1
|
Venketasubramanian N, Yeo TT, Chen CLH. Translational Medicine in Acute Ischemic Stroke and Traumatic Brain Injury-NeuroAiD Trials, from Traditional Beliefs to Evidence-Based Therapy. Biomolecules 2024; 14:680. [PMID: 38927083 PMCID: PMC11202287 DOI: 10.3390/biom14060680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Acute ischemic stroke (AIS) and traumatic brain injury (TBI) are two severe neurological events, both being major causes of death and prolonged impairment. Their incidence continues to rise due to the global increase in the number of people at risk, representing a significant burden on those remaining impaired, their families, and society. These molecular and cellular mechanisms of both stroke and TBI present similarities that can be targeted by treatments with a multimodal mode of action, such as traditional Chinese medicine. Therefore, we performed a detailed review of the preclinical and clinical development of MLC901 (NeuroAiDTMII), a natural multi-herbal formulation targeting several biological pathways at the origin of the clinical deficits. The endogenous neurobiological processes of self-repair initiated by the brain in response to the onset of brain injury are often insufficient to achieve complete recovery of impaired functions. This review of MLC901 and its parent formulation MLC601 confirms that it amplifies the natural self-repair process of brain tissue after AIS or TBI. Following AIS and TBI where "time is brain", many patients enter the post-acute phase with their functions still impaired, a period when "the brain needs time to repair itself". The treatment goal must be to accelerate recovery as much as possible. MLC901/601 demonstrated a significant reduction by 18 months of recovery time compared to a placebo, indicating strong potential for facilitating the improvement of health outcomes and the more efficient use of healthcare resources.
Collapse
Affiliation(s)
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore;
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, #04-01, Singapore 117600, Singapore;
| |
Collapse
|
2
|
Chua AE, Yacapin VJ, Manalo GL, Ledesma LK. Protocol for Safety and Efficacy of MLC901 (NeuroAiD II) in Patients With Moderate Traumatic Brain Injury: A Randomized Double-Blind Placebo-Controlled Trial (ANDROMEDA). Neurosurgery 2023; 93:939-951. [PMID: 37129384 DOI: 10.1227/neu.0000000000002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) remains a leading cause of death and disability, affecting approximately 69 million individuals each year worldwide. A significant portion of TBI research has focused on treatments for neuroprotection and/or neurorecovery, with most failing to transition to successful clinical applications despite promising animal/in vitro study results. MLC901 (NeuroAiD II), with origins from a traditional Chinese medicine, has been shown to exhibit both neuroprotective and neuroregenerative properties in in vitro and animal studies for stroke and TBI. Clinical trials have demonstrated its safety with significant improvements in some functional outcome and cognitive domain measures. The objective of this study is to determine the efficacy and safety of MLC901 (NeuroAiD II) vs placebo in adult patients with moderate TBI. METHODS This is a multicenter randomized double-blind placebo-controlled trial that aims to enroll 120 adult patients with moderate TBI receiving standard of care in 2 arms: MLC901 vs placebo for a treatment period of 6 months with a further follow-up of 3 months. The total duration of the study is 9 months. The primary end point is Glasgow Outcome Scale Extended (GOS-E) at 6 months. Other assessments include mortality at 6 months, GOS-E, Glasgow Coma Scale, Montreal Cognitive Assessment Filipino Version, Frontal Assessment Battery Conflicting Instructions and Go-No-Go, Rivermead Post-Concussion Symptom Questionnaire, Barthel Index, Hospital Anxiety and Depression Scale, and Health related Quality of life (EQ-5D) at 1, 3, 6, and 9 months. Cerebral swelling at baseline and at 1 and 2 weeks will also be documented. Adverse events and drug compliance will also be monitored. EXPECTED OUTCOMES We expect to find a significant improvement in functional and cognitive outcomes in patients who were given MLC901. DISCUSSION Previous studies on the effect of MLC901 in adult patients with moderate TBI showed positive results; However, these studies are limited by the small number of patients. This study will establish a more definitive role of MLC901 in improving functional and cognitive outcomes in patients with moderate TBI.
Collapse
Affiliation(s)
- Annabell E Chua
- Division of Neurosurgery, University of the Philippines-Philippine General Hospital, Manila , Philippines
| | - Vilma Jane Yacapin
- Section of Neurosurgery, Department of Surgery, Northern Mindanao Medical Center, Cagayan de Oro City , Misamis Oriental , Philippines
| | - Guillermo L Manalo
- Department of Internal Medicine, Mariano Marcos Memorial Hospital & Medical Center, Batac City , Ilocos Norte , Philippines
| | - Lourdes K Ledesma
- Department of Neurosciences, Section of Adult Neurology, Makati Medical Center, Makati , Philippines
| |
Collapse
|
3
|
Kumar R, Htwe O, Baharudin A, Rhani SA, Ibrahim K, Nanra JS, Gsangaya M, Harun H, Kandar K, Balan M, Peh S, Pokharkar Y, Ingole A, Hisam Ariffin M. Spinal cord injury - assessing tolerability and use of combined rehabilitation and NeuroAiD (SATURN) study - primary results of an exploratory study. J Spinal Cord Med 2022:1-5. [PMID: 35604343 DOI: 10.1080/10790268.2022.2067972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE MLC601/MLC901 has demonstrated neuroprotective and neuroregenerative properties that enhance neurological recovery in stroke and traumatic brain injury. We aimed to evaluate its safety and potential efficacy in patients with severe spinal cord injury. METHODS Patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B were included in an open-label cohort study. Each received a course of MLC601/MLC901 for 6 months in addition to standard care and rehabilitation. Key endpoints were safety, AIS grade and motor scores at month 6 (M6). RESULTS Among 30 patients included (mean age 42.2 ± 17.6 years, 24 men), 20 patients had AIS A while 10 patients had AIS B at baseline. Ten patients experienced 14 adverse events including one serious adverse event and six deaths, none were considered treatment-related. AIS improved in 25% of AIS A and 50% of AIS B. Improvement in ASIA motor score was seen most with cervical injury (median change from baseline 26.5, IQR: 6-55). These findings appear to be better than reported rates of spontaneous recovery for SCI AIS A and B. CONCLUSION MLC601/MLC901 is safe and may have a role in the treatment of patients with SCI. A controlled trial is justified.
