1
|
Zaharija B, Bradshaw NJ. Aggregation of Disrupted in Schizophrenia 1 arises from a central region of the protein. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110923. [PMID: 38135095 DOI: 10.1016/j.pnpbp.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear. Aggregation of two other proteins implicated in mental illness, TRIOBP-1 and NPAS3, was shown to be dependent on very specific structural regions of the protein. We therefore looked at the domain structure of DISC1, and investigated which structural elements are key for its aggregation. While none of the known structured DISC1 regions (named D, I, S and C respectively) formed aggregates individually when expressed in neuroblastoma cells, the combination of the D and I regions, plus the linker region between them, formed visible aggregates. Further refinement revealed that a region of approximately 30 amino acids between these two regions is critical for aggregation, and deletion of this region is sufficient to abolish the aggregation propensity of DISC1. This finding from mammalian cell culture contrasts with the recent determination that the C-region of DISC1 can aggregate in vitro, although some variations of the C-terminal of DISC1 could aggregate in our system. It therefore appears likely that DISC1 aggregation, implicated in mental illness, can occur through at least two distinct mechanisms.
Collapse
Affiliation(s)
- Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia.
| |
Collapse
|
2
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
3
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
4
|
Dong Y, Zhuang XX, Wang YT, Tan J, Feng D, Li M, Zhong Q, Song Z, Shen HM, Fang EF, Lu JH. Chemical mitophagy modulators: Drug development strategies and novel regulatory mechanisms. Pharmacol Res 2023; 194:106835. [PMID: 37348691 DOI: 10.1016/j.phrs.2023.106835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xu-Xu Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Yi-Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Jieqiong Tan
- Center for medical genetics, Central South University, Changsha 410031, Hunan, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau.
| |
Collapse
|
5
|
Pluimer BR, Harrison DL, Boonyavairoje C, Prinssen EP, Rogers-Evans M, Peterson RT, Thyme SB, Nath AK. Behavioral analysis through the lifespan of disc1 mutant zebrafish identifies defects in sensorimotor transformation. iScience 2023; 26:107099. [PMID: 37416451 PMCID: PMC10320522 DOI: 10.1016/j.isci.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
DISC1 is a genetic risk factor for multiple psychiatric disorders. Compared to the dozens of murine Disc1 models, there is a paucity of zebrafish disc1 models-an organism amenable to high-throughput experimentation. We conducted the longitudinal neurobehavioral analysis of disc1 mutant zebrafish across key stages of life. During early developmental stages, disc1 mutants exhibited abrogated behavioral responses to sensory stimuli across multiple testing platforms. Moreover, during exposure to an acoustic sensory stimulus, loss of disc1 resulted in the abnormal activation of neurons in the pallium, cerebellum, and tectum-anatomical sites involved in the integration of sensory perception and motor control. In adulthood, disc1 mutants exhibited sexually dimorphic reduction in anxiogenic behavior in novel paradigms. Together, these findings implicate disc1 in sensorimotor processes and the genesis of anxiogenic behaviors, which could be exploited for the development of novel treatments in addition to investigating the biology of sensorimotor transformation in the context of disc1 deletion.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Devin L. Harrison
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chanon Boonyavairoje
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric P. Prinssen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Randall T. Peterson
- Deparment of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Mastwal S, Li X, Stowell R, Manion M, Zhang W, Kim NS, Yoon KJ, Song H, Ming GL, Wang KH. Adolescent neurostimulation of dopamine circuit reverses genetic deficits in frontal cortex function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526987. [PMID: 36778456 PMCID: PMC9915739 DOI: 10.1101/2023.02.03.526987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dopamine system dysfunction is commonly implicated in adolescent-onset neuropsychiatric disorders. Although psychosis symptoms can be alleviated by antipsychotics, cognitive symptoms remain unresponsive to such pharmacological treatments and novel research paradigms investigating the circuit substrates underlying cognitive deficits are critically needed. The frontal cortex and its dopaminergic input from the midbrain are implicated in cognitive functions and undergo maturational changes during adolescence. Here, we used mice carrying mutations in the Arc or DISC1 genes to model mesofrontal dopamine circuit deficiencies and test circuit-based neurostimulation