1
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
2
|
Habiba UE, Khan N, Greene DL, Ahmad K, Shamim S, Umer A. Meta-analysis shows that mesenchymal stem cell therapy can be a possible treatment for diabetes. Front Endocrinol (Lausanne) 2024; 15:1380443. [PMID: 38800472 PMCID: PMC11116613 DOI: 10.3389/fendo.2024.1380443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
Objective This meta-analysis includes the systematic literature review and meta-analysis involving clinical trials to assess the efficacy and safety of mesenchymal stem cell (MSC) transplantation for treating T1DM and T2DM. Methods We searched PubMed, ScienceDirect, Web of Science, clinicaltrials.gov, and Cochrane Library for "published" research from their inception until November 2023. Two researchers independently reviewed the studies' inclusion and exclusion criteria. Our meta-analysis included 13 studies on MSC treatment for diabetes. Results The MSC-treated group had a significantly lower HbA1c at the last follow-up compared to the baseline (MD: 0.95, 95% CI: 0.33 to 1.57, P-value: 0.003< 0.05), their insulin requirement was significantly lower (MD: 0.19, 95% CI: 0.07 to 0.31, P-value: 0.002< 0.05), the level of FBG with MSC transplantation significantly dropped compared to baseline (MD: 1.78, 95% CI: -1.02 to 4.58, P-value: 0.212), the FPG level of the MSC-treated group was significantly lower (MD: -0.77, 95% CI: -2.36 to 0.81, P-value: 0.339 > 0.05), and the fasting C-peptide level of the MSC-treated group was slightly high (MD: -0.02, 95% CI: -0.07 to 0.02, P-value: 0.231 > 0.05). Conclusion The transplantation of MSCs has been found to positively impact both types of diabetes mellitus without signs of apparent adverse effects.
Collapse
Affiliation(s)
- Umm E. Habiba
- Research and Development (R&D) Department, R3 Medical Research LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Pak-American Hospital Pvt. Ltd., Islamabad, Pakistan
- Research and Development (R&D) Department, R3 Stem Cell LLC, Scottsdale, AZ, United States
| | - Nasar Khan
- Research and Development (R&D) Department, R3 Medical Research LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Pak-American Hospital Pvt. Ltd., Islamabad, Pakistan
- Research and Development (R&D) Department, R3 Stem Cell LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Bello Bio Labs and Therapeutics Pvt. Ltd., Islamabad, Pakistan
| | - David Lawrence Greene
- Research and Development (R&D) Department, R3 Medical Research LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Pak-American Hospital Pvt. Ltd., Islamabad, Pakistan
- Research and Development (R&D) Department, R3 Stem Cell LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Bello Bio Labs and Therapeutics Pvt. Ltd., Islamabad, Pakistan
| | - Khalil Ahmad
- Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sabiha Shamim
- Research and Development (R&D) Department, R3 Medical Research LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Pak-American Hospital Pvt. Ltd., Islamabad, Pakistan
- Research and Development (R&D) Department, R3 Stem Cell LLC, Scottsdale, AZ, United States
| | - Amna Umer
- Research and Development (R&D) Department, R3 Medical Research LLC, Scottsdale, AZ, United States
- Research and Development (R&D) Department, Pak-American Hospital Pvt. Ltd., Islamabad, Pakistan
- Research and Development (R&D) Department, R3 Stem Cell LLC, Scottsdale, AZ, United States
| |
Collapse
|
3
|
Khasawneh RR, Abu-El-Rub E, Almahasneh FA, Alzu'bi A, Zegallai HM, Almazari RA, Magableh H, Mazari MH, Shlool HF, Sanajleh AK. Addressing the impact of high glucose microenvironment on the immunosuppressive characteristics of human mesenchymal stem cells. IUBMB Life 2024; 76:286-295. [PMID: 38014654 DOI: 10.1002/iub.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are a therapeutically efficient type of stem cells validated by their ability to treat many inflammatory and chronic conditions. The biological and therapeutic characteristics of MSCs can be modified depending on the type of microenvironment at the site of transplantation. Diabetes mellitus (DM) is a commonly diagnosed metabolic disease characterized by hyperglycemia, which alters over time the cellular and molecular functions of many cells and causes their damage. Hyperglycemia can also impact the success rate of MSCs transplantation; therefore, it is extremely significant to investigate the effect of high glucose on the biological and therapeutic attributes of MSCs, particularly their immunomodulatory abilities. Thus, in this study, we explored the effect of high glucose on the immunosuppressive characteristics of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs). We found that hAD-MSCs cultured in high glucose lost their immunomodulatory abilities and became detectable by immune cells. The decline in the immunosuppressive capabilities of hAD-MSCs was mediated by significant decrease in the levels of IDO, IL-10, and complement factor H and substantial increase in the activity of immunoproteasome. The protein levels of AMP-activated protein kinase (AMPK) and phosphofructokinase-1 (PFK-1), which are integral regulators of glycolysis, revealed a marked decline in high glucose exposed MSCs. The findings of our study indicated the possibility of immunomodulatory shift in MSCs after being cultured in high glucose, which can be translationally employed to explain their poor survival and short-lived therapeutic outcomes in diabetic patients.