Collapse
Affiliation(s)
- Ramesh Kumar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Azmi Baharudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Kamalnizat Ibrahim
- Department of Orthopaedic, KPJ Ampang Puteri Specialist Hospital, Selangor, Malaysia
| | | | - Muhindra Gsangaya
- Department of Orthopaedics and Traumatology, Hospital Serdang, Selangor, Malaysia
| | - Hezery Harun
- Department of Orthopaedics and Traumatology, Hospital Pengajar Universiti Putra Malaysia, Selangor, Malaysia
| | - Khairrudin Kandar
- Department of Orthopaedic, Avisena Specialist Hospital, Selangor, Malaysia
| | - Maatharasi Balan
- Department of Orthopaedics and Traumatology, Hospital Serdang, Selangor, Malaysia
| | - Shawn Peh
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Abhinay Ingole
- Singapore Clinical Research Institute, Singapore, Singapore
| | - Mohammad Hisam Ariffin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Pilipenko P, Ivanova AA, Kotsiubinskaya YV, Feigin V, Majdan M, Grigoryeva VN, Khrulev AY. Randomised, double-blind, placebo-controlled study investigating Safety and efficAcy of MLC901 in post-traUmatic bRAin Injury: the SAMURAI study protocol. BMJ Open 2022; 12:e059167. [PMID: 35418437 PMCID: PMC9014072 DOI: 10.1136/bmjopen-2021-059167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of death in young adults globally and 90% of cases are mild TBI. Treatment to facilitate recovery after TBI is needed. Traditional medicine MLC901 (NeuroAiD II) with neuroprotective and neuroproliferative properties in cellular and animal models of brain injury showed TBI-associated cognitive improvement in mild or moderate TBI. METHODS AND ANALYSIS This is a randomised placebo-controlled trial, with 6-month treatment and 9-month follow-up, to determine the safety and efficacy of MLC901 in improving cognitive function in patients with cognitive impairment following mild TBI. This multicentre trial is conducted at the research centres of six hospitals/institutions in Russia. The primary outcome is to determine the effect of MLC901 on complex attention using the CNS Vital Signs (CNS-VS) online neurological test after 6-month treatment in patients receiving MLC901 compared with placebo. Secondary outcomes include other cognitive domains of CNS-VS and Rivermead Post Concussion Symptoms Questionnaire. The exploratory endpoints include Quality of Life after Brain Injury, Hospital Anxiety and Depression Scale and evaluation of improved neurological parameters 3 months after treatment completion. In addition, treatment compliance, concomitant therapies and adverse events will be collected. Investigators will use a secured online system for data entry. ETHICS AND DISSEMINATION The study has been approved by the ethic committee of Ministry of Health of the Russian Federation (No: 58074). The results of this study will be published in a peer-review journal and presented at international conferences as poster presentations. TRIAL REGISTRATION NUMBER NCT04861688.
Collapse
Affiliation(s)
- Pavel Pilipenko
- Department of Clinical Neurology and Neurogeriatrics, Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | - Anna Andreevna Ivanova
- Adult Polyclinic Department N 124, State Budgetary Institution of Public Health City Polyclinic N 106, St. Petersburg, Russian Federation
| | | | - Valery Feigin
- National institute for Stroke & Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand
| | - Marek Majdan
- Department of Public Health, Trnava University in Trnava, Trnava, Slovakia
| | - Vera Naumovna Grigoryeva
- Department of Nervous Diseases, Privolzhsky Research Medical University, Niznij Novgorod, Russian Federation
| | - Alexey Yevgenievich Khrulev
- Department of Nervous Diseases, Privolzhsky Research Medical University, Niznij Novgorod, Russian Federation
| |
Collapse
|
5
|
Chen CLH, Lu Q, Moorakonda RB, Kandiah N, Tan BY, Villaraza SG, Cano J, Venketasubramanian N. Alzheimer's Disease THErapy With NEuroaid (ATHENE): A Randomized Double-Blind Delayed-Start Trial. J Am Med Dir Assoc 2021; 23:379-386.e3. [PMID: 34856171 DOI: 10.1016/j.jamda.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Preclinical and clinical studies indicate a role for MLC901 (NeuroAiD II) in Alzheimer's disease (AD). The primary aim was to investigate its safety as add-on therapy to standard treatment and the secondary aims its effect on cognition and slowing disease progression. DESIGN Randomized double-blind placebo-controlled delayed-start study. SETTING AND PARTICIPANT Patients with mild to moderate probable AD by NINCDS-ADRDA criteria, stable on acetylcholinesterase inhibitors or memantine (n = 125), were randomized to receive MLC901 (early starters) or placebo (delayed starters) for 6 months, followed by a further 6 months when all patients received MLC901, in a delayed-start design (clinical trial registration: ClinicalTrials.gov, NCT03038035). METHODS The primary outcome measure was occurrence of serious adverse events (SAEs) at 6 months. Secondary outcomes included the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) and other assessment scales. RESULTS There was no significant difference in the risk of SAEs between early and delayed starters at month (M) 6 (22.6% vs 27.0%, risk difference -4.4%, 90% CI -16.9% to 8.3%). Similarly, there was no significant difference in the risk of adverse events and the occurrence of stroke or vascular events between early and delayed starters throughout the 12-month study period. Early starters did not differ significantly on ADAS-Cog from delayed starters at M6 [mean difference (MD) -1.0, 95% CI -3.3 to 1.3] and M12 (MD -2.35, 95% CI -5.45 to 0.74) on intention-to-treat analysis. Other cognitive assessment scales did not show significant differences. CONCLUSIONS AND IMPLICATIONS This study of 125 persons with dementia found no evidence of a significant increase in adverse events between MLC901 and placebo, thus providing support for further studies on both efficacy and safety. Analyses suggest the potential of MLC901 in slowing down AD progression, but this requires further confirmation in larger and longer studies using biomarkers for AD.
