1
|
Hadid T, Biedny A, Mamdani H, Azmi A, Kim S, Jang H, Uprety D, Al Hallak MN, Sukari A. Association between cannabis use and clinical outcomes in patients with solid malignancies receiving immune checkpoint inhibitors. Ther Adv Vaccines Immunother 2024; 12:25151355241309095. [PMID: 39737331 PMCID: PMC11683815 DOI: 10.1177/25151355241309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Background Cannabis (CAN) use has risen significantly over the last few decades. CAN has potent immunosuppressive properties, which could antagonize the effect of immunotherapy (IO). The impact of CAN use on clinical cancer outcomes remains unclear. Objectives In this study, we evaluated the clinical effect of CAN use on clinical outcomes among patients with solid malignancies receiving IO. Design This is a retrospective cohort study of all patients with solid malignancies receiving IO between August 2014 and August 2018. Methods Patients were stratified based on CAN use to CAN users and CAN non-users. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS) and disease control rate (DCR). Univariable and multivariable logistic and Cox regression analyses were performed to compare the outcomes between the two groups, adjusting for covariates. Results The records of 106 patients were reviewed, 28 (26%) of whom were CAN users and 78 (74%) were CAN non-users. One patient was excluded. Most CAN users consumed dronabinol (82%). The median follow-up for OS and PFS was 29.2 months. Median OS in the CAN users was 6.7 months compared to 17.3 months in the CAN non-users (HR, 1.78; 95% CI, 1.06-2.97; p = 0.029). The median PFS was 4.8 months in the CAN users compared to 9.7 months in the CAN non-users (HR, 1.74; 95% CI, 1.09-2.79; p = 0.021). DCR was 11% among CAN users and 38% among CAN non-users (OR, 0.23; 95% CI; 0.06-0.68; p = 0.007). An exploratory racial disparity analysis showed that this negative impact of CAN was primarily seen in White patients. Conclusion In this single institutional experience, CAN use was associated with worse OS, PFS, and DCR among cancer patients receiving IO. Prospective trials are needed to further study this potential antagonistic interaction between CAN and IO and explore the racial disparities related to CAN exposure.
Collapse
Affiliation(s)
- Tarik Hadid
- Department of Oncology, Wayne State University School of Medicine, 540 E Canfield Street, Detroit, MI 48201-1928, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Adam Biedny
- Ascension Macomb-Oakland Hospital, Warren, MI, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Asfar Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Hyejeong Jang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Dipesh Uprety
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| |
Collapse
|
2
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
3
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Yang G, Li F, Wang Q, Liu Y, Guo J, Yue C. Association between history of cannabis use and outcomes after total hip or knee arthroplasty: a systematic review and meta-analysis. Front Public Health 2024; 12:1377688. [PMID: 38827608 PMCID: PMC11140086 DOI: 10.3389/fpubh.2024.1377688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
Background Cannabis use may be increasing as countries legalize it and it becomes socially acceptable. A history of cannabis use may increase risk of complications after various kinds of surgery and compromise functional recovery. Here we systematically reviewed and meta-analyzed available evidence on how history of cannabis use affects recovery after hip or knee arthroplasty (THA/TKA). Methods The PubMed, EMBASE, and Web of Science databases were comprehensively searched and studies were selected and analyzed in accordance with the PRISMA guidelines. The methodological quality of included studies was assessed based on the Newcastle-Ottawa Scale, while quality of evidence was evaluated according to the "Grading of recommendations assessment, development, and evaluation" system. Data on various outcomes were pooled when appropriate and meta-analyzed. Results The systematic review included 16 cohort studies involving 5.91 million patients. Meta-analysis linked history of cannabis use to higher risk of the following outcomes: revision (RR 1.68, 95% CI 1.31-2.16), mechanical loosening (RR 1.77, 95% CI 1.52-2.07), periprosthetic fracture (RR 1.85, 95% CI 1.38-2.48), dislocation (RR 2.10, 95% CI 1.18-3.73), cardiovascular events (RR 2.49, 95% CI 1.22-5.08), cerebrovascular events (RR 3.15, 95% CI 2.54-3.91), pneumonia (RR 3.97, 95% CI 3.49-4.51), respiratory failure (RR 4.10, 95% CI 3.38-4.97), urinary tract infection (RR 2.46, 95% CI 1.84-3.28), acute kidney injury (RR 3.25, 95% CI 2.94-3.60), venous thromboembolism (RR 1.48, 95% CI 1.34-1.63), and deep vein thrombosis (RR 1.42, 95% CI 1.19-1.70). In addition, cannabis use was associated with significantly greater risk of postoperative transfusion (RR 2.23, 95% CI 1.83-2.71) as well as higher hospitalization costs. Conclusion History of cannabis use significantly increases the risk of numerous complications and transfusion after THA or TKA, leading to greater healthcare costs. Clinicians should consider these factors when treating cannabis users, and pre-surgical protocols should give special consideration to patients with history of cannbis use.
Collapse
Affiliation(s)
| | | | | | | | - Jiayi Guo
- Luoyang Orthopedic Traumatological Hospital, Luoyang, China
| | - Chen Yue
- Luoyang Orthopedic Traumatological Hospital, Luoyang, China
| |
Collapse
|
5
|
Oster B, Hameed D, Bains SS, Delanois RE, Johnson AJ, Nace J, Mont MA. Tobacco and Cannabis Use Have a Synergistic Association on Infection Risk Following Total Knee Arthroplasty. J Arthroplasty 2023; 38:2137-2141. [PMID: 37142070 DOI: 10.1016/j.arth.2023.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Studies suggest an increase in the number of combined users of tobacco and cannabis. Therefore, we specifically assessed tobacco, cannabis, and combined users who underwent primary total knee arthroplasty (TKA) to determine 90-day to 2-year: (1) odds of periprosthetic joint infection; (2) odds of revision; and (3) medical complications. METHODS We queried a national, all payer database of patients undergoing primary TKA between 2010 and 2020. Patients were stratified according to current use of tobacco products (n = 30,000), cannabis (n = 400), or a combination (n = 3,526). These were defined according to International Classification of Disease codes, Ninth and Tenth Editions. Patients were tracked from the 2 years before TKA through 2 years afterwards. A fourth group of TKA recipients who did not have tobacco nor cannabis use was used as a matching cohort. Periprosthetic joint infections (PJIs), revisions, and other medical/surgical complications from 90 days through 2 years were evaluated between these cohorts using bivariate analyses. Multivariate analyses assessed independent risk factors for PJI at 90 days through 2 years, adjusted for patient demographics and health metrics. RESULTS Combined tobacco and cannabis use were associated with the highest rates of PJI following TKA. The odds of 90-day PJI risk among cannabis, tobacco, and combined users was 1.60, 2.14, and 3.39, respectively, as compared to the matched cohort (P < .001). Co-users had the highest and significantly increased revision odds at 2 years following TKA (odds ratio = 1.52, 95% confidence interval, 1.15 to 2.00). At 1 and 2 years following TKA, cannabis, tobacco, and co-users had higher rates of myocardial infarctions, respiratory failures, surgical site infections, and manipulations under anesthesia when compared to the matched cohort (all P < .001). CONCLUSION Tobacco and cannabis use before primary TKA demonstrated a synergistic association on PJI risk from 90 days through 2 years. Although the harms of tobacco use are well-known, this additional knowledge about cannabis should be incorporated in the shared decision-making discussions in the pre-operative setting to best prepare for expected risks following primary TKA.
