1
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
2
|
Pszczołowska M, Walczak K, Miśków W, Mroziak M, Chojdak-Łukasiewicz J, Leszek J. Mitochondrial disorders leading to Alzheimer's disease-perspectives of diagnosis and treatment. GeroScience 2024; 46:2977-2988. [PMID: 38457008 PMCID: PMC11009177 DOI: 10.1007/s11357-024-01118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia globally. The pathogenesis of AD remains still unclear. The three main features of AD are extracellular deposits of amyloid beta (Aβ) plaque, accumulation of abnormal formation hyper-phosphorylated tau protein, and neuronal loss. Mitochondrial impairment plays an important role in the pathogenesis of AD. There are problems with decreased activity of multiple complexes, disturbed mitochondrial fusion, and fission or formation of reactive oxygen species (ROS). Moreover, mitochondrial transport is impaired in AD. Mouse models in many research show disruptions in anterograde and retrograde transport. Both mitochondrial transportation and network impairment have a huge impact on synapse loss and, as a result, cognitive impairment. One of the very serious problems in AD is also disruption of insulin signaling which impairs mitochondrial Aβ removal.Discovering precise mechanisms leading to AD enables us to find new treatment possibilities. Recent studies indicate the positive influence of metformin or antioxidants such as MitoQ, SS-31, SkQ, MitoApo, MitoTEMPO, and MitoVitE on mitochondrial functioning and hence prevent cognitive decline. Impairments in mitochondrial fission may be treated with mitochondrial division inhibitor-1 or ceramide.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Miśków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | | | | | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Zhang W, Zhao X, Bhuiyan P, Liu H, Wei H. Neuroprotective effects of dantrolene in neurodegenerative disease: Role of inhibition of pathological inflammation. JOURNAL OF ANESTHESIA AND TRANSLATIONAL MEDICINE 2024; 3:27-35. [PMID: 38826587 PMCID: PMC11138240 DOI: 10.1016/j.jatmed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neurodegenerative diseases (NDs) refer to a group of diseases in which slow, continuous cell death is the main pathogenic event in the nervous system. Most NDs are characterized by cognitive dysfunction or progressive motor dysfunction. Treatments of NDs mainly target alleviating symptoms, and most NDs do not have disease-modifying drugs. The pathogenesis of NDs involves inflammation and apoptosis mediated by mitochondrial dysfunction. Dantrolene, approved by the US Food and Drug Administration, acts as a RyRs antagonist for the treatment of malignant hyperthermia, spasticity, neuroleptic syndrome, ecstasy intoxication and exertional heat stroke with tolerable side effects. Recently, dantrolene has also shown therapeutic effects in some NDs. Its neuroprotective mechanisms include the reduction of excitotoxicity, apoptosis and neuroinflammation. In summary, dantrolene can be considered as a potential therapeutic candidate for NDs.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox Biol 2024; 71:103092. [PMID: 38377788 PMCID: PMC10891329 DOI: 10.1016/j.redox.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
5
|
Amorim R, Magalhães CC, Benfeito S, Cagide F, Tavares LC, Santos K, Sardão VA, Datta S, Cortopassi GA, Baldeiras I, Jones JG, Borges F, Oliveira PJ, Teixeira J. Mitochondria dysfunction induced by decyl-TPP mitochondriotropic antioxidant based on caffeic acid AntiOxCIN 6 sensitizes cisplatin lung anticancer therapy due to a remodeling of energy metabolism. Biochem Pharmacol 2024; 219:115953. [PMID: 38036191 DOI: 10.1016/j.bcp.2023.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Carina C Magalhães
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ludgero C Tavares
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - Katia Santos
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Inês Baldeiras
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Meyer C, Grego E, S. Vasanthi S, Rao NS, Massey N, Holtkamp C, Huss J, Showman L, Narasimhan B, Thippeswamy T. The NADPH Oxidase Inhibitor, Mitoapocynin, Mitigates DFP-Induced Reactive Astrogliosis in a Rat Model of Organophosphate Neurotoxicity. Antioxidants (Basel) 2023; 12:2061. [PMID: 38136181 PMCID: PMC10740988 DOI: 10.3390/antiox12122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
NADPH oxidase (NOX) is a primary mediator of superoxides, which promote oxidative stress, neurodegeneration, and neuroinflammation after diisopropylfluorophosphate (DFP) intoxication. Although orally administered mitoapocynin (MPO, 10 mg/kg), a mitochondrial-targeted NOX inhibitor, reduced oxidative stress and proinflammatory cytokines in the periphery, its efficacy in the brain regions of DFP-exposed rats was limited. In this study, we encapsulated MPO in polyanhydride nanoparticles (NPs) based on 1,6-bis(p-carboxyphenoxy) hexane (CPH) and sebacic anhydride (SA) for enhanced drug delivery to the brain and compared with a high oral dose of MPO (30 mg/kg). NOX2 (GP91phox) regulation and microglial (IBA1) morphology were analyzed to determine the efficacy of MPO-NP vs. MPO-oral in an 8-day study in the rat DFP model. Compared to the control, DFP-exposed animals exhibited significant upregulation of NOX2 and a reduced length and number of microglial processes, indicative of reactive microglia. Neither MPO treatment attenuated the DFP effect. Neurodegeneration (FJB+NeuN) was significantly greater in DFP-exposed groups regardless of treatment. Interestingly, neuronal loss in DFP+MPO-treated animals was not significantly different from the control. MPO-oral rescued inhibitory neuronal loss in the CA1 region of the hippocampus. Notably, MPO-NP and MPO-oral significantly reduced astrogliosis (absolute GFAP counts) and reactive gliosis (C3+GFAP). An analysis of inwardly rectifying potassium channels (Kir4.1) in astroglia revealed a significant reduction in the brain regions of the DFP+VEH group, but MPO had no effect. Overall, both NP-encapsulated and orally administered MPO had similar effects. Our findings demonstrate that MPO effectively mitigates DFP-induced reactive astrogliosis in several key brain regions and protects neurons in CA1, which may have long-term beneficial effects on spontaneous seizures and behavioral comorbidities. Long-term telemetry and behavioral studies and a different dosing regimen of MPO are required to understand its therapeutic potential.
Collapse
Affiliation(s)
- Christina Meyer
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Elizabeth Grego
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; (E.G.); (B.N.)
| | - Suraj S. Vasanthi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Nikhil S. Rao
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Claire Holtkamp
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Joselyn Huss
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA;
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; (E.G.); (B.N.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| |
Collapse
|
7
|
Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023; 18:83. [PMID: 37951933 PMCID: PMC10640762 DOI: 10.1186/s13024-023-00676-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany.