Collapse
Affiliation(s)
- Christopher L H Chen
- Memory Ageing and Cognition Centre, National University Health System, Singapore; Departments of Pharmacology and Psychological Medicine, National University of Singapore, Singapore.
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore; Duke-National University of Singapore Medical School, Singapore
| | | | - Nagaendran Kandiah
- Duke-National University of Singapore Medical School, Singapore; Department of Neurology, National Neuroscience Institute (TTSH Campus), Singapore; Lee Kong Chian School of Medicine, Singapore
| | | | | | - Jemelle Cano
- Memory Ageing and Cognition Centre, National University Health System, Singapore
| | | |
Collapse
|
6
|
Molaei P, Vaseghi S, Entezari M, Hashemi M, Nasehi M. The Effect of NeuroAid (MLC901) on Cholestasis-Induced Spatial Memory Impairment with Respect to the Expression of BAX, BCL-2, BAD, PGC-1α and TFAM Genes in the Hippocampus of Male Wistar Rats. Neurochem Res 2021; 46:2154-2166. [PMID: 34031842 DOI: 10.1007/s11064-021-03353-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Cholestasis is a bile flow reduction that is induced following Bile Duct Ligation (BDL). Cholestasis impairs memory and induces apoptosis. Apoptosis consists of two pathways: intrinsic and extrinsic. The intrinsic pathway is modulated by BCL-2 (B cell lymphoma-2) family proteins. BCL-2 (a pro-survival BCL-2 protein) has anti-apoptotic effect, while BAD (BCL-2-associated death) and BAX (BCL-2-associated X), the other members of BCL-2 family have pro-apoptotic effect. Furthermore, TFAM (mitochondrial transcriptional factor A) is involved in transcription and maintenance of mitochondrial DNA and PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) is a master regulator of mitochondrial biogenesis. On the other hand, NeuroAid is a Traditional Chinese Medicine with neuroprotective and anti-apoptosis effects. In this study, we evaluated the effect of cholestasis on spatial memory and expression of BCL-2, BAD, BAX, TFAM, and PGC-1α in the hippocampus of rats. Additionally, we assessed the effect of NeuroAid on cholestasis-induced cognitive and genetic alterations. Cholestasis was induced by BDL surgery and NeuroAid was injected intraperitoneal at the dose of 0.4 mg/kg. Furthermore, spatial memory was evaluated using Morris Water Maze (MWM) apparatus. The results showed cholestasis impaired spatial memory, increased the expression of BAD and BAX, decreased the expression of TFAM and PGC-1α, and did not alter the expression of BCL-2. Also, NeuroAid decreased the expression of BAD and BAX and increased the expression of TFAM, PGC-1α, and BCL-2. In conclusion, cholestasis impaired spatial memory and increased the expression of pro-apoptotic genes. Also, cholestasis decreased the expression of TFAM and PGC-1α. Interestingly, NeuroAid restored the effects of cholestasis.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
7
|
Role of MLC901 in increasing neurogenesis in rats with traumatic brain injury. Ann Med Surg (Lond) 2020; 60:36-40. [PMID: 33101671 PMCID: PMC7578557 DOI: 10.1016/j.amsu.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background Traumatic brain injury is a dangerous life threatening condition. This study examines the role of MLC901 in increasing neurogenesis. The aim of this study was to demonstrate the role of MLC901 in increasing neuron cell (neurogenesis) in rat with traumatic brain injury using the synaptophysin marker. Methods The synaptophysin levels were measured as a marker for neuron cell (neurogenesis) of brain nerve cells in Sprague-Dawley rats aged 10–12 weeks, weighing 200–300 g. All rats (n = 10) were performed as traumatic brain injury using The Modified Marmourou Model, then they were divided into 2 group, one group was given MLC901 (n = 5) and the other group was not given MLC901 (n = 5). The synaptophysin levels in both groups were assessed after 6 weeks and also carried out an examination of immnuhistochemical from the brain tissue of both groups. Results There was an increase in the number of neuron cells as evidenced by synaptophysin ihc staining in the rats given MLC 901 (Neuroaid II) compared to those without MLC 901. Synaptophysin levels were lower in the control group than in the MLC 901 group (81.6, SD: 13.52 vs 118.4, SD: 12.198, p = 0.062). Conclusion These research suggest that MLC901 can increase neurogenesis in traumatic brain injury and also appeared as synaptophysin antibody that binding to cytoplasm of neuronal cells in the rat brain. Experimental study on rats with traumatic brain injury to determine the role of MLC 901 in increasing number of neuronal cells (neurogenesis) in rat with traumatic brain injury using the synaptophysin marker. The synaptophysin levels in both groups were assessed after 6 weeks and also carried out an examination of immnuhistochemical from the brain tissue of both groups. There was an increase in synaptophysin levels in the rats given MLC 901. MLC 901 can increase neurogenesis in traumatic brain injury.