Collapse
Affiliation(s)
- Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Fatimah A Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Hana M Zegallai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Rawan A Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Huthaifa Magableh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammad H Mazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Haitham F Shlool
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ahmad K Sanajleh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| |
Collapse
|
4
|
Yan D, Song Y, Zhang B, Cao G, Zhou H, Li H, Sun H, Deng M, Qiu Y, Yi W, Sun Y. Progress and application of adipose-derived stem cells in the treatment of diabetes and its complications. Stem Cell Res Ther 2024; 15:3. [PMID: 38167106 PMCID: PMC10763319 DOI: 10.1186/s13287-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Dongxu Yan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hao Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
Wang J, Liu H, Yue G, Deng Y, Cai W, Xu J. Human placenta-derived mesenchymal stem cells ameliorate diabetic kidney disease by modulating the T helper 17 cell/ regulatory T-cell balance through the programmed death 1 / programmed death-ligand 1 pathway. Diabetes Obes Metab 2024; 26:32-45. [PMID: 37722965 DOI: 10.1111/dom.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
AIM To investigate the therapeutic effects and immunomodulatory mechanisms of human placenta-derived mesenchymal stem cells (PMSCs) in diabetic kidney disease (DKD). METHODS Streptozotocin-induced DKD rats were administered an equivalent volume of saline or PMSCs (1 × 106 in 2 mL phosphate-buffered saline per rat) for 3 weeks. Eight weeks after treatment, we examined the biochemical parameters in the blood and urine, the ratio of T helper 17 cells (Th17) and regulatory T cells (Treg) in the blood, cytokine levels in the kidney and blood, and renal histopathological changes. In addition, we performed PMSC tracing and renal transcriptomic analyses using RNA-sequencing. Finally, we determined whether PMSCs modulated the Th17/Treg balance by upregulating programmed death 1 (PD-1) in vitro. RESULTS The PMSCs significantly improved renal function, which was assessed by serum creatinine levels, urea nitrogen, cystatin C levels, urinary albumin-creatinine ratio, and the kidney index. Further, PMSCs alleviated pathological changes, including tubular vacuolar degeneration, mesangial matrix expansion, and glomerular filtration barrier injury. In the DKD rats in our study, PMSCs were mainly recruited to immune organs, rather than to the kidney or pancreas. PMSCs markedly promoted the Th17/Treg balance and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-17A and IL-1β) in the kidney and blood of DKD rats. In vitro experiments showed that PMSCs significantly reduced the proportion of Th17 cells and increased the proportion of Treg cells by upregulating PD-1 in a cell-cell contact manner and downregulating programmed death-ligand 1 (PD-L1) expression in PMSCs, which reversed the Th17/Treg balance. CONCLUSION We found that PMSCs improved renal function and pathological damage in DKD rats and modulated Th17/Treg balance through the PD-1/PD-L1 pathway. These findings provide a novel mechanism and basis for the clinical use of PMSCs in the treatment of DKD.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Honghong Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guanru Yue
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| |
Collapse
|
6
|
Lee HJ, Chae CW, Han HJ. Enhancing the therapeutic efficacy of mesenchymal stem cell transplantation in diabetes: Amelioration of mitochondrial dysfunction-induced senescence. Biomed Pharmacother 2023; 168:115759. [PMID: 37865993 DOI: 10.1016/j.biopha.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation offers significant potential for the treatment of diabetes mellitus (DM) and its complications. However, hyperglycemic conditions can induce senescence and dysfunction in both transplanted and resident MSCs, thereby limiting their therapeutic potential. Mitochondrial dysfunction and oxidative stress are key contributors to this process in MSCs exposed to hyperglycemia. As such, strategies aimed at mitigating mitochondrial dysfunction could enhance the therapeutic efficacy of MSC transplantation in DM. In this review, we provide an updated overview of how mitochondrial dysfunction mediates MSC senescence. We present experimental evidence for the molecular mechanisms behind high glucose-induced mitochondrial dysfunction in MSCs, which include impairment of mitochondrial biogenesis, mitochondrial calcium regulation, the mitochondrial antioxidant system, mitochondrial fusion-fission dynamics, mitophagy, and intercellular mitochondrial transfer. Furthermore, we propose potential pharmacological candidates that could improve the efficacy of MSC transplantation by enhancing mitochondrial function in patients with DM and related complications.