1
|
Schulze-Bonhage A, San Antonio-Arce V. Semiology of seizures with temporo-polar or "medio-lateral" temporal origin: A systematic review. Epileptic Disord 2025. [PMID: 40072874 DOI: 10.1002/epd2.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/24/2024] [Indexed: 03/14/2025]
Abstract
A systematic review using PRISMA criteria was used to review the literature regarding the specific semiology of seizure arising (a) from the temporal pole or (b) from both medial and lateral temporal cortex. Evidence was analyzed with regard to information provided by intracranial EEG recordings and surgical outcomes, and an estimation of validity of reported signs and symptoms was performed. Semiology of seizures originating from the temporal pole was mostly related to diverse patterns of ictal spread rather than to the localization of seizure origin and comprised a wide variety of early signs and symptoms. Seizures with rapid involvement of temporo-medial and temporo-lateral cortex were intermediate in semiology between medial and lateral onset seizures and may have more frequently early automatisms and early vocalization than seizures arising from temporo-medial or temporo-lateral cortex only. Results of this review are discussed as to limiting factors of origin-based analyses for the understanding of seizure semiology.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Freiburg Epilepsy Center, Member of the ERN EpiCARE, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Victoria San Antonio-Arce
- Freiburg Epilepsy Center, Member of the ERN EpiCARE, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Weiller C, Reisert M, Levan P, Hosp J, Coenen VA, Rijntjes M. Hubs and interaction: the brain's meta-loop. Cereb Cortex 2025; 35:bhaf035. [PMID: 40077916 PMCID: PMC11903256 DOI: 10.1093/cercor/bhaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
We must reconcile the needs of the internal world and the demands of the external world to make decisions relevant to homeostasis, well-being, and flexible behavior. Engagement with the internal (eg interoceptive) world is linked to medial brain systems, whereas the extrapersonal space (eg exteroceptive) is associated with lateral brain systems. Using Human Connectome Project data, we found three association tracts connecting the action-related frontal lobe with perception-related posterior lobes. A lateral dorsal tract and a medial dorsal tract interact independently with a ventral tract at frontal and posterior hubs. The two frontal and the two posterior hubs are interconnected, forming a meta-loop that integrates lateral and medial brain systems. The four anatomical hubs correspond to the common nodes of the intrinsic cognitive brain networks such as the default mode network. These functional networks depend on the integration of both realms. Thus, the positioning of functional cognitive networks can be understood as the intersection of long anatomical association tracts. The strength of structural connectivity within lateral and medial brain systems correlates with performance on behavioral tests assessing theory of mind. The meta-loop provides an anatomical framework to associate neurological and psychiatric symptoms with functional and structural changes.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Pierre Levan
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jonas Hosp
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| |
Collapse
|
3
|
Wang Y, Chen Y, Cui Y, Zhao T, Wang B, Zheng Y, Ren Y, Sha S, Yan Y, Zhao X, Zhang L, Wang G. Alterations in electroencephalographic functional connectivity in individuals with major depressive disorder: a resting-state electroencephalogram study. Front Neurosci 2024; 18:1412591. [PMID: 39055996 PMCID: PMC11270625 DOI: 10.3389/fnins.2024.1412591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability among all mental illnesses with increasing prevalence. The diagnosis of MDD is susceptible to interference by several factors, which has led to a trend of exploring objective biomarkers. Electroencephalography (EEG) is a non-invasive procedure that is being gradually applied to detect and diagnose MDD through some features such as functional connectivity (FC). Methods In this research, we analyzed the resting-state EEG of patients with MDD and healthy controls (HCs) in both eyes-open (EO) and eyes-closed (EC) conditions. The phase locking value (PLV) method was utilized to explore the connection and synchronization of neuronal activities spatiotemporally between different brain regions. We compared the PLV between participants with MDD and HCs in five frequency bands (theta, 4-8 Hz; alpha, 8-12 Hz; beta1, 12-16 Hz; beta2, 16-24 Hz; and beta3, 24-40 Hz) and further analyzed the correlation between the PLV of connections with significant differences and the severity of depression (via the scores of 17-item Hamilton Depression Rating Scale, HDRS-17). Results During the EO period, lower PLVs were found in the right temporal-left midline occipital cortex (RT-LMOC; theta, alpha, beta1, and beta2) and posterior parietal-right temporal cortex (PP-RT; beta1 and beta2) in the MDD group compared with the HC group, while PLVs were higher in the MDD group in LT-LMOC (beta2). During the EC period, for the MDD group, lower theta and beta (beta1, beta2, and beta3) PLVs were found in PP-RT, as well as lower theta, alpha, and beta (beta1, beta2, and beta3) PLVs in RT-LMOC. Additionally, in the left midline frontal cortex-right temporal cortex (LMFC-RT) and posterior parietal cortex-right temporal cortex (PP-RMOC), higher PLVs were observed in beta2. There were no significant correlations between PLVs and HDRS-17 scores when connections with significantly different PLVs (all p > 0.05) were checked. Conclusion Our study confirmed the presence of differences in FC between patients with MDD and healthy individuals. Lower PLVs in the connection of the right temporal-left occipital cortex were mostly observed, whereas an increase in PLVs was observed in patients with MDD in the connections of the left temporal with occipital lobe (EO), the circuits of the frontal-temporal lobe, and the parietal-occipital lobe. The trends in FC involved in this study were not correlated with the level of depression. Limitations The study was limited due to the lack of further analysis of confounding factors and follow-up data. Future studies with large-sampled and long-term designs are needed to further explore the distinguishable features of EEG FC in individuals with MDD.
