1
|
Singh J, Ellingson CJ, Ellingson CA, Shafiq MA, Dech RT, Sirant LW, Dorsch KD, Gruszecki M, Kratzig GP, Neary JP. Acute sport-related concussion alters cardiac contribution to cerebral oxygenation during repeated squat stands. J Sports Sci 2024:1-7. [PMID: 39675011 DOI: 10.1080/02640414.2024.2442257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Assessment of cerebral oxygenation during repeated squat stands following an acute sport-related concussion (SRC) has the potential to identify physiological changes following SRC. All varsity university athletes completed a pre-season assessment and 53 were followed up within 5-days of suffering an SRC. Of the 53 participants, 29 had continuous beat-to-beat blood pressure (BP; sampled at 200 hz) collected by finger photoplethysmography, and 53 had right prefrontal cortex oxygenation collected by near-infrared spectroscopy (NIRS; sampled at 10 hz). Participants completed a 5-min repeated squat (10 s) stand (10 s) manoeuvre (0.05 hz). Wavelet transformation was applied to the signals, separating them into smooth muscle cell (0.05 to 0.145 hz), respiratory (0.145 to 0.6 hz) and cardiac (0.6 to 2 hz) frequency intervals, with the 5-min squat stand manoeuvre compared from pre-season to post-concussion. A significant amplitude increase (p < 0.05) in oxyhaemoglobin, total haemoglobin and haemoglobin difference following SRC was found at the cardiac interval. During the squat stand dynamic cerebral autoregulation challenge, this exploratory study found an elevated contribution from the heart to the oxygenation response at the right prefrontal cortex, suggestive of a cardiac compensatory response during concussion. Future research with cerebral blood flow alongside NIRS can provide greater insight to dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Ryan T Dech
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luke W Sirant
- College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | | | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
2
|
Çemç MS, Ağduman F. Evaluating the impact of boxing on prefrontal cortex activation and cognitive performance: A pilot study using fNIRS technology and the Stroop test. PLoS One 2024; 19:e0314979. [PMID: 39671403 PMCID: PMC11643274 DOI: 10.1371/journal.pone.0314979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024] Open
Abstract
This research sets out to investigate the differences in hemoglobin concentration occurring in the prefrontal cortex (PFC) during the administration of the Stroop test in active amateur boxers and to compare the obtained data regarding chronic traumatic brain injury with those of healthy individuals. The research was conducted at the Atatürk University Neuropsychology Laboratory. Participants consisted of 6 male boxers, aged 19.66 ± 2.94 years, who had been actively boxing for 7.5 ± 3.8 years and had received at least high school level education, with right-hand dominance, and 8 healthy males, aged 19.62 ± 1.18 years, who had not engaged in any combat sports. fNIRS recordings were taken over the Prefrontal Cortex (PFC) while Stroop test stimuli were presented to the participants in a block design. The data were analyzed using the JASP program. Mann-Whitney U test was applied to evaluate the differences between groups in Stroop test data. The activation levels on the prefrontal cortex during the test were evaluated using the Repeated Measures ANOVA test. A significance level of p <0.05 was accepted for the analyses. In conclusion, compared to the control group, boxers demonstrated a significantly higher level of cerebral activation in the right dlPFC/vlPFC regions during the congruent task and in the right dmPFC as well as the left dmPFC/vmPFC/OFC regions during the incongruent task in the Stroop test. When the Stroop test results of the participants were evaluated between groups, it was found that although statistically insignificant compared to healthy subjects, boxers generally exhibited failure. In conclusion, it was found that boxers exhibit higher neural activation responses and lower cognitive performance during neurophysiological testing compared to healthy controls. These two conditions are thought to be interconnected and are considered to result from neural inefficiency.
Collapse
Affiliation(s)
- Muhammed Sıddık Çemç
- Department of Physical Education and Sports, Boğaziçi University, Istanbul, Türkiye
| | - Fatih Ağduman
- Department of Recreation, Faculty of Sport Sciences, Atatürk University, Erzurum, Türkiye
- Sport Sciences Research and Application Center, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Martini DN, Mancini M, Antonellis P, McDonnell P, Vitorio R, Stuart S, King LA. Prefrontal Cortex Activity During Gait in People With Persistent Symptoms After Concussion. Neurorehabil Neural Repair 2024:15459683241240423. [PMID: 38506532 DOI: 10.1177/15459683241240423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Concussions result in transient symptoms stemming from a cortical metabolic energy crisis. Though this metabolic energy crisis typically resolves in a month, symptoms can persist for years. The symptomatic period is associated with gait dysfunction, the cortical underpinnings of which are poorly understood. Quantifying prefrontal cortex (PFC) activity during gait may provide insight into post-concussion gait dysfunction. The purpose of this study was to explore the effects of persisting concussion symptoms on PFC activity during gait. We hypothesized that adults with persisting concussion symptoms would have greater PFC activity during gait than controls. Within the concussed group, we hypothesized that worse symptoms would relate to increased PFC activity during gait, and that increased PFC activity would relate to worse gait characteristics. METHODS The Neurobehavior Symptom Inventory (NSI) characterized concussion symptoms. Functional near-infrared spectroscopy quantified PFC activity (relative concentration changes of oxygenated hemoglobin [HbO2]) in 14 people with a concussion and 25 controls. Gait was assessed using six inertial sensors in the concussion group. RESULTS Average NSI total score was 26.4 (13.2). HbO2 was significantly higher (P = .007) for the concussed group (0.058 [0.108]) compared to the control group (-0.016 [0.057]). Within the concussion group, HbO2 correlated with NSI total symptom score (ρ = .62; P = .02), sagittal range of motion (r = .79; P = .001), and stride time variability (r = -.54; P = .046). CONCLUSION These data suggest PFC activity relates to symptom severity and some gait characteristics in people with persistent concussion symptoms. Identifying the neurophysiological underpinnings to gait deficits post-concussion expands our knowledge of motor behavior deficits in people with persistent concussion symptoms.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Paul McDonnell
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Laurie A King
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Grijalva C, Mullins VA, Michael BR, Hale D, Wu L, Toosizadeh N, Chilton FH, Laksari K. Neuroimaging, wearable sensors, and blood-based biomarkers reveal hyperacute changes in the brain after sub-concussive impacts. BRAIN MULTIPHYSICS 2023; 5:100086. [PMID: 38292249 PMCID: PMC10827333 DOI: 10.1016/j.brain.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Impacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms. We utilize portable neuroimaging technology - transcranial Doppler (TCD) ultrasound and functional near infrared spectroscopy (fNIRS) - to estimate the extent of pre- and post-differences following contact and non-contact sparring sessions in nine MMA athletes. In addition, the extent of changes in neurofilament light (NfL) protein biomarker concentrations, and neurocognitive/balance parameters were determined following impacts. Athletes were instrumented with sensor-based mouth guards to record head kinematics. TCD and fNIRS results demonstrated significantly increased blood flow velocity (p = 0.01) as well as prefrontal (p = 0.01) and motor cortex (p = 0.04) oxygenation, only following the contact sparring sessions. This increase after contact was correlated with the cumulative angular acceleration experienced during impacts (p = 0.01). In addition, the NfL biomarker demonstrated positive correlations with angular acceleration (p = 0.03), and maximum principal and fiber strain (p = 0.01). On average athletes experienced 23.9 ± 2.9 g peak linear acceleration, 10.29 ± 1.1 rad/s peak angular velocity, and 1,502.3 ± 532.3 rad/s2 angular acceleration. Balance parameters were significantly increased following contact sparring for medial-lateral (ML) center of mass (COM) sway, and ML ankle angle (p = 0.01), illustrating worsened balance. These combined results reveal significant changes in brain hemodynamics and neurophysiological parameters that occur immediately after sub-concussive impacts and suggest that the physical impact to the head plays an important role in these changes.