Collapse
Affiliation(s)
- Brittany Oster
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Daniel Hameed
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Sandeep S Bains
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Ronald E Delanois
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Aaron J Johnson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - James Nace
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| | - Michael A Mont
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, Baltimore, Maryland
| |
Collapse
|
6
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
Iden JA, Raphael-Mizrahi B, Naim A, Kolomansky A, Liron T, Neumann D, Vered M, Gabet Y. The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Non-Melanoma Skin Cancer. Int J Mol Sci 2023; 24:ijms24097773. [PMID: 37175480 PMCID: PMC10178456 DOI: 10.3390/ijms24097773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Five million non-melanoma skin cancers occur globally each year, and it is one of the most common malignant cancers. The dysregulation of the endocannabinoid system, particularly cannabinoid receptor 2 (CB2), is implicated in skin cancer development, progression, and metastasis. Comparing wildtype (WT) to systemic CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in one-year old mice, and subsequently used the multi-stage chemical carcinogenesis model, wherein cancer is initiated by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). We found that aging CB2-/- mice have an increased incidence of spontaneous cancerous and precancerous skin lesions compared to their WT counterparts. In the DMBA/TPA model, CB2-/- developed more and larger papillomas, had decreased spontaneous regression of papillomas, and displayed an altered systemic immune profile, including upregulated CD4+ T cells and dendritic cells, compared to WT mice. Immune cell infiltration in the tumor microenvironment was generally low for both genotypes, although a trend of higher myeloid-derived suppressor cells was observed in the CB2-/- mice. CB2 expression in carcinogen-exposed skin was significantly higher compared to naïve skin in WT mice, suggesting a role of CB2 on keratinocytes. Taken together, our data show that endogenous CB2 activation plays an anti-tumorigenic role in non-melanoma skin carcinogenesis, potentially via an immune-mediated response involving the alteration of T cells and myeloid cells coupled with the modulation of keratinocyte activity.
Collapse
Affiliation(s)
- Jennifer Ana Iden
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bitya Raphael-Mizrahi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aaron Naim
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Kolomansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Cannabinoid Receptor 1 Agonist ACEA and Cannabinoid Receptor 2 Agonist GW833972A Attenuates Cell-Mediated Immunity by Different Biological Mechanisms. Cells 2023; 12:cells12060848. [PMID: 36980189 PMCID: PMC10047765 DOI: 10.3390/cells12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) are components in the endocannabinoid system that play significant roles in regulating immune responses. There are many agonists for the cannabinoid receptors; however, their effects on T cell regulation have not been elucidated. In the present study, we determined the effects of the CB1 selective agonist ACEA and the CB2 selective agonist GW833972A on T cell responses. It was found that both agonists impaired anti-CD3 monoclonal antibody induced T cell proliferation. However, ACEA and GW833972A agonists down-regulated the expression of activation markers on CD4+ and CD8+ T cells and co-stimulatory molecules on B cells and monocytes in different manners. Moreover, only GW833972A suppressed the cytotoxic activities of CD8+ T cells without interfering in the cytotoxic activities of CD4+ T cells and NK cells. In addition, the CB2 agonist, but not CB1 agonist, caused the reduction of Th1 cytokine production. Our results demonstrated that the CB1 agonist ACEA and CB2 agonist GW833972A attenuated cell-mediated immunity in different mechanisms. These agonists may be able to be used as therapeutic agents for inducing T cell hypofunction in inflammatory and autoimmune diseases.
Collapse
|
9
|
Reece AS, Hulse GK. Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3360. [PMID: 36834053 PMCID: PMC9967951 DOI: 10.3390/ijerph20043360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
As global interest in the therapeutic potential of cannabis and its' derivatives for the management of selected diseases increases, it is increasingly imperative that the toxic profile of cannabinoids be thoroughly understood in order to correctly assess the balance between the therapeutic risks and benefits. Modern studies across a number of jurisdictions, including Canada, Australia, the US and Europe have confirmed that some of the most worrying and severe historical reports of both congenital anomalies and cancer induction following cannabis exposure actually underestimate the multisystem thousand megabase-scale transgenerational genetic damage. These findings from teratogenic and carcinogenic literature are supported by recent data showing the accelerated patterns of chronic disease and the advanced DNA methylation epigenomic clock age in cannabis exposed patients. Together, the increased multisystem carcinogenesis, teratogenesis and accelerated aging point strongly to cannabinoid-related genotoxicity being much more clinically significant than it is widely supposed and, thus, of very considerable public health and multigenerational impact. Recently reported longitudinal epigenome-wide association studies elegantly explain many of these observed effects with considerable methodological sophistication, including multiple pathways for the inhibition of the normal chromosomal segregation and DNA repair, the inhibition of the basic epigenetic machinery for DNA methylation and the demethylation and telomerase acceleration of the epigenomic promoter hypermethylation characterizing aging. For cancer, 810 hits were also noted. The types of malignancy which were observed have all been documented epidemiologically. Detailed epigenomic explications of the brain, heart, face, uronephrological, gastrointestinal and limb development were provided, which amply explained the observed teratological patterns, including the inhibition of the key morphogenic gradients. Hence, these major epigenomic insights constituted a powerful new series of arguments which advanced both our understanding of the downstream sequalae of multisystem multigenerational cannabinoid genotoxicity and also, since mechanisms are key to the causal argument, inveighed strongly in favor of the causal nature of the relationship. In this introductory conceptual overview, we present the various aspects of this novel synthetic paradigmatic framework. Such concepts suggest and, indeed, indicate numerous fields for further investigation and basic science research to advance the exploration of many important issues in biology, clinical medicine and population health. Given this, it is imperative we correctly appraise the risk-benefit ratio for each potential cannabis application, considering the potency, severity of disease, stage of human development and duration of use.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