Collapse
Affiliation(s)
- Yingtan Wang
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yu Chen
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi Cui
- Gnosis Healthineer Co. Ltd, Beijing, China
| | - Tong Zhao
- Gnosis Healthineer Co. Ltd, Beijing, China
| | - Bin Wang
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yunxi Zheng
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanping Ren
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sha Sha
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | | | - Xixi Zhao
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ling Zhang
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Bellmann OT, Asano R. Neural correlates of musical timbre: an ALE meta-analysis of neuroimaging data. Front Neurosci 2024; 18:1373232. [PMID: 38952924 PMCID: PMC11215185 DOI: 10.3389/fnins.2024.1373232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Timbre is a central aspect of music that allows listeners to identify musical sounds and conveys musical emotion, but also allows for the recognition of actions and is an important structuring property of music. The former functions are known to be implemented in a ventral auditory stream in processing musical timbre. While the latter functions are commonly attributed to areas in a dorsal auditory processing stream in other musical domains, its involvement in musical timbre processing is so far unknown. To investigate if musical timbre processing involves both dorsal and ventral auditory pathways, we carried out an activation likelihood estimation (ALE) meta-analysis of 18 experiments from 17 published neuroimaging studies on musical timbre perception. We identified consistent activations in Brodmann areas (BA) 41, 42, and 22 in the bilateral transverse temporal gyri, the posterior superior temporal gyri and planum temporale, in BA 40 of the bilateral inferior parietal lobe, in BA 13 in the bilateral posterior Insula, and in BA 13 and 22 in the right anterior insula and superior temporal gyrus. The vast majority of the identified regions are associated with the dorsal and ventral auditory processing streams. We therefore propose to frame the processing of musical timbre in a dual-stream model. Moreover, the regions activated in processing timbre show similarities to the brain regions involved in processing several other fundamental aspects of music, indicating possible shared neural bases of musical timbre and other musical domains.
Collapse
Affiliation(s)
| | - Rie Asano
- Systematic Musicology, Institute for Musicology, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Drosos E, Komaitis S, Liouta E, Neromyliotis E, Charalampopoulou E, Anastasopoulos L, Kalamatianos T, Skandalakis GP, Troupis T, Stranjalis G, Kalyvas AV, Koutsarnakis C. Parcellating the vertical associative fiber network of the temporoparietal area: Evidence from focused anatomic fiber dissections. BRAIN & SPINE 2024; 4:102759. [PMID: 38510613 PMCID: PMC10951769 DOI: 10.1016/j.bas.2024.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction The connectivity of the temporoparietal (TP) region has been the subject of multiple anatomical and functional studies. Its role in high cognitive functions has been primarily correlated with long association fiber connections. As a major sensory integration hub, coactivation of areas within the TP requires a stream of short association fibers running between its subregions. The latter have been the subject of a small number of recent in vivo and cadaveric studies. This has resulted in limited understanding of this network and, in certain occasions, terminology ambiguity. Research question To systematically study the vertical parietal and temporoparietal short association fibers. Material and methods Thirteen normal, adult cadaveric hemispheres, were treated with the Klinger's freeze-thaw process and their subcortical anatomy was studied using the microdissection technique. Results Two separate fiber layers were identified. Superficially, directly beneath the cortical u-fibers, the Stratum proprium intraparietalis (SP) was seen connecting Superior Parietal lobule and Precuneal cortical areas to inferior cortical regions of the Parietal lobe, running deep to the Intraparietal sulcus. At the same dissection level, the IPL-TP fibers were identified as a bundle connecting the Inferior Parietal lobule with posterior Temporal cortical areas. At a deeper level, parallel to the Arcuate fasciculus fibers, the SPL-TP fibers were seen connecting the Superior Parietal lobule to posterior Temporal cortical areas. Discussion and conclusion To our knowledge this is the first cadaveric dissection study to comprehensively study and describe of the vertical association fibers of the temporoparietal region while proposing a universal terminology.
Collapse
Affiliation(s)
- Evangelos Drosos
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS FT, Manchester, UK
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Anatomy, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Spinal Studies and Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Eleftherios Neromyliotis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Eirini Charalampopoulou
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Lykourgos Anastasopoulos
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Theodosis Kalamatianos
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Georgios P. Skandalakis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Theodoros Troupis
- Department of Anatomy, National and Kapodistrian University of Athens, Athens, Greece
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Aristotelis V. Kalyvas
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
7
|
García-Cabezas MÁ, Pérez-Santos I, Cavada C. Stereotaxic cutting of post-mortem human brains for neuroanatomical studies. Front Neuroanat 2023; 17:1176351. [PMID: 37274837 PMCID: PMC10232747 DOI: 10.3389/fnana.2023.1176351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Stereotaxis is widely used in clinical neurosurgery, neuroradiosurgery, and neuroimaging. Yet, maps of brain structures obtained from post-mortem human brains are not usually presented in known stereotaxic coordinates. Post-mortem brain data given in stereotaxic coordinates would facilitate comparisons with in vivo human neuroimages and would also facilitate intra and inter-experiment comparisons. In this article, we present a crafted instrument for stereotaxic cutting of post-mortem human brain hemispheres. The instrument consists of a transparent methacrylate plate facing a mirror, four legs, and lateral regularly spaced columns permitting the insertion of large knives in-between the columns. This instrument can be built in any laboratory to obtain human brain slabs in the stereotaxic space of Talairach and Tournoux. We explain in detail the procedure for stereotaxic cutting of human brain hemispheres in the coronal plane, as well as the basis for calculating stereotaxic coordinates of histological sections obtained following the stereotaxic cutting protocol.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience Cajal-UAM, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience Cajal-UAM, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience Cajal-UAM, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Makris N, Rushmore R, Kaiser J, Albaugh M, Kubicki M, Rathi Y, Zhang F, O’Donnell LJ, Yeterian E, Caviness VS, Kennedy DN. A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology. Dev Neurosci 2023; 45:161-180. [PMID: 36977393 PMCID: PMC10526721 DOI: 10.1159/000530358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].