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Du F, Yu Q, Swerdlow RH, Waites CL. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain 2023; 146:4378-4394. [PMID: 37070763 PMCID: PMC10545530 DOI: 10.1093/brain/awad127] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Prolonged exposure to glucocorticoids, the main stress hormones, damages the brain and is a risk factor for depression and Alzheimer's disease. Two major drivers of glucocorticoid-related neurotoxicity are mitochondrial dysfunction and Tau pathology; however, the molecular/cellular mechanisms precipitating these events, and their causal relationship, remain unclear. Using cultured murine hippocampal neurons and 4-5-month-old mice treated with the synthetic glucocorticoid dexamethasone, we investigate the mechanisms underlying glucocorticoid-induced mitochondrial damage and Tau pathology. We find that glucocorticoids stimulate opening of the mitochondrial permeability transition pore via transcriptional upregulation of its activating component, cyclophilin D. Inhibition of cyclophilin D is protective against glucocorticoid-induced mitochondrial damage as well as Tau phosphorylation and oligomerization in cultured neurons. We further identify the mitochondrially-targeted compound mito-apocynin as an inhibitor of glucocorticoid-induced permeability transition pore opening, and show that this compound protects against mitochondrial dysfunction, Tau pathology, synaptic loss, and behavioural deficits induced by glucocorticoids in vivo. Finally, we demonstrate that mito-apocynin and the glucocorticoid receptor antagonist mifepristone rescue Tau pathology in cytoplasmic hybrid cells, an ex vivo Alzheimer's disease model wherein endogenous mitochondria are replaced with mitochondria from Alzheimer's subjects. These findings show that mitochondrial permeability transition pore opening is a precipitating factor in glucocorticoid-induced mitochondrial dysfunction, and that this event stimulates Tau pathogenesis. Our data also link glucocorticoids to mitochondrial dysfunction and Tau pathology in the context of Alzheimer's disease and suggest that mitochondria are promising therapeutic targets for mitigating stress- and Tau-related brain damage.
Collapse
Affiliation(s)
- Fang Du
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qing Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas School of Medicine, Landon Center on Aging, Kansas City, KS 66103, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Schlichtmann BW, Palanisamy BN, Malovic E, Nethi SK, Padhi P, Hepker M, Wurtz J, John M, Ban B, Anantharam V, Kanthasamy AG, Narasimhan B, Mallapragada SK. Aggregation-Inhibiting scFv-Based Therapies Protect Mice against AAV1/2-Induced A53T-α-Synuclein Overexpression. Biomolecules 2023; 13:1203. [PMID: 37627268 PMCID: PMC10452369 DOI: 10.3390/biom13081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, there is no cure for Parkinson's disease (PD). There is a pressing need for anti-neurodegenerative therapeutics that can slow or halt PD progression by targeting underlying disease mechanisms. Specifically, preventing the build-up of alpha-synuclein (αSyn) and its aggregated and mutated forms is a key therapeutic target. In this study, an adeno-associated viral vector loaded with the A53T gene mutation was used to induce rapid αSyn-associated PD pathogenesis in C57BL/6 mice. We tested the ability of a novel therapeutic, a single chain fragment variable (scFv) antibody with specificity only for pathologic forms of αSyn, to protect against αSyn-induced neurodegeneration, after unilateral viral vector injection in the substantia nigra. Additionally, polyanhydride nanoparticles, which provide sustained release of therapeutics with dose-sparing properties, were used as a delivery platform for the scFv. Through bi-weekly behavioral assessments and across multiple post-mortem immunochemical analyses, we found that the scFv-based therapies allowed the mice to recover motor activity and reduce overall αSyn expression in the substantia nigra. In summary, these novel scFv-based therapies, which are specific exclusively for pathological aggregates of αSyn, show early promise in blocking PD progression in a surrogate mouse PD model.
Collapse
Affiliation(s)
- Benjamin W. Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Bharathi N. Palanisamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Emir Malovic
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Susheel K. Nethi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Piyush Padhi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Monica Hepker
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Joseph Wurtz
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Manohar John
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PathoVacs, Incorporated, Ames, IA 50011, USA
| | - Bhupal Ban
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN 46202, USA;
| | - Vellareddy Anantharam
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| |
Collapse
|
10
|
Meyer C, Rao NS, Vasanthi SS, Pereira B, Gage M, Putra M, Holtkamp C, Huss J, Thippeswamy T. Peripheral and central effects of NADPH oxidase inhibitor, mitoapocynin, in a rat model of diisopropylfluorophosphate (DFP) toxicity. Front Cell Neurosci 2023; 17:1195843. [PMID: 37416507 PMCID: PMC10320212 DOI: 10.3389/fncel.2023.1195843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Organophosphates (OP) are highly toxic chemical nerve agents that have been used in chemical warfare. Currently, there are no effective medical countermeasures (MCMs) that mitigate the chronic effects of OP exposure. Oxidative stress is a key mechanism underlying OP-induced cell death and inflammation in the peripheral and central nervous systems and is not mitigated by the available MCMs. NADPH oxidase (NOX) is one of the leading producers of reactive oxygen species (ROS) following status epilepticus (SE). In this study, we tested the efficacy of the mitochondrial-targeted NOX inhibitor, mitoapocynin (MPO) (10 mg/kg, oral), in a rat diisopropylfluorophosphate (DFP) model of OP toxicity. In DFP-exposed animals, MPO decreased oxidative stress markers nitrite, ROS, and GSSG in the serum. Additionally, MPO significantly reduced proinflammatory cytokines IL-1β, IL-6, and TNF-α post-DFP exposure. There was a significant increase in GP91phox, a NOX2 subunit, in the brains of DFP-exposed animals 1-week post-challenge. However, MPO treatment did not affect NOX2 expression in the brain. Neurodegeneration (NeuN and FJB) and gliosis [microglia (IBA1 and CD68), and astroglia (GFAP and C3)] quantification revealed a significant increase in neurodegeneration and gliosis after DFP-exposure. A marginal reduction in microglial cells and C3 colocalization with GFAP in DFP + MPO was observed. The MPO dosing regimen used in this study at 10 mg/kg did not affect microglial CD68 expression, astroglial count, or neurodegeneration. MPO reduced DFP-induced oxidative stress and inflammation markers in the serum but only marginally mitigated the effects in the brain. Dose optimization studies are required to determine the effective dose of MPO to mitigate DFP-induced changes in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Polyphenolic Boronates Inhibit Tumor Cell Proliferation: Potential Mitigators of Oxidants in the Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15041089. [PMID: 36831432 PMCID: PMC9953882 DOI: 10.3390/cancers15041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Boronate-based compounds have been used in brain cancer therapy, either as prodrugs or in combination with other modalities. Boronates containing pro-luminescent and fluorescent probes have been used in mouse models of cancer. In this study, we synthesized and developed polyphenolic boronates and mitochondria-targeted polyphenolic phytochemicals (e.g., magnolol [MGN] and honokiol [HNK]) and tested their antiproliferative effects in brain cancer cells. Results show that mitochondria-targeted (Mito) polyphenolic boronates (Mito-MGN-B and Mito-HNK-B) were slightly more potent than Mito-MGN and Mito-HNK in inhibiting proliferation of the U87MG cell line. Similar proliferation results also were observed in other cancer cell lines, such as MiaPaCa-2, A549 and UACC-62. Independent in vitro experiments indicated that reactive nitrogen species (e.g., peroxynitrite) and reactive oxygen species (e.g., hydrogen peroxide) stoichiometrically react with polyphenolic boronates and Mito-polphenolic boronates, forming polyphenols and Mito-polyphenols as major products. Previous reports suggest that both Mito-MGN and Mito-HNK activate cytotoxic T cells and inhibit immunosuppressive immune cells. We propose that Mito-polyphenolic boronate-based prodrugs may be used to inhibit tumor proliferation and mitigate oxidant formation in the tumor microenvironment, thereby generating Mito-polyphenols in situ, as well as showing activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, 13009 Marseille, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13009 Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
13
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
Affiliation(s)
- Cristina M Santana Maldonado
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Benton Purnell
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Rui Li
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jodi Smith
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Daniel R Thedens
- Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA.