strategies to restore cognitive functions. We found that in a memory-guided spatial navigation task, frontal cortical neurons were activated coordinately at the decision-making point in wild-type but not Arc mutant mice. Chemogenetic stimulation of midbrain dopamine neurons or optogenetic stimulation of frontal cortical dopamine axons in a limited adolescent period consistently reversed genetic defects in mesofrontal innervation, task-coordinated neuronal activity, and memory-guided decision-making at adulthood. Furthermore, adolescent stimulation of dopamine neurons also reversed the same cognitive deficits in DISC1 mutant mice. Our findings reveal common mesofrontal circuit alterations underlying the cognitive deficits caused by two different genes and demonstrate the feasibility of adolescent neurostimulation to reverse these circuit and behavioral deficits. These results may suggest developmental windows and circuit targets for treating cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Rianne Stowell
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| | - Matthew Manion
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
| | - Wenyu Zhang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| | - Nam-Shik Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ki-jun Yoon
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guo-li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, Bethesda, MD 20892
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
7
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
8
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
9
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Kumar U. Co-immunolocalization of Disc1 and Gas7 protein in adult mice brain. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: The aim of the present study was to check the potential interaction of two neurodevelopmental proteins, Disc1 and Gas7, in the adult mice brain. Methods: Twenty-four male Swiss albino mice were used for the study. The mice were 12 weeks old in the beginning of the experiment. Immunohistochemistry and co-immunofluorescence were performed on the coronal sections of mice brain and immunoblotting and co-immunoprecipitation were done on the whole brain lysate. Results: Data from immunohistochemistry and co-immunofluorescence indicate the occurrence and co-localization of Disc1 and Gas7 proteins in soma and projections of the brain cells. Immunostaining was observed in cerebral cortex, hypothalamus, midbrain, pons, medulla oblongata and CA3 of hippocampus of the brain. The data from Immunoblotting and co-immunoprecipitation validates the presence and interaction of Disc1 and Gas7 protein in whole brain lysate. Conclusion: Data indicates the potential interaction of Disc1 and Gas7 protein in adult brain. The study highlights the need for further research on Disc1–Gas7 protein interaction in brain development and neuro-disorders.
Collapse
Affiliation(s)
- Udaya Kumar
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
11
|
Combining fMRI and DISC1 gene haplotypes to understand working memory-related brain activity in schizophrenia. Sci Rep 2022; 12:7351. [PMID: 35513527 PMCID: PMC9072540 DOI: 10.1038/s41598-022-10660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ.
Collapse
|
12
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
13
|
Fricke-Galindo I, Pérez-Aldana BE, Macías-Kauffer LR, González-Arredondo S, Dávila-Ortiz de Montellano D, Aviña-Cervantes CL, López-López M, Rodríguez-Agudelo Y, Monroy-Jaramillo N. Impact of COMT, PRODH and DISC1 Genetic Variants on Cognitive Performance of Patients with Schizophrenia. Arch Med Res 2022; 53:388-398. [DOI: 10.1016/j.arcmed.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
14
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
15
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|
17
|
Wang X, Ye F, Wen Z, Guo Z, Yu C, Huang WK, Rojas Ringeling F, Su Y, Zheng W, Zhou G, Christian KM, Song H, Zhang M, Ming GL. Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Mol Psychiatry 2021; 26:1346-1360. [PMID: 31444471 PMCID: PMC8444148 DOI: 10.1038/s41380-019-0485-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023]
Abstract
Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.
Collapse
Affiliation(s)
- Xinyuan Wang
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ziyuan Guo
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chuan Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pathology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Francisca Rojas Ringeling
- The Human Genetics Pre-doctoral Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guomin Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Shukla R, Henkel ND, Alganem K, Hamoud AR, Reigle J, Alnafisah RS, Eby HM, Imami AS, Creeden JF, Miruzzi SA, Meller J, Mccullumsmith RE. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology 2021; 46:116-130. [PMID: 32604402 PMCID: PMC7688959 DOI: 10.1038/s41386-020-0752-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.
