive function and the progression of neurocognitive impairments have yet to be systematically evaluated. To address this knowledge gap, statistical mediation analysis was assessed, providing a critical opportunity to empirically evaluate putative neurobehavioral mechanisms underlying HAND. Neurocognitive assessments, conducted in HIV-1 transgenic (Tg) and control animals across the functional lifespan (i.e., Postnatal Day (PD) 30 to PD 600), tapped multiple cognitive domains including preattentive processes, learning, sustained attention, and long-term episodic memory. Three longitudinal mediation models were utilized to assess whether deficits in preattentive processes mediate alterations in learning, sustained attention and/or long-term episodic memory over time. Preattentive processes partially mediated the relationship between genotype and learning, genotype and sustained attention, and genotype and long-term episodic memory across the functional lifespan, explaining between 44% and 58% of the HIV-1 transgene effect. Understanding the neurobehavioral mechanisms mediating alterations in HAND may provide key targets for the development of a diagnostic biomarker, novel therapeutics, and cure/restoration strategies.
Collapse
Affiliation(s)
- Kristen A McLaurin
- University of South Carolina, Department of Psychology, Program in Behavioral Neuroscience, Columbia, SC, USA
| | - Charles F Mactutus
- University of South Carolina, Department of Psychology, Program in Behavioral Neuroscience, Columbia, SC, USA.
| | - Rosemarie M Booze
- University of South Carolina, Department of Psychology, Program in Behavioral Neuroscience, Columbia, SC, USA
| | - Amanda J Fairchild
- University of South Carolina, Department of Psychology, Columbia, SC, USA.
| |
Collapse
|
19
|
Sokolova IV, Szucs A, Sanna PP. Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 2019; 1724:146431. [PMID: 31491420 PMCID: PMC6939992 DOI: 10.1016/j.brainres.2019.146431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.
Collapse
Affiliation(s)
- Irina V Sokolova
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States
| | - Attila Szucs
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States; University of California, San Diego, BioCircuits Institute, 9500 Gilman Drive, La Jolla, CA 92039-0328, United States; MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Lóránd University, Budapest, Hungary
| | - Pietro Paolo Sanna
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States.
| |
Collapse
|
20
|
Jensen BK, Roth LM, Grinspan JB, Jordan-Sciutto KL. White matter loss and oligodendrocyte dysfunction in HIV: A consequence of the infection, the antiretroviral therapy or both? Brain Res 2019; 1724:146397. [PMID: 31442414 DOI: 10.1016/j.brainres.2019.146397] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.
Collapse
Affiliation(s)
- Brigid K Jensen
- Vickie and Jack Farber Institute for Neuroscience, Jefferson Weinberg ALS Center, Thomas Jefferson University, United States; Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Lindsay M Roth
- Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Judith B Grinspan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | | |
Collapse
|
21
|
Sparkman NL, Buchanan JB, Dos Santos NL, Johnson RW, Burton MD. Aging sensitizes male mice to cognitive dysfunction induced by central HIV-1 gp120. Exp Gerontol 2019; 126:110694. [PMID: 31437586 DOI: 10.1016/j.exger.2019.110694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/04/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Although highly active antiretroviral therapy has led to improved prognosis and alleviation of some HIV-related disease complications, it has not provided complete protection against HIV-associated dementia. As the population of persons living with HIV grows older and aged persons represent a significant number of new infections, it is important to understand how HIV may affect the aged brain. In the current study, both adult and aged mice were treated with HIV gp120 and trained in a reference memory version of the water maze. Analysis of probe data revealed that aged animals treated with gp120 demonstrated profound decrements in water maze performance compared to gp120 treated young animals and saline treated aged or young animals. Additionally, we examined the neuroinflammatory responses in the aged and adult brain 4 h after treatment with gp120. Pro-inflammatory cytokines associated with neuroinflammation are known to be antagonistic to learning and memory processes and aged and adult animals treated with gp120 demonstrated similar increases in IL-1β and IL-6 in the hippocampus and cortex. Additionally, gp120 treatment was associated with an increase in MHCII gene expression, a marker of microglial activation, in the hippocampus. Although, the aged brain demonstrated a similar inflammatory profile at the time point measured, aged animals were more sensitive to cognitive dysfunction related to gp120 treatment. This finding supports the theory that aging may be a significant risk factor in the development of HIV-associated dementia.
Collapse
Affiliation(s)
- Nathan L Sparkman
- Department of Psychology, Stephen F. Austin, PO Box 13046, SFA Station, Nacogdoches, TX 75962, United States of America.
| | - Jessica B Buchanan
- Laboratory of Integrative Immunology and Behavior, Department of Animal Sciences, University of Illinois Urbana-Champaign,1207 W. Gregory Drive, Urbana, IL 61801, United States of America
| | - Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, BSB 10.536, 800 W Campbell Rd., Richardson, TX 75080, United States of America
| | - Rodney W Johnson
- Laboratory of Integrative Immunology and Behavior, Department of Animal Sciences, University of Illinois Urbana-Champaign,1207 W. Gregory Drive, Urbana, IL 61801, United States of America
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, BSB 10.536, 800 W Campbell Rd., Richardson, TX 75080, United States of America.
| |
Collapse
|
22
|
Moran LM, McLaurin KA, Booze RM, Mactutus CF. Neurorestoration of Sustained Attention in a Model of HIV-1 Associated Neurocognitive Disorders. Front Behav Neurosci 2019; 13:169. [PMID: 31447657 PMCID: PMC6691343 DOI: 10.3389/fnbeh.2019.00169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Due to the sustained prevalence of human immunodeficiency virus (HIV)-1 associated neurocognitive disorders (HAND) in the post-combination antiretroviral therapy (cART) era, as well as the increased prevalence of older HIV-1 seropositive individuals, there is a critical need to develop adjunctive therapeutics targeted at preserving and/or restoring neurocognitive function. To address this knowledge gap, the present study examined the utility of S-Equol (SE), a phytoestrogen produced by gut microbiota, as an innovative therapeutic strategy. A signal detection operant task with varying signal durations (1,000, 500, 100 ms) was utilized to assess sustained attention in HIV-1 transgenic (Tg) and control animals. During the signal detection pretest assessment, HIV-1 Tg animals displayed profound deficits in stimulus-response learning and sustained attention relative to control animals. Subsequently, between 6 and 8 months of age, HIV-1 Tg and control animals were treated with a daily oral dose of either placebo or SE (0.05, 0.1, 0.2 mg) and a posttest assessment was conducted in the signal detection operant task with varying signal durations. In HIV-1 Tg animals, a linear decrease in the number of misses at 100 ms was observed as SE dose increased, suggesting a dose response with the most effective dose at 0.2 mg SE, approximating controls. Comparison of the number of misses across signal durations at the pretest and posttest revealed a preservation of neurocognitive function in HIV-1 Tg animals treated with 0.2 mg SE; an effect that was in sharp contrast to the neurocognitive decline observed in HIV-1 Tg animals treated with placebo. The results support the utility of 0.2 mg SE as a potential efficacious neuroprotective and/or neurorestorative therapeutic for sustained attention, in the absence of any adverse peripheral effects, in the HIV-1 Tg rat. Thus, the present study highlights the critical need for further in vivo studies to elucidate the full potential and generalizability of phytoestrogen treatment for HAND.
