1
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
2
|
Li B, Zhang Q, Yang R, He Y, Zhang H. Characteristics of Inflammatory and Normal Endothelial Exosomes on Endothelial Function and the Development of Hypertension. Inflammation 2024; 47:1156-1169. [PMID: 38240985 DOI: 10.1007/s10753-024-01967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 08/24/2024]
Abstract
Endothelial dysfunction is associated with the development of hypertension. We hypothesize that inflammatory and normal endothelial exosomes play their roles by mediating endothelial function, and they induce endothelial angiogenesis through different signaling pathways. Endothelial cell-derived exosomes were isolated from the human umbilical vein endothelial cells (HUVECs) treated with (TExo) or without (CExo) tumor necrosis factor (TNF)-α. We monitored dermal microcirculation profiles in spontaneously hypertensive rats (SHRs) and WKY rats using a laser Doppler imager and a laser Doppler perfusion and temperature monitor. Tube formation, levels of angiogenesis-related proteins in HUVEC-conditioned media, and reactive oxygen species (ROS) levels were assessed following TNF-α, CExo, or TExo treatments. Western blot analysis was conducted to examine signaling proteins associated with inflammation and ROS. The results showed increased blood perfusion and the mean amplitude of endothelial oscillator in SHRs following CExo administration. TNF-α, CExo, and TExo treatments promoted endothelial tube formation and elevated levels of angiogenic factors and ROS. TExo significantly increased phosphorylation levels of STAT3, p38, and level of NF-κB, while decreasing phosphorylation levels of JNK and Erk (P < 0.01 or P < 0.05). CExo significantly increased STAT3 phosphorylation and reduced JNK and Erk phosphorylation (all P < 0.01). In conclusion, TNF-α and TExo induce inflammatory and pathological angiogenesis via the NF-κB pathway, while CExo exhibits a physiologically pro-angiogenic effect on endothelial cells. Increased ROS, interplaying with inflammatory signals, contribute to exosome-mediated alterations of endothelial function, thereby playing a role in the development of hypertension.
Collapse
Affiliation(s)
- Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qiuju Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Rui Yang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhong He
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
3
|
Sadeghsoltani F, Hassanpour P, Safari MM, Haiaty S, Rahbarghazi R, Rahmati M, Mota A. Angiogenic activity of mitochondria; beyond the sole bioenergetic organelle. J Cell Physiol 2024; 239:e31185. [PMID: 38219050 DOI: 10.1002/jcp.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir-Meghdad Safari
- Open Heart ICU of Shahid Madani Cardiovascular Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Tochinai R, Nagashima Y, Sekizawa SI, Kuwahara M. Anti-tumor and cardiotoxic effects of microtubule polymerization inhibitors: The mechanisms and management strategies. J Appl Toxicol 2024; 44:96-106. [PMID: 37496236 DOI: 10.1002/jat.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Microtubule polymerization inhibitors (MPIs) have long been used as anticancer agents because they inhibit mitosis. Microtubules are thought to play an important role in the migration of tumor cells and the formation of tumor blood vessels, and new MPIs are being developed. Many clinical trials of novel MPIs have been conducted in humans, while some clinical studies in dogs have also been reported. More attempts to apply MPIs not only in humans but also in the veterinary field are expected to be made in the future. Meanwhile, MPIs have a risk of cardiotoxicity. In this paper, we review findings on the pharmacological effects and cardiotoxicity of MPIs, as well as the mechanisms of their cardiotoxicity. Cardiotoxicity of MPIs involves not only the direct effects of MPIs on cardiomyocytes but also their effects on vascular function. For example, hypertension induced by impaired vascular function also contributes to the exacerbation of myocardial damage, and blood pressure control may be useful in reducing cardiotoxicity. By combined administration of MPIs and other anticancer agents, MPI efficacy may be enhanced, thereby potentially allowing to keep MPI dosage low. Measurement of myocardial injury markers in blood and echocardiography may be useful for monitoring cardiotoxicity. In particular, two-dimensional speckle tracking may have high sensitivity for the early detection of MPI-induced cardiac dysfunction. The exploration of the potential of new MPIs while understanding their toxicity and how to deal with them will lead to the further development of cancer chemotherapy.
Collapse
Affiliation(s)
- Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiyasu Nagashima
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, Li Y, Jia Y, Zhang J, Cai W, Wang K, Zhao M, Wang J, Gao X, Tian C, Guo B, Hu D. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater 2023; 26:323-336. [PMID: 36950152 PMCID: PMC10027478 DOI: 10.1016/j.bioactmat.2023.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Fei Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Corresponding author. State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
6
|
Yang CH, Hou MF, Chuang LY, Yang CS, Lin YD. Dimensionality reduction approach for many-objective epistasis analysis. Brief Bioinform 2023; 24:6858949. [PMID: 36458451 DOI: 10.1093/bib/bbac512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
In epistasis analysis, single-nucleotide polymorphism-single-nucleotide polymorphism interactions (SSIs) among genes may, alongside other environmental factors, influence the risk of multifactorial diseases. To identify SSI between cases and controls (i.e. binary traits), the score for model quality is affected by different objective functions (i.e. measurements) because of potential disease model preferences and disease complexities. Our previous study proposed a multiobjective approach-based multifactor dimensionality reduction (MOMDR), with the results indicating that two objective functions could enhance SSI identification with weak marginal effects. However, SSI identification using MOMDR remains a challenge because the optimal measure combination of objective functions has yet to be investigated. This study extended MOMDR to the many-objective version (i.e. many-objective MDR, MaODR) by integrating various disease probability measures based on a two-way contingency table to improve the identification of SSI between cases and controls. We introduced an objective function selection approach to determine the optimal measure combination in MaODR among 10 well-known measures. In total, 6 disease models with and 40 disease models without marginal effects were used to evaluate the general algorithms, namely those based on multifactor dimensionality reduction, MOMDR and MaODR. Our results revealed that the MaODR-based three objective function model, correct classification rate, likelihood ratio and normalized mutual information (MaODR-CLN) exhibited the higher 6.47% detection success rates (Accuracy) than MOMDR and higher 17.23% detection success rates than MDR through the application of an objective function selection approach. In a Wellcome Trust Case Control Consortium, MaODR-CLN successfully identified the significant SSIs (P < 0.001) associated with coronary artery disease. We performed a systematic analysis to identify the optimal measure combination in MaODR among 10 objective functions. Our combination detected SSIs-based binary traits with weak marginal effects and thus reduced spurious variables in the score model. MOAI is freely available at https://sites.google.com/view/maodr/home.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Information Management at the Tainan University of Technology, and at the Department of Electronic Engineering at National Kaohsiung of Science and Technology, Taiwan.,Biomedical Engineering, Kaohsiung Medical University, Taiwan
| | - Ming-Feng Hou
- Kaohsiung Medical University Hospital, and Professor at the Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yeh Chuang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering at I-Shou University, Taiwan
| | - Cheng-San Yang
- Department of Plastic Surgery, and serves as the Medical Matters Secretary of Chia-Yi Christian Hospital, Taiwan
| | - Yu-Da Lin
- Department of Computer Science and Information Engineering, and at the National Penghu University of Science and Technology, Taiwan
| |
Collapse
|
7
|
Wang R, Wang Z, Jiang L, Gu G, Zheng B, Xian L, Zhang Y, Wang J. High Actin Expression in Thrombus of Acute Ischemic Stroke Can Be a Biomarker of Atherothrombotic Origin Stroke. Front Neurol 2022; 13:896428. [PMID: 35937070 PMCID: PMC9355373 DOI: 10.3389/fneur.2022.896428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background As the treatment target, the imaging information and histologic characteristics of the thrombus may differ according to the stroke subtype. This study aimed to provide the correlative study of stroke etiology with the non-contrast CT, and histological composition of retrieved clots in acute ischemic stroke (AIS). Materials and Methods A total of 94 patients with AIS who underwent the endovascular treatment with successfully retrieved clots from January 2017 to October 2020 were enrolled in the present study. Histological analysis was performed using hematoxylin and eosin (H&E) staining and immunostaining with CD3, CD20, CD105, and actin antibodies. CT obtained at the patients' admission was to measure the attenuation and volume of all thrombus. Results A total of 94 subjects were included in this study. Fifty-six patients were classified as cardioembolic (CE), and 38 were classified with large-artery atherosclerosis (LAA). The subjects with LAA tend to exhibit higher actin and CD105 levels, and lower Hounsfield Unit (HU) values than subjects with CE. After adjusting for confounders, the actin was positively correlated with CD105 but not with HU values. Logistics regression shows actin was valuable for the prediction of LAA (OR, 1.148; 95% CI, 1.075–1.227; p < 0.001), even adjusted for age, sex, and intervention type (OR, 1.129; 95% CI, 1.048–1.216; p = 0.001), CT density and CD105 (OR, 1.161; 95% CI, 1.056–1.277; p = 0.002). Actin levels have a strong accuracy in differentiating LAA from CE, especially combined with CT density and CD105, which yielded a sensitivity of 63.2%, a specificity of 89.3%, with the area under the curve (AUC) at 0.821 (95% CI, 0.731–0.912). Conclusion Our findings suggest that actin's level was a major factor differentiating atherothrombotic origin strokes from the cardioembolic stroke. Clinical Trial Registration ChiCTR2100051173.