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of South Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Yu H, Tang H, Zhu R, Shi Y, Xu C, Li Y, Wang H, Chen Y, Shen P, Xu J, Wang C, Liu Z. Characterization of dynamical changes in vital signs during allogeneic human umbilical cord-derived mesenchymal stem cells infusion. Regen Ther 2023; 24:282-287. [PMID: 37559872 PMCID: PMC10407816 DOI: 10.1016/j.reth.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), a kind of adult stem cell, were studied for clinical applications in regenerative medicine. To date, the safety evaluations of intravenous infusion of allogeneic hUC-MSCs were focused on fever, infection, malignancy, and death. However, the characteristics of dynamical changes in vital signs during hUC-MSCs infusion are largely unknown. In this study, twenty participants with allogeneic hUC-MSCs transplanted (MSC group) and twenty sex- and age-matched individuals with cardiovascular disease who treated with the equal volume of 0.9% normal saline were recruited (NS group). Heart rate, respiratory rate, oxygen saturation, systolic and diastolic blood pressure, and temperature were monitored at intervals of 15 min during infusion. Adverse events were recorded during infusion and within seven days after infusion. No adverse events were observed during and after infusion in both groups. Compared with the baseline, the mean systolic blood pressure (SBP) levels were significantly decreased at 15 min, 30 min, 45 min and 60 min in the MSC group (all P < 0.05) during infusion. In addition, SBP changed significantly from baseline during hUC-MSCs infusion when compared with that of NS group (P < 0.05). Repeated measures analysis of variance confirmed difference over time on the SBP levels (P < 0.05). Our results showed that the process of allogeneic hUC-MSCs intravenous infusion was safe and the vital signs were stable, whereas a slight decrease in SBP was observed.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Haiping Yu
- Nursing Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rong Zhu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yiqi Shi
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Changqin Xu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yan Li
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Hua Wang
- Catheterization Room, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yuanyuan Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Peichen Shen
- Department of Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jinfang Xu
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhongmin Liu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
8
|
Huang X, Liu Y, Li Z, Lerman LO. Mesenchymal Stem/Stromal Cells Therapy for Metabolic Syndrome: Potential Clinical Application? Stem Cells 2023; 41:893-906. [PMID: 37407022 PMCID: PMC10560401 DOI: 10.1093/stmcls/sxad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs), a class of cells with proliferative, immunomodulatory, and reparative functions, have shown therapeutic potential in a variety of systemic diseases, including metabolic syndrome (MetS). The cluster of morbidities that constitute MetS might be particularly amenable for the application of MSCs, which employ an arsenal of reparative actions to target multiple pathogenic pathways simultaneously. Preclinical studies have shown that MSCs can reverse pathological changes in MetS mainly by inhibiting inflammation, improving insulin resistance, regulating glycolipid metabolism, and protecting organ function. However, several challenges remain to overcome before MSCs can be applied for treating MetS. For example, the merits of autologous versus allogeneic MSCs sources remain unclear, particularly with autologous MSCs obtained from the noxious MetS milieu. The distinct characteristics and relative efficacy of MSCs harvested from different tissue sources also require clarification. Moreover, to improve the therapeutic efficacy of MSCs, investigators have explored several approaches that improved therapeutic efficacy but may involve potential safety concerns. This review summarized the potentially useful MSCs strategy for treating MetS, as well as some hurdles that remain to be overcome. In particular, larger-scale studies are needed to determine the therapeutic efficacy and safety of MSCs for clinical application.