Collapse
Affiliation(s)
- Carissa Grijalva
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
| | - Veronica A. Mullins
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Bryce R. Michael
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Dallin Hale
- University of Arizona, Department of Physiology, Tucson, AZ, United States
| | - Lyndia Wu
- Univerisity of British Columbia, Department of Mechanical Engineering, Vancouver, BC, Canada
| | - Nima Toosizadeh
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Medicine, Arizona Center for Aging, Tucson, AZ, United States
| | - Floyd H. Chilton
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Kaveh Laksari
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of California Riverside, Department of Mechanical Engineering, Riverside, CA, United States
| |
Collapse
|
5
|
Jain D, Graci V, Beam ME, Ayaz H, Prosser LA, Master CL, McDonald CC, Arbogast KB. Neurophysiological and gait outcomes during a dual-task gait assessment in concussed adolescents. Clin Biomech (Bristol, Avon) 2023; 109:106090. [PMID: 37696165 PMCID: PMC10758982 DOI: 10.1016/j.clinbiomech.2023.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gait deficits are common after concussion in adolescents. However, the neurophysiological underpinnings of these gait deficiencies are currently unknown. Thus, the goal of this study was to compare spatiotemporal gait metrics, prefrontal cortical activation, and neural efficiency between concussed adolescents several weeks from injury and uninjured adolescents during a dual-task gait assessment. METHODS Fifteen concussed (mean age[SD]: 17.4[0.6], 13 female, days since injury: 26.3[9.9]) and 17 uninjured adolescents (18.0[0.7], 10 female) completed a gait assessment with three conditions repeated thrice: single-task walking, single-task subtraction, and dual-task, which involved walking while completing a subtraction task simultaneously. Gait metrics were measured using an inertial sensor system. Prefrontal cortical activation was captured via functional near-infrared spectroscopy. Neural efficiency was calculated by relating gait metrics to prefrontal cortical activity. Differences between groups and conditions were examined, with corrections for multiple comparisons. FINDINGS There were no significant differences in gait metrics between groups. Compared to uninjured adolescents, concussed adolescents displayed significantly greater prefrontal cortical activation during the single-task subtraction (P = 0.01) and dual-task (P = 0.01) conditions with lower neural efficiency based on cadence (P = 0.02), gait cycle duration (P = 0.03), step duration (P = 0.03), and gait speed (P = 0.04) during the dual-task condition. INTERPRETATION Our findings suggest that several weeks after injury concussed adolescents demonstrate lower neural efficiency and display a cost to gait performance when cognitive demand is high, e.g., while multitasking, suggesting that the concussed adolescent brain is less able to compensate when attention is divided between two concurrent tasks.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioengineering, University of Pennsylvania, USA; Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA.
| | - Valentina Graci
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Megan E Beam
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hasan Ayaz
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA; Drexel Solutions Institute, Drexel University, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Prosser
- Division of Rehabilitation Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine C McDonald
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Grijalva C, Hale D, Wu L, Toosizadeh N, Laksari K. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Front Hum Neurosci 2023; 17:1191284. [PMID: 37780960 PMCID: PMC10538631 DOI: 10.3389/fnhum.2023.1191284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Sub-concussive head impacts in soccer are drawing increasing research attention regarding their acute and long-term effects as players may experience thousands of headers in a single season. During these impacts, the head experiences rapid acceleration similar to what occurs during a concussion, but without the clinical implications. The physical mechanism and response to repetitive impacts are not completely understood. The objective of this work was to examine the immediate functional outcomes of sub-concussive level impacts from soccer heading in a natural, non-laboratory environment. Methods Twenty university level soccer athletes were instrumented with sensor-mounted bite bars to record impacts from 10 consecutive soccer headers. Pre- and post-header measurements were collected to determine hyper-acute changes, i.e., within minutes after exposure. This included measuring blood flow velocity using transcranial Doppler (TCD) ultrasound, oxyhemoglobin concentration using functional near infrared spectroscopy imaging (fNIRS), and upper extremity dual-task (UEF) neurocognitive testing. Results On average, the athletes experienced 30.7 ± 8.9 g peak linear acceleration and 7.2 ± 3.1 rad/s peak angular velocity, respectively. Results from fNIRS measurements showed an increase in the brain oxygenation for the left prefrontal cortex (PC) (p = 0.002), and the left motor cortex (MC) (p = 0.007) following the soccer headers. Additional analysis of the fNIRS time series demonstrates increased sample entropy of the signal after the headers in the right PC (p = 0.02), right MC (p = 0.004), and left MC (p = 0.04). Discussion These combined results reveal some variations in brain oxygenation immediately detected after repetitive headers. Significant changes in balance and neurocognitive function were not observed in this study, indicating a mild level of head impacts. This is the first study to observe hemodynamic changes immediately after sub-concussive impacts using non-invasive portable imaging technology. In combination with head kinematic measurements, this information can give new insights and a framework for immediate monitoring of sub-concussive impacts on the head.
Collapse
Affiliation(s)
- Carissa Grijalva
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Dallin Hale
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Arizona Center for Aging, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Elbin RJ, Trbovich A, Womble MN, Mucha A, Fedor S, Stephenson K, Holland C, Dollar C, Sparto P, Durfee K, Patterson CG, Smith CN, Huppert TJ, Okonkwo DO, Collins MW, Kontos AP. Targeted multidomain intervention for complex mTBI: protocol for a multisite randomized controlled trial in military-age civilians. Front Neurol 2023; 14:1085662. [PMID: 37456641 PMCID: PMC10349652 DOI: 10.3389/fneur.2023.1085662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Mild traumatic brain injury (mTBI) affects ~18,000 military personnel each year, and although most will recover in 3-4 weeks, many experience persisting symptoms and impairment lasting months or longer. Current standard of care for U.S. military personnel with complex mTBI involves initial (<48 h) prescribed rest, followed by behavioral (e.g., physical activity, sleep regulation, stress reduction, hydration, nutrition), and symptom-guided management. There is growing agreement that mTBI involves different clinical profiles or subtypes that require a comprehensive multidomain evaluation and adjudication process, as well as a targeted approach to treatment. However, there is a lack of research examining the effectiveness of this approach to assessing and treating mTBI. This multisite randomized controlled trial (RCT) will determine the effectiveness of a targeted multidomain (T-MD) intervention (anxiety/mood, cognitive, migraine, ocular, vestibular; and sleep, autonomic) compared to usual care (behavioral management) in military-aged civilians with complex mTBI. Methods This study employs a single-blinded, two-group repeated measures design. The RCT will enroll up to 250 military-aged civilians (18-49 yrs) with a diagnosed complex mTBI within 8 days to 6 months of injury from two concussion specialty clinics. The two study arms are a T-MD intervention and a usual care, behavioral management control group. All participants will complete a comprehensive, multidomain clinical evaluation at their first clinical visit. Information gathered from this evaluation will be used to adjudicate mTBI clinical profiles. Participants will then be randomized to either the 4-week T-MD or control arm. The T-MD group will receive targeted interventions that correspond to the patient's clinical profile (s) and the control group will receive behavioral management strategies. Primary outcomes for this study are changes from enrollment to post-intervention on the Neurobehavioral Symptom Inventory (NSI), Patient Global Impression of Change (PGIC), and functional near-infrared spectroscopy (fNIRS). Time to return to activity (RTA), and healthcare utilization costs will also be assessed. Discussion Study findings may inform a more effective approach to treat complex mTBI in military personnel and civilians, reduce morbidity, and accelerate safe return-to-duty/activity. Ethics and dissemination The study is approved by the University of Pittsburgh Institutional Review board and registered at clinicaltrials.gov. Dissemination plans include peer-reviewed publications and presentations at professional meetings. Clinical Trial Registration www.clinicaltrials.gov, identifier: NCT04549532.