Collapse
Affiliation(s)
- Rongyu Wang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiqiang Wang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Neurology, Chengdu BOE Hospital, Chengdu, China
| | - Lianyan Jiang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangfeng Gu
- Department of Neurology, Ya'an People's Hospital, Ya'an, China
| | - Bo Zheng
- Department of Neurology, Ya'an People's Hospital, Ya'an, China
| | - Liulin Xian
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodan Zhang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- Department of Neurology, Ya'an People's Hospital, Ya'an, China
- *Correspondence: Jian Wang
| |
Collapse
|
8
|
Le DE, Zhao Y, Kaul S. Persistent Coronary Vasomotor Tone During Myocardial Ischemia Occurs at the Capillary Level and May Involve Pericytes. Front Cardiovasc Med 2022; 9:930492. [PMID: 35811707 PMCID: PMC9263193 DOI: 10.3389/fcvm.2022.930492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background There is persistent coronary vasomotor tone during myocardial ischemia, despite ongoing coronary arteriolar dilatation. The mechanism underlying this vasodilatory tone, which can be unmasked by coronary vasodilators, is unclear. We hypothesized that persistent microvascular resistance during myocardial ischemia occurs at the level of capillaries and may be caused by pericytes. Methods We studied nine instrumented dogs where coronary blood flow and coronary driving pressure were reduced to half by placement of stenoses. Myocardial blood flow and myocardial blood volume were measured with myocardial contrast echocardiography before and during adenosine administration. In three animals, the heart was perfusion-fixed under these conditions for electron microscopic assessment of capillary and pericyte size. Results During ischemia, myocardial blood volume decreased and myocardial vascular resistance remained unchanged. Adenosine administration reversed the decline in myocardial blood volume and decreased myocardial vascular resistance. Electron microscopy showed larger capillaries in ischemic beds receiving adenosine than ischemic beds not receiving adenosine. Pericytes in beds receiving adenosine also tended to be larger. Conclusion Capillaries are the site of persistent vasomotor tone during myocardial ischemia; any other site of vascular regulation (arterioles or venules) cannot explain these myocardial contrast echocardiography findings, which are confirmed on post-mortem electron microscopic examination. The decrease in capillary size is likely caused by pericyte contraction in an attempt to maintain a constant capillary hydrostatic pressure. Adenosine relaxes pericytes, restores myocardial blood volume, reduces myocardial vascular resistance, and improves regional function during ischemia. These findings could have important therapeutic implications.
Collapse
Affiliation(s)
- D. Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
- Cardiology Section, Department of Hospital and Specialty Medicine, Veterans Administration Portland Health Care System, Portland, OR, United States
- *Correspondence: D. Elizabeth Le
| | - Yan Zhao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
9
|
Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021; 177:347-359. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric oxide that activate multiple intracellular signaling pathways, among which peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a critical role. PGC-1α coordinates mitochondrial quality control mechanisms to maintain a healthy mitochondrial pool and promote endothelial nitric oxide synthase activity in vasculature. The mitochondrial adaptations to exercise improve bioenergetics, balance redox status, protect endothelial cells against detrimental insults, increase vascular plasticity, and ameliorate aging-related vascular dysfunction, thus benefiting vascular health. This review highlights recent findings of mitochondria as a central hub integrating exercise-afforded vascular benefits and its underlying mechanisms. A better understanding of the mitochondrial adaptations to exercise will not only shed light on the mechanisms of exercise-induced cardiovascular protection, but may also provide new clues to mitochondria-oriented precise exercise prescriptions for cardiovascular health.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Horn AG, Kunkel ON, Baumfalk DR, Simon ME, Schulze KM, Hsu WW, Muller-Delp J, Poole DC, Behnke BJ. Prolonged mechanical ventilation increases diaphragm arteriole circumferential stretch without changes in stress/stretch: Implications for the pathogenesis of ventilator-induced diaphragm dysfunction. Microcirculation 2021; 28:e12727. [PMID: 34467606 DOI: 10.1111/micc.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Prolonged mechanical ventilation (MV; ≥6 h) results in large, time-dependent reductions in diaphragmatic blood flow and shear stress. We tested the hypothesis that MV would impair the structural and material properties (ie, increased stress/stretch relation and/or circumferential stretch) of first-order arterioles (1A) from the medial costal diaphragm. METHODS Shear stress was estimated from isolated arterioles and prior blood flow data from the diaphragm during spontaneous breathing (SB) and prolonged MV (6 h MV). Thereafter, female Sprague-Dawley rats (~5 months) were randomly divided into two groups, SB (n = 6) and 6 h MV (n = 6). Following SB and 6 h MV, 1A medial costal diaphragm arterioles were isolated, cannulated, and subjected to stepwise (0-140 cmH2 O) increases in intraluminal pressure in calcium-free Ringer's solution. Inner diameter and wall thickness were measured at each pressure step and used to calculate wall:lumen ratio, Cauchy-stress, and circumferential stretch. RESULTS Compared to SB, there was a ~90% reduction in arteriolar shear stress with prolonged MV (9 ± 2 vs 78 ± 20 dynes/cm2 ; p ≤ .05). In the unloaded condition (0 cmH2 O), the arteriolar intraluminal diameter was reduced (37 ± 8 vs 79 ± 13 μm) and wall:lumen ratio was increased (120 ± 18 vs 46 ± 10%) compared to SB (p ≤ .05). There were no differences in the passive diameter responses or the circumferential stress/stretch relationship between groups (p > .05), but at each pressure step, circumferential stretch was increased with 6 h MV vs SB (p ≤ .05). CONCLUSION During prolonged MV, medial costal diaphragm arteriolar shear stress is severely diminished. Despite no change in the material behavior (stress/stretch), prolonged MV resulted in altered structural and mechanical properties (ie, elevated circumferential stretch) of medial costal diaphragm arterioles. This provides important novel mechanistic insights into the impaired diaphragm blood flow capacity and vascular dysfunction following prolonged MV.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Olivia N Kunkel
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Dryden R Baumfalk
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Mikaela E Simon
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Division of Biostatistics and Bioinformations, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Judy Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
11
|
Robert P, Nguyen PMC, Richard A, Grenier C, Chevrollier A, Munier M, Grimaud L, Proux C, Champin T, Lelièvre E, Sarzi E, Vessières E, Henni S, Prunier D, Reynier P, Lenaers G, Fassot C, Henrion D, Loufrani L. Protective role of the mitochondrial fusion protein OPA1 in hypertension. FASEB J 2021; 35:e21678. [PMID: 34133045 DOI: 10.1096/fj.202000238rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.