Collapse
Affiliation(s)
- Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
10
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
11
|
Almasoudi LS, Alqasimi GJ, AlHarbi RA, Alotaibi RS, Alharbi SA. Awareness of Stem Cell Therapy for Diabetes Among Type II Diabetic Patients in Makkah: A Cross-Sectional Study. Cureus 2023; 15:e40981. [PMID: 37503474 PMCID: PMC10370506 DOI: 10.7759/cureus.40981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Diabetes mellitus is a chronic disease that affects millions of people worldwide. Several studies have suggested using stem cells for diabetes treatment. However, there is a lack of research assessing the population's awareness of stem cells. This study aimed to evaluate the level of awareness regarding the use of stem cell therapy for type 2 diabetes mellitus (T2DM). Methodology This study was conducted from December 2021 to April 2022 through an online survey that was distributed electronically via social media platforms. T2DM patients or their care providers who lived in Makkah were included. Patients aged less than 18 years and those with mental disabilities were excluded. Results Of the 316 participants included in the study, 56% were males, 33% had an age range of 46-55 years, and 76% were married. T2DM patients and their caregivers had a moderate level of awareness about stem cell therapy, with caregivers having higher awareness than diabetic patients. A non-significant relationship was found between educational level, income, diabetes control, time of diagnosis, and patients' awareness. However, regarding the decision of treatment, participants aged less than 35 years were highly likely to decide to undergo stem cell treatment compared to other age groups. Conclusions There is a moderate level of awareness about stem cell therapy as a treatment option for T2DM among T2DM patients and caregivers in Makkah. Hence, there is a need to raise awareness by using online and in-person well-organized education programs in Makkah.
Collapse
Affiliation(s)
| | | | | | | | - Samah A Alharbi
- Physiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
12
|
Mathur A, Taurin S, Alshammary S. The Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Type 2 Diabetes- A Literature Review. Diabetes Metab Syndr Obes 2023; 16:769-777. [PMID: 36941907 PMCID: PMC10024492 DOI: 10.2147/dmso.s392161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/24/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction Type 2 diabetes (T2D) is the most common type of diabetes, affecting 6.28% of the population worldwide. Over the decades, multiple therapies and drugs have been developed to control T2D, but they are far from a long-term solution. Stem cells are promising as novel regenerative treatments, especially mesenchymal stem cells (MSCs), which are highly versatile in their regenerative and paracrine capabilities and characteristics. This makes them the most commonly used adult stem cells and ideal candidates to treat diabetes. Objective To assess the safety and efficacy of mesenchymal stem cells (MSCs) in treating Type 2 diabetes (T2D) in humans. Methods Mesenchymal stem cell-based treatments were studied in 262 patients. A total of 6 out of 58 trials fit our inclusion criteria in the last five years. Results The treatment of patients with MSCs reduced the dosage of anti-diabetic drugs analyzed over a follow-up period of 12 months. The effective therapy dosage ranged from 1×106 cells/kg to 3.7×106 cells/kg. After treatment, HbAc1 levels were reduced by an average of 32%, and the fasting blood glucose levels were reduced to an average of 45%. The C-peptide levels were decreased by an average of 38% in 2 trials and increased by 36% in 4 trials. No severe adverse events were noted in all trials. Conclusion This analysis concludes that MSC treatment of type 2 diabetes is safe and effective. A larger sample size is required, and the trials should also study the effect of differentiated MSCs as insulin-producing cells.