| | - Phillip Gauger
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Naren P, Cholkar A, Kamble S, Khan SS, Srivastava S, Madan J, Mehra N, Tiwari V, Singh SB, Khatri DK. Pathological and Therapeutic Advances in Parkinson's Disease: Mitochondria in the Interplay. J Alzheimers Dis 2023; 94:S399-S428. [PMID: 36093711 PMCID: PMC10473111 DOI: 10.3233/jad-220682] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative illness majorly affecting the population between the ages of 55 to 65 years. Progressive dopaminergic neuronal loss and the collective assemblage of misfolded alpha-synuclein in the substantia nigra, remain notable neuro-pathological hallmarks of the disease. Multitudes of mechanistic pathways have been proposed in attempts to unravel the pathogenesis of PD but still, it remains elusive. The convergence of PD pathology is found in organelle dysfunction where mitochondria remain a major contributor. Mitochondrial processes like bioenergetics, mitochondrial dynamics, and mitophagy are under strict regulation by the mitochondrial genome and nuclear genome. These processes aggravate neurodegenerative activities upon alteration through neuroinflammation, oxidative damage, apoptosis, and proteostatic stress. Therefore, the mitochondria have grabbed a central position in the patho-mechanistic exploration of neurodegenerative diseases like PD. The management of PD remains a challenge to physicians to date, due to the variable therapeutic response of patients and the limitation of conventional chemical agents which only offer symptomatic relief with minimal to no disease-modifying effect. This review describes the patho-mechanistic pathways involved in PD not only limited to protein dyshomeostasis and oxidative stress, but explicit attention has been drawn to exploring mechanisms like organelle dysfunction, primarily mitochondria and mitochondrial genome influence, while delineating the newer exploratory targets such as GBA1, GLP, LRRK2, and miRNAs and therapeutic agents targeting them.
Collapse
Affiliation(s)
- Padmashri Naren
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anjali Cholkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Suchita Kamble
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sabiya Samim Khan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Neelesh Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi (U.P.), India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Atayik MC, Çakatay U. Mitochondria-associated cellular senescence mechanisms: Biochemical and pharmacological perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437976 DOI: 10.1016/bs.apcsb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Initially, endosymbiotic relation of mitochondria and other cellular compartments had been continued mutually. However, that evolutionary adaptation impaired because of the deterioration of endosymbiotic crosstalk due to aging and several pathological consequences in cellular redox status are seen, such as deterioration in redox integrity of mitochondria, interfered inter-organelle redox signaling and inefficient antioxidant response element mediated gene expression. Although the dysfunction of mitochondria is known to be a classical pattern of senescence, it is unresolved that why dysfunctional mitochondria is the core of senescence-associated secretory phenotype (SASP). Redox impairment and SASP-related disease development are generally together with weaken immunity. Impaired mitochondrial redox integrity and its ineffectiveness in immunity control render elders to be more prone to age-related diseases. As senotherapeutic agents, senolytics remove senescent cells whilst senomorphics/senostatics inhibits the secretion of SASP. Senotherapeutics and the novel approaches for ameliorating SASP-related unfavorable effects are recently thought to be promising ways as mitochondria-targeted gerotherapeutic options.
Collapse
|
16
|
Khan MM, Paez HG, Pitzer CR, Alway SE. The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 2023; 21:1100-1116. [PMID: 36089791 PMCID: PMC10286589 DOI: 10.2174/1570159x05666220908100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Tennessee Institute of Regenerative Medicine, 910 Madison Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
17
|
Atayik MC, Çakatay U. Mitochondria-targeted senotherapeutic interventions. Biogerontology 2022; 23:401-423. [PMID: 35781579 DOI: 10.1007/s10522-022-09973-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Healthy aging is the art of balancing a delicate scale. On one side of the scale, there are the factors that make life difficult with aging, and on the other side are the products of human effort against these factors. The most important factors that make the life difficult with aging are age-related disorders. Developing senotherapeutic strategies may bring effective solutions for the sufferers of age-related disorders. Mitochondrial dysfunction comes first in elucidating the pathogenesis of age-related disorders and presenting appropriate treatment options. Although it has been widely accepted that mitochondrial dysfunction is a common characteristic of cellular senescence, it still remains unclear why dysfunctional mitochondria occupy a central position in the development senescence-associated secretory phenotype (SASP) related to age-related disorders. Mitochondrial dysfunction and SASP-related disease progression are closely interlinked to weaken immunity which is a common phenomenon in aging. A group of substances known as senotherapeutics targeted to senescent cells can be classified into two main groups: senolytics (kill senescent cells) and senomorphics/senostatics (suppress their SASP secretions) in order to extend health lifespan and potentially lifespan. As mitochondria are also closely related to the survival of senescent cells, using either mitochondria-targeted senolytic or redox modulator senomorphic strategies may help us to solve the complex problems with the detrimental consequences of cellular senescence. Killing of senescent cells and/or ameliorate their SASP-related negative effects are currently considered to be effective mitochondria-directed gerotherapeutic approaches for fighting against age-related disorders.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
18
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Mitochondria research and neurodegenerative diseases: on the track to understanding the biological world of high complexity. Mitochondrion 2022; 65:67-79. [PMID: 35623557 DOI: 10.1016/j.mito.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
From the simple unicellular eukaryote to the highly complex multicellular organism like Human, mitochondrion emerges as a ubiquitous player to ensure the organism's functionality. It is popularly known as "the powerhouse of the cell" by its key role in ATP generation. However, our understanding of the physiological relevance of mitochondria is being challenged by data obtained in different fields. In this review, a short history of the mitochondria research field is presented, stressing the findings and questions that allowed the knowledge advances, and put mitochondrion as the main player of safeguarding organism life as well as a key to solve the puzzle of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Francisco Peixoto
- Chemistry Center - Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria M Oliveira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal.