Collapse
Affiliation(s)
- Pauline Robert
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Phuc Minh Chau Nguyen
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Alexis Richard
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Céline Grenier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Arnaud Chevrollier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Mathilde Munier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Linda Grimaud
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Coralyne Proux
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Tristan Champin
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Eric Lelièvre
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
| | - Emmanuelle Sarzi
- Institute for Neurosciences of Montpellier-INSERM U1051, Montpellier, France
| | - Emilie Vessières
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Samir Henni
- University Hospital (CHU) of Angers, Angers, France
| | - Delphine Prunier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Pascal Reynier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Guys Lenaers
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Céline Fassot
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Daniel Henrion
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Laurent Loufrani
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| |
Collapse
|
12
|
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H2080-H2100. [PMID: 33834868 PMCID: PMC8163660 DOI: 10.1152/ajpheart.00917.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) affects one in three adults and remains the leading cause of death in America. Advancing age is a major risk factor for CVD. Recent plateaus in CVD-related mortality rates in high-income countries after decades of decline highlight a critical need to identify novel therapeutic targets and strategies to mitigate and manage the risk of CVD development and progression. Vascular dysfunction, characterized by endothelial dysfunction and large elastic artery stiffening, is independently associated with an increased CVD risk and incidence and is therefore an attractive target for CVD prevention and management. Vascular mitochondria have emerged as an important player in maintaining vascular homeostasis. As such, age- and disease-related impairments in mitochondrial function contribute to vascular dysfunction and consequent increases in CVD risk. This review outlines the role of mitochondria in vascular function and discusses the ramifications of mitochondrial dysfunction on vascular health in the setting of age and disease. The adverse vascular consequences of increased mitochondrial-derived reactive oxygen species, impaired mitochondrial quality control, and defective mitochondrial calcium cycling are emphasized, in particular. Current evidence for both lifestyle and pharmaceutical mitochondrial-targeted strategies to improve vascular function is also presented.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
13
|
Roy S, Edwards JM, Tomcho JC, Schreckenberger Z, Bearss NR, Zhang Y, Morgan EE, Cheng X, Spegele AC, Vijay-Kumar M, McCarthy CG, Koch LG, Joe B, Wenceslau CF. Intrinsic Exercise Capacity and Mitochondrial DNA Lead to Opposing Vascular-Associated Risks. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa029. [PMID: 33363281 PMCID: PMC7749784 DOI: 10.1093/function/zqaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Exercise capacity is a strong predictor of all-cause morbidity and mortality in humans. However, the associated hemodynamic traits that link this valuable indicator to its subsequent disease risks are numerable. Additionally, exercise capacity has a substantial heritable component and genome-wide screening indicates a vast amount of nuclear and mitochondrial DNA (mtDNA) markers are significantly associated with traits of physical performance. A long-term selection experiment in rats confirms a divide for cardiovascular risks between low- and high-capacity runners (LCR and HCR, respectively), equipping us with a preclinical animal model to uncover new mechanisms. Here, we evaluated the LCR and HCR rat model system for differences in vascular function at the arterial resistance level. Consistent with the known divide between health and disease, we observed that LCR rats present with resistance artery and perivascular adipose tissue dysfunction compared to HCR rats that mimic qualities important for health, including improved vascular relaxation. Uniquely, we show by generating conplastic strains, which LCR males with mtDNA of female HCR (LCR-mtHCR/Tol) present with improved vascular function. Conversely, HCR-mtLCR/Tol rats displayed indices for cardiac dysfunction. The outcome of this study suggests that the interplay between the nuclear genome and the maternally inherited mitochondrial genome with high intrinsic exercise capacity is a significant factor for improved vascular physiology, and animal models developed on an interaction between nuclear and mtDNA are valuable new tools for probing vascular risk factors in the offspring.
Collapse
Affiliation(s)
- Shaunak Roy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jonnelle M Edwards
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jeremy C Tomcho
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Zachary Schreckenberger
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Nicole R Bearss
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Youjie Zhang
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Eric E Morgan
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Department of Radiology Nationwide Children's Hospital, OH, USA
| | - Xi Cheng
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Adam C Spegele
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Matam Vijay-Kumar
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Cameron G McCarthy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Lauren G Koch
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Bina Joe
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Camilla Ferreira Wenceslau
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Address correspondence to C.F.W. (e-mail: )
| |
Collapse
|
14
|
Bowen TS, Egginton S. Environmental stress influences mitochondrial metabolism in vascular cells: consequences for angiogenesis. VASCULAR BIOLOGY 2020; 1:H111-H116. [PMID: 32923962 PMCID: PMC7439850 DOI: 10.1530/vb-19-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022]
Abstract
While the important and varied roles that vascular cells play in both health and disease is well recognised, the focus on potential therapeutic targets continually shifts as new players emerge. Here, we outline how mitochondria may be viewed as more than simply energy-generating organelles, but instead as important sentinels of metabolic health and effectors of appropriate responses to physiological challenges.