Collapse
Affiliation(s)
- Landhing M Moran
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
23
|
Sex-specific neurogenic deficits and neurocognitive disorders in middle-aged HIV-1 Tg26 transgenic mice. Brain Behav Immun 2019; 80:488-499. [PMID: 30999016 PMCID: PMC6660421 DOI: 10.1016/j.bbi.2019.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Varying degrees of cognitive deficits affect over half of all HIV-1 infected patients. Because of antiretroviral treatment (ART) regimens, the HIV-1 patient population is increasing in age. Very few epidemiological studies have focused on sex-specific differences in HIV-1-associated neurocognitive disorders (HAND). The purpose of this study is to examine any possible differences between male and female mice in the progression of cognitive dementia during persistent low-level HIV-1 protein exposure, mimicking the typical clinical setting in the post-ART era. Eight to ten-month old HIV-1 Tg26(+/-) transgenic mice were utilized to assess for specific learning and memory modalities. Initial physiological screening and fear conditioning assessments revealed that Tg26 mice exhibited no significant differences in general behavioral function, contextual fear conditioning, or cued fear conditioning responses when compared to their wild-type (WT) littermates, regardless of sex. However, Barnes maze testing revealed significantly impaired short and long-term spatial memory in males, while females had impaired spatial learning abilities and short-term spatial memory. The potential cellular mechanism underlying these sex-specific neurocognitive deficits was explored with hippocampal neurogenic analysis. Compared to WT mice, both male and female Tg26(+/-) mice had fewer quiescent neural stem cells and neuroblasts in their hippocampi. Male Tg26(+/-) mice had a more robust reduction of the quiescent neural stem cell pool than female Tg26(+/-) mice. While female WT mice had a higher number of neural progenitor cells than male WT mice, only female Tg26(+/-) mice exhibited a robust reduction in the number of neural progenitor cells. Altogether, these results suggest that middle-aged male and female Tg26(+/-) mice manifest differing impairments in cognitive functioning and hippocampal neurogenesis. This study emphasizes the importance of understanding sex related differences in HAND pathology, which would aid in designing more optimized therapeutic regimens for the treatment of HAND.
Collapse
|
24
|
Putatunda R, Ho WZ, Hu W. HIV-1 and Compromised Adult Neurogenesis: Emerging Evidence for a New Paradigm of HAND Persistence. AIDS Rev 2019; 21:11-22. [PMID: 30899112 DOI: 10.24875/aidsrev.19000003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The face of the HIV-1/AIDS pandemic has changed significantly thanks to the development of antiretroviral therapy (ART) regimens. Unfortunately, several HIV-associated comorbidities continuously occur in the clinical population, most notably HIV-associated neurocognitive disorders (HAND). While many molecular and cellular mechanisms have been characterized by describing HAND pathology (specifically neuroinflammatory insults and oxidative stress) in the ART era, compromised adult neurogenesis is emerging as a potential new mechanism. Neurogenesis is a dynamic process that generates new neurons and glial cells from neural stem cells (NSCs) and neural progenitor cells (NPCs) in specific areas of the brain. There are increasing observations that HIV-1 can productively and non-productively infect NSCs and NPCs. HIV-1 proteins and/or secondary immune/inflammatory responses impair the initial differentiation process of NSCs to NPCs, restrict neuronal lineage differentiation, and aberrantly promote astrocytic lineage differentiation. Recent studies with HIV-1 transgenic animal models demonstrate varying degrees of adult neurogenic deficits, which correlate with milder to moderate forms of neurocognitive impairments. The neurogenic dysfunction underlying HAND highlights the importance of developing potential therapeutics to restore adult neurogenic homeostasis in HIV-1 patients.
Collapse
Affiliation(s)
- Raj Putatunda
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Age-Related Decrease in Tyrosine Hydroxylase Immunoreactivity in the Substantia Nigra and Region-Specific Changes in Microglia Morphology in HIV-1 Tg Rats. Neurotox Res 2019; 36:563-582. [PMID: 31286433 DOI: 10.1007/s12640-019-00077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Animal models have been used to study cellular processes related to human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). The HIV-1 transgenic (Tg) rat expresses HIV viral genes except the gag-pol replication genes and exhibits neuropathological features similar to HIV patients receiving combined antiretroviral therapy (cART). Using this rat, alterations in dopaminergic function have been demonstrated; however, the data for neuroinflammation and glial reactivity is conflicting. Differences in behavior, tyrosine hydroxylase (TH) immunoreactivity, neuroinflammation, and glia reactivity were assessed in HIV-1 Tg male rats. At 6 and 12 weeks of age, rotarod performance was diminished, motor activity was not altered, and active avoidance latency performance and memory were diminished in HIV-1 Tg rats. TH+ immunoreactivity in the substantia nigra (SN) was decreased at 8 months but not at 2-5 months. At 5 months, astrocyte and microglia morphology was not altered in the cortex, hippocampus, or SN. In the striatum, astrocytes were unaltered, microglia displayed slightly thickened proximal processes, mRNA levels for Iba1 and Cd11b were elevated, and interleukin (Il)1α,Cxcr3, and cell adhesion molecule, Icam, decreased. In the hippocampus, mRNA levels for Tnfa and Cd11b were slightly elevated. No changes were observed in the cortex or SN. The data support an age-related effect of HIV proteins upon the nigrostriatal dopaminergic system and suggest an early response of microglia in the terminal synaptic region with little evidence of an associated neuroinflammatory response across brain regions.