10
|
El-Maadawy WH, Hafiz E, Okasha H, Osman NA, Ali GH, Hussein RA. Phycocyanin stimulates ulcerative colitis healing via selective activation of cannabinoid receptor-2, intestinal mucosal healing, Treg accumulation, and p38MAPK/MK2 signaling inhibition. Life Sci 2022; 305:120741. [PMID: 35777583 DOI: 10.1016/j.lfs.2022.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition that until this date, lacks curative treatments. Previously, synthetic selective CB2 receptor (CB2R) agonists demonstrated effective preclinical anti-inflammatory activities in UC. Phycocyanin (PC), photosynthetic assistant protein isolated from Microcystis aeruginosa Kützing blue green algae, has multiple pharmacological effects, however, it's effect against UC remains unexplored. Our study aimed at investigating the therapeutic effectiveness of PC against UC, and correlating its mechanisms with CB2R agonistic activities. In silico; PC showed structural similarity with endocannabinoid receptors' ligand "Δ9-tetrahydrocannabinol", target prediction studies suggested high affinity for G-coupled protein family-receptors, and molecular docking affirmed preferable affinity towards CB2R vs CB1R. In LPS-exposed-Caco-2 cell line; PC demonstrated comparable interaction with CB2R, and downregulation of CB2R, p38 and MK2 gene expressions with reference agonist "6d", and exhibited preferred selectivity towards CB2R over CB1R. In DSS-induced mice; PC-treatment ameliorated DSS-induced colon shortening, elevated disease activity index, and colonic pathological alterations. PC showed effective CB2R activation through potent anti-inflammatory activities, Treg-cell accumulation, suppression in p38MAPK/MK2 signaling, and tight junction barrier restoration as indicated by ultrastructural examinations, elevated ZO-1 and occludin protein expressions, and Ki67 immunohistochemical expression in colonic tissues. Additionally, PC alleviated intestinal dysbiosis via downregulating LPS/TLR4/NF-κB signaling and gut microbiota maintenance. Notably, PC-protective activities were abolished when co-administered with SR144528 (selective CB2 antagonist) except for gut microbiota maintenance, which was independent from CB2R activation. Our findings provide evidence of PC effectiveness against UC through acting as CB2R agonist, thus expanding its possible therapeutic application against other inflammatory diseases.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Noha A Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gamila H Ali
- Water Pollution Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt
| | - Rehab Ali Hussein
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt.
| |
Collapse
|
11
|
Makhakhe L. Topical cannabidiol (CBD) in skin pathology – A comprehensive review and prospects for new therapeutic opportunities. S Afr Fam Pract (2004) 2022; 64:e1-e4. [PMID: 35695447 PMCID: PMC9210160 DOI: 10.4102/safp.v64i1.5493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Humans have utilised cannabis products in various forms throughout the recorded history. To date, more than 500 biologically active components have been identified in the plants of the Cannabis genus, amongst which more than 100 were classified as phytocannabinoids (exocannabinoids). The plant genus Cannabis is a member of the plant family Cannabaceae, and there are three primary cannabis species which vary in their biochemical constituents: Cannabis sativa, Cannabis indica and Cannabis ruderalis. There has been a growing level of interest in research on the topical usage of a cannabis-based extract as a safer and more effective alternative to the usage of topical corticosteroids in treating some dermatoses. Together with the discovery of the cannabinoid receptors on the skin, it has been further illustrated that topical cannabis has anti-inflammatory, anti-itching, analgesics, wound healing and anti-proliferative effects on the skin.
Collapse
Affiliation(s)
- Lehlohonolo Makhakhe
- Department of Dermatology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa; and, The South African Institute of Dermatology, Bloemfontein.
| |
Collapse
|
12
|
Zhang HY, De Biase L, Chandra R, Shen H, Liu QR, Gardner E, Lobo MK, Xi ZX. Repeated cocaine administration upregulates CB 2 receptor expression in striatal medium-spiny neurons that express dopamine D 1 receptors in mice. Acta Pharmacol Sin 2022; 43:876-888. [PMID: 34316031 DOI: 10.1038/s41401-021-00712-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Collapse
|
13
|
The Association of Cannabis Use Disorder and Perioperative Complications After Primary Total Knee Arthroplasty. J Am Acad Orthop Surg 2022; 30:313-320. [PMID: 35171881 DOI: 10.5435/jaaos-d-21-00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Although studies have shown the implications of substance use on total joint arthroplasty, studies investigating the association of patients exclusively who have cannabis use disorder (CUD) after primary total knee arthroplasty (TKA) are sparse. As such, this study analyzed a private payor database to assess the relationship of CUD after primary TKA. METHODS Data from the Mariner data set were used to identify patients who have CUD undergoing primary TKA. Patients with CUD were ratio matched 1:5 to a comparison population by age, sex, and comorbidities, yielding 55,553 patients in the study (n = 9,260) and case-matched (n = 46,293) population. Variables compared included in-hospital length of stay, complications, and costs. A P value of less than 0.003 was considered statistically significant. RESULTS Patients with CUD were found to have longer in-hospital length of stay (3.61 versus 2.07 days, P < 0.0001), in addition to higher frequency and odds ratio (OR) of medical (28.08 versus 12.5; OR, 1.50, P < 0.0001) and prostheses-related complications (9.63 versus 5.16%; OR, 1.56, P < 0.0001). Patients with CUD also incurred significantly higher episode of care costs ($29,025.34 versus $24,258.17, P < 0.0001). CONCLUSION With the continued legalization of cannabis use across the United States, studies investigating the association of cannabis on outcomes after primary TKA are limited. The current study helps to expand the current literature on outcomes of substance abuse after total joint arthroplasty and can serve to help educate patients of potential complications after their TKA.