Collapse
Affiliation(s)
- Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH, USA.
| | | | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hunter M Eby
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
19
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
21
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
22
|
The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav Brain Res 2020; 392:112693. [PMID: 32422236 DOI: 10.1016/j.bbr.2020.112693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mood disorders affect nearly 300 million humans worldwide, and it is a leading cause of death from suicide. In the last decade, the habenula has gained increased attention due to its major role to modulate emotional behavior and related psychopathologies, including depression and bipolar disorder, through the modulation of monoamines' neurotransmission. However, it is still unclear which genetic factors may directly affect the function of the habenula and hence, could contribute to the psychopathological mechanisms of mood disorders. Disrupted-In-Schizophrenia-1 (DISC1) gene is among robust gene-candidates predisposing to major depression, bipolar disorder and schizophrenia in humans. DISC1-Q31L, a well-established genetic mouse model of depression, offers a unique opportunity for translational studies. The current study aimed to probe morphological features of the habenula in the DISC1-Q31L mouse line and detect novel behavioral endophenotypes, including the increased emotionality in mutant females, high aggression in mutant males and deficient extinction of fear memory in DISC1 mutant mice of both sexes. The histological analysis found the increased neural density in the lateral and medial habenula in DISC1-Q31L mice regardless of sex, hence, excluding direct association between the habenular neurons and emotionality in mutant females. Altogether, our findings demonstrated, for the first time, the direct impact of the DISC1 gene on the habenular neurons and affective behavior in the DISC1-Q31L genetic mouse line. These new findings suggest that the combination of the DISC1 genetic analysis together with habenular neuroimaging may improve diagnostics of mood disorder in clinical studies.
Collapse
|
23
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
24
|
Bradshaw NJ, Trossbach SV, Köber S, Walter S, Prikulis I, Weggen S, Korth C. Disrupted in Schizophrenia 1 regulates the processing of reelin in the perinatal cortex. Schizophr Res 2020; 215:506-513. [PMID: 28433501 DOI: 10.1016/j.schres.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a prominent gene in mental illness research, encoding a scaffold protein known to be of importance in the developing cerebral cortex. Reelin is a critical extracellular protein for development and lamination of the prenatal cortex and which has also been independently implicated in mental illness. Regulation of reelin activity occurs through processing by the metalloproteinases ADAMTS-4 and ADAMTS-5. Through cross-breeding of heterozygous transgenic DISC1 mice with heterozygous reeler mice, which have reduced reelin, pups heterozygous for both phenotypes were generated. From these, we determine that transgenic DISC1 leads to a reduction in the processing of reelin, with implications for its downstream signalling element Dab1. An effect of DISC1 on reelin processing was confirmed in vitro, and revealed that intracellular DISC1 affects ADAMTS-4 protein, which in turn is exported and affects processing of extracellular reelin. In transgenic rat cortical cultures, an effect of DISC1 on reelin processing could also be seen specifically in early, immature neurons, but was lost in calretinin and reelin-positive mature neurons, suggesting cell-type specificity. DISC1 therefore acts upstream of reelin in the perinatal cerebral cortex in a cell type/time specific manner, leading to regulation of its activity through altered proteolytic cleavage. Thus a functional link is demonstrated between two proteins, each of independent importance for both cortical development and associated cognitive functions leading to behavioural maladaptation and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sabrina Köber
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Susanne Walter
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
25
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
26
|
Kang E, Song J, Lin Y, Park J, Lee JH, Hussani Q, Gu Y, Ge S, Li W, Hsu KS, Berninger B, Christian KM, Song H, Ming GL. Interplay between a Mental Disorder Risk Gene and Developmental Polarity Switch of GABA Action Leads to Excitation-Inhibition Imbalance. Cell Rep 2019; 28:1419-1428.e3. [PMID: 31390557 PMCID: PMC6690484 DOI: 10.1016/j.celrep.2019.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Excitation-inhibition (E-I) imbalance is considered a hallmark of various neurodevelopmental disorders, including schizophrenia and autism. How genetic risk factors disrupt coordinated glutamatergic and GABAergic synapse formation to cause an E-I imbalance is not well understood. Here, we show that knockdown of Disrupted-in-schizophrenia 1 (DISC1), a risk gene for major mental disorders, leads to E-I imbalance in mature dentate granule neurons. We found that excessive GABAergic inputs from parvalbumin-, but not somatostatin-, expressing interneurons enhance the formation of both glutamatergic and GABAergic synapses in immature mutant neurons. Following the switch in GABAergic signaling polarity from depolarizing to hyperpolarizing during neuronal maturation, heightened inhibition from excessive parvalbumin+ GABAergic inputs causes loss of excitatory glutamatergic synapses in mature mutant neurons, resulting in an E-I imbalance. Our findings provide insights into the developmental role of depolarizing GABA in establishing E-I balance and how it can be influenced by genetic risk factors for mental disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Jaesuk Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer H Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qassim Hussani
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Gu
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Weidong Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Benedikt Berninger
- Center for Developmental Neurobiology, King's College London, London SE1UL, UK
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
28
|
Abstract
Cerebral organoids are an emerging cutting-edge technology to model human brain
development and neurodevelopmental disorders, for which mouse models exhibit significant
limitations. In the human brain, synaptic connections define neural circuits, and synaptic
deficits account for various neurodevelopmental disorders. Thus, harnessing the full power
of cerebral organoids for human brain modeling requires the ability to visualize and
analyze synapses in cerebral organoids. Previously, we devised an optimized method to
generate human cerebral organoids, and showed that optimal organoids express mature-neuron
markers, including synaptic proteins and neurotransmitter receptors and transporters.