Collapse
|
26
|
McLaurin KA, Li H, Booze RM, Mactutus CF. Disruption of Timing: NeuroHIV Progression in the Post-cART Era. Sci Rep 2019; 9:827. [PMID: 30696863 PMCID: PMC6351586 DOI: 10.1038/s41598-018-36822-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
The marked increase in life expectancy for HIV-1 seropositive individuals, following the great success of combination antiretroviral therapy (cART), heralds an examination of the progression of HIV-1 associated neurocognitive disorders (HAND). However, since the seminal call for animal models of HIV-1/AIDS in 1988, there has been no extant in vivo animal model system available to provide a truly longitudinal study of HAND. Here, we demonstrate that the HIV-1 transgenic (Tg) rat, resembling HIV-1 seropositive individuals on lifelong cART, exhibits age-related, progressive neurocognitive impairments (NCI), including alterations in learning, sustained attention, flexibility, and inhibition; deficits commonly observed in HIV-1 seropositive individuals. Pyramidal neurons from layers II-III of the medial prefrontal cortex (mPFC) displayed profound synaptic dysfunction in HIV-1 Tg animals relative to controls; dysfunction that was characterized by alterations in dendritic branching complexity, synaptic connectivity, and dendritic spine morphology. NCI and synaptic dysfunction in pyramidal neurons from layers II-III of the mPFC independently identified the presence of the HIV-1 transgene with at least 78.5% accuracy. Thus, even in the absence of sensory or motor system deficits and comorbidities, HAND is a neurodegenerative disease characterized by age-related disease progression; impairments which may be due, at least partly, to synaptic dysfunction in the mPFC. Further, the progression of HAND with age in the HIV-1 Tg rat and associated synaptic dysfunction affords an instrumental model system for the development of therapeutics and functional cure strategies.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC, 29208, USA
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
27
|
Fu Y, Zorman B, Sumazin P, Sanna PP, Repunte-Canonigo V. Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats. PLoS One 2019; 14:e0203566. [PMID: 30653517 PMCID: PMC6336335 DOI: 10.1371/journal.pone.0203566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Internal RNA modifications have been known for decades, however their roles in mRNA regulation have only recently started to be elucidated. Here we investigated the most abundant mRNA modification, N6-methyladenosine (m6A) in transcripts from the hippocampus of HIV transgenic (Tg) rats. The distribution of m6A peaks within HIV transcripts in HIV Tg rats largely corresponded to the ones observed for HIV transcripts in cell lines and T cells. Host transcripts were found to be differentially m6A methylated in HIV Tg rats. The functional roles of the differentially m6A methylated pathways in HIV Tg rats is consistent with a key role of RNA methylation in the regulation of the brain transcriptome in chronic HIV disease. In particular, host transcripts show significant differential m6A methylation of genes involved in several pathways related to neural function, suggestive of synaptodendritic injury and neurodegeneration, inflammation and immune response, as well as RNA processing and metabolism, such as splicing. Changes in m6A methylation were usually positively correlated with differential expression, while differential m6A methylation of pathways involved in RNA processing were more likely to be negatively correlated with gene expression changes. Thus, sets of differentially m6A methylated, functionally-related transcripts appear to be involved in coordinated transcriptional responses in the context of chronic HIV. Altogether, our results support that m6A methylation represents an additional layer of regulation of HIV and host gene expression in vivo that contributes significantly to the transcriptional effects of chronic HIV.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail: (PPS); (VRC)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail: (PPS); (VRC)
| |
Collapse
|
28
|
McLaurin KA, Cook AK, Li H, League AF, Mactutus CF, Booze RM. Synaptic Connectivity in Medium Spiny Neurons of the Nucleus Accumbens: A Sex-Dependent Mechanism Underlying Apathy in the HIV-1 Transgenic Rat. Front Behav Neurosci 2018; 12:285. [PMID: 30524255 PMCID: PMC6262032 DOI: 10.3389/fnbeh.2018.00285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023] Open
Abstract
Frontal-subcortical circuit dysfunction is commonly associated with apathy, a neuropsychiatric sequelae of human immunodeficiency virus type-1 (HIV-1). Behavioral and neurochemical indices of apathy in the nucleus accumbens (NAc), a key brain region involved in frontal-subcortical circuitry, are influenced by the factor of biological sex. Despite evidence of sex differences in HIV-1, the effect of biological sex on medium spiny neurons (MSNs), which are central integrators of frontal-subcortical input, has not been systematically evaluated. In the present study, a DiOlistic labeling technique was used to investigate the role of long-term HIV-1 viral protein exposure, the factor of biological sex, and their possible interaction, on synaptic dysfunction in MSNs of the NAc in the HIV-1 transgenic (Tg) rat. HIV-1 Tg rats, independent of biological sex, displayed profound alterations in synaptic connectivity, evidenced by a prominent shift in the distribution of dendritic spines. Female HIV-1 Tg rats, but not male HIV-1 Tg rats, exhibited alterations in dendritic branching and neuronal arbor complexity relative to control animals, supporting an alteration in glutamate neurotransmission. Morphologically, HIV-1 Tg male, but not female HIV-1 Tg rats, displayed a population shift towards decreased dendritic spine volume, suggesting decreased synaptic area, relative to control animals. Synaptic dysfunction accurately identified presence of the HIV-1 transgene, dependent upon biological sex, with at least 80% accuracy (i.e., Male: 80%; Female: 90%). Collectively, these results support a primary alteration in circuit connectivity, the mechanism of which is dependent upon biological sex. Understanding the effect of biological sex on the underlying neural mechanism for HIV-1 associated apathy is vital for the development of sex-based therapeutics and cure strategies.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| | - Anna K Cook
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| | - Hailong Li
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| | - Alexis F League
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| | - Charles F Mactutus
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| | - Rosemarie M Booze
- Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
29
|
Hedayati Moghadam M, Rezaee SAR, Hosseini M, Niazmand S, Salmani H, Rafatpanah H, Asarzadegan Dezfuli M, Amel Zabihi N, Abareshi A, Mahmoudabady M. HTLV-1 infection-induced motor dysfunction, memory impairment, depression, and brain tissues oxidative damage in female BALB/c mice. Life Sci 2018; 212:9-19. [PMID: 30248348 DOI: 10.1016/j.lfs.2018.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
AIMS The HTLV-1 infection is associated with a neuro-inflammatory disease. In the present study, the behavioral consequences and brain oxidative damages were evaluated in HTLV-1-infected BALB/c mice. MATERIAL AND METHODS 20 female BALB/c mice were divided into two groups comprising control and HTLV-1-infected. The HTLV-1-infected group was inoculated with a 106 MT-2 HTLV-1-infected cell line. Two months later, the behavioral tests were conducted. Finally, oxidative stress was assessed in the cortex and hippocampus tissues. KEY FINDINGS In the HTLV-1-infected group, running time and latency to fall, travel distance and time spent in the peripheral zone, total crossing number and total traveled distance in open field test, the latency of entrance into the dark compartment in the passive avoidance test, the new object exploration percentage, and discrimination ratio were significantly lower than in the control group. The immobility time, time spent in the dark compartment in passive avoidance test, and total exploration time significantly increased in the HTLV-1-infected group compared to the control group. In the cortical tissue of the HTLV-1 group, the malondialdehyde levels were elevated while the total thiol levels decreased in comparison to the control group. The activity of superoxide dismutase in the cortical and hippocampal tissues, and catalase activity in cortical tissue significantly decreased in the HTLV-1 group in comparison to the control group. SIGNIFICANCE The HTLV-1 infection seems to induce depression-like behavior, motor dysfunction, disruption in working and fear memory and also oxidative stress in the cortex and hippocampus.