Collapse
|
14
|
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB 2 Receptor in Human Leukocytes. Front Pharmacol 2022; 13:826400. [PMID: 35273503 PMCID: PMC8902156 DOI: 10.3389/fphar.2022.826400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is notably expressed in most, if not all leukocyte types. This relatively restricted localization, combined to the absence of psychotropic effects following its activation, make it an attractive drug target for inflammatory and autoimmune diseases. Therefore, there has been an increasing interest in the past decades to identify precisely which immune cells express the CB2 receptor and what are the consequences of such activation. Herein, we provide new data on the expression of both CB1 and CB2 receptors by human blood leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes, B and T lymphocytes, this receptor is most abundant in human eosinophils and B lymphocytes. We also review the evidence obtained from primary human leukocytes and immortalized cell lines regarding the regulation of their functions by the CB2 receptor, which underscore the urgent need to deepen our understanding of the CB2 receptor as an immunoregulator in humans.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit Between the Consiglio Nazionale Delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Naples, Italy
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| |
Collapse
|
15
|
Khoury M, Cohen I, Bar-Sela G. “The Two Sides of the Same Coin”—Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 2022; 14:pharmaceutics14020389. [PMID: 35214123 PMCID: PMC8877666 DOI: 10.3390/pharmaceutics14020389] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabis, as a natural medicinal remedy, has long been used for palliative treatment to alleviate the side effects caused by diseases. Cannabis-based products isolated from plant extracts exhibit potent immunoregulatory properties, reducing chronic inflammatory processes and providing much needed pain relief. They are a proven effective solution for treatment-based side effects, easing the resulting symptoms of the disease. However, we discuss the fact that cannabis use may promote the progression of a range of malignancies, interfere with anti-cancer immunotherapy, or increase susceptibility to viral infections and transmission. Most cannabis preparations or isolated active components cause an overall potent immunosuppressive impact among users, posing a considerable hazard to patients with suppressed or compromised immune systems. In this review, current knowledge and perceptions of cannabis or cannabinoids and their impact on various immune-system components will be discussed as the “two sides of the same coin” or “double-edged sword”, referring to something that can have both favorable and unfavorable consequences. We propose that much is still unknown about adverse reactions to its use, and its integration with medical treatment should be conducted cautiously with consideration of the individual patient, effector cells, microenvironment, and the immune system.
Collapse
Affiliation(s)
- Mona Khoury
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Idan Cohen
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
| | - Gil Bar-Sela
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200002, Israel
- Oncology & Hematology Division, Emek Medical Center, Yitshak Rabin Boulevard 21, Afula 1834111, Israel
- Correspondence: ; Tel.: +972-4-6495725; Fax: +972-4-6163992
| |
Collapse
|
16
|
Jayarajan S, Meissler JJ, Adler MW, Eisenstein TK. A Cannabinoid 2-Selective Agonist Inhibits Allogeneic Skin Graft Rejection In Vivo. Front Pharmacol 2022; 12:804950. [PMID: 35185546 PMCID: PMC8850832 DOI: 10.3389/fphar.2021.804950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous work from our laboratory showed that a CB2 selective agonist, O-1966, blocked the proliferative response of C57BL/6 mouse spleen cells exposed to spleen cells of C3HeB/FeJ mice in vitro in the mixed lymphocyte reaction (MLR). The MLR is widely accepted as an in vitro correlate of in vivo grant rejection. Mechanisms of the immunosuppression induced by the cannabinoid were explored, and it was shown that O-1966 in this in vitro assay induced CD25+Foxp3+ Treg cells and IL-10, as well as down-regulated mRNA for CD40 and the nuclear form of the transcription factors NF-κB and NFAT in T-cells. The current studies tested the efficacy of O-1966 in prolonging skin grafts in vivo. Full thickness flank skin patches (1-cm2) from C3HeB/FeJ mice were grafted by suturing onto the back of C57BL/6 mice. O-1966 or vehicle was injected intraperitoneally into treated or control groups of animals beginning 1 h pre-op, and then every other day until 14 days post-op. Graft survival was scored based on necrosis and rejection. Treatment with 5 mg/kg of O-1966 prolonged mean graft survival time from 9 to 11 days. Spleens harvested from O-1966 treated mice were significantly smaller than those of vehicle control animals based on weight. Flow cytometry analysis of CD4+ spleen cells showed that O-1966 treated animals had almost a 3-fold increase in CD25+Foxp3+ Treg cells compared to controls. When dissociated spleen cells were placed in culture ex vivo and stimulated with C3HeB/FeJ cells in an MLR, the cells from the O-1966 treated mice were significantly suppressed in their proliferative response to the allogeneic cells. These results support CB2 selective agonists as a new class of compounds to prolong graft survival in transplant patients.
Collapse
|
17
|
Abrams DI, Velasco G, Twelves C, Ganju RK, Bar-Sela G. Cancer Treatment: Preclinical & Clinical. J Natl Cancer Inst Monogr 2021; 2021:107-113. [PMID: 34850894 DOI: 10.1093/jncimonographs/lgab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The first evidence that cannabinoids may have in vitro and in vivo antineoplastic activity against tumor cell lines and animal tumor models was published in the Journal of the National Cancer Institute nearly 50 years ago. Cannabinoids appear to induce apoptosis in rodent brain tumors by way of direct interaction with the cannabinoid receptor. They may inhibit angiogenesis and tumor cell invasiveness. Despite preclinical findings, attempts to translate the benefits from bench to bedside have been limited. This session provides a review of the basic science supporting the use of cannabinoids in gliomas, paired with the first randomized clinical trial of a cannabis-based therapy for glioblastoma multiforme. Another preclinical presentation reports the effects of cannabinoids on triple-negative breast cancer cell lines and how cannabidiol may affect tumors. The session's second human trial raises concerns about the use of botanical cannabis in patients with advanced cancer receiving immunotherapy suggesting inferior outcomes.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology Division, Department of Medicine, University of California, San Francisco, CA, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Group of Cannabinoid Signaling in Cancer Cells, Division of Oncology Research, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Chris Twelves
- Department of Oncology, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, England, UK
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gil Bar-Sela
- Oncology and Hematology Division, Cancer Center, Emek Medical Center, Afula,Israel.,Bruce Rappaport Faculty of Medicine, Technion/Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
19
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
20
|
Polarity scaffolds signaling in epithelial cell permeability. Inflamm Res 2021; 70:525-538. [PMID: 33721031 DOI: 10.1007/s00011-021-01454-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 01/14/2023] Open
Abstract
As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system's main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier's paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.
Collapse
|
21
|
Melaragno JI, Bowman LJ, Park JM, Lourenco LM, Doligalski CT, Brady BL, Descourouez JL, Chandran MM, Nickels MW, Page RL. The Clinical Conundrum of Cannabis: Current Practices and Recommendations for Transplant Clinicians: An Opinion of the Immunology/Transplantation PRN of the American College of Clinical Pharmacy. Transplantation 2021; 105:291-299. [PMID: 32413017 DOI: 10.1097/tp.0000000000003309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cannabis, or marijuana, comprises many compounds with varying effects. It has become a treatment option for chronic diseases and debilitating symptoms, and evidence suggests that it has immunomodulatory and antiinflammatory properties. Transplant centers are more frequently facing issues about cannabis, as indications and legalization expand. As of February 2020, 33 states and the District of Columbia have legalized medical cannabis, and 14 have legalized recreational cannabis. Moreover, 8 states have passed legislation prohibiting the denial of transplant listing solely based on cannabis use. Studies demonstrate the potential for significant pharmacokinetic and pharmacodynamic interactions between cannabis and immunosuppression. Additionally, safety concerns include increased risk of myocardial infarction, ischemic stroke, tachyarrhythmias, malignancy, neurocognitive deficits, psychosis, other neuropsychiatric disorders, cannabis use disorder, respiratory symptoms, and infection. A recent retrospective database study found a negative association between documented cannabis use disorder and graft survival, but little additional evidence exists evaluating this relationship. In the absence of robust clinical data, transplant centers need a clear, reasoned, and systematic approach to cannabis. The results of our national survey, unfortunately, found little consensus among institutions. As both recreational and medicinal cannabis become more ubiquitous nationwide, transplant centers will need to develop comprehensive policies to address its use.