Collapse
Affiliation(s)
- R. J. Elbin
- Office for Sport Concussion Research, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Alicia Trbovich
- UPMC Sports Medicine Concussion Program, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Melissa N. Womble
- Inova Sports Medicine Concussion Program, Fairfax, VA, United States
| | - Anne Mucha
- UPMC Centers for Rehab Services, Pittsburgh, PA, United States
| | - Sheri Fedor
- Inova Physical Therapy Center, Fairfax, VA, United States
| | - Katie Stephenson
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Cyndi Holland
- UPMC Sports Medicine Concussion Program, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Christina Dollar
- Inova Sports Medicine Concussion Program, Fairfax, VA, United States
| | - Patrick Sparto
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kori Durfee
- Office for Sport Concussion Research, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Charity G. Patterson
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Clair N. Smith
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - David O. Okonkwo
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W. Collins
- UPMC Sports Medicine Concussion Program, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Anthony P. Kontos
- UPMC Sports Medicine Concussion Program, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Lapointe AP, Ware AL, Duszynski CC, Stang A, Yeates KO, Dunn JF. Cerebral Hemodynamics and Microvasculature Changes in Relation to White Matter Microstructure After Pediatric Mild Traumatic Brain Injury: An A-CAP Pilot Study. Neurotrauma Rep 2023; 4:64-70. [PMID: 36726868 PMCID: PMC9886193 DOI: 10.1089/neur.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Advanced neuroimaging techniques show promise as a biomarker for mild traumatic brain injury (mTBI). However, little research has evaluated cerebral hemodynamics or its relation to white matter microstructure post-mTBI in children. This novel pilot study examined differences in cerebral hemodynamics, as measured using functional near-infrared spectroscopy (fNIRS), and its association with diffusion tensor imaging (DTI) metrics in children with mTBI or mild orthopedic injury (OI) to address these gaps. Children 8.00-16.99 years of age with mTBI (n = 9) or OI (n = 6) were recruited in a pediatric emergency department, where acute injury characteristics were assessed. Participants completed DTI twice, post-acutely (2-33 days) and chronically (3 or 6 months), and fNIRS ∼1 month post-injury. Automated deterministic tractography was used to compute DTI metrics. There was reduced absolute phase globally and coherence in the dorsolateral pre-frontal cortex (DLPFC) after mTBI compared to the OI group. Coherence in the DLPFC and absolute phase globally showed distinct associations with fractional anisotropy in interhemispheric white matter pathways. Two fNIRS metrics (coherence and absolute phase) differentiated mTBI from OI in children. Variability in cerebral hemodynamics related to white matter microstructure. The results provide initial evidence that fNIRS may have utility as a clinical biomarker of pediatric mTBI.
Collapse
Affiliation(s)
- Andrew P. Lapointe
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley L. Ware
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Chris C. Duszynski
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Antonia Stang
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Address correspondence to: Jeff F. Dunn, PhD, Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, 3280 Hospital Drive Northwest, Calgary, Alberta, Canada T2N 4Z6;
| |
Collapse
|
9
|
Podolak OE, Arbogast KB, Master CL, Sleet D, Grady MF. Pediatric Sports-Related Concussion: An Approach to Care. Am J Lifestyle Med 2022; 16:469-484. [PMID: 35860366 PMCID: PMC9290185 DOI: 10.1177/1559827620984995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 08/14/2023] Open
Abstract
Sports-related concussion (SRC) is a common sports injury in children and adolescents. With the vast amount of youth sports participation, an increase in awareness of concussion and evidence that the injury can lead to consequences for school, sports and overall quality of life, it has become increasingly important to properly diagnose and manage concussion. SRC in the student athlete is a unique and complex injury, and it is important to highlight the differences in the management of child and adolescent concussion compared with adults. This review focuses on the importance of developing a multimodal systematic approach to diagnosing and managing pediatric sports-related concussion, from the sidelines through recovery.
Collapse
Affiliation(s)
- Olivia E. Podolak
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christina L. Master
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - David Sleet
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew F. Grady
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Joshi S, Weedon BD, Esser P, Liu YC, Springett DN, Meaney A, Inacio M, Delextrat A, Kemp S, Ward T, Izadi H, Dawes H, Ayaz H. Neuroergonomic assessment of developmental coordination disorder. Sci Rep 2022; 12:10239. [PMID: 35715433 PMCID: PMC9206023 DOI: 10.1038/s41598-022-13966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 12/29/2022] Open
Abstract
Until recently, neural assessments of gross motor coordination could not reliably handle active tasks, particularly in realistic environments, and offered a narrow understanding of motor-cognition. By applying a comprehensive neuroergonomic approach using optical mobile neuroimaging, we probed the neural correlates of motor functioning in young people with Developmental Coordination Disorder (DCD), a motor-learning deficit affecting 5-6% of children with lifelong complications. Neural recordings using fNIRS were collected during active ambulatory behavioral task execution from 37 Typically Developed and 48 DCD Children who performed cognitive and physical tasks in both single and dual conditions. This is the first of its kind study targeting regions of prefrontal cortical dysfunction for identification of neuropathophysiology for DCD during realistic motor tasks and is one of the largest neuroimaging study (across all modalities) involving DCD. We demonstrated that DCD is a motor-cognitive disability, as gross motor /complex tasks revealed neuro-hemodynamic deficits and dysfunction within the right middle and superior frontal gyri of the prefrontal cortex through functional near infrared spectroscopy. Furthermore, by incorporating behavioral performance, decreased neural efficiency in these regions were revealed in children with DCD, specifically during motor tasks. Lastly, we provide a framework, evaluating disorder impact in ecologically valid contexts to identify when and for whom interventional approaches are most needed and open the door for precision therapies.
Collapse
Affiliation(s)
- Shawn Joshi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
- College of Medicine, Drexel University, Philadelphia, PA, USA.
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK.
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | - Benjamin D Weedon
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Yan-Ci Liu
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospita, Taipei, Taiwan
| | - Daniella N Springett
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Department for Health, University of Bath, Bath, UK
| | - Andy Meaney
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- NHS Foundation Trust, Oxford University Hospitals, Oxford, UK
| | - Mario Inacio
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Research Center in Sports Sciences, Health Sciences and Human Development, University of Maia, Porto, Portugal
| | - Anne Delextrat
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Steve Kemp
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Tomás Ward
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Hooshang Izadi
- School of Engineering, Computing and Mathematics, School of Technology, Design and Environment, Oxford Brookes University, Oxford, UK
| | - Helen Dawes
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Intersect@Exeter, College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
- Drexel Solution Institute, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Under the Helmet: Perioperative Concussion-Review of Current Literature and Targets for Research. J Neurosurg Anesthesiol 2022; 34:277-281. [PMID: 35522842 DOI: 10.1097/ana.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Patients with recent concussion experience disruption in neurocellular and neurometabolic function that may persist beyond symptom resolution. Patients may require anesthesia to facilitate diagnostic or surgical procedures following concussion; these procedures may or may not be related to the injury that caused the patient to sustain a concussion. As our knowledge about concussion continues to advance, it is imperative that anesthesiologists remain up to date with current principles. This Focused Review will update readers on the latest concussion literature, discuss the potential impact of concussion on perianesthetic care, and identify knowledge gaps in our understanding of concussion.