Collapse
Affiliation(s)
| | - S A Rahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenesis-inflammation Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Salmani
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Amel Zabihi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abareshi
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenesis-inflammation Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Modulatory Effects of Nicotine on neuroHIV/neuroAIDS. J Neuroimmune Pharmacol 2018; 13:467-478. [PMID: 30215204 DOI: 10.1007/s11481-018-9806-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
Nicotine, one of the key active ingredients in tobacco smoke, exerts its effects via binding to nicotinic acetylcholine receptors (nAChRs). Although both negative and positive pharmacological effects of nicotine have been shown in numerous animals and human studies, its interaction with human immunodeficiency virus-1 (HIV-1) have not been fully elucidated. Even though combined anti-retroviral therapy (cART) limits the progression of HIV-1 to acquired immune deficiency syndrome (AIDS), HIV-associated neurocognitive disorders (HAND) remain prevalent. There is thus a compelling need to enhance our understanding of HAND-related neurologic dysfunction. Some biochemical pathways and physiological dysfunctions have been found to be shared by HAND and Alzheimer's (AD) or Parkinson's (PD) diseases, and nicotine may exert the same neuroprotection in HAND that has been observed in both AD and PD. In the past dozen years, various potential therapeutic effects of nicotine such as neuroprotection have been revealed in both in vivo and in vitro studies, including using HIV-1 transgenic (HIV-1Tg) rat model, which mimics HIV-infected patients receiving cART. In the current review, we describe recent progress in the prevalence of HIV/AIDS with and without cigarette smoking, some animal models for studying neural dysfunction associated with HIV-1 infection, elucidating the modulatory effects of cigarette smoking/nicotine on HIV/AIDS, the anti-inflammatory effects of nicotine, and the neuroprotective effects observed in HIV-1Tg rat model. Taken together, these findings suggest the following: although tobacco smoking does cause deleterious effects in both health and disease conditions such as HIV infection, nicotine, the significant component of tobacco smoke, has been shown to possess some neuroprotective effects in HIV patients, possible via its anti-inflammatory activities. It is therefore necessary to study nicotine's dual effects on neuroHIV/neuroAIDS in hope of better defining the potential medical uses of nicotine or its analogues, and to make them available in a purer and less dangerous form.
Collapse
|
31
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
32
|
Fitting S, McLaurin KA, Booze RM, Mactutus CF. Dose-dependent neurocognitive deficits following postnatal day 10 HIV-1 viral protein exposure: Relationship to hippocampal anatomy parameters. Int J Dev Neurosci 2018; 65:66-82. [PMID: 29111178 PMCID: PMC5889695 DOI: 10.1016/j.ijdevneu.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the availability of antiretroviral prophylactic treatment, pediatric human immunodeficiency virus type 1 (HIV-1) continues to be a significant risk factor in the post-cART era. The time of infection (i.e., during pregnancy, delivery or breastfeeding) may play a role in the development of neurocognitive deficits in pediatric HIV-1. HIV-1 viral protein exposure on postnatal day (P)1, preceding the postnatal brain growth spurt in rats, had deleterious effects on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2008a,b). In the present study, rats were stereotaxically injected with HIV-1 viral proteins, including Tat1-86 and gp120, on P10 to further examine the role of timing on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2010). The dose-dependent virotoxin effects observed across development following P10 Tat1-86 exposure were specific to spatial learning and absent from prepulse inhibition and locomotor activity. A relationship between alterations in spatial learning and/or memory and hippocampal anatomical parameters was noted. Specifically, the estimated number of neurons and astrocytes in the hilus of the dentate gyrus explained 70% of the variance of search behavior in Morris water maze acquisition training for adolescents and 65% of the variance for adults; a brain-behavior relationship consistent with observations following P1 viral protein exposure. Collectively, late viral protein exposure (P10) results in selective alterations in neurocognitive development without modifying measures of somatic growth, preattentive processing, or locomotor activity, as characterized by early viral protein exposure (P1). Thus, timing may be a critical factor in disease progression, with children infected with HIV earlier in life being more vulnerable to CNS disease.
Collapse
Affiliation(s)
- Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristen A McLaurin
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
33
|
Casas R, Muthusamy S, Wakim PG, Sinharay S, Lentz MR, Reid WC, Hammoud DA. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat. NEUROIMAGE-CLINICAL 2017; 17:659-666. [PMID: 29204344 PMCID: PMC5705794 DOI: 10.1016/j.nicl.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
Abstract
Introduction HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Materials and methods Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Results Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. Conclusion The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible. HIV infection is known to be associated with brain volume loss. HIV transgenic rats showed smaller brain volumes than wild type rats. Tg rats showed disproportionate loss of volume in the striatum compared to brain. Tg striatal volume loss along with genotype/age predict neurobehavioral deficits.