Collapse
|
8
|
Nasehi M, Zadeh-Tehrani SN, Khakpai F, Zarrindast MR. A possible neuroprotective property of ethanol and/or NeuroAiD on the modulation of cognitive function. Neurotoxicol Teratol 2020; 82:106927. [PMID: 32861843 DOI: 10.1016/j.ntt.2020.106927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022]
Abstract
Cognitive impairments and poor performance on tasks needing behavioral flexibility are observable in chronic alcohol exposure. NeuroAid decreases cognitive deficits and improves functional outcomes by restoring neuronal circuits. The aim of the current study was to assess the hypothesis that ethanol exposure would induce neurobehavioral defects which may be reversed by the neuroprotective property of NeuroAid. Adult male Wistar rats were treated with saline, ethanol (0.2 g/kg), NeuroAid (0.8 g/kg) and ethanol (0.2 g/kg) + NeuroAid (0.8 g/kg). Then, behavioral tests were performed using the Y-maze apparatus, hot-plate and tail-flick apparatuses, locomotion apparatus as well as the loss of righting reflex (LORR) and hanging protocols (performance in a wire hanging test). Our results indicated that intraperitoneal (i.p.) administration of ethanol alone and administration of ethanol along with NeuroAid for one week reversed ethanol-induced spatial memory deficits in rats (P < 0.01). Interestingly, treatment with ethanol (0.2 g/kg) for one week induced nociception (P < 0.01). Moreover, one week administration of ethanol (0.2 g/kg) along with NeuroAid (0.8 g/kg) increased latency to LORR (P < 0.001) while four weeks administration of ethanol (0.2 g/kg) along with NeuroAid (0.8 g/kg) decreased sleep time (P < 0.01). In addition, a single administration of all drugs did not alter locomotor activity (P > 0.05) and hanging (P > 0.05). Improvement of behavioral tasks after one-week i.p. administration of ethanol and/or NeuroAid in comparison with a single administration of ethanol and/or NeuroAid may be due to the neuroprotective property of ethanol and/or NeuroAiD.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Dai X, Yi M, Wang D, Chen Y, Xu X. Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem 2020; 400:753-763. [PMID: 30653462 DOI: 10.1515/hsz-2018-0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 11/15/2022]
Abstract
The present study was designed to investigate the mechanism of the traditional Chinese medicine Changqin NO. 1 on the amelioration of traumatic brain injury (TBI). Adult male C57BL/6J mice and newborn mice were used to generate a mouse TBI model and harvest primary neurons, respectively. The localizations of specific neural markers neuropilin-1 (Nrp-1), growth-associated protein-43 (GAP-43) and microtubule-associated protein Tau (Tau) were examined in brain tissues by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling apoptotic cell detection in tissue sections and the CCK-8 cell viability assay were performed to examine neuronal apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were also carried out in this study. The association between long non-coding RNA (lncRNA) growth-arrest specific 5 (GAS5), miR-335 and RAS p21 GTPase activating protein 1 (Rasa1) was disclosed using the dual-luciferase reporter assay. Changqin NO. 1 inhibited TBI-induced neuronal apoptosis in vivo and in vitro. GAS5 functioned as a competing endogenous RNA (ceRNA) by sponging miR-335 to upregulate Rasa1 expression in mouse neuronal cells. Further investigations demonstrated that GAS5 promoted neuronal apoptosis following TBI via the miR-335/Rasa1 axis. In vivo experiments indicated that Changqin NO. 1 exerted neuroprotection during TBI via the GAS5/miR-335/Rasa1 axis. Changqin NO. 1 promoted neuroprotective effects by inhibiting neuronal apoptosis via the GAS5/miR-335/Rasa1 axis in TBI.
Collapse
Affiliation(s)
- Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Yanyi Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Xia Xu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| |
Collapse
|
10
|
Clinical Outcomes of MLC601 (NeuroAiD TM) in Traumatic Brain Injury: A Pilot Study. Brain Sci 2020; 10:brainsci10020060. [PMID: 31973204 PMCID: PMC7071378 DOI: 10.3390/brainsci10020060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND MLC601 is a natural product formulation from Chinese medicine that is extensively studied in ischemic stroke. Traumatic brain injury (TBI) shares pathophysiological mechanisms with ischemic stroke, yet there are few studies on the use of MLC601 in treating TBI. This Indonesian pilot study aimed to investigate clinical outcomes of MLC601 for TBI. METHODS This randomized controlled trial included subjects with nonsurgical moderate TBI allocated into two groups: with and without MLC601 over three months in addition to standard TBI treatment. Clinical outcomes were measured by the Glasgow Outcome Scale (GOS) and Barthel Index (BI) observed upon discharge and at months (M) 3 and 6. RESULTS Thirty-two subjects were included. The MLC601 group (n = 16) had higher GOS than the control group (n = 16) at all observation timepoints, though these differences were not statistically significant (p = 0.151). The BI values indicated a significant improvement for the MLC601 group compared to the control group at M3 (47.5 vs. 35.0; p = 0.014) and at M6 (67.5 vs. 57.5; p = 0.055). No adverse effects were associated with MLC601 treatment. CONCLUSION In this cohort of nonsurgical moderate TBI subjects, MLC601 showed potential for a positive effect on clinical outcome with no adverse effects.
Collapse
|
11
|
Nasehi M, Torabinejad S, Hashemi M, Vaseghi S, Zarrindast MR. Effect of cholestasis and NeuroAid treatment on the expression of Bax, Bcl-2, Pgc-1α and Tfam genes involved in apoptosis and mitochondrial biogenesis in the striatum of male rats. Metab Brain Dis 2020; 35:183-192. [PMID: 31773435 DOI: 10.1007/s11011-019-00508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Cholestasis means impaired bile synthesis or secretion. In fact, it is a bile flow reduction following Bile Duct Ligation (BDL). Cholestasis has a main role in necrosis and apoptosis. Apoptosis is a form of programmed cell death that has intrinsic and extrinsic pathways. The intrinsic pathway is mediated by Bcl-2 (B cell lymphoma-2) proteins which integrate death and survival signals. Bcl-2 has anti-apoptotic and Bax has pro-apoptotic effects. Also, striatum is one of the brain regions that has high expressions of Bcl-2 proteins. Moreover, Tfam and Pgc-1α are involved in mitochondrial biogenesis. On the other hand, NeuroAid, is a drug that has neuroprotective and anti-apoptosis effects. In this study, using quantitative PCR, we measured the expression of all these genes in the striatum of male rats following