| |
Collapse
|
19
|
Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM, Vázquez-Meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants (Basel) 2022; 11:antiox11050801. [PMID: 35624667 PMCID: PMC9138001 DOI: 10.3390/antiox11050801] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium is used in many cellular processes and is maintained within the cell as free calcium at low concentrations (approximately 100 nM), compared with extracellular (millimolar) concentrations, to avoid adverse effects such as phosphate precipitation. For this reason, cells have adapted buffering strategies by compartmentalizing calcium into mitochondria and the endoplasmic reticulum (ER). In mitochondria, the calcium concentration is in the millimolar range, as it is in the ER. Mitochondria actively contribute to buffering cellular calcium, but if matrix calcium increases beyond physiological demands, it can promote the opening of the mitochondrial permeability transition pore (mPTP) and, consequently, trigger apoptotic or necrotic cell death. The pathophysiological implications of mPTP opening in ischemia-reperfusion, liver, muscle, and lysosomal storage diseases, as well as those affecting the central nervous system, for example, Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) have been reported. In this review, we present an updated overview of the main cellular mechanisms of mitochondrial calcium regulation. We specially focus on neurodegenerative diseases related to imbalances in calcium homeostasis and summarize some proposed therapies studied to attenuate these diseases.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
- Correspondence: ; Tel.: +52-55-5623-2168
| |
Collapse
|
20
|
Massey N, Shrestha D, Bhat SM, Padhi P, Wang C, Karriker LA, Smith JD, Kanthasamy AG, Charavaryamath C. Mitoapocynin Attenuates Organic Dust Exposure-Induced Neuroinflammation and Sensory-Motor Deficits in a Mouse Model. Front Cell Neurosci 2022; 16:817046. [PMID: 35496912 PMCID: PMC9043522 DOI: 10.3389/fncel.2022.817046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Increased incidences of neuro-inflammatory diseases in the mid-western United States of America (USA) have been linked to exposure to agriculture contaminants. Organic dust (OD) is a major contaminant in the animal production industry and is central to the respiratory symptoms in the exposed individuals. However, the exposure effects on the brain remain largely unknown. OD exposure is known to induce a pro-inflammatory phenotype in microglial cells. Further, blocking cytoplasmic NOX-2 using mitoapocynin (MA) partially curtail the OD exposure effects. Therefore, using a mouse model, we tested a hypothesis that inhaled OD induces neuroinflammation and sensory-motor deficits. Mice were administered with either saline, fluorescent lipopolysaccharides (LPSs), or OD extract intranasally daily for 5 days a week for 5 weeks. The saline or OD extract-exposed mice received either a vehicle or MA (3 mg/kg) orally for 3 days/week for 5 weeks. We quantified inflammatory changes in the upper respiratory tract and brain, assessed sensory-motor changes using rotarod, open-field, and olfactory test, and quantified neurochemicals in the brain. Inhaled fluorescent LPS (FL-LPS) was detected in the nasal turbinates and olfactory bulbs. OD extract exposure induced atrophy of the olfactory epithelium with reduction in the number of nerve bundles in the nasopharyngeal meatus, loss of cilia in the upper respiratory epithelium with an increase in the number of goblet cells, and increase in the thickness of the nasal epithelium. Interestingly, OD exposure increased the expression of HMGB1, 3- nitrotyrosine (NT), IBA1, glial fibrillary acidic protein (GFAP), hyperphosphorylated Tau (p-Tau), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-positive cells in the brain. Further, OD exposure decreased time to fall (rotarod), total distance traveled (open-field test), and olfactory ability (novel scent test). Oral MA partially rescued olfactory epithelial changes and gross congestion of the brain tissue. MA treatment also decreased the expression of HMGB1, 3-NT, IBA1, GFAP, and p-Tau, and significantly reversed exposure induced sensory-motor deficits. Neurochemical analysis provided an early indication of depressive behavior. Collectively, our results demonstrate that inhalation exposure to OD can cause sustained neuroinflammation and behavior deficits through lung-brain axis and that MA treatment can dampen the OD-induced inflammatory response at the level of lung and brain.
Collapse
Affiliation(s)
- Nyzil Massey
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Denusha Shrestha
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Piyush Padhi
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Chong Wang
- Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States
- Statistics, Iowa State University, Ames, IA, United States
| | - Locke A. Karriker
- Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States
| | - Jodi D. Smith
- Veterinary Pathology, Iowa State University, Ames, IA, United States
| | | | - Chandrashekhar Charavaryamath
- Biomedical Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Chandrashekhar Charavaryamath ; orcid.org/0000-0002-5217-1608
| |
Collapse
|
21
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
22
|
Abstract
Gastrointestinal illnesses and dysbiosis are among the most common comorbidities reported in patients with neurodevelopmental disorders. The manuscript reports that C. difficile infection (CDI), predisposed by antibiotic-induced gut dysbiosis, causes significant alterations in dopamine metabolism in major dopaminergic brain regions in mice (P < 0.05). In addition, C. difficile infected mice exhibited significantly reduced dopamine beta-hydroxylase (DBH) activity compared to controls (P < 0.01). Moreover, a significantly increased serum concentration of p-cresol, a DBH inhibiting gut metabolite produced by C. difficile, was also observed in C. difficile infected mice (P < 0.05). Therefore, this study suggests a potential mechanistic link between CDI and alterations in the brain dopaminergic axis. Such alterations may plausibly influence the precipitation and aggravation of dopamine dysmetabolism-associated neurologic diseases in infected patients. IMPORTANCE The gut-brain axis is thought to play a significant role in the development and manifestation of neurologic diseases. This study reports significant alterations in the brain dopamine metabolism in mice infected with C. difficile, an important pathogen that overgrows in the gut after prolonged antibiotic therapy. Such alterations in specific brain regions may have an effect on the precipitation or manifestation of neurodevelopmental disorders in humans.
Collapse
|
23
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
24
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
25
|
Mehmood A, Ali W, Din ZU, Song S, Sohail M, Shah W, Guo J, Guo RY, Ilahi I, Shah S, Al-Shaebi F, Zeb L, Asiamah EA, Al-Dhamin Z, Bilal H, Li B. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson's disease. Brain Behav 2021; 11:e2280. [PMID: 34291612 PMCID: PMC8413717 DOI: 10.1002/brb3.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, genome-editing technology like clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has improved the translational gap in the treatments mediated through gene therapy. The advantages of the CRISPR system, such as, work in the living cells and tissues, candidate this technique for the employing in experiments and the therapy of central nervous system diseases. Parkinson's disease (PD) is a widespread, disabling, neurodegenerative disease induced by dopaminergic neuron loss and linked to progressive motor impairment. Pathophysiological basis knowledge of PD has modified the PD classification model and expresses in the sporadic and familial types. Analyses of the earliest genetic linkage have shown in PD the inclusion of synuclein alpha (SNCA) genomic duplication and SNCA mutations in the familial types of PD pathogenesis. This review analyzes the structure, development, and function in genome editing regulated through the CRISPR/Cas9. Also, it explains the genes associated with PD pathogenesis and the appropriate modifications to favor PD. This study follows the direction by understanding the PD linking analyses in which the CRISPR technique is applied. Finally, this study explains the limitations and future trends of CRISPR service in relation to the genome-editing process in PD patients' induced pluripotent stem cells.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jiangyuan Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei, 050017, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Ernest Amponsah Asiamah
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, 050017, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Hazrat Bilal
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| |
Collapse
|
26
|
Schlichtmann BW, Kalyanaraman B, Schlichtmann RL, Panthani MG, Anantharam V, Kanthasamy AG, Mallapragada SK, Narasimhan B. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. J Biomed Mater Res B Appl Biomater 2021; 110:450-459. [PMID: 34312984 DOI: 10.1002/jbm.b.34922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease affecting a large proportion of older adults. Exposure to pesticides like rotenone is a leading cause for PD. To reduce disease progression and prolong life expectancy, it is important to target disease mechanisms that contribute to dopaminergic neuronal atrophy, including mitochondrial dysfunction. Achieving targeted mitochondrial delivery is difficult for many therapeutics by themselves, necessitating higher therapeutic doses that could lead to toxicity. To minimize this adverse effect, targeted nano-carriers such as polyanhydride nanoparticles (NPs) can protect therapeutics from degradation and provide sustained release, enabling fewer administrations and lower therapeutic dose. This work expands upon the use of the polyanhydride NP platform for targeted drug delivery by functionalizing the polymer with a derivative of triphenylphosphonium called (3-carboxypropyl) triphenylphosphonium (CPTP) using a novel method that enables longer CPTP persistence on the NPs. The extent to which neurons internalized both nonfunctionalized and functionalized NPs was tested. Next, the efficacy of these nanoformulations in treating rotenone-induced mitochondrial dysfunction in the same cell line was evaluated using a novel neuroprotective drug, mito-metformin. CPTP functionalization significantly improved NP internalization by neuronal cells. This was correlated with significant protection by CPTP-functionalized, mito-metformin encapsulated NPs against rotenone-induced mitochondrial dysfunction. However, nonfunctionalized, mito-metformin encapsulated NPs and soluble mito-metformin administered at the same dose did not significantly protect cells from rotenone-induced toxicity. These results indicate that the targeted NP platform can provide enhanced dose-sparing and potentially reduce the occurrence of systemic side-effects for PD therapeutics.