Here, we give evidence for synaptogenesis in cerebral organoids, via microscopical
visualization of synapses. We also describe multiple approaches to quantitatively analyze
synapses in cerebral organoids. Collectively, our work provides sufficient evidence for
the possibility of modeling synaptogenesis and synaptic disorders in cerebral organoids,
and may help advance the use of cerebral organoids in molecular neuroscience and studies
of neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Sadek
- Department of Pharmaceutical Biotechnology, University of Illinois College of Pharmacy, Chicago, IL, USA.,Department of Research and Development, Akorn Pharmaceuticals, Vernon Hills, IL, USA
| |
Collapse
|
29
|
Wang ZT, Lu MH, Zhang Y, Ji WL, Lei L, Wang W, Fang LP, Wang LW, Yu F, Wang J, Li ZY, Wang JR, Wang TH, Dou F, Wang QW, Wang XL, Li S, Ma QH, Xu RX. Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse model of Alzheimer's disease as a mitophagy receptor. Aging Cell 2019; 18:e12860. [PMID: 30488644 PMCID: PMC6351828 DOI: 10.1111/acel.12860] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD). Accumulated damaged mitochondria, which are associated with impaired mitophagy, contribute to neurodegeneration in AD. We show levels of Disrupted‐in‐schizophrenia‐1 (DISC1), which is genetically associated with psychiatric disorders and AD, decrease in the brains of AD patients and transgenic model mice and in Aβ‐treated cultured cells. Disrupted‐in‐schizophrenia‐1 contains a canonical LC3‐interacting region (LIR) motif (210FSFI213), through which DISC1 directly binds to LC3‐I/II. Overexpression of DISC1 enhances mitophagy through its binding to LC3, whereas knocking‐down of DISC1 blocks Aβ‐induced mitophagy. We further observe overexpression of DISC1, but not its mutant (muFSFI) which abolishes the interaction of DISC1 with LC3, rescues Aβ‐induced mitochondrial dysfunction, loss of spines, suppressed long‐term potentiation (LTP). Overexpression of DISC1 via adeno‐associated virus (serotype 8, AAV8) in the hippocampus of 8‐month‐old APP/PS1 transgenic mice for 4 months rescues cognitive deficits, synaptic loss, and Aβ plaque accumulation, in a way dependent on the interaction of DISC1 with LC3. These results indicate that DISC1 is a novel mitophagy receptor, which protects synaptic plasticity from Aβ accumulation‐induced toxicity through promoting mitophagy.