Collapse
Affiliation(s)
- Nikos Makris
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Richard Rushmore
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Kaiser
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Albaugh
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Marek Kubicki
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yogesh Rathi
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Yeterian
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Verne S. Caviness
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David N. Kennedy
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
10
|
Şahin MH, Akyüz ME, Karadağ MK, Yalçın A. Supramarginal Gyrus and Angular Gyrus Subcortical Connections: A Microanatomical and Tractographic Study for Neurosurgeons. Brain Sci 2023; 13:brainsci13030430. [PMID: 36979240 PMCID: PMC10046402 DOI: 10.3390/brainsci13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Objectives: This article aims to investigate the subcortical microanatomy of the supramarginal gyrus (SMG) and angular gyrus (AnG) using a microfiber dissection technique and diffusion tensor imaging (DTI)/fiber tractography (FT). The cortical and subcortical structures of this region are highly functional, and their lesions often present clinically. For this reason, the possibility of post-surgical deficits is high. We focused on the supramarginal gyrus and the angular gyrus and reviewed their anatomy from a topographic, functional and surgical point of view, and aimed to raise awareness especially for neurosurgeons. Methods: Four previously frozen, formalin-fixed human brains were examined under the operating microscope using the fiber dissection technique. Four hemispheres were dissected from medial to lateral under the surgical microscope. Brain magnetic resonance imaging (MRI) of 20 healthy adults was examined. Pre-central and post-central gyrus were preserved to achieve topographic dominance in dissections of brain specimens. Each stage was photographed. Tractographic brain magnetic resonance imaging of 10 healthy adults was examined radiologically. Focusing on the supramarginal and angular gyrus, the white matter fibers passing under this region and their intersection areas were examined. These two methods were compared anatomically from the lateral view and radiologically from the sagittal view. Results: SMG and AnG were determined in brain specimens. The pre-central and post-central gyrus were topographically preserved. The superior and medial temporal gyrus, and inferior and superior parietal areas were decorticated from lateral to medial. U fibers, superior longitudinal fasciculus II (SLF II), superior longitudinal fasciculus III (SLF III), arcuat fasciculus (AF) and middle longitudinal fasciculus (MdLF) fiber groups were shown and subcortical fiber structures belonging to these regions were visualized by the DTI/FT method. The subcortical fiber groups under the SMG and the AnG were observed anatomically and radiologically to have a dense and complex structure. Conclusions: Due to the importance of the subcortical connections of SMG and AnG on speech function, tumoral lesions and surgeries of this region are of particular importance. The anatomical architecture of the complex subcortical structure, which is located on the projection of the SMG and AnG areas, was shown with a DTI/FT examination under a topographic dominance, preserving the pre-central and post-central gyrus. In this study, the importance of the anatomical localization, connections and functions of the supramarginal and angular gyrus was examined. More anatomical and radiological studies are needed to better understand this region and its connections.
Collapse
|
11
|
The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study. Brain Struct Funct 2023; 228:121-130. [PMID: 36056938 DOI: 10.1007/s00429-022-02555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/14/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered a continuation of the superior temporal gyrus (STG)/ middle temporal gyrus (MTG) and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red, blue silicone-injected eight and four non-silicone-injected human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, other functions of the subunits have been revealed with cadaveric dissection and tractography images.
Collapse
|
12
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
13
|
The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Struct Funct 2023; 228:103-120. [PMID: 35995880 DOI: 10.1007/s00429-022-02551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.
Collapse
|
14
|
Celebi U, Oztekin MF, Kucuk NO. Which is responsible for aphasia by subcortical lesions? Subcortical lesions or the cortical hypoperfusion? Neurol Res 2022; 44:1066-1073. [PMID: 35984244 DOI: 10.1080/01616412.2022.2112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral lesions causing aphasia involve morphological and functional changes. In this study, it was aimed to explain the connection between aphasia and subcortical lesions with SPECT. The study included 30 patients diagnosed in the first three days of stroke with a single hemorrhagic or ischemic lesion in the dominant hemisphere subcortical area. Gulhane Aphasia Test and SPECT were performed. Aphasia was detected in 19 cases (63.3%). The relationship between aphasia and perfusion dysfunction in cortical and subcortical regions of the brain was evaluated, aphasia was found to be present in 15 (71.4%) of the 21 patients with cortical hypoperfusion in the dominant hemisphere and 4 (44.4%) of the 9 patients without cortical hypoperfusion; the difference was not statistically significant (p = 0.16). In the ischemia group, aphasia was present in 11 (78.5%) of the 14 cases with cortical hypoperfusion in the dominant hemisphere. Aphasia wasn't detected in any of the 5 cases that did not have cortical hypoperfusion, the difference was statistically significant (p = 0.005). When cerebral regions were evaluated separately, significant difference was reported in the aphasia seen with frontal, anterior parietal, and occipital hypoperfusion compared to cases with normal perfusion in these areas, with p = 0.003, p = 0.021, and p = 0.004, respectively. This study showed that aphasia to be more common in cases with cortical hypoperfusion in the dominant hemisphere than in cases without hypoperfusion. Our results provide evidence that direct effect of the lesion in the basal ganglia on the development of aphasia is doubtful.