Collapse
Affiliation(s)
- T Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Issitt T, Bosseboeuf E, De Winter N, Dufton N, Gestri G, Senatore V, Chikh A, Randi AM, Raimondi C. Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress. iScience 2018; 11:205-223. [PMID: 30623799 PMCID: PMC6327076 DOI: 10.1016/j.isci.2018.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023] Open
Abstract
The transmembrane protein neuropilin-1 (NRP1) promotes vascular endothelial growth factor (VEGF) and extracellular matrix signaling in endothelial cells (ECs). Although it is established that NRP1 is essential for angiogenesis, little is known about its role in EC homeostasis. Here, we report that NRP1 promotes mitochondrial function in ECs by preventing iron accumulation and iron-induced oxidative stress through a VEGF-independent mechanism in non-angiogenic ECs. Furthermore, NRP1-deficient ECs have reduced growth and show the hallmarks of cellular senescence. We show that a subcellular pool of NRP1 localizes in mitochondria and interacts with the mitochondrial transporter ATP-binding cassette B8 (ABCB8). NRP1 loss reduces ABCB8 levels, resulting in iron accumulation, iron-induced mitochondrial superoxide production, and iron-dependent EC senescence. Treatment of NRP1-deficient ECs with the mitochondria-targeted antioxidant compound mitoTEMPO or with the iron chelator deferoxamine restores mitochondrial activity, inhibits superoxide production, and protects from cellular senescence. This finding identifies an unexpected role of NRP1 in EC homeostasis. A subcellular pool of NRP1 localizes in the mitochondria of endothelial cells (ECs) NRP1 regulates mitochondrial function via ABCB8 transporter NRP1 loss induces iron accumulation and iron-dependent oxidative stress in ECs NRP1 protects ECs from iron-dependent premature cellular senescence
Collapse
Affiliation(s)
- Theo Issitt
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Emy Bosseboeuf
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Natasha De Winter
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Neil Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valentina Senatore
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anissa Chikh
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Claudio Raimondi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
18
|
Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 2018; 15:335-346. [PMID: 29306791 PMCID: PMC5756062 DOI: 10.1016/j.redox.2017.12.019] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023] Open
Abstract
Impaired cardiac microvascular function contributes to diabetic cardiovascular complications although effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor recently approved for treatment of type 2 diabetes, promotes glycosuria excretion and offers cardioprotective actions beyond its glucose-lowering effects. This study was designed to evaluate the effect of empagliflozin on cardiac microvascular injury in diabetes and the underlying mechanism involved with a focus on mitochondria. Our data revealed that empagliflozin improved diabetic myocardial structure and function, preserved cardiac microvascular barrier function and integrity, sustained eNOS phosphorylation and endothelium-dependent relaxation, as well as improved microvessel density and perfusion. Further study suggested that empagliflozin exerted its effects through inhibition of mitochondrial fission in an adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent manner. Empagliflozin restored AMP-to-ATP ratio to trigger AMPK activation, suppressed Drp1S616 phosphorylation, and increased Drp1S637 phosphorylation, ultimately leading to inhibition of mitochondrial fission. The empagliflozin-induced inhibition of mitochondrial fission preserved cardiac microvascular endothelial cell (CMEC) barrier function through suppressed mitochondrial reactive oxygen species (mtROS) production and subsequently oxidative stress to impede CMEC senescence. Empagliflozin-induced fission loss also favored angiogenesis by promoting CMEC migration through amelioration of F-actin depolymerization. Taken together, these results indicated the therapeutic promises of empagliflozin in the treatment of pathological microvascular changes in diabetes.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Yundai Chen
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 210032, China.
| |
Collapse
|
19
|
Park SY, Kwon OS, Andtbacka RHI, Hyngstrom JR, Reese V, Murphy MP, Richardson RS. Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Acta Physiol (Oxf) 2018; 222. [PMID: 28493603 DOI: 10.1111/apha.12893] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022]
Abstract
AIM This study sought to determine the role of free radicals derived from mitochondria in the vasculature in the recognized age-related endothelial dysfunction of human skeletal muscle feed arteries (SMFAs). METHODS A total of 44 SMFAs were studied with and without acute exposure to the mitochondria-targeted antioxidant MitoQ and nitric oxide synthase (NOS) blockade. The relative abundance of proteins from the electron transport chain, phosphorylated (p-) to endothelial (e) NOS ratio, manganese superoxide dismutase (MnSOD) and the mitochondria-derived superoxide (O2-) levels were assessed in SMFA. Endothelium-dependent and endothelium-independent SMFA vasodilation was assessed in response to flow-induced shear stress, acetylcholine (ACh) and sodium nitroprusside (SNP). RESULTS MitoQ restored endothelium-dependent vasodilation in the old to that of the young when stimulated by both flow (young: 68 ± 5; old: 25 ± 7; old + MitoQ 65 ± 9%) and ACh (young: 97 ± 4; old: 59 ± 10; old + MitoQ: 98 ± 5%), but did not alter the initially uncompromised, endothelium-independent vasodilation (SNP). Compared to the young, MitoQ in the old diminished the initially elevated mitochondria-derived O2- levels and appeared to attenuate the breakdown of MnSOD. Furthermore, MitoQ increased the ratio of p-eNOS to NOS and the restoration of endothelium-dependent vasodilation in the old by MitoQ was ablated by NOS blockade. CONCLUSION This study demonstrated that MitoQ reverses age-related vascular dysfunction by what appears to be an NO-dependent mechanism in human SMFAs. These findings suggest that mitochondria-targeted antioxidants may have utility in terms of counteracting the attenuated blood flow and vascular dysfunction associated with advancing age.
Collapse
Affiliation(s)
- S.-Y. Park
- The School of Health and Kinesiology; University of Nebraska- Omaha; Omaha NE USA
| | - O. S. Kwon
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
| | - R. H. I. Andtbacka
- Department of Surgery; Huntsman Cancer Hospital; University of Utah; Salt Lake City UT USA
| | - J. R. Hyngstrom
- Department of Surgery; Huntsman Cancer Hospital; University of Utah; Salt Lake City UT USA
| | - V. Reese
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
| | - M. P. Murphy
- MRC Mitochondrial Biology Unit; Cambridge Biomedical Campus; Cambridge UK
| | - R. S. Richardson
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Department of Exercise and Sport Science; University of Utah; Salt Lake City UT USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City UT USA
| |
Collapse
|
20
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
21
|
Caja S, Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox Biol 2017; 12:821-827. [PMID: 28448943 PMCID: PMC5406579 DOI: 10.1016/j.redox.2017.04.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of angiogenesis in disease and its potential as a therapeutic target have been firmly established over recent decades. Endothelial cells (ECs) are central elements in vessel homeostasis and regulate the passage of material and cells into and out of the bloodstream. EC proliferation and migration are modified by alterations to mitochondrial biogenesis and dynamics resulting from several signals and environmental cues, such as oxygen, hemodynamics, and nutrients. As intermediary signals, mitochondrial ROS are released as important downstream modulators of the expression of angiogenesis-related genes. In this review, we discuss the physiological actions of these signals and aberrant responses during vascular disorders. Mitochondria in EC act as integrators of environmental cues. Circulating signals modify mitochondrial dynamics, altering EC phenotype. ROS release by EC mitochondria regulates expression of vascular genes.
Collapse
Affiliation(s)
- Sergio Caja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jose Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Centro de Investigaciones en RED (CIBERFES), Melchor Fernández Almagro, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Brown SA, Nhola L, Herrmann J. Cardiovascular Toxicities of Small Molecule Tyrosine Kinase Inhibitors: An Opportunity for Systems-Based Approaches. Clin Pharmacol Ther 2016; 101:65-80. [DOI: 10.1002/cpt.552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022]
Affiliation(s)
- S-A Brown
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| | - L Nhola
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| | - J Herrmann
- Department of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota USA
| |
Collapse
|
23
|
Rellick SL, Hu H, Simpkins JW, Ren X. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells. J Vis Exp 2016. [PMID: 27911398 PMCID: PMC5226249 DOI: 10.3791/54847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.
Collapse
Affiliation(s)
- Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University; Mitochondrial Evaluation Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University; Experimental Stroke Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University
| | - Xuefang Ren
- Department of Physiology and Pharmacology, West Virginia University; Experimental Stroke Core, West Virginia University; Center for Basic and Translational Stroke Research, West Virginia University;
| |
Collapse
|
24
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The Human Microcirculation: Regulation of Flow and Beyond. Circ Res 2016; 118:157-72. [PMID: 26837746 DOI: 10.1161/circresaha.115.305364] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.