Collapse
Affiliation(s)
- Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Siva Muthusamy
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Margaret R Lentz
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
34
|
McLaurin KA, Booze RM, Mactutus CF, Fairchild AJ. Sex Matters: Robust Sex Differences in Signal Detection in the HIV-1 Transgenic Rat. Front Behav Neurosci 2017; 11:212. [PMID: 29163084 PMCID: PMC5681841 DOI: 10.3389/fnbeh.2017.00212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023] Open
Abstract
Sex differences in human immunodeficiency virus type-1 (HIV-1) have been repeatedly suggested. Females, who account for 51% of HIV-1 seropositive individuals, are inadequately represented in clinical and preclinical studies, as well as in the description of HIV-1 associated neurocognitive disorders (HAND). Direct comparisons of neurocognitive decline in women and men must be made to address this underrepresentation. The effect of biological sex (i.e., the biological factors, including chromosomes and hormones, determining male or female characteristics; WHO, 2017) on sustained attention, which is commonly impaired in HIV-1 seropositive individuals, was investigated in intact HIV-1 transgenic (Tg) and control animals using a signal detection operant task. Analyses revealed a robust sex difference in the rate of task acquisition, collapsed across genotype, with female animals meeting criteria in shaping (at least 60 reinforcers for three consecutive or five non-consecutive sessions) and signal detection (70% accuracy for five consecutive or seven non-consecutive sessions) significantly more slowly than male animals. Presence of the HIV-1 transgene also had a significant effect on shaping and signal detection acquisition, with HIV-1 Tg animals displaying significant deficits in the rate of acquisition relative to control animals–deficits that were more prominent in female HIV-1 Tg animals. Once the animals’ reached asymptotic performance in the signal detection task, female animals achieved a lower percent accuracy across test sessions and exhibited a decreased response rate relative to male animals, although there was no compelling evidence for any effect of transgene. Results indicate that the factor of biological sex may be a moderator of the influence of the HIV-1 transgene on signal detection. Understanding the impact of biological sex on neurocognitive deficits in HIV-1 is crucial for the development of sex-based therapeutics and cure strategies.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Amanda J Fairchild
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
35
|
Hu G, Liao K, Yang L, Pendyala G, Kook Y, Fox HS, Buch S. Tat-Mediated Induction of miRs-34a & -138 Promotes Astrocytic Activation via Downregulation of SIRT1: Implications for Aging in HAND. J Neuroimmune Pharmacol 2017; 12:420-432. [PMID: 28236278 PMCID: PMC5546000 DOI: 10.1007/s11481-017-9730-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
Astrocyte activation is a hallmark of HIV infection and aging in the CNS. In chronically infected HIV patients, prolonged activation of astrocytes has been linked to accelerated aging including but not limited to neurocognitive impairment and frailty. The current study addresses the role of HIV protein Tat in inducing a set of small noncoding microRNAs (miRNA) that play critical role in astrogliosis. In our efforts to link astrocyte activation as an indicator of aging, we assessed the brains of both wild type and HIV transgenic rats for the expression of glial fibrillary acidic protein (GFAP). As expected, in the WT animals we observed age-dependent increase in astrogliosis in the older animals compared to the younger group. Interestingly, compared to the young WT group, young HIV Tg rats exhibited higher levels of GFAP in this trend was also observed in the older HIV Tg rats compared to the older WT group. Based on the role of SIRT1 in aging and the regulation of SIRT1 by miRNAs-34a and -138, we next assessed the expression levels of these miRs in the brains of both the young an old WT and HIV Tg rats. While there were no significant differences in the young WT versus the HIV Tg rats, in the older HIV Tg rats there was a significant upregulation in the expression of miRs-34a & -138 in the brains. Furthermore, increased expression of miRs-34a & -138 in the older Tg rats, correlated with a concomitant decrease in their common anti-aging target protein SIRT1, in the brains of these animals. To delineate the mechanism of action we assessed the role of HIV-Tat (present in the Tg rats) in inducing miRs-34a & -138 in both the primary astrocytes and the astrocytoma cell line A172, thereby leading to posttranscriptional suppression of SIRT1 with a concomitant up regulation of NF-kB driven expression of GFAP.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
36
|
Yang Z, Nesil T, Wingo T, Chang SL, Li MD. HIV-1 Proteins Influence Novelty-Seeking Behavior and Alter Region-Specific Transcriptional Responses to Chronic Nicotine Treatment in HIV-1Tg Rats. Nicotine Tob Res 2017; 19:1024-1032. [PMID: 28339662 PMCID: PMC5896433 DOI: 10.1093/ntr/ntx047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Clinical studies suggest that HIV-1-infected patients are more likely to use or abuse addictive drugs than is the general population. We hypothesized that HIV-1 proteins impact novelty-seeking behavior and enhance the transcriptional response to nicotine in genes implicated in both novelty-seeking behavior and drug addiction. METHODS We assessed the effects of HIV-1 proteins on novelty-seeking behavior by comparing baseline activity differences of HIV-1Tg and F344 control rats in the open-field test. One day after behavioral testing, all rats began daily subcutaneous injections of either nicotine (0.4 mg/kg, base) or saline (the same for each rat) for 27 days. At the end of treatment, the prefrontal cortex, nucleus accumbens, and ventral tegmental area were collected for RNA expression analysis of genes in the receptor families for dopamine, GABA, glutamate, and serotonin. RESULTS Significant strain difference was detected in the distance moved in the center, such that HIV-1Tg rats traveled greater distance in the center of the arena than did F344 rats. Quantitative RT-PCR analysis showed that mRNA from Drd3 and Grm2 in the prefrontal cortex and Drd5 and Gabra6 in the ventral tegmental area was significantly upregulated, whereas that of Drd5 in the nucleus accumbens was downregulated in HIV-1Tg rats compared with F344 rats. Further, more addiction-related genes were significantly modulated by nicotine in each brain region in the HIV-1Tg rats than in the control animals. CONCLUSIONS HIV-1 proteins may affect novelty-seeking behavior and modulate the expression of genes related to drug addiction and novelty-seeking behavior. IMPLICATIONS HIV-1 viral proteins and chronic nicotine treatment impact the expression of genes involved in novelty-seeking behavior and addiction in three brain regions of the HIV-1 transgenic rat. These findings implicate that HIV-1 proteins may be involved in novelty-seeking behavior and in modulating the expression of genes related to drug addiction and novelty seeking.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University,Hangzhou,China
- Institute of NeuroImmune Pharmacology, Seton Hall University,South Orange, NJ
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | - Taylor Wingo
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University,South Orange, NJ
- Department of Biology, Seton Hall University,South Orange, NJ
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University,Hangzhou,China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| |
Collapse
|
37
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
38
|
Fogel J, Rubin LH, Maki P, Keutmann MK, Gonzalez R, Vassileva J, Martin EM. Effects of sex and HIV serostatus on spatial navigational learning and memory among cocaine users. J Neurovirol 2017; 23:855-863. [PMID: 28849352 DOI: 10.1007/s13365-017-0563-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/05/2017] [Accepted: 07/30/2017] [Indexed: 11/26/2022]
Abstract
Spatial learning and memory are critically dependent on the integrity of hippocampal systems. Functional MRI and neuropathological studies show that hippocampal circuitry is prominently affected among HIV-seropositive individuals, but potential spatial learning and memory deficits have not been studied in detail in this population. We investigated the independent and interactive effects of sex and HIV serostatus on performance of a spatial learning and memory task in a sample of 181 individuals with a history of cocaine dependence. We found that men showed faster times to completion on immediate recall trials compared with women and that delayed recall was significantly poorer among HIV-infected compared with HIV-uninfected participants. Additionally, a sex × serostatus effect was found on the total number of completed learning trials. Specifically, HIV-infected men successfully completed more learning trials compared with HIV-infected women. Results are discussed in the context of recent reports of sex and HIV serostatus effects on episodic memory performance.