Collapse
Affiliation(s)
- Zhao-Tao Wang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Mei-Hong Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Yan Zhang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Lei Lei
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases; Dalian Medical University; Dalian China
| | - Wang Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Li-Pao Fang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Lu-Wen Wang
- Department of Pathology; Case Western Reserve University; Cleveland Ohio
| | - Fan Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Ji Wang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Zhen-Yu Li
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Jian-Rong Wang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical; Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection; Soochow University School of Medicine; Suzhou China
| | - Ting-Hua Wang
- Institute of Neuroscience; Kunming Medical University; Kunming China
| | - Fei Dou
- College of Life Sciences; Beijing Normal University; Beijing China
| | - Qin-Wen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine; Ningbo University; Ningbo China
| | - Xing-Long Wang
- Department of Pathology; Case Western Reserve University; Cleveland Ohio
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases; Dalian Medical University; Dalian China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Ru-Xiang Xu
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| |
Collapse
|
30
|
Naghavi-Gargari B, Zahirodin A, Ghaderian SMH, Shirvani-Farsani Z. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci Lett 2018; 696:206-211. [PMID: 30599263 DOI: 10.1016/j.neulet.2018.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022]
Abstract
Bipolar disorder (BD) is a mental disorder that is often misdiagnosed with ineffective treatment. It has strong genetic component but unknown pathophysiology. Long non-coding RNAs (lncRNAs) have been recently recognized as one of the important genetic factors and are considered as one of the regulatory mechanisms of nervous system. Given that lncRNAs may be diagnostic biomarkers for BD, we aimed to quantify the levels of DISC1 and DISC2 lncRNA transcripts. The levels of DISC1 and DISC2 lncRNA were tested in peripheral blood mononuclear cells (PBMCs) of 50 BD and 50 controls by real-time PCR. In addition, we performed ROC curve analysis as well as correlation analysis between the gene expression and some clinical features of BD cases. Computational analysis of miRNAs binding sites and CpG Islands on DISC1 and DISC2 lncRNA was performed as well. Significant down-regulation of DISC1 and up-regulation of DISC2 were observed in BD cases compared with controls. The areas under the ROC curve (AUC) for DISC1 and DISC2 lncRNA were 0.76 and 0.68 respectively. There was no significant correlation between the levels of mRNA expression in PBMCs of BD patients and clinical features. These data demonstrated that DISC1 and DISC2 lncRNA expression was potentially associated with an increased risk of bipolar disorder and might involve several molecular mechanisms. Our results revealed that the transcript levels of DISC1 and DISC2 lncRNA could be considered as a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Bahar Naghavi-Gargari
- Department of Basic Science, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Zahirodin
- Behavioral Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Islamic Republic of Iran.
| |
Collapse
|
31
|
Liu F, Huang J, Zhang L, Chen J, Zeng Y, Tang Y, Liu Z. Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience 2018; 399:28-38. [PMID: 30578974 DOI: 10.1016/j.neuroscience.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Processes associated with human brain development and function are exceedingly complex, limiting our capacity to investigate disease status and potential treatment strategies in vitro. Recent advancements in human cerebral organoid systems-which replicate early stage neural tube formation, neuroepithelium differentiation, and whole-brain regional differentiation-have allowed researchers to generate more accurate models of brain development and disease. The generation of region-specific cerebral organoids also allows for the direct investigation of the etiology and pathological processes associated with inherited and acquired brain diseases, drug discovery, and drug toxicity. In this review, we provide an overview of various neural differentiation technologies, as well as a critical analysis of their strengths and limitations. We primarily focus on the generation of three-dimensional brain organoid systems and their application in infectious disease modeling, high-throughput compound screening, and neurodevelopmental disease modeling.
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
32
|
Bao H, Song J. Treating Brain Disorders by Targeting Adult Neural Stem Cells. Trends Mol Med 2018; 24:991-1006. [PMID: 30447904 PMCID: PMC6351137 DOI: 10.1016/j.molmed.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis, a developmental process of generating functionally integrated neurons from neural stem cells, occurs throughout life in the hippocampus of the mammalian brain and highlights the plastic nature of the mature central nervous system. Substantial evidence suggests that new neurons participate in cognitive and affective brain functions and aberrant adult neurogenesis contributes to various brain disorders. Focusing on adult hippocampal neurogenesis, we review recent findings that advance our understanding of the key properties and potential functions of adult neural stem cells. We further discuss the key evidence demonstrating the causal role of aberrant hippocampal neurogenesis and various brain disorders. Finally, we propose strategies aimed at simultaneously correcting stem cells and their niche for treating brain disorders.
Collapse
Affiliation(s)
- Hechen Bao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Malavasi ELV, Economides KD, Grünewald E, Makedonopoulou P, Gautier P, Mackie S, Murphy LC, Murdoch H, Crummie D, Ogawa F, McCartney DL, O'Sullivan ST, Burr K, Torrance HS, Phillips J, Bonneau M, Anderson SM, Perry P, Pearson M, Constantinides C, Davidson-Smith H, Kabiri M, Duff B, Johnstone M, Polites HG, Lawrie SM, Blackwood DH, Semple CA, Evans KL, Didier M, Chandran S, McIntosh AM, Price DJ, Houslay MD, Porteous DJ, Millar JK. DISC1 regulates N-methyl-D-aspartate receptor dynamics: abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness. Transl Psychiatry 2018; 8:184. [PMID: 30190480 PMCID: PMC6127284 DOI: 10.1038/s41398-018-0228-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.