Collapse
Affiliation(s)
- David D Gutterman
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| | - Dawid S Chabowski
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andrew O Kadlec
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
26
|
Tochinai R, Nagata Y, Ando M, Hata C, Suzuki T, Asakawa N, Yoshizawa K, Uchida K, Kado S, Kobayashi T, Kaneko K, Kuwahara M. Combretastatin A4 disodium phosphate-induced myocardial injury. J Toxicol Pathol 2016; 29:163-71. [PMID: 27559241 PMCID: PMC4963615 DOI: 10.1293/tox.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Histopathological and electrocardiographic features of myocardial lesions induced by
combretastatin A4 disodium phosphate (CA4DP) were evaluated, and the relation between
myocardial lesions and vascular changes and the direct toxic effect of CA4DP on
cardiomyocytes were discussed. We induced myocardial lesions by administration of CA4DP to
rats and evaluated myocardial damage by histopathologic examination and
electrocardiography. We evaluated blood pressure (BP) of CA4DP-treated rats and effects of
CA4DP on cellular impedance-based contractility of human induced pluripotent stem
cell-derived cardiomyocytes (hiPS-CMs). The results revealed multifocal myocardial
necrosis with a predilection for the interventricular septum and subendocardial regions of
the apex of the left ventricular wall, injury of capillaries, morphological change of the
ST junction, and QT interval prolongation. The histopathological profile of myocardial
lesions suggested that CA4DP induced a lack of myocardial blood flow. CA4DP increased the
diastolic BP and showed direct effects on hiPS-CMs. These results suggest that CA4DP
induces dysfunction of small arteries and capillaries and has direct toxicity in
cardiomyocytes. Therefore, it is thought that CA4DP induced capillary and myocardial
injury due to collapse of the microcirculation in the myocardium. Moreover, the direct
toxic effect of CA4DP on cardiomyocytes induced myocardial lesions in a coordinated
manner.
Collapse
Affiliation(s)
- Ryota Tochinai
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yuriko Nagata
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Minoru Ando
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Chie Hata
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tomo Suzuki
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Naoyuki Asakawa
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kazuhiko Yoshizawa
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kazumi Uchida
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Shoichi Kado
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Toshihide Kobayashi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kimiyuki Kaneko
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
28
|
Katakam PVG, Dutta S, Sure VN, Grovenburg SM, Gordon AO, Peterson NR, Rutkai I, Busija DW. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol 2016; 310:H1097-106. [PMID: 26945078 DOI: 10.1152/ajpheart.00759.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Samuel M Grovenburg
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Angellica O Gordon
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Nicholas R Peterson
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
29
|
Suica VI, Uyy E, Boteanu RM, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci 2015; 13:30. [PMID: 26628893 PMCID: PMC4666118 DOI: 10.1186/s12953-015-0087-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Membrane microdomains represent dynamic membrane nano-assemblies enriched in signaling molecules suggesting their active involvement in not only physiological but also pathological molecular processes. The hyperlipidemic stress is a major risk factor of atherosclerosis, but its exact mechanisms of action at the membrane microdomains level remain elusive. The aim of the present study was to determine whether membrane-cytoskeleton proteome in the pulmonary tissue could be modulated by the hyperlipidemic stress, a major risk factor of atherosclerosis. Results High resolution mass spectrometry based proteomics analysis was performed for detergent resistant membrane microdomains isolated from lung homogenates of control, ApoE deficient and statin treated ApoE deficient mice. The findings of the study allowed the identification with high confidence of 1925 proteins, 291 of which were found significantly altered by the modified genetic background, by the statin treatment or both conditions. Principal component analysis revealed a proximal partitioning of the biological replicates, but also a distinct spatial scattering of the sample groups, highlighting different quantitative profiles. The statistical significant over-representation of Regulation of actin cytoskeleton, Focal adhesion and Adherens junction Kyoto Encyclopedia of Genes and Genomes signaling pathways was demonstrated through bioinformatics analysis. The three inter-relation maps comprised 29 of regulated proteins, proving membrane-cytoskeleton coupling targeting and alteration by hyperlipidemia and/or statin treatment. Conclusions The findings of the study allowed the identification with high confidence of the main proteins modulated by the hyperlipidemic stress involved in the actin-dependent pathways. Our study provides the basis for future work probing how the protein activities at the membrane-cytoskeleton interface are dependent upon genetic induced hyperlipidemia. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0087-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viorel-Iulian Suica
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Raluca Maria Boteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| |
Collapse
|
30
|
Park SY, Ives SJ, Gifford JR, Andtbacka RHI, Hyngstrom JR, Reese V, Layec G, Bharath LP, Symons JD, Richardson RS. Impact of age on the vasodilatory function of human skeletal muscle feed arteries. Am J Physiol Heart Circ Physiol 2015; 310:H217-25. [PMID: 26589330 DOI: 10.1152/ajpheart.00716.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022]
Abstract
Although advancing age is often associated with attenuated skeletal muscle blood flow and skeletal muscle feed arteries (SMFAs) have been recognized to play a regulatory role in the vasculature, little is known about the impact of age on the vasodilatory capacity of human SMFAs. Therefore, endothelium-dependent and -independent vasodilation were assessed in SMFAs (diameter: 544 ± 63 μm) obtained from 24 (equally represented) young (33 ± 2 yr) and old (71 ± 2 yr) subjects in response to three stimuli: 1) flow-induced shear stress, 2) ACh, and 3) sodium nitropusside (SNP). Both assessments of endothelium-dependent vasodilation, flow (young subjects: 68 ± 1% and old subjects: 32 ± 7%) and ACh (young subjects: 92 ± 3% and old subjects: 73 ± 4%), were significantly blunted (P < 0.05) in SMFAs of old compared with young subjects, with no such age-related differences in endothelium-independent vasodilation (SNP). In response to an increase in flow-induced shear stress, vasodilation kinetics (time constant to reach 63% of the amplitude of the response: 55 ± 1 s in young subjects and 92 ± 7 s in old subjects) and endothelial nitric oxide synthase (eNOS) activation (phospho-eNOS(s1177)/total eNOS: 1.0 ± 0.1 in young subjects and 0.2 ± 0.1 in old subjects) were also significantly attenuated in old compared with young subjects (P < 0.05). Furthermore, the vessel superoxide concentration was greater in old subjects (old subjects: 3.9 ± 1.0 area under curve/mg and young subjects: 1.7 ± 0.1 area under the curve/mg, P < 0.05). These findings reveal that the endothelium-dependent vasodilatory capacity, including vasodilation kinetics but not smooth muscle function, of human SMFAs is blunted with age and may be due to free radicals. Given the potential regulatory role of SMFAs in skeletal muscle blood flow, these findings may explain, at least in part, the often observed attenuated perfusion of skeletal muscle with advancing age that may contribute to exercise intolerance in the elderly.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, New York; and
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Robert H I Andtbacka
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah
| | - John R Hyngstrom
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Leena P Bharath
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, Utah
| | - John D Symons
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah;
| |
Collapse
|
31
|
Castorena-Gonzalez JA, Staiculescu MC, Foote C, Martinez-Lemus LA. Mechanisms of the inward remodeling process in resistance vessels: is the actin cytoskeleton involved? Microcirculation 2015; 21:219-29. [PMID: 24635509 DOI: 10.1111/micc.12105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
The resistance arteries and arterioles are the vascular components of the circulatory system where the greatest drop in blood pressure takes place. Consequently, these vessels play a preponderant role in the regulation of blood flow and the modulation of blood pressure. For this reason, the inward remodeling process of the resistance vasculature, as it occurs in hypertension, has profound consequences on the incidence of life-threatening cardiovascular events. In this manuscript, we review some of the most prominent characteristics of inwardly remodeled resistance arteries including their changes in vascular passive diameter, wall thickness, and elastic properties. Then, we explore the known contribution of the different components of the vascular wall to the characteristics of inwardly remodeled vessels, and pay particular attention to the role the vascular smooth muscle actin cytoskeleton may play on the initial stages of the remodeling process. We end by proposing potential ways by which many of the factors and mechanisms known to participate in the inward remodeling process may be associated with cytoskeletal modifications and participate in reducing the passive diameter of resistance vessels.