Collapse
Affiliation(s)
- Ulufer Celebi
- Department of Neurology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Mehmet Fevzi Oztekin
- Department of Neurology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Nuriye Ozlem Kucuk
- Nuclear Medicine Department, Ankara University, School of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Liang J, Huang W, Guo H, Wu W, Li X, Xu C, Xie G, Chen W. Differences of resting fMRI and cognitive function between drug-naïve bipolar disorder and schizophrenia. BMC Psychiatry 2022; 22:654. [PMID: 36271368 PMCID: PMC9587563 DOI: 10.1186/s12888-022-04301-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SC) have many similarities in clinical manifestations. The acute phase of BD has psychotic symptoms, while SC also has emotional symptoms during the onset, which suggests that there is some uncertainty in distinguishing BD and SC through clinical symptoms. AIM To explore the characteristics of brain functional activities and cognitive impairment between BD and SC. METHODS Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) test was performed on patients in drug-naïve BD and SC (50 subjects in each group), and resting-state functional magnetic resonance imaging (rs-fMRI) scanning was performed meanwhile. Rs-fMRI data were routinely preprocessed, and the value of the fractional amplitude of low-frequency fluctuation (fALFF) was calculated. Then each part of the scores of the RBANS and the characteristics of brain function activities were compared between the two groups. Finally used Pearson correlation to analyze the correlation between cognition and brain function. RESULTS (1) Compared with BD group, all parts of RBANS scores in SC group decreased; (2) The left inferior occipital gyrus (IOG, peak coordinates - 30, -87, -15; t = 4.78, voxel size = 31, Alphasim correction) and the right superior temporal gyrus (STG, peak coordinates 51, -12, 0; t = 5.08, voxel size = 17, AlphaSim correction) were the brain areas with significant difference in fALFF values between BD and SC. Compared with SC group, the fALFF values of the left IOG and the right STG in BD group were increased (p < 0.05); (3) Pearson correlation analysis showed that the visuospatial construction score was positively correlated with the fALFF values of the left IOG and the right STG (rleft IOG = 0.304, p = 0.003; rright STG = 0.340, p = 0.001); The delayed memory (figure recall) score was positively correlated with the fALFF value of the left IOG (rleft IOG = 0.207, p = 0.044). DISCUSSION The cognitive impairment of SC was more serious than BD. The abnormal activities of the left IOG and the right STG may be the core brain region to distinguish BD and SC, and are closely related to cognitive impairment, which provide neuroimaging basis for clinical differential diagnosis and explore the pathological mechanism of cognitive impairment.
Collapse
Affiliation(s)
- Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China. .,Center on Translational Neuroscience, Minzu University of China, Beijing, People's Republic of China.
| | - Wei Huang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Huagui Guo
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Weibin Wu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
17
|
Vinci-Booher S, Caron B, Bullock D, James K, Pestilli F. Development of white matter tracts between and within the dorsal and ventral streams. Brain Struct Funct 2022; 227:1457-1477. [PMID: 35267078 DOI: 10.1007/s00429-021-02414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
The degree of interaction between the ventral and dorsal visual streams has been discussed in multiple scientific domains for decades. Recently, several white matter tracts that directly connect cortical regions associated with the dorsal and ventral streams have become possible to study due to advancements in automated and reproducible methods. The developmental trajectory of this set of tracts, here referred to as the posterior vertical pathway (PVP), has yet to be described. We propose an input-driven model of white matter development and provide evidence for the model by focusing on the development of the PVP. We used reproducible, cloud-computing methods and diffusion imaging from adults and children (ages 5-8 years) to compare PVP development to that of tracts within the ventral and dorsal pathways. PVP microstructure was more adult-like than dorsal stream microstructure, but less adult-like than ventral stream microstructure. Additionally, PVP microstructure was more similar to the microstructure of the ventral than the dorsal stream and was predicted by performance on a perceptual task in children. Overall, results suggest a potential role for the PVP in the development of the dorsal visual stream that may be related to its ability to facilitate interactions between ventral and dorsal streams during learning. Our results are consistent with the proposed model, suggesting that the microstructural development of major white matter pathways is related, at least in part, to the propagation of sensory information within the visual system.
Collapse
Affiliation(s)
- S Vinci-Booher
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| | - B Caron
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - D Bullock
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - K James
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - F Pestilli
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- The University of Texas, 108 E Dean Keeton St, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Sefcikova V, Sporrer JK, Juvekar P, Golby A, Samandouras G. Converting sounds to meaning with ventral semantic language networks: integration of interdisciplinary data on brain connectivity, direct electrical stimulation and clinical disconnection syndromes. Brain Struct Funct 2022; 227:1545-1564. [PMID: 35267079 PMCID: PMC9098557 DOI: 10.1007/s00429-021-02438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Numerous traditional linguistic theories propose that semantic language pathways convert sounds to meaningful concepts, generating interpretations ranging from simple object descriptions to communicating complex, analytical thinking. Although the dual-stream model of Hickok and Poeppel is widely employed, proposing a dorsal stream, mapping speech sounds to articulatory/phonological networks, and a ventral stream, mapping speech sounds to semantic representations, other language models have been proposed. Indeed, despite seemingly congruent models of semantic language pathways, research outputs from varied specialisms contain only partially congruent data, secondary to the diversity of applied disciplines, ranging from fibre dissection, tract tracing, and functional neuroimaging to neuropsychiatry, stroke neurology, and intraoperative direct electrical stimulation. The current review presents a comprehensive, interdisciplinary synthesis of the ventral, semantic connectivity pathways consisting of the uncinate, middle longitudinal, inferior longitudinal, and inferior fronto-occipital fasciculi, with special reference to areas of controversies or consensus. This is achieved by describing, for each tract, historical concept evolution, terminations, lateralisation, and segmentation models. Clinical implications are presented in three forms: (a) functional considerations derived from normal subject investigations, (b) outputs of direct electrical stimulation during awake brain surgery, and (c) results of disconnection syndromes following disease-related lesioning. The current review unifies interpretation of related specialisms and serves as a framework/thinking model for additional research on language data acquisition and integration.
Collapse
Affiliation(s)
- Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Juliana K Sporrer
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
19
|
Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022; 254:119029. [PMID: 35231632 DOI: 10.1016/j.neuroimage.2022.119029] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.