Collapse
Affiliation(s)
- J Fogel
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - L H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - P Maki
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - M K Keutmann
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, Rush University Medical Center, 1645 W. Jackson Blvd., Suite 600, Chicago, IL, 60612, USA
| | - R Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - J Vassileva
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - E M Martin
- Department of Psychiatry, Rush University Medical Center, 1645 W. Jackson Blvd., Suite 600, Chicago, IL, 60612, USA.
| |
Collapse
|
39
|
Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. J Neurovirol 2017; 24:229-245. [PMID: 28730408 DOI: 10.1007/s13365-017-0544-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Understanding the progression of HIV-1-associated neurocognitive disorders (HAND) is a critical need as the prevalence of HIV-1 in older individuals (>50 years) is markedly increasing due to the great success of combination antiretroviral therapy (cART). Longitudinal experimental designs, in comparison to cross-sectional studies, provide an opportunity to establish age-related disease progression in HAND. The HIV-1 transgenic (Tg) rat, which has been promoted for investigating the effect of long-term HIV-1 viral protein exposure, was used to examine two interrelated goals. First, to establish the integrity of sensory and motor systems through the majority of the animal's functional lifespan. Strong evidence for intact sensory and motor system function through advancing age in HIV-1 Tg and control animals was observed in cross-modal prepulse inhibition (PPI) and locomotor activity. The integrity of sensory and motor system function suggested the utility of the HIV-1 Tg rat in investigating the progression of HAND. Second, to assess the progression of neurocognitive impairment, including temporal processing and long-term episodic memory, in the HIV-1 Tg rat; the factor of biological sex was integral to the experimental design. Cross-modal PPI revealed significant alterations in the development of temporal processing in HIV-1 Tg animals relative to controls; alterations which were more pronounced in female HIV-1 Tg rats relative to male HIV-1 Tg rats. Locomotor activity revealed deficits in intrasession habituation, suggestive of a disruption in long-term episodic memory, in HIV-1 Tg animals. Understanding the progression of HAND heralds an opportunity for the development of an advantageous model of progressive neurocognitive deficits in HIV-1 and establishes fundamental groundwork for the development of neurorestorative treatments.
Collapse
|
40
|
Cho YE, Lee MH, Song BJ. Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats. PLoS One 2017; 12:e0169945. [PMID: 28107387 PMCID: PMC5249108 DOI: 10.1371/journal.pone.0169945] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanisms for increased neurodegeneration and neurocognitive deficits in HIV-infected people are unclear. Therefore, this study was aimed to investigate the mechanisms of increased neurodegeneration in 5-month old male HIV-1 Transgenic (Tg) rats compared to the age- and gender-matched wild-type (WT) by evaluating histological changes and biochemical parameters of the key proteins involved in the cell death signaling and apoptosis. Histological and immunohistochemical analyses revealed decreased neuronal cells with elevated astrogliosis in HIV-1 Tg rats compared to WT. Mechanistic studies revealed that increased levels of nitroxidative stress marker proteins such as NADPH-oxidase, cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase (iNOS), the stress-activated mitogen-activated protein kinases such as JNK and p38K, activated cell-cycle dependent CDK5, hypoxia-inducible protein-1α, nitrated proteins, hyperphosphorylated tau, and amyloid plaques in HIV-Tg rats were consistently observed in HIV-1 Tg rats. Confocal microscopy and cell viability analyses showed that treatment with an antioxidant N-acetylcysteine or a specific inhibitor of iNOS 1400W significantly prevented the increased apoptosis of neuro-2A cells by HIV-1 Tat or gp120 protein, demonstrating the causal role of HIV-1 mediated nitroxidative stress and protein nitration in promoting neuronal cell death. Immunoprecipitation and immunoblot analysis confirmed nitration of Hsp90, evaluated as an example of nitrated proteins, suggesting possible involvement of nitrated proteins in neuronal damage. Further, activated p-JNK directly binds tau and phosphorylates multiple amino acids, suggesting an important role of p-JNK in tau hyperphosphorylation and tauopathy. These changes were accompanied with elevated levels of many apoptosis-related proteins Bax and cleaved (activated) caspase-3 as well as proinflammatory cytokines including TNF-α, IL-6 and MCP-1. Collectively, these results indicate that raised nitroxidative stress accompanied by elevated inflammation, cell death signaling pathway including activated p-JNK, C-terminal C99 amyloid fragment formation and tau hyperphosphorylation are responsible for increased apoptosis of neuronal cells and neurodegeneration in 5-month old HIV-Tg rats.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wingo T, Nesil T, Chang SL, Li MD. Interactive Effects of Ethanol and HIV-1 Proteins on Novelty-Seeking Behaviors and Addiction-Related Gene Expression. Alcohol Clin Exp Res 2016; 40:2102-2113. [PMID: 27650554 PMCID: PMC5108578 DOI: 10.1111/acer.13206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Novelty-seeking behavior is related to the reward system in the brain and can predict the potential for addiction. Alcohol use is prevalent in HIV-1-infected patients and adversely affects antiretroviral medication. The difference in vulnerability to alcohol addiction between HIV-1-infected and noninfected populations has not been fully investigated. This study was designed to determine whether HIV-1 proteins alter the effects of ethanol (EtOH) on novelty-seeking behavior using the HIV-1 transgenic (HIV-1Tg) rat as the study model and to examine the molecular mechanisms responsible for this behavior. METHODS Both HIV-1Tg and F344 control rats were tested for baseline novelty-seeking behavior, then received either EtOH (1 g/kg) at a concentration of 20% v/v or saline treatment for 13 days, and then were retested for novelty seeking. Quantitative real-time polymerase chain reaction was conducted to examine the differences in expression of 65 genes implicated in novelty seeking and alcohol addiction between strains and treatment groups. RESULTS The HIV-1 proteins significantly enhanced baseline novelty-seeking behaviors in both the hole-board and open-field tests. Chronic EtOH treatment significantly increased baseline novelty-seeking behavior in both strains, but the effects of EtOH appeared to be more robust and prominent in HIV-1Tg rats. Strain-specific patterns of altered gene expression were observed for dopaminergic, cholinergic, and glutamatergic signaling in the nucleus accumbens, suggesting the effects of HIV-1 proteins on the brain's reward system. Chronic EtOH treatment was shown to greatly modulate the effects of HIV-1 proteins in these neurotransmitter systems. CONCLUSIONS Taken together, our findings indicate that HIV-1 proteins could modify novelty-seeking behavior at the gene expression level, and EtOH treatment may enhance this behavior in both strains but to a greater extent in HIV-1Tg rats.
Collapse
Affiliation(s)
- Taylor Wingo
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey.
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey.