Collapse
Affiliation(s)
- Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA; Department of Biological Engineering, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014; 5:175. [PMID: 24834056 PMCID: PMC4018556 DOI: 10.3389/fphys.2014.00175] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Yu-Xuan Luo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
34
|
Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 2014; 40:53-93. [DOI: 10.1016/j.preteyeres.2014.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
35
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
36
|
Choy JS, Lu X, Yang J, Zhang ZD, Kassab GS. Endothelial actin depolymerization mediates NADPH oxidase-superoxide production during flow reversal. Am J Physiol Heart Circ Physiol 2013; 306:H69-77. [PMID: 24186098 DOI: 10.1152/ajpheart.00402.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slow moving blood flow and changes in flow direction, e.g., negative wall shear stress, can cause increased superoxide (O2(·-)) production in vascular endothelial cells. The mechanism by which shear stress increases O2(·-) production, however, is not well established. We tested the hypothesis that actin depolymerization, which occurs during flow reversal, mediates O2(·-) production in vascular endothelial cells via NADPH oxidase, and more specifically, the subunit p47(phox). Using a swine model, we created complete blood flow reversal in one carotid artery, while the contralateral vessel maintained forward blood flow as control. We measured actin depolymerization, NADPH oxidase activity, and reactive oxygen species (ROS) production in the presence of various inhibitors. Flow reversal was found to induce actin depolymerization and a 3.9 ± 1.0-fold increase in ROS production as compared with forward flow. NADPH oxidase activity was 1.4 ± 0.2 times higher in vessel segments subjected to reversed blood flow when measured by a direct enzyme assay. The NADPH oxidase subunits gp91(phox) (Nox2) and p47(phox) content in the vessels remained unchanged after 4 h of flow reversal. In contrast, p47(phox) phosphorylation was increased in vessels with reversed flow. The response caused by reversed flow was reduced by in vivo treatment with jasplakinolide, an actin stabilizer (only a 1.7 ± 0.3-fold increase). Apocynin (an antioxidant) prevented reversed flow-induced ROS production when the animals were treated in vivo. Cytochalasin D mimicked actin depolymerization in vitro and caused a 5.2 ± 3.0-fold increase in ROS production. These findings suggest that actin filaments play an important role in negative shear stress-induced ROS production by potentiating NADPH oxidase activity, and more specifically, the p47(phox) subunit in vascular endothelium.
Collapse
Affiliation(s)
- Jenny S Choy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
37
|
Abstract
In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, reactive oxygen species production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and/or inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Kluge
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
38
|
Katakam PVG, Wappler EA, Katz PS, Rutkai I, Institoris A, Domoki F, Gáspár T, Grovenburg SM, Snipes JA, Busija DW. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol 2013; 33:752-9. [PMID: 23329133 DOI: 10.1161/atvbaha.112.300560] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochondrial depolarization by mitochondrial ATP-sensitive potassium channel activators, BMS-191095 (BMS) and diazoxide, on endothelium-dependent vasodilation. APPROACH AND RESULTS Diameter studies in isolated rat cerebral arteries showed BMS- and diazoxide-induced vasodilations that were diminished by endothelial denudation. Mitochondrial depolarization-induced vasodilation was reduced by inhibition of mitochondrial ATP-sensitive potassium channels, phosphoinositide-3 kinase, or nitric oxide synthase. Scavenging of reactive oxygen species, however, diminished vasodilation induced by diazoxide, but not by BMS. Fluorescence studies in cultured rat brain microvascular endothelial cells showed that BMS elicited mitochondrial depolarization and enhanced nitric oxide production; diazoxide exhibited largely similar effects, but unlike BMS, increased mitochondrial reactive oxygen species production. Measurements of intracellular calcium ([Ca(2+)]i) in cultured rat brain microvascular endothelial cells and arteries showed that both diazoxide and BMS increased endothelial [Ca(2+)]i. Western blot analyses revealed increased phosphorylation of protein kinase B and endothelial nitric oxide synthase (eNOS) by BMS and diazoxide. Increased phosphorylation of eNOS by diazoxide was abolished by phosphoinositide-3 kinase inhibition. Electron spin resonance spectroscopy confirmed vascular nitric oxide generation in response to diazoxide and BMS. CONCLUSIONS Pharmacological depolarization of endothelial mitochondria promotes activation of eNOS by dual pathways involving increased [Ca(2+)]i as well as by phosphoinositide-3 kinase-protein kinase B-induced eNOS phosphorylation. Both mitochondrial reactive oxygen species-dependent and -independent mechanisms mediate activation of eNOS by endothelial mitochondrial depolarization.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zamorano-León JJ, López-Farré AJ, Marques M, Rodríguez P, Modrego J, Segura A, Macaya C, Barrientos A. Changes by tacrolimus of the rat aortic proteome: Involvement of endothelin-1. Transpl Immunol 2012; 26:191-200. [DOI: 10.1016/j.trim.2012.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/03/2012] [Accepted: 02/02/2012] [Indexed: 01/31/2023]
|
40
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
41
|
Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol 2011; 302:H634-42. [PMID: 22140047 DOI: 10.1152/ajpheart.00717.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human coronary arterioles (HCAs) from patients with coronary artery disease, flow-induced dilation is mediated by a unique mechanism involving the release of H(2)O(2) from the mitochondria of endothelial cells (ECs). How flow activates ECs to elicit the mitochondrial release of H(2)O(2) remains unclear. Here, we examined the role of the transient receptor potential vanilloid type 4 (TRPV4) channel, a mechanosensitive Ca(2+)-permeable cation channel, in mediating ROS formation and flow-induced dilation in HCAs. Using RT-PCR, Western blot analysis, and immunohistochemical analysis, we detected the mRNA and protein expression of TRPV4 channels in ECs of HCAs and cultured human coronary artery ECs (HCAECs). In HCAECs, 4α-phorbol-12,13-didecanoate (4α-PDD), a selective TRPV4 agonist, markedly increased (via Ca(2+) influx) intracellular Ca(2+) concentration. In isolated HCAs, activation of TRPV4 channels by 4α-PDD resulted in a potent concentration-dependent dilation, and the dilation was inhibited by removal of the endothelium and by catalase, a H(2)O(2)-metabolizing enzyme. Fluorescence ROS assays showed that 4α-PDD increased the production of mitochondrial superoxide in HCAECs. 4α-PDD also enhanced the production of H(2)O(2) and superoxide in HCAs. Finally, we found that flow-induced dilation of HCAs was markedly inhibited by different TRPV4 antagonists and TRPV4-specific small interfering RNA. In conclusion, the endothelial TRPV4 channel is critically involved in flow-mediated dilation of HCAs. TRPV4-mediated Ca(2+) entry may be an important signaling event leading to the flow-induced release of mitochondrial ROS in HCAs. Elucidation of this novel TRPV4-ROS pathway may improve our understanding of the pathogenesis of coronary artery disease and/or other cardiovascular disorders.