Collapse
Affiliation(s)
- Ahmed M Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Engineering, Nashville, TN, USA
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium; UZ Leuven, Department of Neurosurgery, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| |
Collapse
|
20
|
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, O'Donnell LJ. White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. Neuroimage 2022; 246:118739. [PMID: 34856375 PMCID: PMC8862285 DOI: 10.1016/j.neuroimage.2021.118739] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Collapse
Affiliation(s)
- Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA; Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institution of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | - Tengfei Xue
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | | | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA, US
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
21
|
Robles DJ, Dharani A, Rostowsky KA, Chaudhari NN, Ngo V, Zhang F, O'Donnell LJ, Green L, Sheikh-Bahaei N, Chui HC, Irimia A. Older age, male sex, and cerebral microbleeds predict white matter loss after traumatic brain injury. GeroScience 2022; 44:83-102. [PMID: 34704219 PMCID: PMC8811069 DOI: 10.1007/s11357-021-00459-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022] Open
Abstract
Little is known on how mild traumatic brain injury affects white matter based on age at injury, sex, cerebral microbleeds, and time since injury. Here, we study the fractional anisotropy of white matter to study these effects in 109 participants aged 18-77 (46 females, age μ ± σ = 40 ± 17 years) imaged within [Formula: see text] 1 week and [Formula: see text] 6 months post-injury. Age is found to be linearly associated with white matter degradation, likely due not only to injury but also to cumulative effects of other pathologies and to their interactions with injury. Age is associated with mean anisotropy decreases in the corpus callosum, middle longitudinal fasciculi, inferior longitudinal and occipitofrontal fasciculi, and superficial frontal and temporal fasciculi. Over [Formula: see text] 6 months, the mean anisotropies of the corpus callosum, left superficial frontal fasciculi, and left corticospinal tract decrease significantly. Independently of other predictors, age and cerebral microbleeds contribute to anisotropy decrease in the callosal genu. Chronically, the white matter of commissural tracts, left superficial frontal fasciculi, and left corticospinal tract degrade appreciably, independently of other predictors. Our findings suggest that large commissural and intra-hemispheric structures are at high risk for post-traumatic degradation. This study identifies detailed neuroanatomic substrates consistent with brain injury patients' age-dependent deficits in information processing speed, interhemispheric communication, motor coordination, visual acuity, sensory integration, reading speed/comprehension, executive function, personality, and memory. We also identify neuroanatomic features underlying white matter degradation whose severity is associated with the male sex. Future studies should compare our findings to functional measures and other neurodegenerative processes.
Collapse
Affiliation(s)
- David J Robles
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ammar Dharani
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kenneth A Rostowsky
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Green
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
22
|
Latini F, Trevisi G, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Hesselager G, Ryttlefors M. New Insights Into the Anatomy, Connectivity and Clinical Implications of the Middle Longitudinal Fasciculus. Front Neuroanat 2021; 14:610324. [PMID: 33584207 PMCID: PMC7878690 DOI: 10.3389/fnana.2020.610324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
The middle longitudinal fascicle (MdLF) is a long, associative white matter tract connecting the superior temporal gyrus (STG) with the parietal and occipital lobe. Previous studies show different cortical terminations, and a possible segmentation pattern of the tract. In this study, we performed a post-mortem white matter dissection of 12 human hemispheres and an in vivo deterministic fiber tracking of 24 subjects acquired from the Human Connectome Project to establish whether a constant organization of fibers exists among the MdLF subcomponents and to acquire anatomical information on each subcomponent. Moreover, two clinical cases of brain tumors impinged on MdLF territories are reported to further discuss the anatomical results in light of previously published data on the functional involvement of this bundle. The main finding is that the MdLF is consistently organized into two layers: an antero-ventral segment (aMdLF) connecting the anterior STG (including temporal pole and planum polare) and the extrastriate lateral occipital cortex, and a posterior-dorsal segment (pMdLF) connecting the posterior STG, anterior transverse temporal gyrus and planum temporale with the superior parietal lobule and lateral occipital cortex. The anatomical connectivity pattern and quantitative differences between the MdLF subcomponents along with the clinical cases reported in this paper support the role of MdLF in high-order functions related to acoustic information. We suggest that pMdLF may contribute to the learning process associated with verbal-auditory stimuli, especially on left side, while aMdLF may play a role in processing/retrieving auditory information already consolidated within the temporal lobe.
Collapse
Affiliation(s)
- Francesco Latini
- Neurosurgical Unit, Department of Surgery, Ospedale Santo Spirito, Pescara, Italy
| | - Gianluca Trevisi
- Neurosurgical Unit, Department of Surgery, Ospedale Santo Spirito, Pescara, Italy
| | - Markus Fahlström
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Malin Jemstedt
- Section of Speech-Language Pathology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Maria Zetterling
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Göran Hesselager
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mats Ryttlefors
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
The correlation between apraxia and neglect in the right hemisphere: A voxel-based lesion-symptom mapping study in 138 acute stroke patients. Cortex 2020; 132:166-179. [DOI: 10.1016/j.cortex.2020.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
|
24
|
Intraoperative Direct Stimulation Identification and Preservation of Critical White Matter Tracts During Brain Surgery. World Neurosurg 2020; 146:64-74. [PMID: 33229311 DOI: 10.1016/j.wneu.2020.10.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
The study of brain connectomics has led to a rapid evolution in the understanding of human brain function. Traditional localizationist theories are being replaced by more accurate network, or hodologic, approaches that model brain function as widespread processes dependent on cortical and subcortical structures, as well as the white matter tracts (WMTs) that link these areas. Recent surgical literature suggests that WMTs may be more critical to preserve than cortical structures because of the comparably lower capacity of recovery of the former when damaged. Given the relevance of eloquent WMTs to neurologic function and thus quality of life, neurosurgical interventions must be tailored to maximize their preservation. Direct electric stimulation remains a vital tool for identification and avoidance of these critical tracts. Neurosurgeons therefore require proper understanding of the anatomy and function of WMTs, as well as the reported contemporary tasks used during intraoperative stimulation. We review the relevant tracts involved in language, visuospatial, and motor networks and the updated direct electric stimulation-based mapping tasks that aid in their preservation. The dominant-hemisphere language WMTs have been mapped using picture naming, semantic association, word repetition, reading, and writing tasks. For monitoring of vision and spatial functions, the modified picture naming and line bisection tasks, as well as the recording of visual evoked potentials, have been used. Repetitive movements and monitoring of motor evoked potentials and involuntary movements have been applied for preservation of the motor networks.