Collapse
|
12
|
Thibeault CM, Dorn AY, Radhakrishnan S, Hamilton RB. Longitudinal assessment of hemodynamic alterations after mild traumatic brain injury in adolescents: Selected case study review. JOURNAL OF CONCUSSION 2022. [DOI: 10.1177/20597002211065855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alterations in the neurovasculature after traumatic brain injury (TBI) represents a significant sequelae. However, despite theoretical and empirical evidence supporting the near-ubiquity of vascular injury, its pathophysiology remains elusive. Although this has been shown for all grades of TBI, the vascular changes after injuries with the broad mild traumatic brain injuries (mTBI) classification, remain particularly difficult to describe. Our group has previously demonstrated hemodynamic alterations in mTBI by utilizing transcranial Doppler ultrasound and cerebrovascular reactivity in a cross-sectional study. That work identified a phasic progression of deviations over varying days post-injury. These phases were then characterized by a set of inverse models that provided a hypothetical process of hemodynamic dysfunction after mTBI. This model set provides a framework with the potential for guiding clinical treatment over the course of recovery. However, it is still unclear if individual patients will progress through the phases of dysfunction similar to that found at the population level. The work presented here explores six individual patients with high-density data collected during their post-injury recovery. Breath-hold index (BHI) was found to be the most robust feature related to mTBI longitudinally. All six subjects exhibited BHI recovery curves that followed the population model's progression. The changes in pulsatile features lacked the universality of BHI, but were present in subjects with higher self-reported symptom scores and longer periods of recovery. This work suggests neurovascular dysfunction after an mTBI may be a robust phenomenon. Additionally, the capabilities of TCD in capturing these changes highlights its potential for aiding clinicians in monitoring patient's recovery post mTBI.
Collapse
|
13
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Schmid W, Fan Y, Chi T, Golanov E, Regnier-Golanov AS, Austerman RJ, Podell K, Cherukuri P, Bentley T, Steele CT, Schodrof S, Aazhang B, Britz GW. Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries. J Neural Eng 2021; 18. [PMID: 34330120 DOI: 10.1088/1741-2552/ac1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.
Collapse
Affiliation(s)
- William Schmid
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Yingying Fan
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Taiyun Chi
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Eugene Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | | | - Ryan J Austerman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering (IBB), Rice University, Houston, TX 77005, United States of America
| | - Timothy Bentley
- Office of Naval Research, Arlington, VA 22203, United States of America
| | - Christopher T Steele
- Military Operational Medicine Research Program, US Army Medical Research and Development Command, Fort Detrick, MD 21702, United States of America
| | - Sarah Schodrof
- Department of Athletics-Sports Medicine, Rice University, Houston, TX 77005, United States of America
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
15
|
Psycho-affective health, cognition, and neurophysiological functioning following sports-related concussion in symptomatic and asymptomatic athletes, and control athletes. Sci Rep 2021; 11:13838. [PMID: 34226626 PMCID: PMC8257649 DOI: 10.1038/s41598-021-93218-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/31/2021] [Indexed: 11/08/2022] Open
Abstract
Little is known about the neuropsychiatric and neurophysiological differences that characterize abnormal recovery following a concussion. The present study aimed to investigate the psycho-affective, cognitive, and neurophysiological profiles of symptomatic, slow-to-recover, concussed athletes, asymptomatic concussed athletes, and control athletes. Seventy-eight athletes (26 symptomatic, 26 asymptomatic, 26 control) completed the Beck Depression Inventory-II, Profile of Mood States, and 2-Back task. Additionally, event-related brain potentials were recorded during an experimental three-stimulus visual Oddball paradigm. Compared to asymptomatic and control groups, the symptomatic group reported greater depression symptoms and negatively altered mood states. Symptomatic athletes also exhibited poorer cognitive performance on the 2-Back task, indicated by more errors and slower reaction time. ERP analyses indicated prolonged P3b latency for both symptomatic and asymptomatic groups, but symptomatic athletes also exhibited reduced P3b amplitude compared to both asymptomatic and control groups. For the asymptomatic group, correlations were observed between time since last concussion and functioning, but no relations were observed within the symptomatic group for any measure. The current findings provide valuable information regarding the psycho-affective, cognitive, and neurophysiological profiles of athletes with and without persistent symptoms following a concussion and highlight the need to assess and treat symptomatic, slow-to-recover athletes from a multidimensional and integrative perspective.
Collapse
|
16
|
Corwin DJ, Grady MF, Master CL, Joffe MD, Zonfrillo MR. Evaluation and Management of Pediatric Concussion in the Acute Setting. Pediatr Emerg Care 2021; 37:371-379. [PMID: 34180858 DOI: 10.1097/pec.0000000000002498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Concussion, a type of mild traumatic brain injury, is a common injury encountered by providers caring for pediatric patients in the emergency department (ED) setting. Our understanding of the pathophysiologic basis for symptom and recovery trajectories for pediatric concussion continues to rapidly evolve. As this understanding changes, so do recommendations for optimal management of concussed youth. As more and more children present to EDs across the country for concussion, it is imperative that providers caring for children in these settings remain up-to-date with diagnostic recommendations and management techniques. This article will review the definition, epidemiology, pathophysiology, diagnosis, and management of pediatric concussion in the ED setting.
Collapse
Affiliation(s)
- Daniel J Corwin
- From the Attending Physician, Division of Emergency Medicine, Children's Hospital of Philadelphia
| | - Matthew F Grady
- Attending Physician, Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christina L Master
- Attending Physician, Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mark D Joffe
- From the Attending Physician, Division of Emergency Medicine, Children's Hospital of Philadelphia
| | - Mark R Zonfrillo
- Attending Physician, Departments of Emergency Medicine and Pediatrics, Alpert Medical School of Brown University and Hasbro Children's Hospital, Providence, RI
| |
Collapse
|
17
|
Sports medicine: bespoke player management. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Memmini AK, Sun X, Hu X, Kim J, Herzog NK, Islam MN, Weissman DH, Rogers AJ, Kovelman I, Broglio SP. Persistent alterations of cortical hemodynamic response in asymptomatic concussed patients. Concussion 2020; 6:CNC84. [PMID: 33976899 PMCID: PMC8097509 DOI: 10.2217/cnc-2020-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
AIM The underlying neurophysiological effects of concussion often result in attenuated cognitive and cortical function. To understand the relation between cognition and brain injury, we investigated the effects of concussion on attentional networks using functional near-infrared spectroscopy (fNIRS). MATERIALS & METHODS Healthy controls and concussed patients, tested within 72 h from injury (T1) and after symptoms resolved (T2) completed a computerized attention task during fNIRS imaging. RESULTS T1 patients exhibited slower reaction times and reduced brain activation pattern relative to healthy controls. Interestingly, the cortical oxygenation hemoglobin response at T2 was greater relative to T1 and healthy controls, while reaction time was normative. CONCLUSION The exploratory findings of this study suggest once asymptomatic, a compensatory hemodynamic response may support the restoration of reaction time despite ongoing physiological recovery.
Collapse
Affiliation(s)
- Allyssa K Memmini
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Sun
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaosu Hu
- School of Dentistry, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noelle K Herzog
- Department of Psychology, University of Toledo, Toledo, OH 43606, USA
| | - Mohammed N Islam
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan MI 48109, USA
| | - Daniel H Weissman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander J Rogers
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Ioulia Kovelman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Forcione M, Chiarelli AM, Perpetuini D, Davies DJ, O’Halloran P, Hacker D, Merla A, Belli A. Tomographic Task-Related Functional Near-Infrared Spectroscopy in Acute Sport-Related Concussion: An Observational Case Study. Int J Mol Sci 2020; 21:E6273. [PMID: 32872557 PMCID: PMC7503954 DOI: 10.3390/ijms21176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Making decisions regarding return-to-play after sport-related concussion (SRC) based on resolution of symptoms alone can expose contact-sport athletes to further injury before their recovery is complete. Task-related functional near-infrared spectroscopy (fNIRS) could be used to scan for abnormalities in the brain activation patterns of SRC athletes and help clinicians to manage their return-to-play. This study aims to show a proof of concept of mapping brain activation, using tomographic task-related fNIRS, as part of the clinical assessment of acute SRC patients. A high-density frequency-domain optical device was used to scan 2 SRC patients, within 72 h from injury, during the execution of 3 neurocognitive tests used in clinical practice. The optical data were resolved into a tomographic reconstruction of the brain functional activation pattern, using diffuse optical tomography. Moreover, brain activity was inferred using single-subject statistical analyses. The advantages and limitations of the introduction of this optical technique into the clinical assessment of acute SRC patients are discussed.