Collapse
Affiliation(s)
- Aaron H Bubolz
- Dept. of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Arterioles are the blood vessels in the arterial side of the vascular tree that are located proximal to the capillaries and, in conjunction with the terminal arteries, provide the majority of resistance to blood flow. Consequently, arterioles are important contributors to the regulation of mean arterial pressure and tissue perfusion. Their wall consists of cellular and extracellular components that have been traditionally classified as conforming three layers: an intima containing endothelial cells sited on a basement membrane; a media made of an internal elastic lamina apposed by one or two layers of smooth muscle; and an adventitia composed mostly of collagen bundles, nerve endings and some fibroblasts. These components of the arteriolar wall are dynamically interconnected, providing a level of plasticity to the arteriolar wall that blurs the traditional boundaries of a rigid layered classification. This MiniReview focuses on the structural conformation of the arteriolar wall and shows how wall components interact spatially, functionally and temporally to control vascular diameter, regulate blood flow and maintain vascular permeability.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
43
|
Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol 2011; 52:814-21. [PMID: 22033434 DOI: 10.1016/j.yjmcc.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/16/2011] [Accepted: 10/04/2011] [Indexed: 01/17/2023]
Abstract
Atherosclerosis of conduit epicardial arteries is the principal culprit behind the complications of coronary heart disease, but a growing body of literature indicates that the coronary microcirculation also contributes substantially to the pathophysiology of cardiovascular disease. An understanding of mechanisms regulating microvascular function in humans is an essential foundation for understanding the role in disease, especially since these regulatory mechanisms vary substantially across species and vascular beds. In fact all subjects whose coronary tissue was used in the studies described have medical conditions that warrant cardiac surgery, thus relevance to the normal human must be inferential and is based on tissue from subjects without known arteriosclerotic disease. This review will focus on recent advances in the physiological and pathological mechanisms of coronary microcirculatory control, describing a robust plasticity in maintaining endothelial control over dilation, including mechanisms that are most relevant to the human heart. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Medicine, Cardiology Division Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | | |
Collapse
|
44
|
Lii CK, Lin AH, Lee SL, Chen HW, Wang TS. Oxidative modifications of proteins by sodium arsenite in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY 2011; 26:459-471. [PMID: 20196163 DOI: 10.1002/tox.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Epidemiologic studies have demonstrated that chronic arsenic exposure is associated with the incidence of chronic diseases. This association is partly related to the increase in reactive oxygen species (ROS) overload and protein oxidation that result from arsenic exposure. In this study, we intended to identify proteins susceptible to oxidative carbonylation by sodium arsenite and the impact of carbonylation on the function of these proteins in human umbilical vein endothelial cells (HUVECs). The 2,4-dinitrophenylhydrazine (DNPH) dot-blot assay revealed that arsenite (0-50 μM) dose-dependently increased protein carbonylation. Consistent with these findings, the cellular ROS level as measured by 2',7'-dichlorofluorescein diacetate (DCHF-DA) assay was increased in cells exposed to arsenite. By two-dimensional gel electrophoresis and matrix assist laser desorption ionization time of flight mass spectrometry (MALDI-TOF/MS), one glycolytic enzyme, enolase-α, two cytoskeleton proteins, fascin (F-actin associated protein) and vimentin, and two protein quality control proteins, HSC70 (heat-shock cognate protein 70), and PDIA3 (protein disulfide isomerase family A, member 3) were identified to be arsenic-sensitive carbonlyated proteins. Accompanied by carbonylation, enolase-α activity was dose-dependently decreased and the F-actin filament network was disturbed. Taken together, our results suggest that arsenite exposure results in the generation of carbonylated proteins, and the resultant changes in energy metabolism and in the cytoskeletal network may partly lead to cell damage.
Collapse
Affiliation(s)
- Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 2011; 15:1517-30. [PMID: 21194353 PMCID: PMC3151425 DOI: 10.1089/ars.2010.3642] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/07/2010] [Accepted: 01/01/2011] [Indexed: 12/19/2022]
Abstract
Mitochondria are well known for their central roles in ATP production, calcium homeostasis, and heme and steroid biosynthesis. However, mitochondrial reactive oxygen species (ROS), including superoxide and hydrogen peroxide, once thought to be toxic byproducts of mitochondrial physiologic activities, have recently been recognized as important cell-signaling molecules in the vascular endothelium, where their production, conversion, and destruction are highly regulated. Mitochondrial reactive oxygen species appear to regulate important vascular homeostatic functions under basal conditions in a variety of vascular beds, where, in particular, they contribute to endothelium-dependent vasodilation. On exposure to cardiovascular risk factors, endothelial mitochondria produce excessive ROS in concert with other cellular ROS sources. Mitochondrial ROS, in this setting, act as important signaling molecules activating prothrombotic and proinflammatory pathways in the vascular endothelium, a process that initially manifests itself as endothelial dysfunction and, if persistent, may lead to the development of atherosclerotic plaques. This review concentrates on emerging appreciation of the importance of mitochondrial ROS as cell-signaling molecules in the vascular endothelium under both physiologic and pathophysiologic conditions. Future potential avenues of research in this field also are discussed.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Cardiovascular Medicine Division and Department of Pharmacology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | |
Collapse
|
46
|
Mi Q, Chen N, Shaifta Y, Xie L, Lu H, Liu Z, Chen Q, Hamid C, Becker S, Ji Y, Ferro A. Activation of endothelial nitric oxide synthase is dependent on its interaction with globular actin in human umbilical vein endothelial cells. J Mol Cell Cardiol 2011; 51:419-27. [PMID: 21741389 DOI: 10.1016/j.yjmcc.2011.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/01/2011] [Accepted: 06/21/2011] [Indexed: 10/24/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) has been reported to associate with globular actin, and this association increases eNOS activity. Adenosine, histamine, salbutamol and thrombin cause activation of eNOS through widely different mechanisms. Whether these eNOS agonists can regulate eNOS activity through affecting its association with actin is unknown. As previously reported, we confirmed in cultured human umbilical vein endothelial cells (HUVEC) that histamine and thrombin increased intracellular Ca(2+) whereas adenosine and salbutamol did not, and that these four agonists caused different effects on actin filament structure. Nevertheless, despite their divergent effects on intracellular Ca(2+) and on actin filament structure, we found by immunoprecipitation that adenosine, histamine, salbutamol and thrombin all caused an increase in association between eNOS and globular actin. This increase of association was inhibited by pre-treatment with phalloidin, an actin filament stabilizer. All of these agonists also increased phosphorylation of eNOS on serine residue 1177, eNOS activity, and cyclic guanosine-3', 5'-monophosphate, and these increases were all attenuated by phalloidin. Agonist-induced phosphorylation of eNOS on serine 1177 was attenuated by Akt inhibition, whereas association of eNOS with actin was not. We also found, in HEK-293 cells transfected with the eNOS mutants eNOS-S1177A or eNOS-S1177D, that the association between eNOS and globular actin was decreased as compared to cells transfected with wild-type eNOS. We conclude that association of globular actin with eNOS plays an essential and necessary role in agonist-induced eNOS activation, through enabling its phosphorylation by Akt at serine residue 1177.