Collapse
Affiliation(s)
| | | | - Jeong M Park
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| | - Laura M Lourenco
- Department of Pharmacy Services, University of Chicago Medicine, Chicago, IL
| | | | - Bethany L Brady
- Department of Pharmacy, Indiana University Health University Hospital, Indianapolis, IN
| | | | - Mary M Chandran
- Department of Pharmacy, Children's Hospital Colorado, Aurora, CO
| | - Mark W Nickels
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY
| | - Robert L Page
- Department of Clinical Pharmacy, University of Colorado, Aurora, CO
| |
Collapse
|
22
|
Melaragno JI, Bowman LJ, Park JM, Lourenco LM, Doligalski CT, Brady BL, Descourouez JL, Chandran MM, Nickels MW, Page RL. The Clinical Conundrum of Cannabis: Current Practices and Recommendations for Transplant Clinicians: An Opinion of the Immunology/Transplantation PRN of the American College of Clinical Pharmacy. Transplantation 2021. [DOI: https:/doi.org.10.1097/tp.0000000000003309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
23
|
Weigelt MA, Sivamani R, Lev-Tov H. The therapeutic potential of cannabinoids for integumentary wound management. Exp Dermatol 2020; 30:201-211. [PMID: 33205468 DOI: 10.1111/exd.14241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022]
Abstract
The increasing legalization of Cannabis for recreational and medicinal purposes in the United States has spurred renewed interest in the therapeutic potential of cannabinoids (CBs) for human disease. The skin has its own endocannabinoid system (eCS) which is a key regulator of various homeostatic processes, including those necessary for normal physiologic wound healing. Data on the use of CBs for wound healing are scarce. Compelling pre-clinical evidence supporting the therapeutic potential of CBs to improve wound healing by modulating key molecular pathways is herein reviewed. These findings merit further exploration in basic science, translational and clinical studies.
Collapse
Affiliation(s)
- Maximillian A Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Raja Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, CA, USA.,School of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|
25
|
Kovalchuk O, Kovalchuk I. Cannabinoids as anticancer therapeutic agents. Cell Cycle 2020; 19:961-989. [PMID: 32249682 PMCID: PMC7217364 DOI: 10.1080/15384101.2020.1742952] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
The recent announcement of marijuana legalization in Canada spiked many discussions about potential health benefits of Cannabis sativa. Cannabinoids are active chemical compounds produced by cannabis, and their numerous effects on the human body are primarily exerted through interactions with cannabinoid receptor types 1 (CB1) and 2 (CB2). Cannabinoids are broadly classified as endo-, phyto-, and synthetic cannabinoids. In this review, we will describe the activity of cannabinoids on the cellular level, comprehensively summarize the activity of all groups of cannabinoids on various cancers and propose several potential mechanisms of action of cannabinoids on cancer cells.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Pathway Rx Inc., Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Pathway Rx Inc., Lethbridge, Alberta, Canada
| |
Collapse
|
26
|
Protective effects of specific cannabinoid receptor 2 agonist GW405833 on concanavalin A-induced acute liver injury in mice. Acta Pharmacol Sin 2019; 40:1404-1411. [PMID: 30918343 DOI: 10.1038/s41401-019-0213-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Cannabinoid receptor 2 (CB2R) is highly expressed in immune cells and plays an important role in regulating immune responses. In the current study, we investigated the effects of GW405833 (GW), a specific CB2R agonist, on acute liver injury induced by concanavalin A (Con A). In animal experiments, acute liver injury was induced in mice by injection of Con A (20 mg/kg, i.v.). The mice were treated with GW (20 mg/kg, i.p., 30 min after Con A injection) or GW plus the selective CB2R antagonist AM630 (2 mg/kg, i.p., 15 min after Con A injection). We found that Con A caused severe acute liver injury evidenced by significantly increased serum aminotransferase levels, massive hepatocyte apoptosis, and necrosis, as well as lymphocyte infiltration in liver tissues. Treatment with GW significantly ameliorated Con A-induced pathological injury in liver tissue, decreased serum aminotransferase levels, and decreased hepatocyte apoptosis. The therapeutic effects of GW were prevented by AM630. In cell experiments, we showed that CB2Rs were highly expressed in Jurkat T cells, but little expression in L02 liver cells. Treatment with GW (10-40 μg/mL) dose-dependently decreased the viability of Jurkat T cells and induced cell apoptosis, which was reversed by AM630. In the coculture of Jurkat T cells with L02 liver cells, GW dose-dependently protected L02 cells from apoptosis induced by Con A (5 μg/mL). The protective effect of GW was reversed by AM630 (1 μg/mL). Our results suggest that GW protects against Con A-induced acute liver injury in mice by inhibiting Jurkat T-cell proliferation through the CB2Rs.
Collapse
|
27
|
Zhou R, Han B, Xia C, Zhuang X. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 2019; 365:929-934. [PMID: 31467223 PMCID: PMC7063502 DOI: 10.1126/science.aaw5937] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023]
Abstract
Actin, spectrin, and related molecules form a membrane-associated periodic skeleton (MPS) in neurons. The function of the MPS, however, remains poorly understood. Using super-resolution imaging, we observed that G protein-coupled receptors (GPCRs), cell adhesion molecules (CAMs), receptor tyrosine kinases (RTKs), and related signaling molecules were recruited to the MPS in response to extracellular stimuli, resulting in colocalization of these molecules and RTK transactivation by GPCRs and CAMs, giving rise to extracellular signal-regulated kinase (ERK) signaling. Disruption of the MPS prevented such molecular colocalizations and downstream ERK signaling. ERK signaling in turn caused calpain-dependent MPS degradation, providing a negative feedback that modulates signaling strength. These results reveal an important functional role of the MPS and establish it as a dynamically regulated platform for GPCR- and CAM-mediated RTK signaling.
Collapse
Affiliation(s)
- Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Antiallodynic Effects of Cannabinoid Receptor 2 (CB 2R) Agonists on Retrovirus Infection-Induced Neuropathic Pain. Pain Res Manag 2019; 2019:1260353. [PMID: 31354896 PMCID: PMC6637694 DOI: 10.1155/2019/1260353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.