BDL and NeuroAid administration. Results showed, BDL increased the expression of Bax and Tfam and decreased the expression of Bcl-2. NeuroAid restored the effect of BDL on the expression of Bax, while did not alter the effect of BDL on Bcl-2. In addition, it increased the expression of Tfam that was previously elevated by BDL and raised the expression of Tfam in normal rats. Both BDL and NeuroAid, had no effect on Pgc-1α. In conclusion, cholestasis increased the expression of Bax and decreased the expression of Bcl-2, and this effect may have related to enhanced susceptibility of mitochondrial pathways following oxidative stress. Tfam expression was increased following cholestasis and this effect may have related to cellular compensatory mechanisms against high accumulation of free radicals or mitochondrial biogenesis failure. Furthermore, NeuroAid may play a role against apoptosis and can be used to increase mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lecca D, Bader M, Tweedie D, Hoffman AF, Jung YJ, Hsueh SC, Hoffer BJ, Becker RE, Pick CG, Lupica CR, Greig NH. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer's disease challenged mice. Neurobiol Dis 2019; 130:104528. [PMID: 31295555 PMCID: PMC6716152 DOI: 10.1016/j.nbd.2019.104528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). TBI-derived neuropathologies are promoted by inflammatory processes: chronic microgliosis and release of pro-inflammatory cytokines that further promote neuronal dysfunction and loss. Herein, we evaluated the effect on pre-programmed cell death/neuroinflammation/synaptic integrity and function of (-)-Phenserine tartrate (Phen), an agent originally developed for AD. This was studied at two clinically translatable doses (2.5 and 5.0 mg/kg, BID), in a weight drop (concussive) mTBI model in wild type (WT) and AD APP/PSEN1 transgenic mice. Phen mitigated mTBI-induced cognitive impairment, assessed by Novel Object Recognition and Y-maze behavioral paradigms, in WT mice. Phen fully abated mTBI-induced neurodegeneration, evaluated by counting Fluoro-Jade C-positive (FJC+) cells, in hippocampus and cortex of WT mice. In APP/PSEN1 mice, degenerating cell counts were consistently greater across all experimental groups vs. WT mice. mTBI elevated FJC+ cell counts vs. the APP/PSEN1 control (sham) group, and Phen similarly mitigated this. Anti-inflammatory effects on microglial activation (IBA1-immunoreactivity (IR)) and the pro-inflammatory cytokine TNF-α were evaluated. mTBI increased IBA1-IR and TNF-α/IBA1 colocalization vs. sham, both in WT and APP/PSEN1 mice. Phen decreased IBA1-IR throughout hippocampi and cortices of WT mice, and in cortices of AD mice. Phen, likewise, reduced levels of IBA1/TNF-α-IR colocalization volume across all areas in WT animals, with a similar trend in APP/PSEN1 mice. Actions on astrocyte activation by mTBI were followed by evaluating GFAP, and were similarly mitigated by Phen. Synaptic density was evaluated by quantifying PSD-95+ dendritic spines and Synaptophysin (Syn)-IR. Both were significantly reduced in mTBI vs. sham in both WT and APP/PSEN1 mice. Phen fully reversed the PSD-95+ spine loss in WT and Syn-IR decrease in both WT and APP/PSEN1 mice. To associate immunohistochemical changes in synaptic markers with function, hippocampal long term potentiation (LTP) was induced in WT mice. LTP was impaired by mTBI, and this impairment was mitigated by Phen. In synopsis, clinically translatable doses of Phen ameliorated mTBI-mediated pre-programmed cell death/neuroinflammation/synaptic dysfunction in WT mice, consistent with fully mitigating mTBI-induced cognitive impairments. Phen additionally demonstrated positive actions in the more pathologic brain microenvironment of AD mice, further supporting consideration of its repurposing as a treatment for mTBI.
Collapse
Affiliation(s)
- Daniela Lecca
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Miaad Bader
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Yoo Jin Jung
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Shin-Chang Hsueh
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert E Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Aristea Translational Medicine Corporation, Park City, UT 84098, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel; Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
14
|
Lin CH, Lin W, Su YC, Cheng-Yo Hsuan Y, Chen YC, Chang CP, Chou W, Lin KC. Modulation of parietal cytokine and chemokine gene profiles by mesenchymal stem cell as a basis for neurotrauma recovery. J Formos Med Assoc 2019; 118:1661-1673. [PMID: 30709695 DOI: 10.1016/j.jfma.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND & PURPOSE Following traumatic brain injury (TBI), primary mechanical injury to the brain may cause blood-brain-barrier damage followed by secondary injury, ultimately culminating in cell death. We aimed to test whether one injection of mesenchymal stem cells (MSC) derived from the human umbilical cord can modulate brain cytokine and chemokine gene profiles and attenuate neurological injury in rats with TBI. METHODS One-day post-TBI, the injured rats were treated with one injection of MSC (4 × 106/rat, i.v.). Three days later, immediately after assessment of neurobehavioral function, animals were sacrificed for analysis of neurological injury (evidenced by both brain contusion volume and neurological deficits) and parietal genes encoding 84 cytokines and chemokines in the injured brain by qPCR methods. RESULTS Three days post-TBI, rats displayed both neurological injury and upgrade of 11 parietal genes in the ipsilateral brain. One set of 8 parietal genes (e.g., chemokine [C-X-C motif] ligand 12, platelet factor 4, interleukin-7, chemokine [C-C motif] ligand (CCL)19, CCL 22, secreted phosphoprotein 1, pro-platelet basic protein 1, and CCL 2) differentially upgraded by TBI was related to pro-inflammatory and/or neurodegenerative processes. Another set of 3 parietal genes up-graded by TBI (e.g., glucose-6-phosphate isomerase, bone morphogenetic protein (BMP) 2, and BMP 4) was related to anti-inflammatory/neuroregenerative events. Administration of MSC attenuated neurological injury, down-regulated these 8 parietal pro-inflammatory genes, and up-regulated these 3 parietal anti-inflammatory genes in the rats with TBI. CONCLUSION Our data suggest that modulation of parietal cytokines and chemokines gene profiles by MSC as a basis for neurotrauma recovery.
Collapse
Affiliation(s)
- Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Neihu, Taipei 11493, Taiwan.
| | - Yu-Chin Su
- Meridigen Biotech Co. Ltd., Neihu, Taipei 11493, Taiwan.
| | | | - Yu-Chien Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan.