Collapse
Affiliation(s)
- Aanchal Mathur
- Regenerative Medicine Center, Arabian Gulf University, Manama, Bahrain
| | - Sebastien Taurin
- Regenerative Medicine Center, Arabian Gulf University, Manama, Bahrain
| | - Sfoug Alshammary
- Regenerative Medicine Center, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
13
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Pires IGS, Silva e Souza JA, de Melo Bisneto AV, Passos XS, Carneiro CC. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transpl Immunol 2022; 75:101740. [DOI: 10.1016/j.trim.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/12/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
|
15
|
Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells Int 2022; 2022:8637493. [PMID: 36045953 PMCID: PMC9424025 DOI: 10.1155/2022/8637493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy. Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies. Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as β-cell exhaustion, hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy toward future clinical applications.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Yang YP, Lai WY, Lin TW, Lin YY, Chien Y, Tsai YC, Tai HY, Wang CL, Liu YY, Huang PI, Chen YW, Lo WL, Wang CY. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation. J Chin Med Assoc 2022; 85:667-671. [PMID: 35385421 DOI: 10.1097/jcma.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cellular process responsible for the degradation of cytosolic proteins and subcellular organelles in lysosomes was termed "autophagy." This process occurs at a basal level in most tissues as part of tissue homeostasis that redounds to the regular turnover of components inside cytoplasm. The breakthrough in the autophagy field is the identification of key players in the autophagy pathway, compounded under the name "autophagy-related genes" (ATG) encoding for autophagy effector proteins. Generally, the function of autophagy can be classified into two divisions: intracellular clearance of defective macromolecules and organelles and generation of degradation products. Therapeutic strategies using stem cell-based approach come as a promising therapy and develop rapidly recently as stem cells have high self-renewability and differentiation capability as known as mesenchymal stem cells (MSCs). They are defined as adherent fibroblast-like population with the abilities to self-renew and multi-lineage differentiate into osteogenic, adipogenic, and chondrogenic lineage cells. To date, they are the most extensively applied adult stem cells in clinical trials. The properties of MSCs, such as immunomodulation, neuroprotection, and tissue repair pertaining to cell differentiation, processes to replace lost, or damaged cells, for aiding cell repair and revival. Autophagy has been viewed as a remarkable mechanism for maintaining homeostasis, ensuring the adequate function and survival of long-lived stem cells. In addition, authophagy also plays a remarkable role in protecting stem cells against cellular stress when the stem cell regenerative capacity is harmed in aging and cellular degeneration. Understanding the under-explored mechanisms of MSC actions and expanding the spectrum of their clinical applications may improve the utility of the MSC-based therapeutic approach in the future.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ching Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Yang Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Physical Education and Health, University of Taipei, Taipei, Taiwan, ROC
| |
Collapse
|
17
|
Zang L, Li Y, Hao H, Liu J, Cheng Y, Li B, Yin Y, Zhang Q, Gao F, Wang H, Gu S, Li J, Lin F, Zhu Y, Tian G, Chen Y, Gu W, Du J, Chen K, Guo Q, Yang G, Pei Y, Yan W, Wang X, Meng J, Zhang S, Ba J, Lyu Z, Dou J, Han W, Mu Y. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther 2022; 13:180. [PMID: 35505375 PMCID: PMC9066971 DOI: 10.1186/s13287-022-02848-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background To determine the efficacy and safety of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in Chinese adults with type 2 diabetes mellitus (T2DM). Methods In this single-center, double-blinded, randomized, placebo-controlled phase II trial, 91 patients were randomly assigned to receive intravenous infusion of UC-MSCs (n = 45) or placebo (n = 46) three times with 4-week intervals and followed up for 48 weeks from October 2015 to December 2018. The primary endpoint was the percentage of patients with glycated hemoglobin (HbA1c) levels of < 7.0% and daily insulin reduction of ≥ 50% at 48 weeks. Additional endpoints were changes of metabolic control, islet β-cell function, insulin resistance, and safety. Results At 48 weeks, 20% of the patients in the UC-MSCs group and 4.55% in the placebo group reached the primary endpoint (p < 0.05, 95% confidence interval (CI) 2.25–28.66%). The percentage of insulin reduction of the UC-MSCs group was significantly higher than that of the placebo group (27.78% versus 15.62%, p < 0.05). The levels of HbA1c decreased 1.31% (9.02 ± 1.27% to 7.52 ± 1.07%, p < 0.01) in the UC-MSCs group, and only 0.63% in the placebo group (8.89 ± 1.11% to 8.19 ± 1.02%, p˃0.05; p = 0.0081 between both groups). The glucose infusion rate (GIR) increased significantly in the UC-MSCs group (from 3.12 to 4.76 mg/min/kg, p < 0.01), whereas no significant change was observed in the placebo group (from 3.26 to 3.60 mg/min/kg, p ˃ 0.05; p < 0.01 between both groups). There was no improvement in islet β-cell function in both groups. No major UC-MSCs transplantation-related adverse events occurred. Conclusions UC-MSCs transplantation could be a potential therapeutic approach for Chinese adults with T2DM. Trial registration This study was registered on ClinicalTrials.gov (identifier: NCT02302599). Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02848-6.