Collapse
Affiliation(s)
| | | | - Rainie L Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Matthew G Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA.,Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
27
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
28
|
Ghosh A, Comerota MM, Wan D, Chen F, Propson NE, Hwang SH, Hammock BD, Zheng H. An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease. Sci Transl Med 2021; 12:12/573/eabb1206. [PMID: 33298560 DOI: 10.1126/scitranslmed.abb1206] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been increasingly recognized to play a critical role in Alzheimer's disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH). We report that sEH is predominantly expressed in astrocytes and is elevated in postmortem brain tissue from patients with AD and in the 5xFAD β amyloid mouse model of AD. The amount of sEH expressed in AD mouse brains correlated with a reduction in brain EpFA concentrations. Using a specific small-molecule sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report that TPPU treatment protected wild-type mice against LPS-induced inflammation in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation. This was associated with reduced β amyloid pathology and improved synaptic integrity and cognitive function on two behavioral tests. TPPU treatment correlated with an increase in EpFA concentrations in the brains of 5xFAD mice, demonstrating brain penetration and target engagement of this small molecule. These findings support further investigation of TPPU as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele M Comerota
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debin Wan
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Fading Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Shakil S, Masjoan Juncos JX, Mariappan N, Zafar I, Amudhan A, Amudhan A, Aishah D, Siddiqui S, Manzoor S, Santana CM, Rumbeiha WK, Salim S, Ahmad A, Ahmad S. Behavioral and Neuronal Effects of Inhaled Bromine Gas: Oxidative Brain Stem Damage. Int J Mol Sci 2021; 22:6316. [PMID: 34204780 PMCID: PMC8231550 DOI: 10.3390/ijms22126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.
Collapse
Affiliation(s)
- Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Apoorva Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Archita Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Duha Aishah
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Simmone Siddiqui
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shajer Manzoor
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Cristina M. Santana
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Wilson K. Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77004, USA;
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| |
Collapse
|
30
|
Sarkar S. Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson's Diseases. Curr Environ Health Rep 2021; 8:203-211. [PMID: 34043217 DOI: 10.1007/s40572-021-00320-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the most prevalent motor disorder and is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Though the pathology of PD is well established, the cause of this neuronal loss is not well understood. Approximately 90% of PD cases are sporadic, and the environment plays a significant role in disease pathogenesis. The etiology of PD is highly complex, with neuroinflammation being one of the most critical factors implicated in PD. However, the signaling mechanisms underlying neuroinflammation and its interaction with environmental factors are unclear. RECENT FINDINGS Astroglia and microglia are the two principal cells that play an essential role in maintaining neuronal health in many ways, including through immunological means. Exposure to environmental stressors from various sources affects these glial cells leading to chronic and sustained inflammation. Recent epidemiological studies have identified an interaction among environmental factors and glial genes in Parkinson's disease. Mechanistic studies have shown that exposure to pesticides like rotenone and paraquat, neurotoxic metals like manganese and lead, and even diesel exhaust fumes induce glial activation by regulating various key inflammatory pathways, including the inflammasomes, NOX pathways, and others. This review aims to discuss the recent advances in understanding the mechanism of glial induction in response to environmental stressors and discuss the potential role of gene-environment interaction in driving glial activation.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Organic dust exposure induces stress response and mitochondrial dysfunction in monocytic cells. Histochem Cell Biol 2021; 155:699-718. [PMID: 33755775 DOI: 10.1007/s00418-021-01978-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Exposure to airborne organic dust (OD), rich in microbial pathogen-associated molecular patterns (PAMPs), is shown to induce lung inflammation. A common manifestation in lung inflammation is altered mitochondrial structure and bioenergetics that regulate mitochondrial ROS (mROS) and feed a vicious cycle of mitochondrial dysfunction. The role of mitochondrial dysfunction in other airway diseases is well known. However, whether OD exposure induces mitochondrial dysfunction remains elusive. Therefore, we tested a hypothesis that organic dust extract (ODE) exposure induces mitochondrial stress using a human monocytic cell line (THP1). We examined whether co-exposure to ethyl pyruvate (EP) or mitoapocynin (MA) could rescue ODE exposure induced mitochondrial changes. Transmission electron micrographs showed significant differences in cellular and organelle morphology upon ODE exposure. ODE exposure with and without EP co-treatment increased the mtDNA leakage into the cytosol. Next, ODE exposure increased PINK1, Parkin, cytoplasmic cytochrome c levels, and reduced mitochondrial mass and cell viability, indicating mitophagy. MA treatment was partially protective by decreasing Parkin expression, mtDNA and cytochrome c release and increasing cell viability.
Collapse
|
32
|
Tungalag T, Yang DK. Sinapic Acid Protects SH-SY5Y Human Neuroblastoma Cells against 6-Hydroxydopamine-Induced Neurotoxicity. Biomedicines 2021; 9:biomedicines9030295. [PMID: 33805692 PMCID: PMC8000777 DOI: 10.3390/biomedicines9030295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by progressive dopaminergic neuron loss or dysfunction and is the second most prevalent neurodegenerative disorder after Alzheimer’s disease. However, current therapeutic strategies for PD are limited to treating the outcomes of this disease rather than preventing it. Sinapic acid (SA) is a phenolic compound with potential antioxidant properties, which reportedly acts as a therapeutic agent against many diseases including cancer, as well as cardiac and liver diseases. However, little is known about the effects of SA against neurodegenerative disorders. Therefore, our study sought to evaluate the neuroprotective effects of non-cytotoxic concentrations of SA against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells, which we used as an in vitro PD model. SA increased cell viability and rescued the cells from 6-OHDA-induced apoptotic cell death. Additionally, oxidative stress responses were significantly blocked by SA, including reactive oxygen species (ROS) overproduction and decreased expression levels of antioxidant proteins. Notably, SA also attenuated mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Moreover, SA dramatically inhibited the activation of mitogen-activated protein kinase (MAPK) proteins. Taken together, our findings highlight the potential PD prevention effects of SA, as well as its underlying mechanisms, making this compound a promising prevention and treatment agent for PD.
Collapse
|
33
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
34
|
Massey N, Shrestha D, Bhat SM, Kondru N, Charli A, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic dust-induced mitochondrial dysfunction could be targeted via cGAS-STING or cytoplasmic NOX-2 inhibition using microglial cells and brain slice culture models. Cell Tissue Res 2021; 384:465-486. [PMID: 33687557 DOI: 10.1007/s00441-021-03422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Organic dust (OD) exposure in animal production industries poses serious respiratory and other health risks. OD consisting of microbial products and particulate matter and OD exposure-induced respiratory inflammation are under investigation. However, the effect of OD exposure on brain remains elusive. We show that OD exposure of microglial cells induces an inflammatory phenotype with the release of mitochondrial DNA (mt-DNA). Therefore, we tested a hypothesis that OD exposure-induced secreted mt-DNA signaling drives the inflammation. A mouse microglial cell line was treated with medium or organic dust extract (ODE, 1% v/v) along with either phosphate-buffered saline (PBS) or mitoapocynin (MA, 10 µmol). Microglia treated with control or anti-STING siRNA were exposed to medium or ODE. Mouse organotypic brain slice cultures (BSCs) were exposed to medium or ODE with or without MA. Various samples were processed to quantify mitochondrial reactive oxygen species (mt-ROS), mt-DNA, cytochrome c, TFAM, mitochondrial stress markers and mt-DNA-induced signaling via cGAS-STING and TLR9. Data were analyzed and a p value of ≤ 0.05 was considered significant. MA treatment decreased the ODE-induced mt-DNA release into the cytosol. ODE increased MFN1/2 and PINK1 but not DRP1 and MA treatment decreased the MFN2 expression. MA treatment decreased the ODE exposure-induced mt-DNA signaling via cGAS-STING and TLR9. Anti-STING siRNA decreased the ODE-induced increase in IRF3, IFN-β and IBA-1 expression. In BSCs, MA treatment decreased the ODE-induced TNF-α, IL-6 and MFN1. Therefore, OD exposure-induced mt-DNA signaling was curtailed through cytoplasmic NOX-2 inhibition or STING suppression to reduce brain microglial inflammatory response.