Collapse
Affiliation(s)
- Elise L V Malavasi
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | | | - Ellen Grünewald
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paraskevi Makedonopoulou
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shaun Mackie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hannah Murdoch
- Molecular Pharmacology Group, Wolfson Building, Institute of Neuroscience and Psychology, The University of Glasgow, University Avenue, Glasgow, UK
| | - Darragh Crummie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Fumiaki Ogawa
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shane T O'Sullivan
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Helen S Torrance
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Marion Bonneau
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Susan M Anderson
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paul Perry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Matthew Pearson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Costas Constantinides
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hazel Davidson-Smith
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Mostafa Kabiri
- Translational In Vivo Models at Sanofi, Frankfurt, Germany
| | - Barbara Duff
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Mandy Johnstone
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Stephen M Lawrie
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Michel Didier
- Translational Sciences at Sanofi, Chilly-Mazarin, France
| | | | | | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK
| | - Miles D Houslay
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
34
|
Gao X, Mi Y, Guo N, Xu H, Jiang P, Zhang R, Xu L, Gou X. Glioma in Schizophrenia: Is the Risk Higher or Lower? Front Cell Neurosci 2018; 12:289. [PMID: 30233327 PMCID: PMC6129591 DOI: 10.3389/fncel.2018.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Whether persons with schizophrenia have a higher or lower incidence of cancer has been discussed for a long time. Due to the complex mechanisms and characteristics of different types of cancer, it is difficult to evaluate the exact relationship between cancers and schizophrenia without considering the type of tumor. Schizophrenia, a disabling mental illness that is now recognized as a neurodevelopmental disorder, is more correlated with brain tumors, such as glioma, than other types of tumors. Thus, we mainly focused on the relationship between schizophrenia and glioma morbidity. Glioma tumorigenesis and schizophrenia may share similar mechanisms; gene/pathway disruption would affect neurodevelopment and reduce the risk of glioma. The molecular defects of disrupted-in-schizophrenia-1 (DISC1), P53, brain-derived neurotrophic factor (BDNF) and C-X-C chemokine receptors type 4 (CXCR4) involved in schizophrenia pathogenesis might play opposite roles in glioma development. Many microRNAs (miRNAs) such as miR-183, miR-9, miR-137 and miR-126 expression change may be involved in the cross talk between glioma prevalence and schizophrenia. Finally, antipsychotic drugs may have antitumor effects. All these factors show that persons with schizophrenia have a decreased incidence of glioma; therefore, epidemiological investigation and studies comparing genetic and epigenetic aberrations involved in both of these complex diseases should be performed. These studies can provide more insightful knowledge about glioma and schizophrenia pathophysiology and help to determine the target/strategies for the prevention and treatment of the two diseases.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
35
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
36
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
37
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
38
|
McCartney DL, Walker RM, Morris SW, Anderson SM, Duff BJ, Marioni RE, Millar JK, McCarthy SE, Ryan NM, Lawrie SM, Watson AR, Blackwood DHR, Thomson PA, McIntosh AM, McCombie WR, Porteous DJ, Evans KL. Altered DNA methylation associated with a translocation linked to major mental illness. NPJ SCHIZOPHRENIA 2018; 4:5. [PMID: 29555928 PMCID: PMC5859082 DOI: 10.1038/s41537-018-0047-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA). We found significant differences in DNA methylation when translocation carriers (n = 17) were compared to related non-carriers (n = 24) at 13 loci. All but one of the 13 significant differentially methylated positions (DMPs) mapped to the regions surrounding the translocation breakpoints. Methylation levels of five DMPs were associated with genotype at SNPs in linkage disequilibrium with the translocation. Two of the five genes harbouring significant DMPs, DISC1 and DUSP10, have been previously shown to be differentially methylated in schizophrenia. Gene Ontology analysis revealed enrichment for terms relating to neuronal function and neurodevelopment among the genes harbouring the most significant DMPs. Differentially methylated region (DMR) analysis highlighted a number of genes from the MHC region, which has been implicated in psychiatric illness previously through genetic studies. We show that inheritance of a translocation linked to major mental illness is associated with differential DNA methylation at loci implicated in neuronal development/function and in psychiatric illness. As genomic rearrangements are over-represented in individuals with psychiatric illness, such analyses may be valuable more widely in the study of these conditions.