Collapse
|
29
|
Scott CE, Tang Y, Alt A, Burford NT, Gerritz SW, Ogawa LM, Zhang L, Kendall DA. Identification and biochemical analyses of selective CB 2 agonists. Eur J Pharmacol 2019; 854:1-8. [PMID: 30951717 DOI: 10.1016/j.ejphar.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 and CB2 receptors are activated by Δ9-tetrahydrocannabinol, a psychoactive component of marijuana. The cannabinoid CB1 receptor is primarily located in the brain and is responsible for the psychoactive side effects, whereas the cannabinoid CB2 receptor is located in immune cells and is an attractive target for immune-related maladies. We identify small molecules that selectively bind to the cannabinoid CB2 receptor and can be further developed into therapeutics. The affinity of three molecules, ABK5, ABK6, and ABK7, to the cannabinoid CB2 receptor was determined with radioligand competition binding. The potency of G-protein coupling was determined with GTPγS binding. The three compounds bound selectively to the cannabinoid CB2 receptor, and no binding to the cannabinoid CB1 receptor was detected up to 10 μM. Immunoblotting studies show that the amount of ERK1/2 and MEK phosphorylation increased in a Gi/o-dependent manner. Furthermore, an immune cell line (Jurkat cells) was treated with ABK5, and as a result, inhibited cell proliferation. These three compounds are novel cannabinoid CB2 receptor agonists and hold promise to be further developed to treat inflammation and the often-associated pain.
Collapse
Affiliation(s)
- Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Andrew Alt
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Neil T Burford
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Samuel W Gerritz
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lisa M Ogawa
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Litao Zhang
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
30
|
Milando R, Friedman A. Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases. Am J Clin Dermatol 2019; 20:167-180. [PMID: 30542832 DOI: 10.1007/s40257-018-0410-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system is a complex and nearly ubiquitous network of endogenous ligands, enzymes, and receptors that can also be stimulated by exogenous compounds such as those derived from the marijuana plant, Cannabis sativa. Recent data have shown that the endocannabinoid system is fully functional in the skin and is responsible for maintaining many aspects of skin homeostasis, such as proliferation, differentiation, and release of inflammatory mediators. Because of its role in regulating these key processes, the endocannabinoid system has been studied for its modulating effects on both inflammatory disorders of the skin and skin cancer. Although legal restrictions on marijuana as a Schedule I drug in the USA have made studying cannabinoid compounds unfavorable, an increasing number of studies and clinical trials have focused on the therapeutic uses of cannabinoids. This review seeks to summarize the current, and rapidly expanding field of research on the broad potential uses of cannabinoids in inflammatory and neoplastic diseases of the skin.
Collapse
Affiliation(s)
- Rose Milando
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Friedman
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Dermatology, The George Washington University Medical Faculty Associates, 2150 Pennsylvania Avenue NW, Suite 2B-430, Washington, DC, 20037, USA.
| |
Collapse
|
31
|
Cannabinoids Induce Cell Death and Promote P2X7 Receptor Signaling in Retinal Glial Progenitors in Culture. Mol Neurobiol 2019; 56:6472-6486. [DOI: 10.1007/s12035-019-1537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
|
32
|
Gentili M, Ronchetti S, Ricci E, Di Paola R, Gugliandolo E, Cuzzocrea S, Bereshchenko O, Migliorati G, Riccardi C. Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease. Pharmacol Res 2018; 141:21-31. [PMID: 30552973 DOI: 10.1016/j.phrs.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Cannabinoids are known to possess anti-inflammatory and immunomodulatory properties, but the mechanisms involved are not fully understood. CB2 is the cannabinoid receptor that is expressed primarily on hematopoietic cells and mediates the immunoregulatory functions of cannabinoids. In order to study the effect of JTE907, a selective/inverse agonist of CB2 with anti-inflammatory properties, on the differentiation of T cell subtypes, we used an in vitro system of Th lineage-specific differentiation of naïve CD4+ T lymphocytes isolated from the mouse spleen. The results indicate that JTE907 was able to induce the differentiation of Th0 cells into the Treg cell phenotype, which was characterized by the expression of FoxP3, TGF-β and IL-10. P38 phosphorylation and STAT5A activation were found to mediate the signaling pathway triggered by JTE907 via the CB2 receptor in Th0 lymphocytes. In mice with DNBS-induced colitis, JTE907 treatment was able to induce an increase in the number of CD4+CD25+FoxP3+ cells in the lamina propria after 24 h of disease onset and reduce disease severity after 48 h. Further, longer JTE907 treatment resulted in less severe colitis even when administered orally, resulting in less body weight loss, reduction of the disease score, prevention of NF-κB activation, and reduction of the expression of adhesion molecules. Collectively, the results of this study indicate that specific signals delivered through the CB2 receptor can drive the immune response towards the Treg cell phenotype. Thus, ligands such as JTE907 may have use as potential therapeutic agents in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy.
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| |
Collapse
|
33
|
Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Sci Rep 2017; 7:14542. [PMID: 29109461 PMCID: PMC5674070 DOI: 10.1038/s41598-017-15026-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution.
Collapse
|
34
|
Gu SM, Lee HJ, Lee TH, Song YJ, Kim YH, Han KM, Shin J, Park HK, Kim HS, Cha HJ, Yun J. A synthetic cannabinoid JWH-210 reduces lymphoid organ weights and T-cell activator levels in mice via CB 2 receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1201-1209. [PMID: 28828742 DOI: 10.1007/s00210-017-1418-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
The problem of new psychoactive substances (NPS) is emerging globally. However, the immunotoxicity of synthetic cannabinoids is not evaluated extensively yet. The purpose of the present study was to investigate whether synthetic cannabinoids (JWH-210 and JWH-030) induce adverse effects on lymphoid organs, viability of splenocytes and thymocytes, and immune cell activator and cytokines in mice. JWH-210 (10 mg/kg, 3 days, i.p.) is more likely to have cytotoxicity and reduce lymphoid organ weight than JWH-030 of ICR mice in vivo. We also demonstrated that JWH-210 administration resulted in the decrease of expression levels of T-cell activator including Cd3e, Cd3g, Cd74p31, and Cd74p41, while JWH-030 increased Cd3g levels. In addition, JWH-210 reduced expression levels of cytokines, such as interleukin-3, interleukin-5, and interleukin-6. Furthermore, we demonstrated that a CB2 receptor antagonist, AM630 inhibited JWH-210-induced cytotoxicity, whereas a CB1 receptor antagonist, rimonabant did not in primary cultured splenocytes. These results suggest that JWH-210 has a cytotoxicity via CB2 receptor action and results in decrement of lymphoid organ weights, T-cell activator, and cytokine mRNA expression levels.