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Kao-Chang Lin
- Department of Neurology, Chi Mei Medical Center, Tainan 710, Taiwan.
| |
Collapse
|
15
|
The Traditional Chinese Medicine MLC901 inhibits inflammation processes after focal cerebral ischemia. Sci Rep 2018; 8:18062. [PMID: 30584250 PMCID: PMC6305383 DOI: 10.1038/s41598-018-36138-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is considered as a major contributor to brain injury following cerebral ischemia. The therapeutic potential of both MLC601/MLC901, which are herbal extract preparations derived from Chinese Medicine, has been reported both in advanced stroke clinical trials and also in animal and cellular models. The aim of this study was to investigate the effects of MLC901 on the different steps of post-ischemic inflammation in focal ischemia in mice. In vivo injury was induced by 60 minutes of middle cerebral artery occlusion (MCAO) followed by reperfusion. MLC901 was administered in post-treatment 90 min after the onset of ischemia and once a day during reperfusion. MLC901 treatment resulted in a reduction in infarct volume, a decrease of Blood Brain Barrier leakage and brain swelling, an improvement in neurological scores and a reduction of mortality rate at 24 hours after MCAO. These beneficial effects of MLC901 were accompanied by an inhibition of astrocytes and microglia/macrophage activation, a drastically decreased neutrophil invasion into the ischemic brain as well as by a negative regulation of pro-inflammatory mediator expression (cytokines, chemokines, matrix metalloproteinases). MLC901 significantly inhibited the expression of Prx6 as well as the transcriptional activity of NFκB and the activation of Toll-like receptor 4 (TLR4) signaling, an important pathway in the immune response in the ischemic brain. MLC901 effects on the neuroinflammation cascade induced by cerebral ischemia probably contribute, in a very significant way, in its potential therapeutic value.
Collapse
|
16
|
Lin W, Hsuan YCY, Lin MT, Kuo TW, Lin CH, Su YC, Niu KC, Chang CP, Lin HJ. Human Umbilical Cord Mesenchymal Stem Cells Preserve Adult Newborn Neurons and Reduce Neurological Injury after Cerebral Ischemia by Reducing the Number of Hypertrophic Microglia/Macrophages. Cell Transplant 2018; 26:1798-1810. [PMID: 29338384 PMCID: PMC5784525 DOI: 10.1177/0963689717728936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microglia are the first source of a neuroinflammatory cascade, which seems to be involved in every phase of stroke-related neuronal damage. Two weeks after transient middle cerebral artery occlusion (MCAO), vehicle-treated rats displayed higher numbers of total ionized calcium-binding adaptor molecule 1 (Iba-1)-positive cells, greater cell body areas of Iba-1-positive cells, and higher numbers of hypertrophic Iba-1-positive cells (with a cell body area over 80 μm2) in the ipsilateral ischemic brain regions including the frontal cortex, striatum, and parietal cortex. In addition, MCAO decreased the number of migrating neuroblasts (or DCX- and 5-ethynyl-2′-deoxyuridine-positive cells) in the cortex, subventricular zone, and hippocampus of the ischemic brain, followed by neurological injury (including brain infarct and neurological deficits). Intravenous administration of human umbilical cord–derived mesenchymal stem cells (hUC-MSCs; 1 × 106 or 4 × 106) at 24 h after MCAO reduced neurological injury, decreased the number of hypertrophic microglia/macrophages, and increased the number of newborn neurons in rat brains. Thus, the accumulation of hypertrophic microglia/macrophages seems to be detrimental to neurogenesis after stroke. Treatment with hUC-MSCs preserved adult newborn neurons and reduced functional impairment after transient cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.
Collapse
Affiliation(s)
- Willie Lin
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | | | - Mao-Tsun Lin
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ting-Wei Kuo
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | | | - Yu-Chin Su
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | - Ko-Chi Niu
- 4 Department of Hyperbaric Oxygen, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Ping Chang
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan.,3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,5 The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Jung Lin
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,6 Department of Emergency Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
17
|
Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Mol Neurobiol 2018; 55:8602-8611. [PMID: 29574629 DOI: 10.1007/s12035-018-1011-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Physical exercise (PE) is an effective method for improving cognitive function among patients with traumatic brain injury (TBI). We previously demonstrated that PE with an infrared-sensing running wheel (ISRW) system provides strong neuroprotection in an experimental animal model of stroke. In this study, we used fluid percussion injury in rats to simulate mild TBI. For rats, we used both passive avoidance learning and the Y-maze tests to evaluate cognitive function. We investigated whether PE rehabilitation attenuated cognitive deficits in rats with TBI and determined the contribution of hippocampal and cortical expression of heat shock protein 20 (HSP20) to PE-mediated cognitive recovery. In addition to increasing hippocampal and cortical expression of HSP20, brain-derived neurotrophic factor (BDNF), and the tropomyosin receptor kinase B (TrkB) ratio, PE rehabilitation significantly attenuated brain contusion and improved cognitive deficits in the rat model. Furthermore, reducing hippocampal and cortical expression of HSP20 with an intracerebral injection of pSUPER hsp20 small interfering RNA significantly diminished the PE-induced overexpression of hippocampal and cortical BDNF and the TrkB ratio and also reversed the beneficial effect of PE in reducing neurotrauma and the cognitive deficits. A positive Pearson correlation was found between HSP20 and BDNF, as well as between HSP20 and TrkB, in the hippocampal and cortical tissues. We thus conclude that post-ischaemic ISRW exercise rehabilitation attenuates cognitive deficits, as well as brain contusions, in TBI rats by stimulating the cerebral HSP20/BDNF/TrkB signalling axis.
Collapse
|
18
|
The Effects of Chunghyul-Dan, an Agent of Korean Medicine, on a Mouse Model of Traumatic Brain Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7326107. [PMID: 28684970 PMCID: PMC5480248 DOI: 10.1155/2017/7326107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022]
Abstract
Chunghyul-Dan (CHD) is the first choice agent for the prevention and treatment of stroke at the Kyung Hee Medical Hospital. To date, CHD has been reported to have beneficial effects on brain disease in animals and humans, along with antioxidative and anti-inflammatory effects. The aim of this study was to evaluate the pharmacological effects of CHD on a traumatic brain injury (TBI) mouse model to explore the possibility of CHD use in patients with TBI. The TBI mouse model was induced using the controlled cortical impact method. CHD was orally administered twice a day for 5 d after TBI induction; mice were assessed for brain damage, brain edema, blood-brain barrier (BBB) damage, motor deficits, and cognitive impairment. Treatment with CHD reduced brain damage seen on histological examination and improved motor and cognitive functions. However, CHD did not reduce brain edema and BBB damage. In conclusion, CHD could be a candidate agent in the treatment of patients with TBI. Further studies are needed to assess the exact mechanisms of the effects during the acute-subacute phase and pharmacological activity during the chronic-convalescent phase of TBI.