Collapse
Affiliation(s)
- Nyzil Massey
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | - Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
35
|
Bravo-Sánchez E, Peña-Montes D, Sánchez-Duarte S, Saavedra-Molina A, Sánchez-Duarte E, Montoya-Pérez R. Effects of Apocynin on Heart Muscle Oxidative Stress of Rats with Experimental Diabetes: Implications for Mitochondria. Antioxidants (Basel) 2021; 10:antiox10030335. [PMID: 33668280 PMCID: PMC7996266 DOI: 10.3390/antiox10030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the β-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study’s goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.
Collapse
Affiliation(s)
- Estefanía Bravo-Sánchez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Donovan Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Sarai Sánchez-Duarte
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Guanajuato, Mexico
- Correspondence: (E.S.-D.); (R.M.-P.); Tel.: +521-477-2670-4900 (ext. 4833) (E.S.-D.); +521-(443)-322-3500 (ext. 4217) (R.M.-P.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
- Correspondence: (E.S.-D.); (R.M.-P.); Tel.: +521-477-2670-4900 (ext. 4833) (E.S.-D.); +521-(443)-322-3500 (ext. 4217) (R.M.-P.)
| |
Collapse
|
36
|
Liu N, Lin MM, Huang SS, Liu ZQ, Wu JC, Liang ZQ, Qin ZH, Wang Y. NADPH and Mito-Apocynin Treatment Protects Against KA-Induced Excitotoxic Injury Through Autophagy Pathway. Front Cell Dev Biol 2021; 9:612554. [PMID: 33644049 PMCID: PMC7905037 DOI: 10.3389/fcell.2021.612554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Aim Previous research recognizes that NADPH can produce reduced glutathione (GSH) as a coenzyme and produce ROS as a substrate of NADPH oxidase (NOX). Besides, excessive activation of glutamate receptors results in mitochondrial impairment. The study aims at spelling out the effects of NADPH and Mito-apocynin, a NOX inhibitor which specifically targets the mitochondria, on the excitotoxicity induced by Kainic acid (KA) and its mechanism. Methods The in vivo neuronal excitotoxicity model was constructed by stereotypically injecting KA into the unilateral striatum of mice. Administrated NADPH (i.v, intravenous) 30 min prior and Mito-apocynin (i.g, intragastric) 1 day prior, respectively, then kept administrating daily until mice were sacrificed 14 days later. Nissl staining measured the lesion of striatum and survival status of neurons. Cylinder test of forelimb asymmetry and the adhesive removal test reflected the behavioral deficit caused by neural dysfunction. Determined Total superoxide dismutase (T-SOD), malondialdehyde (MDA), and GSH indicated oxidative stress. Western blot presented the expression levels of LC3-II/LC3-I, SQSTM1/p62, TIGAR, and NOX4. Assessed oxygen consumption rate using High-Resolution Respirometry. In vitro, the MitoSOX Indicator reflected superoxide released by neuron mitochondria. JC-1 and ATP assay Kit were used to detect mitochondrial membrane potential (MMP) and energy metabolism, respectively. Results In this study, we have successfully established excitotoxic model by KA in vivo and in vitro. KA induced decreased SOD activity and increased MDA concentration. KA cause the change of LC3-II/LC3-I, SQSTM1/p62, and TIGAR expression, indicating the autophagy activation. NADPH plays a protective role in vivo and in vitro. It reversed the KA-mediated changes in LC3, SQSTM1/p62, TIGAR, and NOX4 protein expression. Mito-apocynin inhibited KA-induced increases in mitochondrial NOX4 expression and activity. Compared with NADPH, the combination showed more significant neuroprotective effects, presenting more neurons survive and better motor function recovery. The combination also better inhibited the over-activated autophagy. In vitro, combination of NADPH and Mito-apocynin performed better in restoring mitochondria membrane potential. Conclusion In summary, combined administration of NADPH and NOX inhibitors offers better neuroprotection by reducing NADPH as a NOX substrate to generate ROS. The combined use of NADPH and Mito-apocynin can better restore neurons and mitochondrial function through autophagy pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zi-Qi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, Singh N, Manne S, Neal M, Gabrielle M, Abdalla A, Anantharam P, Rokad D, Panicker N, Singh V, Ay M, Charli A, Harischandra D, Jin LW, Jin H, Rangaraju S, Anantharam V, Wulff H, Kanthasamy AG. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest 2021; 130:4195-4212. [PMID: 32597830 DOI: 10.1172/jci136174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Jie Luo
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Monica Langley
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Sireesha Manne
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Matthew Neal
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Michelle Gabrielle
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdalla
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Medicine Building, ISU, Ames, Iowa, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Muhammet Ay
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Dilshan Harischandra
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Lee-Way Jin
- M.I.N.D. Institute, Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, UCD, Davis, California, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| |
Collapse
|
38
|
Mitoapocynin, a mitochondria targeted derivative of apocynin induces mitochondrial ROS generation and apoptosis in multiple cell types including cardiac myoblasts: a potential constraint to its therapeutic use. Mol Cell Biochem 2021; 476:2047-2059. [PMID: 33515200 DOI: 10.1007/s11010-020-04039-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Mitoapocynin is a triphenylphosphonium conjugated derivative of apocynin that specifically locates to the mitochondria. It has been developed as a mitochondrially targeted therapeutic antioxidant. We attempted to attenuate the mitochondrial ROS induced in H9c2 cardiac myoblast cells treated with norepinephrine. Mitoapocynin was a poor quencher of total ROS as detected by the fluoroprobe DCFH-DA. Using mitochondrial superoxide specific probe MitoSoxRed, we found that 5-10 µM mitoapocynin itself induces superoxide over and above that is generated by the norepinephrine treatment. A supposedly control molecule to mitoapocynin, the synthetic compound PhC11TPP, having the triphenylphosphonium group and a benzene moiety with C11 aliphatic chain spacer was also found to be a robust inducer of mitochondrial ROS. Subsequent assays with several cell lines viz., NIH3T3, HEK293, Neuro2A, MCF-7 and H9c2, showed that prolonged exposure to mitoapocynin induces cell death by apoptosis that can be partially prevented by the general antioxidant N-acetyl cysteine. Analyses of mitochondrial electron transport complexes by Blue Native Polyacrylamide gel electrophoresis showed that both mitoapocynin and PhC11TPP disrupt the mitochondrial Complex I and V, and in addition, PhC11TPP also damages the Complex IV. Our data thus highlights the limitations of the therapeutic use of mitoapocynin as an antioxidant.