Collapse
|
25
|
Garcea FE, Greene C, Grafton ST, Buxbaum LJ. Structural Disconnection of the Tool Use Network after Left Hemisphere Stroke Predicts Limb Apraxia Severity. Cereb Cortex Commun 2020; 1:tgaa035. [PMID: 33134927 PMCID: PMC7573742 DOI: 10.1093/texcom/tgaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Producing a tool use gesture is a complex process drawing upon the integration of stored knowledge of tools and their associated actions with sensory-motor mechanisms supporting the planning and control of hand and arm actions. Understanding how sensory-motor systems in parietal cortex interface with semantic representations of actions and objects in the temporal lobe remains a critical issue and is hypothesized to be a key determinant of the severity of limb apraxia, a deficit in producing skilled action after left hemisphere stroke. We used voxel-based and connectome-based lesion-symptom mapping with data from 57 left hemisphere stroke participants to assess the lesion sites and structural disconnection patterns associated with poor tool use gesturing. We found that structural disconnection among the left inferior parietal lobule, lateral and ventral temporal cortices, and middle and superior frontal gyri predicted the severity of tool use gesturing performance. Control analyses demonstrated that reductions in right-hand grip strength were associated with motor system disconnection, largely bypassing regions supporting tool use gesturing. Our findings provide evidence that limb apraxia may arise, in part, from a disconnection between conceptual representations in the temporal lobe and mechanisms enabling skilled action production in the inferior parietal lobule.
Collapse
Affiliation(s)
- Frank E Garcea
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clint Greene
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
26
|
Crossmodal reorganisation in deafness: Mechanisms for functional preservation and functional change. Neurosci Biobehav Rev 2020; 113:227-237. [DOI: 10.1016/j.neubiorev.2020.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
|
27
|
Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct 2020; 225:1313-1326. [PMID: 32253509 PMCID: PMC7577349 DOI: 10.1007/s00429-020-02060-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
The primate brain contains a large number of interconnected visual areas, whose spatial organization and intracortical projections show a high level of conservation across species. One fiber pathway of recent interest is the vertical occipital fasciculus (VOF), which is thought to support communication between dorsal and ventral visual areas in the occipital lobe. A recent comparative diffusion MRI (dMRI) study reported that the VOF in the macaque brain bears a similar topology to that of the human, running superficial and roughly perpendicular to the optic radiation. The present study reports a comparative investigation of the VOF in the common marmoset, a small New World monkey whose lissencephalic brain is approximately tenfold smaller than the macaque and 150-fold smaller than the human. High-resolution ex vivo dMRI of two marmoset brains revealed an occipital white matter structure that closely resembles that of the larger primate species, with one notable difference. Namely, unlike in the macaque and the human, the VOF in the marmoset is spatially fused with other, more anterior vertical tracts, extending anteriorly between the parietal and temporal cortices. We compare several aspects of this continuous structure, which we term the VOF complex (VOF +), and neighboring fasciculi to those of macaques and humans. We hypothesize that the essential topology of the VOF+ is a conserved feature of the posterior cortex in anthropoid primates, with a clearer fragmentation into multiple named fasciculi in larger, more gyrified brains.
Collapse
Affiliation(s)
- Takaaki Kaneko
- RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyamas-shi, Aichi, 484-8506, Japan.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Sundqvist M, Routier A, Dubois B, Colliot O, Teichmann M. The White Matter Module-Hub Network of Semantics Revealed by Semantic Dementia. J Cogn Neurosci 2020; 32:1330-1347. [PMID: 32083520 DOI: 10.1162/jocn_a_01549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive neuroscience exploring the architecture of semantics has shown that coherent supramodal concepts are computed in the anterior temporal lobes (ATL), but it is unknown how/where modular information implemented by posterior cortices (word/object/face forms) is conveyed to the ATL hub. We investigated the semantic module-hub network in healthy adults (n = 19) and in semantic dementia patients (n = 28) by combining semantic assessments of verbal and nonverbal stimuli and MRI-based fiber tracking using seeds in three module-related cortices implementing (i) written word forms (visual word form area), (ii) abstract lexical representations (posterior-superior temporal cortices), and (iii) face/object representations (face form area). Fiber tracking revealed three key tracts linking the ATL with the three module-related cortices. Correlation analyses between tract parameters and semantic scores indicated that the three tracts subserve semantics, transferring modular verbal or nonverbal object/face information to the left and right ATL, respectively. The module-hub tracts were functionally and microstructurally damaged in semantic dementia, whereas damage to non-module-specific ATL tracts (inferior longitudinal fasciculus, uncinate fasciculus) had more limited impact on semantic failure. These findings identify major components of the white matter module-hub network of semantics, and they corroborate/materialize claims of cognitive models positing direct links between modular and semantic representations. In combination with modular accounts of cognition, they also suggest that the currently prevailing "hub-and-spokes" model of semantics could be extended by incorporating an intermediate module level containing invariant representations, in addition to "spokes," which subserve the processing of a near-unlimited number of sensorimotor and speech-sound features.