Collapse
|
19
|
Chio CC, Lin HJ, Tian YF, Chen YC, Lin MT, Lin CH, Chang CP, Hsu CC. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflammation 2017; 14:90. [PMID: 28438174 PMCID: PMC5404305 DOI: 10.1186/s12974-017-0867-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. Methods We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and β-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. Results We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. Conclusions TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Yu-Chieh Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | | | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan. .,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
| |
Collapse
|
20
|
Kumar R, Htwe O, Baharudin A, Ariffin MH, Abdul Rhani S, Ibrahim K, Rustam A, Gan R. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury. JMIR Res Protoc 2016; 5:e230. [PMID: 27919862 PMCID: PMC5168536 DOI: 10.2196/resprot.6275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating condition with limited therapeutic options despite decades of research. Current treatment options include use of steroids, surgery, and rehabilitation. Nevertheless, many patients with SCI remain disabled. MLC601 (NeuroAiD), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries and may have a potential role in improving recovery after SCI. OBJECTIVE The aim of this study is to evaluate the safety and efficacy of NeuroAiD amongst people who sustain SCI in the study setting. METHODS Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN) is a prospective cohort study of patients with moderately severe to severe SCI, defined as American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B. These patients will be treated with open-label NeuroAiD for 6 months in addition to standard care and followed for 24 months. Anonymized data will be prospectively collected at baseline and months 1, 3, 6, 12, 18, and 24 and will include information on demographics; main diagnostics; and neurological and functional state assessed by the Spinal Cord Independence Measure, ASIA-International Standard for Neurological Classification Spinal Cord Injury, and Short Form (SF-8) Health Survey. In addition, NeuroAiD treatment, compliance, concomitant therapies, and side effects, if any, will be collected. Investigators will use a secured online system for data entry. The study is approved by the ethics committee of Hospital University Kebangsaan Malaysia. RESULTS The coprimary endpoints are safety, AIS grade, and improvement in ASIA motor score at 6 months. Secondary endpoints are AIS grade, ASIA motor scores and sensory scores, Spinal Cord Independence Measure (SCIM), SF-8 Health Survey, and compliance at other time points. CONCLUSIONS SATURN investigates the promising role of NeuroAiD in SCI especially given its excellent safety profile. We described here the protocol and online data collection tool we will use for this prospective cohort study. The selection of moderately severe to severe SCI provides an opportunity to investigate the role of NeuroAiD in addition to standard rehabilitation in patients with poor prognosis. The results will provide important information on the feasibility of conducting larger controlled trials to improve long-term outcome of patients with SCI. TRIAL REGISTRATION Clinicaltrials.gov NCT02537899; https://clinicaltrials.gov/ct2/show/NCT02537899 (Archived by WebCite at http://www.webcitation.org/6m2pncVTG).
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Neurosurgery, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Azmi Baharudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohammad Hisam Ariffin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Shaharuddin Abdul Rhani
- Department of Orthopaedics and Traumatology, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kamalnizat Ibrahim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Robert Gan
- Medical Affairs, Moleac, Biopolis Way, Singapore
| |
Collapse
|
21
|
Chio CC, Lin MT, Chang CP, Lin HJ. A positive correlation exists between neurotrauma and TGF-β1-containing microglia in rats. Eur J Clin Invest 2016; 46:1063-1069. [PMID: 27759956 DOI: 10.1111/eci.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transforming growth factor-beta 1 (TGF-β1) regulates many processes after traumatic brain injury (TBI). Both Neuro AiD™ (MLC601) and astragaloside (AST) attenuate microglia activation in rats with TBI. The purpose of this study was to investigate whether MLC601 or AST improves output of TBI by affecting microglial expression of TGF-β1. MATERIALS AND METHODS Adult male Sprague-Dawley rats (120 in number) were used to investigate the contribution of TGF-β1-containing microglia in the MLC601-mediated or the AST-mediated neuroprotection in the brain trauma condition using lateral fluid percussion injury. RESULTS Pearson correlation analysis revealed that there was a positive correlation between brain injury (evidenced by both brain contused volume and neurological severity score) and the cortical numbers of TGF-β1-containing microglia for the rats (n = 12) 4 days post-TBI. MLC601 or AST significantly (P < 0·05) attenuated TBI-induced brain contused volume (119 ± 14 mm3 or 108 ± 11 mm3 vs. 160 ± 21 mm3 ), neurological severity score (7·8 ± 0·3 or 8·1 ± 0·4 vs. 10·2 ± 0·5) and numbers of TGF-β1-containing microglia (6% ± 2% or 11% ± 3% vs. 79% ± 7%) for the rats 4 days post-TBI. CONCLUSIONS There was a positive correlation between TBI and cortical numbers of TGF-β1-containing microglia which could be significantly attenuated by astragaloside or NeuroAiD™ (MLC601) in rats.
Collapse
Affiliation(s)
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
22
|
Titus DJ, Wilson NM, Freund JE, Carballosa MM, Sikah KE, Furones C, Dietrich WD, Gurney ME, Atkins CM. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor. J Neurosci 2016; 36:7095-108. [PMID: 27383587 PMCID: PMC4938858 DOI: 10.1523/jneurosci.3212-15.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals report cognitive disabilities (Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al., 2008). One of the molecular mechanisms associated with chronic cognitive disabilities is impaired cAMP signaling in the hippocampus. In this study, we report that a selective phosphodiesterase 4B (PDE4B) inhibitor reduces chronic cognitive deficits after TBI and rescues deficits in hippocampal long-term potentiation. These results suggest that PDE4B inhibition has the potential to improve learning and memory ability and overall functioning for people living with TBI.