Collapse
|
39
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
40
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
Affiliation(s)
- Meghan C. Gage
- Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
41
|
Zhu G, Harischandra DS, Ghaisas S, Zhang P, Prall W, Huang L, Maghames C, Guo L, Luna E, Mack KL, Torrente MP, Luk KC, Shorter J, Yang X. TRIM11 Prevents and Reverses Protein Aggregation and Rescues a Mouse Model of Parkinson's Disease. Cell Rep 2020; 33:108418. [PMID: 33264628 PMCID: PMC7906527 DOI: 10.1016/j.celrep.2020.108418] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/15/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Neurodegenerative diseases are characterized by the formation and propagation of protein aggregates, especially amyloid fibrils. However, what normally suppresses protein misfolding and aggregation in metazoan cells remains incompletely understood. Here, we show that TRIM11, a member of the metazoan tripartite motif (TRIM) family, both prevents the formation of protein aggregates and dissolves pre-existing protein deposits, including amyloid fibrils. These molecular chaperone and disaggregase activities are ATP independent. They enhance folding and solubility of normal proteins and cooperate with TRIM11 SUMO ligase activity to degrade aberrant proteins. TRIM11 abrogates α-synuclein fibrillization and restores viability in cell models of Parkinson's disease (PD). Intracranial adeno-associated viral delivery of TRIM11 mitigates α-synuclein-mediated pathology, neurodegeneration, and motor impairments in a PD mouse model. Other TRIMs can also function as ATP-independent molecular chaperones and disaggregases. Thus, we define TRIMs as a potent and multifunctional protein quality-control system in metazoa, which might be applied to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Guixin Zhu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dilshan S Harischandra
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shivani Ghaisas
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pengfei Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wil Prall
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liangqian Huang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chantal Maghames
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Guo
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esteban Luna
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana P Torrente
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Si XL, Fang YJ, Li LF, Gu LY, Yin XZ, Jun-Tian, Yan YP, Pu JL, Zhang BR. From inflammasome to Parkinson's disease: Does the NLRP3 inflammasome facilitate exosome secretion and exosomal alpha-synuclein transmission in Parkinson's disease? Exp Neurol 2020; 336:113525. [PMID: 33161049 DOI: 10.1016/j.expneurol.2020.113525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
A pivotal neuropathological manifestation of synucleinopathies, like Parkinson's disease (PD), is the aggregation of α-synuclein. In a recent cell-to-cell transmission model of α-synuclein, α-synuclein propagation was demonstrated to resemble that of prion proteins in the central nervous system. Furthermore, exosomes, as biomolecule carriers, have been shown to transmit α-synuclein from neuron to neuron. However, the mechanisms underlying exosomal α-synuclein transmission have not been well understood. The NLR family pyrin domain containing 3 protein (NLRP3) inflammasome activation in microglia, and the subsequent release of proinflammatory cytokines, are two crucial pathological events involved in neuroinflammation and PD progression. Research has revealed that the NLRP3 inflammasome may facilitate the secretion of extracellular vesicles, as well as exosomal transmission of proteins like aggregated α-synuclein. However, only a few reports have evaluated these pathogenic mechanisms. Herein we evaluate for the first time the current evidence for the involvement of the NLRP3 inflammasome in microvesicle generation by microglial cells, and the various mechanisms regarding the production, shedding, and content of exosomes in relation to α-synuclein transmission from neuron to neuron. Furthermore, we propose a model of microglial NLRP3 inflammasome-dependent exosome secretion and exosomal α-synuclein transmission in PD. This knowledge may lead to the identification of novel potential targets for drug development and stimulate further research in PD.
Collapse
Affiliation(s)
- Xiao-Li Si
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ling-Fei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lu-Yan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xin-Zhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jun-Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ya-Ping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
43
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Activation of STAT3/NLRC4 Inflammasome Signaling Axis through PKCδ in Astrocytes: Implications for Parkinson's Disease. Cells 2020; 9:cells9081831. [PMID: 32759670 PMCID: PMC7464730 DOI: 10.3390/cells9081831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Astrocytic dysfunction has been implicated in Parkinson's disease (PD) pathogenesis. While the Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 signaling axis is known to play a role in PD-like neuropathology, the molecular mechanisms that govern this process remain poorly understood. Herein, we show that TWEAK levels are elevated in PD serum compared to controls. Moreover, using both U373 human astrocyte cells and primary mouse astrocytes, we demonstrate that TWEAK induces mitochondrial oxidative stress as well as protein kinase C delta (PKCδ) and signal transducer and activator of transcription 3 (STAT3) activation, accompanied by NLRC4 inflammasome activation and upregulation and release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-18. Mechanistically, TWEAK-induced PKCδ activation enhances the STAT3/NLRC4 signaling pathway and other proinflammatory mediators through a mitochondrial oxidative stress-dependent mechanism. We further show that PKCδ knockdown and mito-apocynin, a mitochondrial antioxidant, suppress TWEAK-induced proinflammatory NLRC4/STAT3 signaling and cellular oxidative stress response. Notably, we validated our in vitro findings in an MPTP mouse model of PD and in mice receiving intrastriatal administration of TWEAK. These results indicate that TWEAK is a key regulator of astroglial reactivity and illustrate a novel mechanism by which mitochondrial oxidative stress may influence dopaminergic neuronal survival in PD.
Collapse
|
44
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
45
|
Massey N, Puttachary S, Bhat SM, Kanthasamy AG, Charavaryamath C. HMGB1-RAGE Signaling Plays a Role in Organic Dust-Induced Microglial Activation and Neuroinflammation. Toxicol Sci 2020; 169:579-592. [PMID: 30859215 DOI: 10.1093/toxsci/kfz071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Occupational exposure to contaminants in agriculture and other industries is known to cause significant respiratory ailments. The effect of organic dust on lung inflammation and tissue remodeling has been actively investigated over many years but the adverse effect of organic dust-exposure on the central vital organ brain is beginning to emerge. Brain microglial cells are a major driver of neuroinflammation upon exposure to danger signals. Therefore, we tested a hypothesis that organic dust-exposure of microglial cells induces microglial cell activation and inflammation through HMGB1-RAGE signaling. Mouse microglial cells were exposed to organic dust extract showed a time-dependent increase in cytoplasmic translocation of high-mobility group box 1 (HMGB1) from the nucleus, increased expression of receptor for advanced glycation end products (RAGE) and activation of Iba1 as compared to control cells. Organic dust also induced reactive oxygen species generation, NF-κB activation, and proinflammatory cytokine release. To establish a functional relevance of HMGB1-RAGE activation in microglia-mediated neuroinflammation, we used both pharmacological and genetic approaches involving HMGB1 translocation inhibitor ethyl pyruvate (EP), anti-HMGB1 siRNA, and NOX-inhibitor mitoapocynin. Interestingly, EP effectively reduced HMGB1 nucleocytoplasmic translocation and RAGE expression along with reactive oxygen species (ROS) generation and TNF-α and IL-6 production but not NF-κB activation. HMGB1 knockdown by siRNA also reduced both ROS and reactive nitrogen species (RNS) and IL-6 levels but not TNF-α. NOX2 inhibitor mitoapocynin significantly reduced RNS levels. Collectively, our results demonstrate that organic dust activates HMGB1-RAGE signaling axis to induce a neuroinflammatory response in microglia and that attenuation of HMGB1-RAGE activation by EP and mitoapocynin treatments or genetic knockdown can dampen the neuroinflammation.