Collapse
Affiliation(s)
- Mario Forcione
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TH, UK; (D.J.D.); (A.B.)
- Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Antonio Maria Chiarelli
- Imaging and Clinical Sciences, Department of Neuroscience, University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (D.P.); (A.M.)
| | - David Perpetuini
- Imaging and Clinical Sciences, Department of Neuroscience, University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (D.P.); (A.M.)
| | - David James Davies
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TH, UK; (D.J.D.); (A.B.)
- Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Patrick O’Halloran
- Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - David Hacker
- Clinical Neuropsychology, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TH, UK;
| | - Arcangelo Merla
- Imaging and Clinical Sciences, Department of Neuroscience, University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (D.P.); (A.M.)
| | - Antonio Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TH, UK; (D.J.D.); (A.B.)
- Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
20
|
Anesthesia and the brain after concussion. Curr Opin Anaesthesiol 2020; 33:639-645. [PMID: 32796169 DOI: 10.1097/aco.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of acute and chronic repeated concussion. We address epidemiology, pathophysiology, anesthetic utilization, and provide some broad-based care recommendations. RECENT FINDINGS Acute concussion is associated with altered cerebral hemodynamics. These aberrations can persist despite resolution of signs and symptoms. Multiple repeated concussions can cause chronic traumatic encephalopathy, a disorder associated with pathologic findings similar to some organic dementias. Anesthetic utilization is common following concussion, especially soon after injury, a time when the brain may be most vulnerable to secondary injury. SUMMARY Brain physiology may be abnormal following concussion and these abnormalities may persist despite resolutions of clinical manifestations. Those with recent concussion or chronic repeated concussion may be susceptible to secondary injury in the perioperative period. Clinicians should suspect concussion in any patient with recent trauma and strive to maintain cerebral homeostasis in the perianesthetic period.
Collapse
|
21
|
Papadimitriou KI, Vidal Rosas EE, Zhang E, Cooper RJ, Hebden JC, Arridge SR, Powell S. Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses. BIOMEDICAL OPTICS EXPRESS 2020; 11:3477-3490. [PMID: 33014545 PMCID: PMC7510926 DOI: 10.1364/boe.393586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers. Since the optimal wavelengths and drive parameters for optical spectroscopy are not served by commercially available modules as used in our previous single-wavelength demonstration platform, we detail the design of a custom instrument and demonstrate its performance in resolving haemodynamic changes in human subjects during apnoea and cognitive task experiments.
Collapse
Affiliation(s)
- Konstantinos I. Papadimitriou
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Ernesto E. Vidal Rosas
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Simon R. Arridge
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Samuel Powell
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
22
|
Sharma A, Hind K, Hume P, Singh J, Neary JP. Neurovascular Coupling by Functional Near Infra-Red Spectroscopy and Sport-Related Concussion in Retired Rugby Players: The UK Rugby Health Project. Front Hum Neurosci 2020; 14:42. [PMID: 32116616 PMCID: PMC7033387 DOI: 10.3389/fnhum.2020.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: This study investigated cerebral hemodynamic responses to a neurovascular coupling (NVC) test in retired contact athletes with a history of repeated mild traumatic brain injury (mTBI) and in controls with no history of mTBI. Methods: Twenty-one retired rugby players (47.7 ± 12.9 year old; age at retirement: 38.5 ± 8.9 year; number of years playing rugby: 12.7 ± 3.7 year) with a history of three or more diagnosed concussions (8.9 ± 7.9 concussions per player) and 23 controls with no history of mTBI (46.5 ± 12.8 year old) performed a NVC test to detect task-orientated cerebral hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Results: The NVC showed a statistically significant reduction in the cerebral hemodynamic response in comparison to the control group which had a greater relative increase of oxyhemoglobin (O2Hb). There were reductions in left middle frontal gyrus (MFG) O2Hb (-0.015 ± 0.258 μM) and relative increases in deoxyhemoglobin (HHb; -0.004 ± 0.159 μM) in the same region for the mTBI group in comparison to the control group (-0.160 ± 0.311 μM; -0.121 ± 0.076 μM for O2Hb and HHb, respectively). The mTBI group induced a greater rate of oxygen extraction compared to the control group. Conclusion: This was the first study to examine cerebral hemodynamic changes in retired rugby players in response to a NVC test, and we found reduced cerebral hemodynamic responses in participants with a history of mTBI compared to controls. These results suggest altered cerebral metabolic demands in participants with a history of multiple head injuries. Further research is needed to ascertain an understanding of the changes in hemodynamics from playing into retirement.
Collapse
Affiliation(s)
| | - Karen Hind
- Department of Sport and Exercise Sciences, Durham University, Durham, United Kingdom
| | - Patria Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - J. Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
23
|
Neary JP, Dudé CM, Singh J, Len TK, Bhambhani YN. Pre-frontal Cortex Oxygenation Changes During Aerobic Exercise in Elite Athletes Experiencing Sport-Related Concussion. Front Hum Neurosci 2020; 14:35. [PMID: 32116614 PMCID: PMC7028689 DOI: 10.3389/fnhum.2020.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Aims: Recent research suggests that aerobic exercise can be performed safely within the first week following a concussion injury and that early initiation of exercise may speed recovery. To better understand the physiological changes during a concussion, we tested the hypothesis that mild-to-intense exercise testing can be performed within days immediately following injury, and can be used to discern differences between the concussed and normal healthy state. Thus, the purpose was to observe the cerebral hemodynamic responses to incremental exercise testing performed acutely post-concussion in high-performance athletes. Methods: This study was a within- and between-experimental design, with seven male university ice hockey teams participating. A subgroup of five players acted as control subjects (CON) and was tested at the same time as the 14 concussed (mTBI) players on Day 2, 4, and 7 post-concussion. A 5-min resting baseline and 5-min exercise bouts of mild (EX1), moderate (EX2), and high (EX3) intensity exercise were performed on a cycle ergometer. Near-infrared spectroscopy was used to monitor pre-frontal cortex oxy-haemoglobin (HbO2), deoxy-haemoglobin (HHb), and total blood volume (tHb) changes. Results: ANOVA compared differences between testing days and groups, and although large percentage changes in HbO2 (20-30%), HHb (30-40%), and tHb (30-40%) were recorded, no significant (p ≤ 0.05) differences in cerebral hemodynamics occurred between mTBI vs. CON during aerobic exercise testing on any day post-injury. Furthermore, there was a linear relationship between exercise intensity vs. cerebral hemodynamics during testing for each day (r 2 = 0.83-0.99). Conclusion: These results demonstrate two novel findings: (1) mild-to-intense aerobic exercise testing can be performed safely as early as Day 2 post-concussion injury in a controlled laboratory environment; and (2) evidence-based objective measures such as cerebral hemodynamics can easily be collected using near-infrared spectroscopy (NIRS) to monitor physiological changes during the first-week post-injury. This research has important implications for monitoring physiological recovery post-injury and establishing new rehabilitation guidelines.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | | | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Trevor K. Len