Collapse
Affiliation(s)
- Martina Sundqvist
- Institut du Cerveau et de la Moelle épinière (ICM), FrontLab team, Paris, France.,Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, Saclay, France.,Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Alexandre Routier
- Institut du Cerveau et de la Moelle épinière (ICM), FrontLab team, Paris, France.,Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université, Paris, France.,Inria, Aramis project-team, Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière (ICM), FrontLab team, Paris, France.,Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer, Centre de Référence "Démences Rares ou Précoces", Paris, France
| | - Olivier Colliot
- Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université, Paris, France.,Inria, Aramis project-team, Paris, France.,Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marc Teichmann
- Institut du Cerveau et de la Moelle épinière (ICM), FrontLab team, Paris, France.,Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer, Centre de Référence "Démences Rares ou Précoces", Paris, France
| |
Collapse
|
29
|
Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia. NEUROIMAGE-CLINICAL 2019; 25:102115. [PMID: 31865024 PMCID: PMC6931233 DOI: 10.1016/j.nicl.2019.102115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
The middle longitudinal fascicle (MdLF) is a recently delineated association cortico-cortical fiber pathway in humans, connecting superior temporal gyrus and temporal pole principally with the angular gyrus, and is likely to be involved in language processing. However, the MdLF has not been studied in language disorders as primary progressive aphasia (PPA). We hypothesized that the MdLF will exhibit evidence of neurodegeneration in PPA patients. In this study, 20 PPA patients and 25 healthy controls were recruited in the Primary Progressive Aphasia program in the Massachusetts General Hospital Frontotemporal Disorders Unit. We used diffusion tensor imaging (DTI) tractography to reconstruct the MdLF and extract tract-specific DTI metrics (fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD) and axial diffusivity (AD)) to assess white matter changes in PPA and their relationship with language impairments. We found severe WM damage in the MdLF in PPA patients, which was principally pronounced in the left hemisphere. Moreover, the WM alterations in the MdLF in the dominant hemisphere were significantly correlated with impairments in word comprehension and naming, but not with articulation and fluency. In addition, asymmetry analysis revealed that the DTI metrics of controls were similar for each hemisphere, whereas PPA patients had clear laterality differences in MD, AD and RD. These findings add new insight into the localization and severity of white matter fiber bundle neurodegeneration in PPA, and provide evidence that degeneration of the MdLF contribute to impairment in semantic processing and lexical retrieval in PPA. Integrity loss of middle longitudinal fascicle (MdLF) in PPA. MdLF degeneration correlated with impairments in word comprehension and retrieval. MdLF not significantly correlated with articulation or fluency. Connectivity model: gray/white matter areas involved in human semantic processing.
Collapse
|
30
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
31
|
Dressing A, Kaller CP, Nitschke K, Beume LA, Kuemmerer D, Schmidt CS, Bormann T, Umarova RM, Egger K, Rijntjes M, Weiller C, Martin M. Neural correlates of acute apraxia: Evidence from lesion data and functional MRI in stroke patients. Cortex 2019; 120:1-21. [DOI: 10.1016/j.cortex.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
32
|
Anderson DN, Osting B, Vorwerk J, Dorval AD, Butson CR. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J Neural Eng 2019; 15:026005. [PMID: 29235446 DOI: 10.1088/1741-2552/aaa14b] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. APPROACH Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). MAIN RESULTS The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. SIGNIFICANCE This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States of America. Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
| | | | | | | | | |
Collapse
|
33
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
34
|
Dynamics of impaired humour processing in schizophrenia - An EEG effective connectivity study. Schizophr Res 2019; 209:113-128. [PMID: 31103215 DOI: 10.1016/j.schres.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/01/2019] [Accepted: 05/05/2019] [Indexed: 11/23/2022]
Abstract
Specific language and communication abilities, such as humour comprehension, are commonly impaired in schizophrenia. The present study investigates the dynamics of the humour-related neural network underlying this deficit. Specifically, we focused on the abnormalities of information flow in schizophrenia within the fronto-temporo-parietal circuit. We estimated the direction and strength of cortical information flow in the time course of humour processing by the EEG Directed Transfer Function. The study included 40 schizophrenia outpatients and 40 healthy controls (age-sex-education matched) assessed with an EEG punchline-based humour comprehension task (written and cartoon jokes). The linear mixed models procedure was used to test group effects across three processes: 1. incongruity detection, 2. incongruity resolution and elaboration, 3. complete humour processing. Conjunction maps for both types of jokes were created to investigate fundamental between-group differences, beyond the context of modality. Clinical subjects indicated a lower level of understanding of the funny punchlines, indicated absurd punchlines as more understandable and gave higher funniness ratings to both absurd and neutral punchlines. The EEG effective connectivity results revealed that humour processing in schizophrenia engages alternative circuits, exhibiting a pronounced abnormal leftward shifted lateralization related to diminished activity of the right hemisphere in fronto-temporo-parietal regions. In conclusion, the present paper presents the dynamics of cortical propagation of information in the humour-related circuit as a neural substrate of humour impairment in schizophrenia.
Collapse
|
35
|
Mandonnet E, Sarubbo S, Petit L. The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Front Neuroanat 2018; 12:94. [PMID: 30459566 PMCID: PMC6232419 DOI: 10.3389/fnana.2018.00094] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d'Azyr up to the beginning of the 19th century. Subsequently, novel approaches to the gross dissection of brain internal structures have led to a new understanding of WM organization, notably due to the works of Reil, Gall and Burdach highlighting the fascicular organization of WM. Meynert then proposed a definitive tripartite organization in association, commissural and projection WM pathways. The enduring anatomical work of Dejerine at the turn of the 20th century describing WM pathways in detail has been the paramount authority on this topic (including its terminology) for over a century, enriched sporadically by studies based on blunt Klingler dissection. Currently, diffusion-weighted magnetic resonance imaging (DWI) is used to reveal the WM fiber tracts of the human brain in vivo by measuring the diffusion of water molecules, especially along axons. It is then possible by tractography to reconstitute the WM pathways of the human brain step by step at an unprecedented level of precision in large cohorts. However, tractography algorithms, although powerful, still face the complexity of the organization of WM pathways, and there is a crucial need to benefit from the exact definitions of the trajectories and endings of all WM fascicles. Beyond such definitions, the emergence of DWI-based tractography has mostly revealed strong heterogeneity in naming the different bundles, especially the long-range association pathways. This review addresses the various terminologies known for the WM association bundles, aiming to describe the rules of arrangements followed by these bundles and to propose a new nomenclature based on the structural wiring diagram of the human brain.