Collapse
Affiliation(s)
- Nyzil Massey
- *Biomedical Sciences, Iowa State University, Ames, Iowa 50011
| | | | | | | | | |
Collapse
|
46
|
Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati-Mowahed M, Petramfar P, Khademi F. CRISPR System: A High-throughput Toolbox for Research and Treatment of Parkinson's Disease. Cell Mol Neurobiol 2020; 40:477-493. [PMID: 31773362 DOI: 10.1007/s10571-019-00761-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the innovation of gene-editing tools such as the CRISPR/Cas9 system improves the translational gap of treatments mediated by gene therapy. The privileges of CRISPR/Cas9 such as working in living cells and organs candidate this technology for using in research and treatment of the central nervous system (CNS) disorders. Parkinson's disease (PD) is a common, debilitating, neurodegenerative disorder which occurs due to loss of dopaminergic neurons and is associated with progressive motor dysfunction. Knowledge about the pathophysiological basis of PD has altered the classification system of PD, which manifests in familial and sporadic forms. The first genetic linkage studies in PD demonstrated the involvement of Synuclein alpha (SNCA) mutations and SNCA genomic duplications in the pathogenesis of PD familial forms. Subsequent studies have also insinuated mutations in leucine repeat kinase-2 (LRRK2), Parkin, PTEN-induced putative kinase 1 (PINK1), as well as DJ-1 causing familial forms of PD. This review will attempt to discuss the structure, function, and development in genome editing mediated by CRISP/Cas9 system. Further, it describes the genes involved in the pathogenesis of PD and the pertinent alterations to them. We will pursue this line by delineating the PD linkage studies in which CRISPR system was employed. Finally, we will discuss the pros and cons of CRISPR employment vis-à-vis the process of genome editing in PD patients' iPSCs.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Rezaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Khademi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons. Biomolecules 2020; 10:biom10040562. [PMID: 32272581 PMCID: PMC7225953 DOI: 10.3390/biom10040562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1β (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker β-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1β, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and β estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1β, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases.
Collapse
|
48
|
Sarkar S, Dammer EB, Malovic E, Olsen AL, Raza SA, Gao T, Xiao H, Oliver DL, Duong D, Joers V, Seyfried N, Huang M, Kukar T, Tansey MG, Kanthasamy AG, Rangaraju S. Molecular Signatures of Neuroinflammation Induced by αSynuclein Aggregates in Microglial Cells. Front Immunol 2020; 11:33. [PMID: 32082315 PMCID: PMC7006296 DOI: 10.3389/fimmu.2020.00033] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha-synuclein (αSynAgg) are pathological hallmarks of Parkinson's disease (PD) and other synucleinopathies that induce microglial activation and immune-mediated neurotoxicity, but the molecular mechanisms of αSynAgg-induced immune activation are poorly defined. We performed quantitative proteomics by mass spectrometry coupled with PCR, immunohistochemical and functional validations studies to define the molecular characteristics of alpha synuclein mediated microglial activation. In mouse microglia, αSynAgg induced robust pro-inflammatory activation (increased expression of 864 genes including Irg1, Ifit1, and Pyhin) and increased nuclear proteins involved in RNA synthesis, splicing, and anti-viral defense mechanisms. Conversely, αSynAgg decreased expression several proteins (including Cdc123, Sod1, and Grn), which were predominantly cytosolic and involved in metabolic, proteasomal and lysosomal mechanisms. Pathway analyses and confirmatory in vitro studies suggested that αSynAgg partly mediates its effects via Stat3 activation. As predicted by our proteomic findings, we verified that αSynAgg induces mitochondrial dysfunction in microglia. Twenty-six proteins differentially expressed by αSynAgg were also identified as PD risk genes in genome-wide association studies (upregulated: Brd2, Clk1, Siglec1; down-regulated: Memo1, Arhgap18, Fyn, and Pgrn/Grn). We validated progranulin (PGRN) as a lysosomal PD-associated protein that is downregulated by αSynAgg in microglia in-vivo and is expressed by microglia in post-mortem PD brain, congruent with our in vitro findings. Conclusion: Together, proteomics approach both reveals novel molecular insights into αSyn-mediated neuroinflammation in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | - Emir Malovic
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Syed Ali Raza
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Danielle L Oliver
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University, Atlanta, GA, United States.,Department of Neurology, Emory University, Atlanta, GA, United States
| | - Meixiang Huang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Thomas Kukar
- Department of Neurology, Emory University, Atlanta, GA, United States.,Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Malú G Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States
| |
Collapse
|
49
|
Bandookwala M, Sengupta P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 2020; 130:1047-1062. [PMID: 31914343 DOI: 10.1080/00207454.2020.1713776] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are generated as a by-product of routine biochemical reactions. However, dysfunction of the antioxidant system or mutations in gene function may result in the elevated production of the pro-oxidant species. Modified endogenous molecules due to chemical interactions with increased levels of reactive oxygen and nitrogen species in the cellular microenvironment can be termed as biomarkers of oxidative stress. 3-Nitrotyrosine is one such promising biomarker of oxidative stress formed due to nitration of protein-bound and free tyrosine residues by reactive peroxynitrite molecules. Nitration of proteins at the subcellular level results in conformational alterations that damage the cytoskeleton and result in neurodegeneration. In this review, we summarized the role of oxidative/nitrosative processes as a contributing factor for progressive neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease and Prion disease. The selective tyrosine protein nitration of the major marker proteins in related pathologies has been discussed. The alteration in 3-Nitrotyrosine profile occurs well before any symptoms appear and can be considered as a potential target for early diagnosis of neurodegenerative diseases. Furthermore, the reduction in 3-Nitrotyrosine levels in response to treatment with neuroprotective has been highlighted which is indicative of the importance of this particular marker in oxidative stress-related brain and central nervous system pathologies.
Collapse
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
50
|
Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, Kanthasamy AG. Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. J Neuroimmune Pharmacol 2019; 14:595-607. [PMID: 30879240 PMCID: PMC6746615 DOI: 10.1007/s11481-019-09844-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Chronic and debilitating neurodegenerative diseases, such as Parkinson's disease (PD), impose an immense medical, emotional, and economic burden on patients and society. Due to a complex interaction between genetic and environmental risk factors, the etiology of PD remains elusive. However, the cumulative evidence emerging from clinical and experimental research over the last several decades has identified mitochondrial dysfunction, oxidative stress, neuroinflammation, and dysregulated protein degradation as the main drivers of PD neurodegeneration. The genome-editing system CRISPR (clustered regularly interspaced short palindromic repeats) has recently transformed the field of biotechnology and biomedical discovery and is poised to accelerate neurodegenerative disease research. It has been leveraged to generate PD animal models, such as Parkin, DJ-1, and PINK1 triple knockout miniature pigs. CRISPR has also allowed the deeper understanding of various PD gene interactions, as well as the identification of novel apoptotic pathways associated with neurodegenerative processes in PD. Furthermore, its application has been used to dissect neuroinflammatory pathways involved in PD pathogenesis, such as the PKCδ signaling pathway, as well as the roles of novel compensatory or protective pathways, such as Prokineticin-2 signaling. This review aims to highlight the historical milestones in the evolution of this technology and attempts to illustrate its transformative potential in unraveling disease mechanisms as well as in the development of innovative treatment strategies for PD. Graphical Abstract.
Collapse
Affiliation(s)
- Jie Luo
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Piyush Padhi
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|