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Yagesh N. Bhambhani
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Mirbagheri M, Hakimi N, Ebrahimzadeh E, Pourrezaei K, Setarehdan SK. Enhancement of optical penetration depth of LED-based NIRS systems by comparing different beam profiles. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab42d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Skau S, Bunketorp-Käll L, Kuhn HG, Johansson B. Mental Fatigue and Functional Near-Infrared Spectroscopy (fNIRS) - Based Assessment of Cognitive Performance After Mild Traumatic Brain Injury. Front Hum Neurosci 2019; 13:145. [PMID: 31139065 PMCID: PMC6527600 DOI: 10.3389/fnhum.2019.00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 11/30/2022] Open
Abstract
Pathological mental fatigue after mild traumatic brain injury (TBI-MF) is characterized by pronounced mental fatigue after cognitive activity. The neurological origin is unknown, and we aimed in the present study to investigate how prolonged mental activity affects cognitive performance and its neural correlates in individuals with TBI-MF. We recruited individuals with TBI-MF (n = 20) at least 5 months after injury, and age-matched healthy controls (n = 20). We used functional near-infrared spectroscopy (fNIRS) to assess hemodynamic changes in the frontal cortex. The self-assessed mental energy level was measured with a visual analog scale (VAS) before and after the experimental procedure. A battery of six neuropsychological tests including Stroop–Simon, Symbol Search, Digit Span, Parallel Serial Mental Operation (PaSMO), Sustained Attention and Working Memory test, and Digit Symbol Coding (DSC) were used. The sequence was repeated once after an 8 min sustained-attention test. The test procedure lasted 2½ h. The experimental procedure resulted in a decrease in mental energy in the TBI-MF group, compared to controls (interaction, p < 0.001, ηp2 = 0.331). The TBI-MF group performed at a similar level on both DSC tests, whereas the controls improved their performance in the second session (interaction, p < 0.01, ηp2 = 0.268). During the Stroop–Simon test, the fNIRS event-related response showed no time effect. However, the TBI-MF group exhibited lower oxygenated hemoglobin (oxy-Hb) concentrations in the frontal polar area (FPA), ventrolateral motor cortex, and dorsolateral prefrontal cortex (DLPFC) from the beginning of the test session. A Stroop and Group interaction was found in the left ventrolateral prefrontal cortex showing that the TBI-MF group did have the same oxy-Hb concentration for both congruent and incongruent trials, whereas the controls had more oxy-Hb in the incongruent trial compared to the congruent trial (interaction, p < 0.01, ηp2 = 0.227). In sum these results indicate that individuals with TBI-MF have a reduced ability to recruit the frontal cortex, which is correlated with self-reported mental fatigue. This may result both in deterioration of cognitive function and the experience of a mental fatigue after extended mental activity.
Collapse
Affiliation(s)
- Simon Skau
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Bunketorp-Käll
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hans Georg Kuhn
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Center for Stroke Research, Charité - Universitätsmedizin, Berlin, Germany
| | - Birgitta Johansson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Stilling JM, Duszynski CC, Oni I, Paxman E, Dunn JF, Debert CT. Using Functional Near-Infrared Spectroscopy to Study the Effect of Repetitive Transcranial Magnetic Stimulation in Concussion: A Two-Patient Case Study. Front Neurol 2019; 10:476. [PMID: 31139136 PMCID: PMC6518445 DOI: 10.3389/fneur.2019.00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Approximately 25% of concussion patients experience persistent post-concussion symptoms (PPCS). Repetitive transcranial magnetic stimulation (rTMS) has been explored as a treatment, and functional near-infrared spectroscopy (fNIRS) may be a cost-effective method for assessing response. Objectives: Evaluate rTMS for the treatment of PPCS and introduce fNIRS as a method of assessing treatment response. Methods: Design: Two-patient case study. Setting: Calgary Brain Injury Program. Participants: 47 and 49 years. male, with PPCS for 1-2 years (headache, cognitive difficulties, nausea, visual difficulties, irritability, anxiety, poor mood, sleep, and fatigue). Intervention: 10 sessions of rTMS therapy to the left dorsolateral prefrontal cortex (DLPFC), at 10 Hz (600 pulses) and 70% of resting motor threshold amplitude. Participants completed an 8-week headache diary and a battery of clinical questionnaires prior to each fNIRS session. fNIRS: Hemodynamic changes were recorded over the frontoparietal cortex during rest, finger tapping, and a graded working memory test. fNIRS was completed pre-rTMS, following rTMS (day 14), and at 1-month post-rTMS (day 45). For comparison, two healthy, sex-matched controls were scanned with fNIRS once daily for five consecutive days. Results: Clinical scores improved (headache severity, MoCA, HIT-6, PHQ-9, GAD-7, QOLIBRI, RPSQ, BCPSI) or remained stable (PCL-5, headache frequency) post-rTMS, for both participants. Participant 1 reported moderate symptom burden, and a fNIRS task-evoked hemodynamic response showing increased oxyhemoglobin was observed following a working memory task, as expected. Participant 2 exhibited a high symptom burden pre-treatment, with abnormal fNIRS hemodynamic response where oxyhemoglobin declined, in response to task. One month following rTMS treatment, participant 2 had a normal fNIRS hemodynamic response to task, corresponding to significant improvements in clinical outcomes. Conclusion: This case study suggests fNIRS may be sensitive to physiological changes that accompany rTMS treatment. Further studies exploring fNIRS as a cost-effective technology for monitoring rTMS response in patients with PPCS are suggested.
Collapse
Affiliation(s)
- Joan M. Stilling
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chris C. Duszynski
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ibukunoluwa Oni
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric Paxman
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantel T. Debert
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
An Evidence-Based Objective Study Protocol for Evaluating Cardiovascular and Cerebrovascular Indices Following Concussion: The Neary Protocol. Methods Protoc 2019; 2:mps2010023. [PMID: 31164604 PMCID: PMC6481075 DOI: 10.3390/mps2010023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction: The prevalence and incidence of sport-related concussion have continued to increase over the past decade, and researchers from various backgrounds strive for evidenced-based clinical assessment and management. When diagnosing and managing a concussion, a battery of tests from several domains (e.g., symptom reporting, neurocognitive, physiology) must be used. In this study, we propose and develop an objective, evidence-based protocol to assess the pathophysiology of the brain by using non-invasive methods. Methods: Contact sport athletes (n = 300) will be assessed at the beginning of the season in a healthy state to establish baseline values, and then prospectively followed if a mild traumatic brain injury (mTBI) occurs on approximately days 1–2, 3–5, 7–10, 21, 30, and subsequently thereafter, depending on the severity of injury. The protocol includes spontaneous measurements at rest, during head postural change, controlled breathing maneuvers for cerebrovascular reactivity, a neurovascular coupling stimuli, and a baroreflex/autoregulation maneuver. Physiological data collection will include cerebral blood flow velocity, cerebral oxygenation, respiratory gases for end-tidal oxygen and carbon dioxide, finger photoplethysmography for blood pressure, seismocardiography for cardiac mechanics, and electrocardiography. Conclusion, Limitations, and Ethics: The protocol will provide an objective, physiological evidence-based approach in an attempt to better diagnose concussion to aid in return-to-play or -learn. Ethics approval has been granted by the University Research Ethics Board.