Collapse
Affiliation(s)
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Laurent Petit
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives—UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
36
|
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect. PLoS One 2018; 13:e0205369. [PMID: 30300425 PMCID: PMC6177186 DOI: 10.1371/journal.pone.0205369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have produced extensive evidence on white matter abnormalities in schizophrenia (SZ). However, optimum consistency and reproducibility have not been achieved, and reported low white matter tract integrity in patients with SZ varies between studies. A whole-brain imaging study with a large sample size is needed. This study aimed to investigate white matter integrity in the corpus callosum and connections between regions of interests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI), two-tensor full-brain tractography was performed; DWIs were parcellated by processing and registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter query language was used to extract white matter fiber tracts. We evaluated group differences in means of diffusion measures between the patients and controls, and correlations of diffusion measures with the severity of clinical symptoms and cognitive impairment in the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05 was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace (TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a significant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longitudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive subscale score. However, these correlations were not significant after correction for multiple comparisons. These results indicated widespread white matter fiber tract abnormalities in patients with SZ, contributing to SZ pathophysiology.
Collapse
|
37
|
Cavelti M, Winkelbeiner S, Federspiel A, Walther S, Stegmayer K, Giezendanner S, Laimböck K, Dierks T, Strik W, Horn H, Homan P. Formal thought disorder is related to aberrations in language-related white matter tracts in patients with schizophrenia. Psychiatry Res Neuroimaging 2018; 279:40-50. [PMID: 29861197 DOI: 10.1016/j.pscychresns.2018.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
This study examined the hypothesis that a fronto-temporal disconnection in the language network underpins formal thought disorder (FTD) in schizophrenia. Forty-nine patients with a schizophrenia spectrum disorder (27 with mild FTD, 22 with severe FTD) and 26 healthy controls (HC) were included. Overall psychopathology and FTD were assessed by the Positive and Negative Syndrome Scale and the Thought, Language, and Communication scale, respectively. White matter (WM) microstructure was analysed using Tract-Based Spatial Statistics. In patients, severity of overall FTD (TLC Sum Score) was predicted by decreased fractional anisotropy (FA) in the right superior longitudinal fasciculus (SLF), and severity of negative FTD (TLC Emptiness subscale) was predicted by increased FA in the left SLF and arcuate fasciculus (AF). Notably, these results were no longer significant after correction for multiple comparisons. Compared with HC, patients showed lower FA in all the investigated language-related WM tracts as well as across the whole WM skeleton. No difference in FA was found between patients with severe and patients with mild FTD. Our results are compatible with earlier studies reporting impairments in widely spread WM tracts including those related to language processing in patients with schizophrenia.
Collapse
Affiliation(s)
- Marialuisa Cavelti
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Orygen, The National Centre of Excellence in Youth Mental Health & Centre for Youth Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Stephanie Winkelbeiner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | | | - Karin Laimböck
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Helge Horn
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Institute for Psychiatry and Psychotherapy Bern, Waisenhausplatz 25, Bern 3011, Switzerland
| | - Philipp Homan
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Jouen A, Ellmore T, Madden-Lombardi C, Pallier C, Dominey P, Ventre-Dominey J. Beyond the word and image: II- Structural and functional connectivity of a common semantic system. Neuroimage 2018; 166:185-197. [DOI: 10.1016/j.neuroimage.2017.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
|
39
|
Tylee DS, Kikinis Z, Quinn TP, Antshel KM, Fremont W, Tahir MA, Zhu A, Gong X, Glatt SJ, Coman IL, Shenton ME, Kates WR, Makris N. Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2017; 15:832-842. [PMID: 28761808 PMCID: PMC5522376 DOI: 10.1016/j.nicl.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental syndrome that has been studied intensively in order to understand relationships between the genetic microdeletion, brain development, cognitive function, and the emergence of psychiatric symptoms. White matter microstructural abnormalities identified using diffusion tensor imaging methods have been reported to affect a variety of neuroanatomical tracts in 22q11.2DS. In the present study, we sought to combine two discovery-based approaches: (1) white matter query language was used to parcellate the brain's white matter into tracts connecting pairs of 34, bilateral cortical regions and (2) the diffusion imaging characteristics of the resulting tracts were analyzed using a machine-learning method called support vector machine in order to optimize the selection of a set of imaging features that maximally discriminated 22q11.2DS and comparison subjects. With this unique approach, we both confirmed previously-recognized 22q11.2DS-related abnormalities in the inferior longitudinal fasciculus (ILF), and identified, for the first time, 22q11.2DS-related anomalies in the middle longitudinal fascicle and the extreme capsule, which may have been overlooked in previous, hypothesis-guided studies. We further observed that, in participants with 22q11.2DS, ILF metrics were significantly associated with positive prodromal symptoms of psychosis.
Collapse
Key Words
- (-fp), fronto-parietal aspect
- (-to), temporo-occipital aspect
- (-tp), temporo-parietal aspect
- (22q11.2DS), 22q11.2 deletion syndrome
- (AD), axial diffusivity
- (DTI), diffusion tensor imaging
- (DWI), diffusion weighted image
- (EmC), extreme capsule
- (FA), fractional anisotropy
- (FOV), field of view
- (GDS), Gordon Diagnostic Systems
- (ILF), inferior longitudinal fasciculus
- (MdLF), middle longitudinal fascicle
- (RD), radial diffusivity
- (ROI), region of interest
- (SIPS), Structured Interview for Prodromal Syndromes
- (SRS), Social Responsiveness Scale
- (STG), superior temporal gyrus
- (SVM), support vector machine
- (UKF), Unscented Kalman Filter
- (WAIS-III), Wechsler Adult Intelligence Scale – 3rd edition
- (WMQL), white matter query language
- (dTP), dorsal temporal pole
- 22q11.2 deletion syndrome
- Callosal asymmetry
- Diffusion tensor imaging
- Extreme capsule
- Inferior longitudinal fasciculus
- Machine-learning
- Middle longitudinal fascicle
- Support vector machine
- Velocardiofacial syndrome
- White matter query language
Collapse
Affiliation(s)
- Daniel S Tylee
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, Victoria, Australia
| | | | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Muhammad A Tahir
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA.
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Nikos Makris
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|