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
42
|
Cao J, Nesil T, Wang S, Chang SL, Li MD. Expression profile of nicotinic acetylcholine receptor subunits in the brain of HIV-1 transgenic rats given chronic nicotine treatment. J Neurovirol 2016; 22:626-633. [PMID: 27056721 PMCID: PMC5574164 DOI: 10.1007/s13365-016-0438-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
Abstract
Abuse of addictive substances, including cigarettes, is much greater in HIV-1-infected individuals than in the general population and challenges the efficiency of highly active anti-retroviral therapy (HAART). The HIV-1 transgenic (HIV-1Tg) rat, an animal model used to study drug addiction in HIV-1-infected patients on HAART, displays abnormal neurobehavioral responses to addictive substances. Given that the cholinergic system plays an essential part in the central reward circuitry, we evaluated the expression profile of nine nicotinic acetylcholine receptor (nAChR) subunit genes in the central nervous system (CNS) of HIV-1Tg rats. We found that nAChR subunits were differentially expressed in various brain regions in HIV-1Tg rats compared to F344 control rats, with more subunits altered in the ventral tegmental area (VTA) and nucleus accumbens (NAc) of the HIV-1Tg rats than in other brain regions. We also found that chronic nicotine treatment (0.4 mg/kg/day) decreased the mRNA expression of nAChR subunits α6, β3, and β4 in the VTA of HIV-1Tg rats, whereas expression of α4 and α6 subunits in the NAc increased. No such changes were observed in F344 rats. Together, our data suggest that HIV-1 proteins alter the expression of nAChRs, which may contribute to the vulnerability to cigarette smoking addiction in HIV-1 patients.
Collapse
Affiliation(s)
- Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shaolin Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
43
|
Pang X, Panee J. Anti-inflammatory Function of Phyllostachys Edulis Extract in the Hippocampus of HIV-1 Transgenic Rats. ACTA ACUST UNITED AC 2016; 2. [PMID: 27398410 DOI: 10.16966/2380-5536.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HIV induces neuroinflammation. We evaluated the anti-inflammatory effect of an extract from bamboo Phyllostachys edulis in the hippocampus of HIV-1 transgenic (TG) rats. Five (5) one-month-old TG rats and 5 Fisher 344 (F344) rats were fed a control diet, another 5 TG rats were fed the control diet supplemented with bamboo extract (BEX, 11 grams dry mass per 4057 Kcal). After 9 months of dietary treatment, the gene and protein expression of interleukin 1 beta (IL-1β), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1), and the protein expression p65 and c-Jun were analyzed in the hippocampus. Compared to the F344 rats, the TG rats fed control diet showed significantly higher protein expression of GFAP and c-Jun, and mRNA and protein levels of IL-1β. BEX supplement to the TG rats significantly lowered protein expressions of GFAP, p65, and c-Jun, and showed a trend to decrease the protein expression of IL-1β. Compared to the TG rats, TG+BEX rats also downregulated the mRNA levels of IL-1β and TNFα. In summary, neuroinflammation mediated by the NFκB and AP-1 pathways in the hippocampus of the TG rats was effectively abolished by dietary supplement of BEX.
Collapse
Affiliation(s)
- Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222, Honolulu HI 96813
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222, Honolulu HI 96813
| |
Collapse
|
44
|
Neurobehavioral Abnormalities in the HIV-1 Transgenic Rat Do Not Correspond to Neuronal Hypometabolism on 18F-FDG-PET. PLoS One 2016; 11:e0152265. [PMID: 27010205 PMCID: PMC4807106 DOI: 10.1371/journal.pone.0152265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022] Open
Abstract
Motor and behavioral abnormalities are common presentations among individuals with HIV-1 associated neurocognitive disorders (HAND). We investigated whether longitudinal motor and behavioral performance in the HIV-1 transgenic rat (Tg), a commonly used neuro-HIV model, corresponded to in vivo neuronal death/dysfunction, by using rotarod and open field testing in parallel to [18F] 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We demonstrated that age-matched non-Tg wild type (WT) rats outperformed the HIV-1 Tg rats at most time points on rotarod testing. Habituation to rotarod occurred at 8 weeks of age (fifth weekly testing session) in the WT rats but it never occurred in the Tg rats, suggesting deficits in motor learning. Similarly, in open field testing, WT rats outperformed the Tg rats at most time points, suggesting defective exploratory/motor behavior and increased emotionality in the Tg rat. Despite the neurobehavioral abnormalities, there were no concomitant deficits in 18F-FDG uptake in Tg rats on PET compared to age-matched WT rats and no significant longitudinal loss of FDG uptake in either group. The negative PET findings were confirmed using 14C- Deoxy-D-glucose autoradiography in 32 week-old Tg and WT rats. We believe that the neuropathology in the HIV-1 Tg rat is more likely a consequence of neuronal dysfunction rather than overt neurodegeneration/neuronal cell death, similar to what is seen in HIV-positive patients in the post-ART era.
Collapse
|
45
|
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 2016; 292:116-25. [PMID: 26943969 DOI: 10.1016/j.jneuroim.2016.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted.
Collapse
Affiliation(s)
- William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Rowson SA, Harrell CS, Bekhbat M, Gangavelli A, Wu MJ, Kelly SD, Reddy R, Neigh GN. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress. Front Psychiatry 2016; 7:102. [PMID: 27378953 PMCID: PMC4913326 DOI: 10.3389/fpsyt.2016.00102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was increased in the hippocampus. In addition, adolescent stress exposure increased microglial branching and junctions in female wild-type rats without causing any additional increase in HIV-1 rats. These data suggest that the presence of HIV-1 proteins during development leads to alterations in behavioral and neuroinflammatory endpoints that are not further impacted by concurrent chronic adolescent stress.