Collapse
|
28
|
Siedlecki P, Sanzo P, Zerpa C, Newhouse I. End-tidal carbon dioxide levels in patients with post-concussion syndrome during neurocognitive and physical tasks compared to a normative control group. Brain Inj 2018; 32:1824-1833. [DOI: 10.1080/02699052.2018.1506945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Patrick Siedlecki
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada
- School of Kinesiology, Western University, London, ON, Canada
| | - Paolo Sanzo
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON, Canada
| | - Carlos Zerpa
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada
| | - Ian Newhouse
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
29
|
Wu Z, Mazzola CA, Catania L, Owoeye O, Yaramothu C, Alvarez T, Gao Y, Li X. Altered cortical activation and connectivity patterns for visual attention processing in young adults post-traumatic brain injury: A functional near infrared spectroscopy study. CNS Neurosci Ther 2018; 24:539-548. [PMID: 29359534 PMCID: PMC6490005 DOI: 10.1111/cns.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
AIMS This study aimed at understanding the neurobiological mechanisms associated with inattention induced by traumatic brain injury (TBI). To eliminate the potential confounding caused by the heterogeneity of TBI, we focused on young adults postsports-related concussion (SRC). METHODS Functional near-infrared spectroscopy (fNIRS) data were collected from 27 young adults post-SRC and 27 group-matched normal controls (NCs), while performing a visual sustained attention task. Task responsive cortical activation maps and pairwise functional connectivity among six regions of interest were constructed for each subject. Correlations among the brain imaging measures and clinical measures of attention were calculated in each group. RESULTS Compared to the NCs, the SRC group showed significantly increased brain activation in left middle frontal gyrus (MFG) and increased functional connectivity between right inferior occipital cortex (IOC) bilateral calcarine gyri (CG). The left MFG activation magnitude was significantly negatively correlated with the hyperactive/impulsive symptom severity measure in the NCs, but not in the patients. The right hemisphere CG-IOC functional connectivity showed a significant positive correlation with the hyperactive/impulsive symptom severity measure in patients, but not in NCs. CONCLUSION The current data suggest that abnormal left MFG activation and hyper-communications between right IOC and bilateral CG during visual attention processing may significantly contribute to behavioral manifestations of attention deficits in patients with TBI.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | | | - Lori Catania
- North Jersey Neurodevelopmental CenterNorth HaledonNJUSA
| | - Oyindamola Owoeye
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Chang Yaramothu
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Tara Alvarez
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Yu Gao
- Department of PsychologyBrooklyn College and the Graduate Center of the City University of New YorkBrooklynNYUSA
| | - Xiaobo Li
- Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| |
Collapse
|
30
|
Cerebral Hemodynamic Influences in Task-Related Functional Magnetic Resonance Imaging and Near-Infrared Spectroscopy in Acute Sport-Related Concussion: A Review. J Imaging 2018. [DOI: 10.3390/jimaging4040059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Hocke LM, Duszynski CC, Debert CT, Dleikan D, Dunn JF. Reduced Functional Connectivity in Adults with Persistent Post-Concussion Symptoms: A Functional Near-Infrared Spectroscopy Study. J Neurotrauma 2018; 35:1224-1232. [PMID: 29373947 PMCID: PMC5962910 DOI: 10.1089/neu.2017.5365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), accounts for ∼80% of all TBIs across North America. The majority of mTBI patients recover within days to weeks; however, 14-36% of the time, acute mTBI symptoms persist for months or even years and develop into persistent post-concussion symptoms (PPCS). There is a need to find biomarkers in patients with PPCS, to improve prognostic ability and to provide insight into the pathophysiology underlying chronic symptoms. Recent research has pointed toward impaired network integrity and cortical communication as a biomarker. In this study we investigated functional near-infrared spectroscopy (fNIRS) as a technique to assess cortical communication deficits in adults with PPCS. Specifically, we aimed to identify cortical communication patterns in prefrontal and motor areas during rest and task, in adult patients with persistent symptoms. We found that (1) the PPCS group showed reduced connectivity compared with healthy controls, (2) increased symptom severity correlated with reduced coherence, and (3) connectivity differences were best distinguishable during task and in particular during the working memory task (n-back task) in the right and left dorsolateral prefrontal cortex (DLPFC). These data show that reduced brain communication may be associated with the pathophysiology of mTBI and that fNIRS, with a relatively simple acquisition paradigm, may provide a useful biomarker of this injury.
Collapse
Affiliation(s)
- Lia M Hocke
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Chris C Duszynski
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Chantel T Debert
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Diane Dleikan
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Jeff F Dunn
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| |
Collapse
|
32
|
Alsalaheen B, Stockdale K, Pechumer D, Broglio SP. Validity of the Immediate Post Concussion Assessment and Cognitive Testing (ImPACT). Sports Med 2017; 46:1487-501. [PMID: 27071989 DOI: 10.1007/s40279-016-0532-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The immediate post concussion assessment and cognitive testing (ImPACT) is the most widely used concussion assessment tool. Despite its popularity, it is unclear if validation studies for the ImPACT test covered all aspects of validity to support its widespread use in research and clinical practice. OBJECTIVE The purpose of this report is to review literature surrounding the validity and the utility of the ImPACT test. DATA SOURCES AND APPRAISAL A systematic review of relevant studies in PubMed, CINAHL, and PsycINFO was carried out. Studies were evaluated using the STROBE (strengthening the reporting of observational studies in epidemiology) or the STARD (standards for reporting of diagnostic accuracy) criteria. RESULTS The literature search yielded 5968 studies. Sixty-nine studies met the inclusion criteria and were included in the qualitative review. Although the convergent validity of ImPACT was supported, evidence of discriminant and predictive validity, diagnostic accuracy and responsiveness was inconclusive. The utility of the ImPACT test after acute symptom resolution was sparse. The review found many factors influenced the validity and utility of ImPACT scores. CONCLUSION Clinicians must consider the benefit of ImPACT testing for their patients on a case-by-case scenario and must take the psychometric properties of the test into account when interpreting results.
Collapse
Affiliation(s)
- Bara Alsalaheen
- Physical Therapy Department, University of Michigan-Flint, 2157 William S. White Building, 303 E. Kearsley Street, Flint, MI, 48502-1950, USA.
| | - Kayla Stockdale
- Physical Therapy Department, University of Michigan-Flint, 2157 William S. White Building, 303 E. Kearsley Street, Flint, MI, 48502-1950, USA
| | - Dana Pechumer
- Physical Therapy Department, University of Michigan-Flint, 2157 William S. White Building, 303 E. Kearsley Street, Flint, MI, 48502-1950, USA
| | - Steven P Broglio
- Neurotrauma Research Laboratory, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Bishop SA, Neary JP. Assessing prefrontal cortex oxygenation after sport concussion with near-infrared spectroscopy. Clin Physiol Funct Imaging 2017. [DOI: 10.1111/cpf.12447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Scott A. Bishop
- Faculty of Kinesiology and Health Studies; University of Regina; Regina SK Canada
| | - J. Patrick Neary
- Faculty of Kinesiology and Health Studies; University of Regina; Regina SK Canada
| |
Collapse
|
34
|
McCrea M, Meier T, Huber D, Ptito A, Bigler E, Debert CT, Manley G, Menon D, Chen JK, Wall R, Schneider KJ, McAllister T. Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review. Br J Sports Med 2017; 51:919-929. [DOI: 10.1136/bjsports-2016-097447] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 01/17/2023]
|
35
|
Weigl W, Milej D, Janusek D, Wojtkiewicz S, Sawosz P, Kacprzak M, Gerega A, Maniewski R, Liebert A. Application of optical methods in the monitoring of traumatic brain injury: A review. J Cereb Blood Flow Metab 2016; 36:1825-1843. [PMID: 27604312 PMCID: PMC5094301 DOI: 10.1177/0271678x16667953] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/28/2016] [Accepted: 07/18/2016] [Indexed: 01/19/2023]
Abstract
We present an overview of the wide range of potential applications of optical methods for monitoring traumatic brain injury. The MEDLINE database was electronically searched with the following search terms: "traumatic brain injury," "head injury," or "head trauma," and "optical methods," "NIRS," "near-infrared spectroscopy," "cerebral oxygenation," or "cerebral oximetry." Original reports concerning human subjects published from January 1980 to June 2015 in English were analyzed. Fifty-four studies met our inclusion criteria. Optical methods have been tested for detection of intracranial lesions, monitoring brain oxygenation, assessment of brain perfusion, and evaluation of cerebral autoregulation or intracellular metabolic processes in the brain. Some studies have also examined the applicability of optical methods during the recovery phase of traumatic brain injury . The limitations of currently available optical methods and promising directions of future development are described in this review. Considering the outstanding technical challenges, the limited number of patients studied, and the mixed results and opinions gathered from other reviews on this subject, we believe that optical methods must remain primarily research tools for the present. More studies are needed to gain confidence in the use of these techniques for neuromonitoring of traumatic brain injury patients.