Collapse
Affiliation(s)
- Daniel L McCartney
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Stewart W Morris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Susan M Anderson
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Barbara J Duff
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Riccardo E Marioni
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - J Kirsty Millar
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Shane E McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Niamh M Ryan
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Douglas H R Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Pippa A Thomson
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Andrew M McIntosh
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - W Richard McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David J Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Kathryn L Evans
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
39
|
Sialana FJ, Wang AL, Fazari B, Kristofova M, Smidak R, Trossbach SV, Korth C, Huston JP, de Souza Silva MA, Lubec G. Quantitative Proteomics of Synaptosomal Fractions in a Rat Overexpressing Human DISC1 Gene Indicates Profound Synaptic Dysregulation in the Dorsal Striatum. Front Mol Neurosci 2018; 11:26. [PMID: 29467617 PMCID: PMC5808171 DOI: 10.3389/fnmol.2018.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes and various mental disorders, including schizophrenia and major depression. A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical deficits consistent with aspects of mental disorders, including changes in the dorsal striatum, an anatomical region critical in the development of behavioral disorders. Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT) littermate control rats was used for synaptosomal preparations and for performing liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics, using isobaric labeling (TMT10plex). Functional enrichment analysis was generated from proteins with level changes. The increase in DISC1 expression leads to changes in proteins and synaptic-associated processes including membrane trafficking, ion transport, synaptic organization and neurodevelopment. Canonical pathway analysis assigned proteins with level changes to actin cytoskeleton, Gαq, Rho family GTPase and Rho GDI, axonal guidance, ephrin receptor and dopamine-DARPP32 feedback in cAMP signaling. DISC1-regulated proteins proposed in the current study are also highly associated with neurodevelopmental and mental disorders. Bioinformatics analyses from the current study predicted that the following biological processes may be activated by overexpression of DISC1, i.e., regulation of cell quantities, neuronal and axonal extension and long term potentiation. Our findings demonstrate that the effects of overexpression of non-mutant DISC1 or its misassembly has profound consequences on protein networks essential for behavioral control. These results are also relevant for the interpretation of previous as well as for the design of future studies on DISC1.
Collapse
Affiliation(s)
- Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - An-Li Wang
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Benedetta Fazari
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | | | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
40
|
Xu Y, Ren J, Ye H. Association between variations in the disrupted in schizophrenia 1 gene and schizophrenia: A meta-analysis. Gene 2018; 651:94-99. [PMID: 29410289 DOI: 10.1016/j.gene.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a severe psychiatric disorder. Genetic and functional studies have strongly implicated the disrupted in schizophrenia 1 gene (DISC1) as a candidate susceptibility gene for schizophrenia. Moreover, recent association studies have indicated that several DISC1 single nucleotide polymorphisms (SNPs) are associated with schizophrenia. However, the association is hardly replicate in different ethnic group. Here, we performed a meta-analysis of the association between DISC1 SNPs and schizophrenia in which the samples were divided into subgroups according to ethnicity. Both rs3738401 and rs821616 showed not significantly association with schizophrenia in the Caucasian, Asian, Japanese or Han Chinese populations.
Collapse
Affiliation(s)
- Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| | - Jun Ren
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
41
|
Shi Z, Piccus Z, Zhang X, Yang H, Jarrell H, Ding Y, Teng Z, Tchernichovski O, Li X. miR-9 regulates basal ganglia-dependent developmental vocal learning and adult vocal performance in songbirds. eLife 2018; 7:29087. [PMID: 29345619 PMCID: PMC5800847 DOI: 10.7554/elife.29087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
miR-9 is an evolutionarily conserved miRNA that is abundantly expressed in Area X, a basal ganglia nucleus required for vocal learning in songbirds. Here, we report that overexpression of miR-9 in Area X of juvenile zebra finches impairs developmental vocal learning, resulting in a song with syllable omission, reduced similarity to the tutor song, and altered acoustic features. miR-9 overexpression in juveniles also leads to more variable song performance in adulthood, and abolishes social context-dependent modulation of song variability. We further show that these behavioral deficits are accompanied by downregulation of FoxP1 and FoxP2, genes that are known to be associated with language impairments, as well as by disruption of dopamine signaling and widespread changes in the expression of genes that are important in circuit development and functions. These findings demonstrate a vital role for miR-9 in basal ganglia function and vocal communication, suggesting that dysregulation of miR-9 in humans may contribute to language impairments and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhimin Shi
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Zoe Piccus
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Xiaofang Zhang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Huidi Yang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Hannah Jarrell
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Yan Ding
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Zhaoqian Teng
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | | | - XiaoChing Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| |
Collapse
|
42
|
Shao L, Lu B, Wen Z, Teng S, Wang L, Zhao Y, Wang L, Ishizuka K, Xu X, Sawa A, Song H, Ming G, Zhong Y. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Hum Mol Genet 2018; 26:2634-2648. [PMID: 28472294 DOI: 10.1093/hmg/ddx147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.