Collapse
Affiliation(s)
- Sun Mi Gu
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Hyun Jin Lee
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Tac-Hyung Lee
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Yun Jeong Song
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Kyoung-Moon Han
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Jisoon Shin
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Hye-Kyung Park
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Hyung Soo Kim
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), OHTAC 187, Osongsaengmyong-2ro, Osong-eup, Cheongju-si, Chungbuk, 28159, Republic of Korea.
| | - Jaesuk Yun
- Neuroimmunology Lab, College of Pharmacy, Wonkwang University, Iksan-daero 460, Iksan-si, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
35
|
Sido JM, Nagarkatti PS, Nagarkatti M. Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 2017; 46:1472-9. [PMID: 27064137 DOI: 10.1002/eji.201546181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 11/07/2022]
Abstract
Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and 2-arachidonyl glycerol (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity. However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed-type hypersensitivity (DTH) and antibody response. We found that while naïve T cells and B cells expressed low levels of 2-AG, expression significantly increased upon activation. Furthermore, mBSA-immunized mice exhibited higher 2-AG concentration than naïve mice. Exogenous 2-AG treatment (40 mg/kg) in mBSA-immunized mice led to reduced DTH response, and decreased Th1 and Th17-associated cytokines including IL-6, IL-2, TNF-α, and the IgG response. Addition of 2-AG to activated popliteal lymph node (PopLN) cell cultures also inhibited lymphocyte proliferation. Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation. Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.
Collapse
Affiliation(s)
- Jessica M Sido
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
36
|
Yun J, Gu SM, Lee TH, Song YJ, Seong S, Kim YH, Cha HJ, Han KM, Shin J, Oh H, Jung K, Ahn C, Park HK, Kim HS. Synthetic Cannabinoid-Induced Immunosuppression Augments Cerebellar Dysfunction in Tetanus-Toxin Treated Mice. Biomol Ther (Seoul) 2017; 25:266-271. [PMID: 27871157 PMCID: PMC5424636 DOI: 10.4062/biomolther.2016.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/14/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022] Open
Abstract
Synthetic cannabinoids are one of most abused new psychoactive substances. The recreational use of abused drug has aroused serious concerns about the consequences of these drugs on infection. However, the effects of synthetic cannabinoid on resistance to tetanus toxin are not fully understood yet. In the present study, we aimed to determine if the administration of synthetic cannabinoids increase the susceptibility to tetanus toxin-induced motor behavioral deficit and functional changes in cerebellar neurons in mice. Furthermore, we measured T lymphocytes marker levels, such as CD8 and CD4 which against tetanus toxin. JWH-210 administration decreased expression levels of T cell activators including cluster of differentiation (CD) 3ε, CD3γ, CD74p31, and CD74p41. In addition, we demonstrated that JWH-210 induced motor impairment and decrement of vesicle-associated membrane proteins 2 levels in the cerebellum of mice treated with tetanus toxin. Furthermore, cerebellar glutamatergic neuronal homeostasis was hampered by JWH-210 administration, as evidenced by increased glutamate concentration levels in the cerebellum. These results suggest that JWH-210 may increase the vulnerability to tetanus toxin via the regulation of immune function.
Collapse
Affiliation(s)
- Jaesuk Yun
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Sun Mi Gu
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Tac-Hyung Lee
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yun Jeong Song
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seonhwa Seong
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Kyoung Moon Han
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Jisoon Shin
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hokyung Oh
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Kikyung Jung
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Chiyoung Ahn
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye-Kyung Park
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyung Soo Kim
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| |
Collapse
|
37
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear. METHODS This review reflects our current understanding of how targeting the endocannabinoid system, including cannabinoid receptors 1 and 2, endogenous cannabinoids anandamide and 2-arachidonoylglycerol, atypical cannabinoids, and degrading enzymes including fatty acid amide hydrolase and monoacylglycerol lipase, impacts murine colitis. In addition, the impact of cannabinoids on the human immune system is summarized. RESULTS Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression. CONCLUSIONS Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.
Collapse
|
38
|
Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses 2016; 99:15-18. [PMID: 28110689 DOI: 10.1016/j.mehy.2016.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023]
Abstract
Psoriasis is a chronic skin disease also affecting other sites such as joints. This disease highly depends on inflammation and angiogenesis as well as other pathways. At each step of the psoriasis molecular pathway, different inflammatory cytokines and angiogenic growth factors are involved such as hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), matrix metalo proteinases (MMPs), basic fibroblast growth factor (bFGF), Angiopoitin-2, interleukin-8 (IL-8), IL-17, and IL-2. Beside the mentioned growth factors and cytokines, cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which play roles in both angiogenesis and inflammation are also involved in the pathogenesis. Cannabinoids are active compounds of Cannabina Sativa inducing their effects through cannabinoid receptors (CBs). JWH-133 is a synthetic cannabinoid with strong anti-angiogenic and anti-inflammatory activities. This agent is able to inhibit HIF-1 α, VEGF, MMPs, bFGF, IL-8, IL-17, and other mentioned cytokines and adhesion molecules both in vivo and in vitro. Altogether, authors suggest using this cannabinoid for treatment of psoriasis due to its potential in suppressing the two main steps of psoriatic pathogenesis. Of course complementary animal studies and human trials are still required.
Collapse
|
39
|
Libro R, Scionti D, Diomede F, Marchisio M, Grassi G, Pollastro F, Piattelli A, Bramanti P, Mazzon E, Trubiani O. Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells. Front Physiol 2016; 7:559. [PMID: 27932991 PMCID: PMC5121123 DOI: 10.3389/fphys.2016.00559] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Rosaliana Libro
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Domenico Scionti
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture - Research Centre for Industrial Crops (CRA-CIN)Rovigo, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte OrientaleNovara, Italy
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Placido Bramanti
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Emanuela Mazzon
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| |
Collapse
|
40
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
41
|
Sido JM, Nagarkatti PS, Nagarkatti M. Δ⁹-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98:435-47. [PMID: 26034207 DOI: 10.1189/jlb.3a0115-030rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression. Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts. To this end, we studied HvGD by injecting H-2(k) splenocytes into H-2(b) mice and analyzing the immune response in the draining ingLNs. THC treatment significantly reduced T cell proliferation and activation in draining LNs of the recipient mice and decreased early stage rejection-indicator cytokines, including IL-2 and IFN-γ. THC treatment also increased the allogeneic skin graft survival. THC treatment in HvGD mice led to induction of MDSCs. Using MDSC depletion studies as well as adoptive transfer experiments, we found that THC-induced MDSCs were necessary for attenuation of HvGD. Additionally, using pharmacological inhibitors of CB1 and CB2 receptors and CB1 and CB2 knockout mice, we found that THC was working preferentially through CB1. Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.