Collapse
Affiliation(s)
- Qiongyu Mi
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Silva JFR, Cyrino FZGA, Breitenbach MMD, Bouskela E, Carvalho JJ. Vimentin and laminin are altered on cheek pouch microvessels of streptozotocin-induced diabetic hamsters. Clinics (Sao Paulo) 2011; 66:1961-8. [PMID: 22086529 PMCID: PMC3203971 DOI: 10.1590/s1807-59322011001100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Normal endothelial cells respond to shear stress by elongating and aligning in the direction of fluid flow. Hyperglycemia impairs this response and contributes to microvascular complications, which result in deleterious effects to the endothelium. This work aimed to evaluate cheek pouch microvessel morphological characteristics, reactivity, permeability, and expression of cytoskeleton and extracellular matrix components in hamsters after the induction of diabetes with streptozotocin. METHODS Syrian golden hamsters (90-130 g) were injected with streptozotocin (50 mg/kg, i.p.) or vehicle either 6 (the diabetes mellitus 6 group) or 15 (the diabetes mellitus 15 group) days before the experiment. Vascular dimensions and density per area of vessels were determined by morphometric and stereological measurements. Changes in blood flow were measured in response to acetylcholine, and plasma extravasation was measured by the number of leakage sites. Actin, talin, α-smooth muscle actin, vimentin, type IV collagen, and laminin were detected by immunohistochemistry and assessed through a semiquantitative scoring system. RESULTS There were no major alterations in the lumen, wall diameters, or densities of the examined vessels. Likewise, vascular reactivity and permeability were not altered by diabetes. The arterioles demonstrated increased immunoreactivity to vimentin and laminin in the diabetes mellitus 6 and diabetes mellitus 15 groups. DISCUSSION Antibodies against laminin and vimentin inhibit branching morphogenesis in vitro. Therefore, laminin and vimentin participating in the structure of the focal adhesion may play a role in angiogenesis. CONCLUSIONS Our results indicated the existence of changes related to cell-matrix interactions, which may contribute to the pathological remodeling that was already underway one week after induction of experimental diabetes.
Collapse
Affiliation(s)
- Jemima Fuentes R Silva
- Laboratory of Cellular Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
48
|
Kang LS, Reyes RA, Muller-Delp JM. Aging impairs flow-induced dilation in coronary arterioles: role of NO and H(2)O(2). Am J Physiol Heart Circ Physiol 2009; 297:H1087-95. [PMID: 19617414 DOI: 10.1152/ajpheart.00356.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging contributes significantly to the development of cardiovascular disease and is associated with elevated production of reactive oxygen species (ROS). The beneficial effects of nitric oxide (NO)-mediated vasodilation are quickly abolished in the presence of ROS, and this effect may be augmented with aging. We previously demonstrated an age-induced impairment of flow-induced dilation in rat coronary arterioles. Therefore, the purpose of this study was to determine the effects of O(2)(-) scavenging, as well as removal of H(2)O(2), the byproduct of O(2)(-) scavenging, on flow-mediated dilation in coronary resistance arterioles of young (4 mo) and old (24 mo) male Fischer 344 rats. Flow increased NO and H(2)O(2) production as evidenced by enhanced diaminofluorescein and dichlorodihydrofluorescein fluorescence, respectively, whereas aging reduced flow-induced NO and H(2)O(2) production. Endothelium-dependent vasodilation was evaluated by increasing intraluminal flow (5-60 nl/s) before and after treatment with the superoxide dismutase mimetic Tempol (100 muM), the H(2)O(2) scavenger catalase (100 U/ml), or Tempol plus catalase. Catalase reduced flow-induced dilation in both groups, whereas Tempol and Tempol plus catalase diminished vasodilation in young but not old rats. Tempol plus deferoxamine (100 muM), an inhibitor of hydroxyl radical formation, reversed Tempol-mediated impairment of flow-induced vasodilation in young rats and improved flow-induced vasodilation in old rats compared with control. Immunoblot analysis revealed increases in endogenous superoxide dismutase, catalase, and nitrotyrosine protein levels with aging. Collectively, these data indicate that NO- and H(2)O(2)-mediated flow-induced signaling decline with age in coronary arterioles and that elevated hydroxyl radical formation contributes to the age-related impairment of flow-induced vasodilation.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
49
|
Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 2009; 104:211-27. [PMID: 19190954 DOI: 10.1007/s00395-009-0775-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/15/2008] [Indexed: 12/27/2022]
Abstract
Myocardial perfusion is regulated by a variety of factors that influence arteriolar vasomotor tone. An understanding of the physiological and pathophysiological factors that modulate coronary blood flow provides the basis for the judicious use of medications for the treatment of patients with coronary artery disease. Vasomotor properties of the coronary circulation vary among species. This review highlights the results of recent studies that examine the mechanisms by which the human coronary microcirculation is regulated in normal and disease states, focusing on diabetes. Multiple pathways responsible for myogenic constriction and flow-mediated dilation in human coronary arterioles are addressed. The important role of endothelium-derived hyperpolarizing factors, their interactions in mediating dilation, as well as speculation regarding the clinical significance are emphasized. Unique properties of coronary arterioles in human vs. other species are discussed.
Collapse
|
50
|
Firth AL, Gordienko DV, Yuill KH, Smirnov SV. Cellular localization of mitochondria contributes to Kv channel-mediated regulation of cellular excitability in pulmonary but not mesenteric circulation. Am J Physiol Lung Cell Mol Physiol 2008; 296:L347-60. [PMID: 19098127 PMCID: PMC2660209 DOI: 10.1152/ajplung.90341.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are proposed to be a major oxygen sensor in hypoxic pulmonary vasoconstriction (HPV), a unique response of the pulmonary circulation to low oxygen tension. Mitochondrial factors including reactive oxygen species, cytochrome c, ATP, and magnesium are potent modulators of voltage-gated K(+) (K(v)) channels in the plasmalemmal membrane of pulmonary arterial (PA) smooth muscle cells (PASMCs). Mitochondria have also been found close to the plasmalemmal membrane in rabbit main PA smooth muscle sections. Therefore, we hypothesized that differences in mitochondria localization in rat PASMCs and systemic mesenteric arterial smooth muscle cells (MASMCs) may contribute to the divergent oxygen sensitivity in the two different circulations. Cellular localization of mitochondria was compared with immunofluorescent labeling, and differences in functional coupling between mitochondria and K(v) channels was evaluated with the patch-clamp technique and specific mitochondrial inhibitors antimycin A (acting at complex III of the mitochondrial electron transport chain) and oligomycin A (which inhibits the ATP synthase). It was found that mitochondria were located significantly closer to the plasmalemmal membrane in PASMCs compared with MASMCs. Consistent with these findings, the effects of the mitochondrial inhibitors on K(v) current (I(Kv)) were significantly more potent in PASMCs than in MASMCs. The cytoskeletal disruptor cytochalasin B (10 microM) also altered mitochondrial distribution in PASMCs and significantly attenuated the effect of antimycin A on the voltage-dependent parameters of I(Kv). These findings suggest a greater structural and functional coupling between mitochondria and K(v) channels specifically in PASMCs, which could contribute to the regulation of PA excitability in HPV.
Collapse
Affiliation(s)
- Amy L Firth
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| | | | | | | |
Collapse
|