Collapse
Affiliation(s)
- Lisha Shao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Binyan Lu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P.R. China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Lingling Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Liyuan Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongjun Song
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guoli Ming
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
43
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
44
|
Chien T, Weng YT, Chang SY, Lai HL, Chiu FL, Kuo HC, Chuang DM, Chern Y. GSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry 2018; 23:2375-2390. [PMID: 29298990 PMCID: PMC6294740 DOI: 10.1038/s41380-017-0007-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3β) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3β complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3β, thus dissociating the TRAX/DISC1/GSK3β complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3β by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3β binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3β by A2AR activation or a GSK3β inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3β complex) for future therapeutic development for mental disorders.
Collapse
Affiliation(s)
- Ting Chien
- 0000 0004 0634 0356grid.260565.2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ,0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Weng
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 2287 1366grid.28665.3fProgram in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Yung Chang
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - De-Maw Chuang
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
45
|
DNA sequence-level analyses reveal potential phenotypic modifiers in a large family with psychiatric disorders. Mol Psychiatry 2018; 23:2254-2265. [PMID: 29880880 PMCID: PMC6294736 DOI: 10.1038/s41380-018-0087-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes.
Collapse
|
46
|
DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron 2017; 96:1041-1054.e5. [PMID: 29103808 DOI: 10.1016/j.neuron.2017.10.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023]
Abstract
Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.
Collapse
|
47
|
Calderari S, Ria M, Gérard C, Nogueira TC, Villate O, Collins SC, Neil H, Gervasi N, Hue C, Suarez-Zamorano N, Prado C, Cnop M, Bihoreau MT, Kaisaki PJ, Cazier JB, Julier C, Lathrop M, Werner M, Eizirik DL, Gauguier D. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics 2017; 110:98-111. [PMID: 28911974 DOI: 10.1016/j.ygeno.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christelle Gérard
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Neil
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | | | - Christophe Hue
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Nicolas Suarez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Cécilia Prado
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Julier
- INSERM UMR-S 958, Faculté de Médecine Paris Diderot, University Paris 7 Denis-Diderot, Paris, Sorbonne Paris Cité, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Michel Werner
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
48
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
49
|
Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017; 8:genes8020048. [PMID: 28125008 PMCID: PMC5333037 DOI: 10.3390/genes8020048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Collapse
Affiliation(s)
- Andrey Trulioff
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
| | - Alexander Ermakov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| |
Collapse
|
50
|
Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells Int 2016; 2016:5838934. [PMID: 28105055 PMCID: PMC5220531 DOI: 10.1155/2016/5838934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/24/2023] Open
Abstract
The cellular and molecular bases of neurological diseases have been studied for decades; however, the underlying mechanisms are not yet fully elucidated. Compared with other disorders, diseases of the nervous system have been very difficult to study mainly due to the inaccessibility of the human brain and live neurons in vivo or in vitro and difficulties in examination of human postmortem brain tissue. Despite the availability of various genetically engineered animal models, these systems are still not adequate enough due to species variation and differences in genetic background. Human induced pluripotent stem cells (hiPSCs) reprogrammed from patient somatic cells possess the potential to differentiate into any cell type, including neural progenitor cells and postmitotic neurons; thus, they open a new area to in vitro modeling of neurological diseases and their potential treatment. Currently, many protocols for generation of various neuronal subtypes are being developed; however, most of them still require further optimization. Here, we highlight accomplishments made in the generation of dopaminergic and cholinergic neurons, the two subtypes most affected in Alzheimer's and Parkinson's diseases and indirectly affected in Huntington's disease. Furthermore, we discuss the potential role of hiPSC-derived neurons in the modeling and treatment of neurological diseases related to dopaminergic and cholinergic system dysfunction.
Collapse
|