Collapse
Affiliation(s)
- Wojciech Weigl
- Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University, Akademiska Hospital, Uppsala, Sweden
| | - Daniel Milej
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz Janusek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Roman Maniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Mutch WAC, Ellis MJ, Ryner LN, Morissette MP, Pries PJ, Dufault B, Essig M, Mikulis DJ, Duffin J, Fisher JA. Longitudinal Brain Magnetic Resonance Imaging CO2 Stress Testing in Individual Adolescent Sports-Related Concussion Patients: A Pilot Study. Front Neurol 2016; 7:107. [PMID: 27458426 PMCID: PMC4937024 DOI: 10.3389/fneur.2016.00107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Advanced neuroimaging studies in concussion have been limited to detecting group differences between concussion patients and healthy controls. In this small pilot study, we used brain magnetic resonance imaging (MRI) CO2 stress testing to longitudinally assess cerebrovascular responsiveness (CVR) in individual sports-related concussion (SRC) patients. Methods Six SRC patients (three males and three females; mean age = 15.7, range = 15–17 years) underwent longitudinal brain MRI CO2 stress testing using blood oxygen level-dependent (BOLD) MRI and model-based prospective end-tidal CO2 targeting under isoxic conditions. First-level and second-level comparisons were undertaken using statistical parametric mapping (SPM) to score the scans and compare them to an atlas of 24 healthy control subjects. Results All tests were well tolerated and without any serious adverse events. Anatomical MRI was normal in all study participants. The CO2 stimulus was consistent between the SRC patients and control subjects and within SRC patients across the longitudinal study. Individual SRC patients demonstrated both quantitative and qualitative patient-specific alterations in CVR (p < 0.005) that correlated strongly with clinical findings, and that persisted beyond clinical recovery. Conclusion Standardized brain MRI CO2 stress testing is capable of providing a longitudinal assessment of CVR in individual SRC patients. Consequently, larger prospective studies are needed to examine the utility of brain MRI CO2 stress testing as a clinical tool to help guide the evaluation, classification, and longitudinal management of SRC patients.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada
| | - Michael J Ellis
- University of Manitoba, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Department of Surgery, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada; Pan Am Concussion Program, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Marc P Morissette
- Pan Am Concussion Program, Winnipeg, MB, Canada; Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Philip J Pries
- University of Manitoba, Winnipeg, MB, Canada; College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Brenden Dufault
- University of Manitoba, Winnipeg, MB, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Essig
- University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Pan Am Concussion Program, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - James Duffin
- University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Fujimaki K, Takemoto H, Morinobu S. Cortical activation changes and sub-threshold affective symptoms are associated with social functioning in a non-clinical population: A multi-channel near-infrared spectroscopy study. Psychiatry Res Neuroimaging 2016; 248:73-82. [PMID: 26774423 DOI: 10.1016/j.pscychresns.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
Few studies have examined the relationship between social function and brain activation in non-clinical populations. The aim of the present study was to assess this relationship and examine the underlying cortical mechanisms in a non-clinical population. Eighty healthy volunteers performed a serial arithmetic task according to the Uchida-Kraepelin performance test while hemoglobin concentration changes were assessed on the surface of the prefrontal cortex (PFC) using 32-channel near-infrared spectroscopy. Participants were also assessed for quality of life (QOL) using the Short-Form 36-item Questionnaire (SF-36), for affective symptoms using the Zung Self-rating Depression Scale (SDS), for apathy using the Apathy Scale, for feelings of stress using the Stress Arousal Checklist (SACL), and for task performance using the number of answers in a serial arithmetic task. Activity in the frontopolar PFC displayed a significant positive correlation with social functioning on the SF-36. SDS and SACL scores correlated negatively with social functioning. Furthermore, in multiple regression analysis, social functioning was predicted by activity of the frontopolar PFC and SDS scores. These results suggest that the association between changes in cortical activation and sub-threshold affective symptoms may objectively identify individuals with QOL on social functioning.
Collapse
Affiliation(s)
- Koichiro Fujimaki
- Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-Machi, Mihara, Hiroshima 723-0053, Japan.
| | - Hidenori Takemoto
- Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-Machi, Mihara, Hiroshima 723-0053, Japan
| | - Shigeru Morinobu
- Department of Psychiatry, Kochi University School of Medicine, Oko-cho Kohasu, Nankoku-shi, Kochi 783-8505, Japan
| |
Collapse
|
38
|
Urban KJ, Barlow KM, Jimenez JJ, Goodyear BG, Dunn JF. Functional near-infrared spectroscopy reveals reduced interhemispheric cortical communication after pediatric concussion. J Neurotrauma 2015; 32:833-40. [PMID: 25387354 PMCID: PMC4449632 DOI: 10.1089/neu.2014.3577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), is a growing concern, especially among the pediatric population. By age 25, as many as 30% of the population are likely to have had a concussion. Many result in long-term disability, with some evolving to postconcussion syndrome. Treatments are being developed, but are difficult to assess given the lack of measures to quantitatively monitor concussion. There is no accepted quantitative imaging metric for monitoring concussion. We hypothesized that because cognitive function and fiber tracks are often impacted in concussion, interhemispheric brain communication may be impaired. We used functional near-infrared spectroscopy (fNIRS) to quantify functional coherence between the left and right motor cortex as a marker of interhemispheric communication. Studies were undertaken during the resting state and with a finger-tapping task to activate the motor cortex. Pediatric patients (ages 12-18) had symptoms for 31-473 days, compared to controls, who have not had reported a previous concussion. We detected differences between patients and controls in coherence between the contralateral motor cortices using measurements of total hemoglobin and oxy-hemoglobin with a p<0.01 (n=8, control; n=12 mTBI). Given the critical need for a quantitative biomarker for recovery after a concussion, we present these data to highlight the potential of fNIRS coupled with interhemispheric coherence analysis as a biomarker of concussion injury.
Collapse
Affiliation(s)
- Karolina J. Urban
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Karen M. Barlow
- Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jon J. Jimenez
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G. Goodyear
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Terry DP, Adams TE, Ferrara MS, Miller LS. FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Arch Clin Neuropsychol 2015; 30:341-55. [PMID: 25903375 DOI: 10.1093/arclin/acv020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
Multiple concussions before the age of 18 may be associated with late-life memory deficits. This study examined neural activation associated with verbal encoding and memory retrieval in former athletes ages 40-65 who received at least two concussions (median = 3; range = 2-15) playing high school football and a group of former high school football players with no reported history of concussions matched on age, education, and pre-morbid IQ. Functional magnetic resonance imaging data collected during a modified verbal paired associates paradigm indicated that those with concussive histories had hypoactivation in left hemispheric language regions, including the inferior/middle frontal gyri and angular gyrus compared with controls. However, concussive history was not associated with worse memory functioning on neuropsychological tests or worse behavioral performance during the paradigm, suggesting that multiple early-life concussions may be associated with subtle changes in the verbal encoding system that limits one from accessing higher-order semantic networks, but this difference does not translate into measurable cognitive performance deficits.
Collapse
Affiliation(s)
- Douglas P Terry
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - T Eric Adams
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Michael S Ferrara
- College of Health & Human Services, University of New Hampshire, Durham, USA
| | - L Stephen Miller
- Department of Psychology, University of Georgia, Athens, GA, USA BioImaging Research Center, Biomedical & Health Science Institute, University of Georgia, Athens, GA, USA
| |
Collapse
|