Collapse
Affiliation(s)
- Jessica M Sido
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
42
|
Roth MD, Castaneda JT, Kiertscher SM. Exposure to Δ9-Tetrahydrocannabinol Impairs the Differentiation of Human Monocyte-derived Dendritic Cells and their Capacity for T cell Activation. J Neuroimmune Pharmacol 2015; 10:333-43. [PMID: 25614186 PMCID: PMC4470806 DOI: 10.1007/s11481-015-9587-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/14/2015] [Indexed: 11/26/2022]
Abstract
The capacity for human monocytes to differentiate into antigen-presenting dendritic cells (DC) can be influenced by a number of immune modulating signals. Monocytes express intracellular cannabinoid type 1 (CB1) and 2 (CB2) receptors and we demonstrate that exposure to Δ9-tetrahydrocannabinol (THC) inhibits the forskolin-induced generation of cyclic adenosine monophosphate in a CB2-specific manner. In order to examine the potential impact of cannabinoids on the generation of monocyte-derived DC, monocytes were cultured in vitro with differentiation medium alone [containing granulocyte/macrophage-colony stimulating factor (GM-CSF) and Interleukin-4 (IL-4)] or in combination with THC. The presence of THC (0.25-1.0 μg/ml) altered key features of DC differentiation, producing a concentration-dependent decrease in surface expression of CD11c, HLA-DR and costimulatory molecules (CD40 and CD86), less effective antigen uptake, and signs of functional skewing with decreased production of IL-12 but normal levels of IL-10. When examined in a mixed leukocyte reaction, DC that had been generated in the presence of THC were poor T cell activators as evidenced by their inability to generate effector/memory T cells or to stimulate robust IFN-γ responses. Some of these effects were partially restored by exposure to exogenous IL-7 and bacterial superantigen (S. aureus Cowans strain). These studies demonstrate that human monocytes express functional cannabinoid receptors and suggest that exposure to THC can alter their differentiation into functional antigen presenting cells; an effect that may be counter-balanced by the presence of other immunoregulatory factors. The impact of cannabinoids on adaptive immune responses in individuals with frequent drug exposure remains to be determined.
Collapse
Affiliation(s)
- Michael D Roth
- Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA,
| | | | | |
Collapse
|
43
|
Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK. A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10. J Neuroimmune Pharmacol 2015; 10:318-32. [PMID: 25980325 PMCID: PMC4528965 DOI: 10.1007/s11481-015-9611-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 01/03/2023]
Abstract
We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.
Collapse
MESH Headings
- Animals
- Anisoles/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Coculture Techniques
- Cyclohexanols
- Dose-Response Relationship, Drug
- Female
- Interleukin-10/biosynthesis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Rebecca H. Robinson
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Xiaoxuan Fan
- Manager, Flow Cytometry Facility, Temple University School of Medicine, Philadelphia, PA 19140
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19140
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
44
|
Effects of Cannabinoids on T-cell Function and Resistance to Infection. J Neuroimmune Pharmacol 2015; 10:204-16. [PMID: 25876735 DOI: 10.1007/s11481-015-9603-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of ∆(9)-THC extracted from the marijuana plant, and synthetic cannabinoids. Of particular interest are synthetic compounds that are CB2 receptor (CB2R) selective agonists. As the CB2R is principally expressed on cells of the immune system, agonists that target this receptor, and not CB1 (which is mainly expressed on neurons), have the possibility of altering immune function without psychoactive effects. The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including ∆(9)-THC and CB2 selective agonists are immunosuppressive. The studies provide objective evidence for potentially beneficial effects of marijuana and ∆(9)-THC on the immune system in conditions where it is desirable to dampen immune responses. Evidence is also reviewed supporting the conclusion that these same compounds can sensitize to some infections through their immunosuppressive activities, but not to others. An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects.
Collapse
|
45
|
Kemter AM, Scheu S, Hüser N, Ruland C, Schumak B, Findeiß M, Cheng Z, Assfalg V, Arolt V, Zimmer A, Alferink J. The cannabinoid receptor 2 is involved in acute rejection of cardiac allografts. Life Sci 2015; 138:29-34. [PMID: 25744392 DOI: 10.1016/j.lfs.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022]
Abstract
AIMS Acute rejection of cardiac allografts is a major risk factor limiting survival of heart transplant recipients. Rejection is triggered by dendritic cell (DC) mediated activation of host T cells, amongst others CD4(+) T helper (TH)1- and TH17 cells. The cannabinoid receptor 2 (CB2) is an important modulator of cellular immune responses. However, its role in cardiac allograft rejection has not been studied so far. MAIN METHODS Here, we examined the effect of CB2 on cytokine release by mature DCs and its impact on CD4(+) T cell differentiation by utilizing in vitro generated bone marrow-derived DCs (BM-DCs) and CD4(+) T cells from CB2 knockout (Cnr2(-/-)) mice. We further assessed the functional role of CB2 in acute allograft rejection using Cnr2(-/-) mice in a fully major histocompatibility complex-mismatched mouse cardiac transplantation model. KEY FINDINGS Cardiac allograft rejection was accelerated in Cnr2(-/-) mice compared to wild type recipients. In vitro stimulation of BM-DCs showed enhanced secretion of the pro-inflammatory cytokines interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF) and the immunomodulatory cytokine TGF-β. Furthermore, secretion of the TH1/TH17 promoting cytokines IL-12 and IL-23 was increased in Cnr2(-/-) BM-DCs. In addition, Cnr2(-/-) CD4(+) T cells showed an enhanced capacity to differentiate into interferon (IFN)-γ- or IL-17-producing effector cells. SIGNIFICANCE These results demonstrate that CB2 modulates in vitro cytokine responses via DCs and directly via its influence on TH1/TH17 differentiation. These findings and the fact that allograft rejection is enhanced in Cnr2(-/-) mice suggest that CB2 may be a promising therapeutic target in organ transplantation.
Collapse
Affiliation(s)
- Andrea M Kemter
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christina Ruland
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Matthias Findeiß
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Zhangjun Cheng
- Department of General Surgery, The Affiliated Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Volker Assfalg
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Judith Alferink
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence EXC 1003, University of Münster, Münster , Germany.
| |
Collapse
|
46
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|
47
|
Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014; 5:75. [PMID: 24611066 PMCID: PMC3933826 DOI: 10.3389/fimmu.2014.00075] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function.
Collapse
Affiliation(s)
- Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Claudio Mauro
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| | - Paula Urquhart
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Federica Marelli-Berg
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| |
Collapse
|