Collapse
Affiliation(s)
- David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Julie E Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Melissa M Carballosa
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Kevin E Sikah
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Mark E Gurney
- Tetra Discovery Partners, Grand Rapids, Michigan 49503
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| |
Collapse
|
23
|
Lu C, Xia J, Bin W, Wu Y, Liu X, Zhang Y. Advances in diagnosis, treatments, and molecular mechanistic studies of traumatic brain injury. Biosci Trends 2016; 9:138-48. [PMID: 26166367 DOI: 10.5582/bst.2015.01066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) is a main cause of death and disability around the world especially in soldiers, children, and young men. Since its clinical diagnosis and treatment cannot predict its prognosis, novel diagnostic techniques need to be developed, insight into its molecular mechanisms needs to be gleaned, and alternative and complementary medicine (ACM) approaches to its treatment need to be developed. This review summarizes the new diagnostic methods used in clinical practice, such as imaging of structural abnormalities after TBI and measurement of prognosis-related biomarkers. This review also describes the cellular mechanisms of traditional Chinese medicine in terms of intracellular signaling pathways, the extracellular microenvironment, and stem cells. This review concludes by describing experimental and clinical studies of the use of traditional Chinese medicine as a form of ACM to treat TBI. This review helps to understand advances in the field of TBI diagnosis and treatment.
Collapse
Affiliation(s)
- Chunyu Lu
- Department of Neurosurgery, The People's Hospital of Huaibei
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
INTRODUCTION NeuroAiD (MLC601, MLC901), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries. The NeuroAiD Safe Treatment (NeST) Registry aims to assess its use and safety in the real-world setting. METHODS AND ANALYSIS The NeST Registry is designed as a product registry that would provide information on the use and safety of NeuroAiD in clinical practice. An online NeST Registry was set up to allow easy entry and retrieval of essential information including demographics, medical conditions, clinical assessments of neurological, functional and cognitive state, compliance, concomitant medications, and side effects, if any, among patients on NeuroAiD. Patients who are taking or have been prescribed NeuroAiD may be included. Participation is voluntary. Data collected are similar to information obtained during standard care and are prospectively entered by the participating physicians at baseline (before initialisation of NeuroAiD) and during subsequent visits. The primary outcome assessed is safety (ie, non-serious and serious adverse event), while compliance and neurological status over time are secondary outcomes. The in-person follow-up assessments are timed with clinical appointments. Anonymised data will be extracted and collectively analysed. Initial target sample size for the registry is 2000. Analysis will be performed after every 500 participants entered with completed follow-up information. ETHICS AND DISSEMINATION Doctors who prescribe NeuroAiD will be introduced to the registry by local partners. The central coordinator of the registry will discuss the protocol and requirements for implementation with doctors who show interest. Currently, the registry has been approved by the Ethics Committees of Universiti Kebangsaan Malaysia (Malaysia) and National Brain Center (Indonesia). In addition, for other countries, Ethics Committee approval will be obtained in accordance with local requirements. TRIAL REGISTRATION NUMBER NCT02536079.
Collapse
Affiliation(s)
| | - Ramesh Kumar
- Department of Neurosurgery, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Lyna Soertidewi
- Department of Neurology, National Brain Center Hospital, Jakarta, Indonesia
| | - Azizi Abu Bakar
- Department of Neurosurgery, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
25
|
Therapeutic Efficacy of E-64-d, a Selective Calpain Inhibitor, in Experimental Acute Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134242. [PMID: 26240815 PMCID: PMC4512559 DOI: 10.1155/2015/134242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/30/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
This study aims to investigate the therapeutic effect of calpain inhibitor E-64-d on SCI and to find a new approach to treat SCI. When an SCI rat model was established, it was immediately administered with E-64-d. RT-PCR and Western blotting were used to determine the protein and mRNA levels of calpain 1 and 68-kD NFP. TUNEL staining and NeuN labeling were performed to analyze neuronal apoptosis in the lesion. Immunohistochemistry assay was carried out to observe the expressions of calpain 1 and GFAP. Cyclooxygenase-2 activity was measured to show the immune response status. Locomotor function was evaluated by inclined plane test and Basso, Beattie, and Bresnahan locomotor rating scale. The results showed that calpain 1 was activated after SCI occurred. Treatment with E-64-d decreased expressions of calpain 1 and GFAP, alleviated neuronal apoptosis, inhibited cyclooxygenase-2 activity, and resulted in the promoted locomotor function. Furthermore, combination of E-64-d and MP had better efficacy than did E-64-d or MP alone. E-64-d is expected to be applied to treat SCI, and its alliance with MP may provide a valid strategy for SCI therapy.
Collapse
|
26
|
Lorivel T, Gandin C, Veyssière J, Lazdunski M, Heurteaux C. Positive effects of the traditional Chinese medicine MLC901 in cognitive tasks. J Neurosci Res 2015; 93:1648-63. [PMID: 25821139 PMCID: PMC6681465 DOI: 10.1002/jnr.23591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022]
Abstract
MLC901 (NurAiDII) is used as a treatment for stroke patients. It has been shown that MLC901 improves motor and cognitive recovery in ischemic and traumatic brain‐injured rodents. The present study seeks to delineate cognitive effects induced by MLC901 in normal, noninjured mice. To this end, the behaviors of vehicle‐ and MLC901‐treated C57BL/6 mice in hippocampus‐dependent (passive avoidance, Morris water maze) and hippocampus‐independent (novel object recognition) cognitive tasks are compared. The potential influence of the compound on the anxiety level and nycthemeral rhythm of mice is also assessed. In addition, the long‐term effects of MLC901 on hippocampal neurogenesis are measured. The results clearly demonstrate that MLC901 promotes extinction in passive avoidance and reversal learning in the Morris water maze and improves the performance of mice in novel object recognition. In parallel, this study shows the long‐term proneurogenesis effects of MLC901 that result in the increase in the number of mature neurons in the hippocampus. If these observations can be extended to humans, then MLC901 could represent a promising therapeutic strategy. © 2015 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- T Lorivel
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - J Veyssière
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - M Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| |
Collapse
|