Collapse
Affiliation(s)
- Sydney A Rowson
- Molecular and Systems Pharmacology Graduate Studies Program, Emory University , Atlanta, GA , USA
| | | | - Mandakh Bekhbat
- Neuroscience Graduate Studies Program, Emory University , Atlanta, GA , USA
| | | | - Matthew J Wu
- Neuroscience and Behavioral Biology, Emory College , Atlanta, GA , USA
| | - Sean D Kelly
- Department of Physiology, Emory University , Atlanta, GA , USA
| | - Renuka Reddy
- Neuroscience and Behavioral Biology, Emory College , Atlanta, GA , USA
| | - Gretchen N Neigh
- Neuroscience Graduate Studies Program, Emory University, Atlanta, GA, USA; Department of Physiology, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
47
|
Induction of Interleukin-1β by Human Immunodeficiency Virus-1 Viral Proteins Leads to Increased Levels of Neuronal Ferritin Heavy Chain, Synaptic Injury, and Deficits in Flexible Attention. J Neurosci 2015. [PMID: 26203149 DOI: 10.1523/jneurosci.4403-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptodendritic pruning and alterations in neurotransmission are the main underlying causes of HIV-associated neurocognitive disorders (HAND). Our studies in humans and nonhuman primates indicated that the protein ferritin heavy chain (FHC) is a critical player in neuronal changes and ensuing cognitive deficit observed in these patients. Here we focus on the effect of HIV proteins and inflammatory cytokines implicated in HAND on neuronal FHC levels, dendritic changes, and neurocognitive behavior. In two well characterized models of HAND (HIV transgenic and gp120-treated rats), we report reductions in spine density and dendritic branches in prefrontal cortex pyramidal neurons compared with age-matched controls. FHC brain levels are elevated in these animals, which also show deficits in reversal learning. Moreover, IL-1β, TNF-α, and HIV gp120 upregulate FHC in rat cortical neurons. However, although the inflammatory cytokines directly altered neuronal FHC, gp120 only caused significant FHC upregulation in neuronal/glial cocultures, suggesting that glia are necessary for sustained elevation of neuronal FHC by the viral protein. Although the envelope protein induced secretion of IL-1β and TNF-α in cocultures, TNF-α blockade did not affect gp120-mediated induction of FHC. Conversely, studies with an IL-1β neutralizing antibody or specific IL-1 receptor antagonist revealed the primary involvement of IL-1β in gp120-induced FHC changes. Furthermore, silencing of neuronal FHC abrogates the effect of gp120 on spines, and spine density correlates negatively with FHC levels or cognitive deficit. These results demonstrate that viral and host components of HIV infection increase brain expression of FHC, leading to cellular and functional changes, and point to IL-1β-targeted strategies for prevention of these alterations. Significance statement: This work demonstrates the key role of the cytokine IL-1β in the regulation of a novel intracellular mediator [i.e., the protein ferritin heavy chain (FHC)] of HIV-induced dendritic damage and the resulting neurocognitive impairment. This is also the first study that systematically investigates dendritic damage in layer II/III prefrontal cortex neurons of two different non-infectious models of HIV-associated neurocognitive disorders (HAND) and reveals a precise correlation of these structural changes with specific biochemical and functional alterations also reported in HIV patients. Overall, these data suggest that targeting the IL-1β-dependent FHC increase may represent a valid strategy for neuroprotective adjuvant therapies in HAND.
Collapse
|
48
|
Vigorito M, Connaghan KP, Chang SL. The HIV-1 transgenic rat model of neuroHIV. Brain Behav Immun 2015; 48:336-49. [PMID: 25733103 PMCID: PMC4753047 DOI: 10.1016/j.bbi.2015.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 01/28/2023] Open
Abstract
Despite the ability of current combination anti-retroviral therapy (cART) to limit the progression of HIV-1 to AIDS, HIV-positive individuals continue to experience neuroHIV in the form of HIV-associated neurological disorders (HAND), which can range from subtle to substantial neurocognitive impairment. NeuroHIV may also influence substance use, abuse, and dependence in HIV-positive individuals. Because of the nature of the virus, variables such as mental health co-morbidities make it difficult to study the interaction between HIV and substance abuse in human populations. Several rodent models have been developed in an attempt to study the transmission and pathogenesis of the HIV-1 virus. The HIV-1 transgenic (HIV-1Tg) rat is a reliable model of neuroHIV because it mimics the condition of HIV-infected patients on cART. Research using this model supports the hypothesis that the presence of HIV-1 viral proteins in the central nervous system increases the sensitivity and susceptibility of HIV-positive individuals to substance abuse.
Collapse
Affiliation(s)
- Michael Vigorito
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
49
|
Nesil T, Cao J, Yang Z, Chang SL, Li MD. Nicotine attenuates the effect of HIV-1 proteins on the neural circuits of working and contextual memories. Mol Brain 2015; 8:43. [PMID: 26205781 PMCID: PMC4513611 DOI: 10.1186/s13041-015-0134-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain. Excessive glutamatergic transmission and loss of cholinergic neurons are the major indicators of HAND. Nicotine acts as a cholinergic channel modulator, and its cognitive-enhancing effect in neurodegenerative and cognitive disorders has been documented. However, it is unclear whether nicotine has any positive effect on memory and synaptic plasticity formation in HAND. METHODS We investigated the effects of nicotine on synaptic plasticity and hippocampus-prefrontal cortex (PFC)-amygdala-dependent memory formation in the HIV-1 transgenic (Tg) and F344 control rats. RESULTS Chronic nicotine treatment (0.4 mg/kg nicotine, base, subcutaneously) significantly attenuated the cognitive deficits in the HIV-1Tg rats in both the spatial and contextual fear memories but impaired the contextual learning memory in the F344 rats. To determine the role of nicotine in the synaptic dysfunction caused by HIV-1 proteins, we analyzed the expression of key representative genes related to synaptic plasticity in the hippocampus, PFC, and amygdala of the HIV-1Tg and F344 rats using a custom-designed qRT-PCR array. The HIV-1 proteins significantly altered the glutamate receptor-mediated intracellular calcium cascade and its downstream signaling cascade in a brain region-specific manner. Further, chronic nicotine treatment reversed the effect of HIV-1 proteins on the expression of genes involved in synaptic plasticity in the three brain regions. The effects of nicotine differed significantly in the HIV-1Tg and F344 rats. CONCLUSIONS Our findings indicate that nicotine can attenuate the effect of HIV viral proteins on cognitive function and produce a brain region- and strain-specific effect on the intracellular signaling cascades involved in synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Zhongli Yang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.
| |
Collapse
|
50
|
Lee DE, Reid WC, Ibrahim WG, Peterson KL, Lentz MR, Maric D, Choyke PL, Jagoda EM, Hammoud DA. Imaging dopaminergic dysfunction as a surrogate marker of neuropathology in a small-animal model of HIV. Mol Imaging 2015; 13. [PMID: 25248756 DOI: 10.2310/7290.2014.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dopaminergic system is especially vulnerable to the effects of human immunodeficiency virus (HIV) infection, rendering dopaminergic deficits early surrogate markers of HIV-associated neuropathology. We quantified dopamine D2/3 receptors in young HIV-1 transgenic (Tg) (n = 6) and age-matched control rats (n = 7) and adult Tg (n = 5) and age-matched control rats (n = 5) using [18F]fallypride positron emission tomography (PET). Regional uptake was quantified as binding potential (BPND) using the two-tissue reference model with the cerebellum as the reference. Time-activity curves were generated for the ventral striatum, dorsal striatum, thalamus, and cerebellum. Whereas BPND values were significantly lower in the ventral striatum (p < .001) and dorsal striatum (p = .001) in the adult Tg rats compared to controls rats, they were significantly lower only in the dorsal striatum (p < .05) in the young rats. Tg rats had smaller striatal volumes on magnetic resonance imaging. We also found lower expression levels of tyrosine hydroxylase on immunohistochemistry in the Tg animals. Our findings suggest that progressive striatal D2/3 receptor deficits occur in Tg rats as they age and can be detected using small-animal PET imaging. The effectiveness of various approaches in preventing or halting this dopaminergic loss in the Tg rat can thus be measured preclinically using [18F]fallypride PET as a molecular imaging biomarker of HIV-associated neuropathology.
Collapse
|