Collapse
Affiliation(s)
- Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yu Cheng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Bing Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yaqi Yin
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Qian Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Fei Gao
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Haibin Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Shi Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jia Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Fengxiang Lin
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yingfei Zhu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Guanglei Tian
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jin Du
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Kang Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Qinghua Guo
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Guoqing Yang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yu Pei
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Wenhua Yan
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xianling Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jianming Ba
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jingtao Dou
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Weidong Han
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
18
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
19
|
Chen H. Stem cell translational medicine: The Tianjin model revisited. Stem Cells Transl Med 2021; 10 Suppl 2:S4-S9. [PMID: 34724723 PMCID: PMC8560194 DOI: 10.1002/sctm.20-0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cells hold great promise for cell therapy to treat a wide spectrum of intractable diseases. Despite enthusiasm for stem cell therapy, the clinical and translational research of stem cells overall has been a slow and cumbersome process. This article uses the "technological system" as a framework to analyze the Tianjin model of stem cell translational medicine. It shows how heterogeneous elements interact with one another and relate to scientific, technological, social, economic, and political variables in order to fulfill the system goal of producing cell therapy in China. Then the strengths and weaknesses of the Tianjin model are compared with translational programs in other countries and the implications for the cell therapy industry are discussed.
Collapse
Affiliation(s)
- Haidan Chen
- Department of Medical Ethics and LawSchool of Health Humanities, Peking UniversityBeijingPeople's Republic of China
| |
Collapse
|
20
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
21
|
Kotikalapudi N, Sampath SJP, Sukesh Narayan S, R B, Nemani H, Mungamuri SK, Venkatesan V. The promise(s) of mesenchymal stem cell therapy in averting preclinical diabetes: lessons from in vivo and in vitro model systems. Sci Rep 2021; 11:16983. [PMID: 34417511 PMCID: PMC8379204 DOI: 10.1038/s41598-021-96121-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity (Ob) poses a significant risk factor for the onset of metabolic syndrome with associated complications, wherein the Mesenchymal Stem Cell (MSC) therapy shows pre-clinical success. Here, we explore the therapeutic applications of human Placental MSCs (P-MSCs) to address Ob-associated Insulin Resistance (IR) and its complications. In the present study, we show that intramuscular injection of P-MSCs homed more towards the visceral site, restored HOMA-IR and glucose homeostasis in the WNIN/GR-Ob (Ob-T2D) rats. P-MSC therapy was effective in re-establishing the dysregulated cytokines. We report that the P-MSCs activates PI3K-Akt signaling and regulates the Glut4-dependant glucose uptake and its utilization in WNIN/GR-Ob (Ob-T2D) rats compared to its control. Our data reinstates P-MSC treatment's potent application to alleviate IR and restores peripheral blood glucose clearance evidenced in stromal vascular fraction (SVF) derived from white adipose tissue (WAT) of the WNIN/GR-Ob rats. Gaining insights, we show the activation of the PI3K-Akt pathway by P-MSCs both in vivo and in vitro (palmitate primed 3T3-L1 cells) to restore the insulin sensitivity dysregulated adipocytes. Our findings suggest a potent application of P-MSCs in pre-clinical/Ob-T2D management.
Collapse
Affiliation(s)
- Nagasuryaprasad Kotikalapudi
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Samuel Joshua Pragasam Sampath
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Sinha Sukesh Narayan
- Division of Food Safety, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Bhonde R
- Department of Regenerative Medicine, Manipal Institute of Regenerative Medicine, GKVK Post, Bellary Road, Allalasandra, Yelahanka, Bangalore, 560065, India
- Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| | - Harishankar Nemani
- Division of Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Vijayalakshmi Venkatesan
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
22
|
Li Y, Wang F, Liang H, Tang D, Huang M, Zhao J, Yang X, Liu Y, Shu L, Wang J, He Z, Liu Y. Efficacy of mesenchymal stem cell transplantation therapy for type 1 and type 2 diabetes mellitus: a meta-analysis. Stem Cell Res Ther 2021; 12:273. [PMID: 33957998 PMCID: PMC8101194 DOI: 10.1186/s13287-021-02342-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This meta-analysis was first conducted to evaluate the efficacy and safety of transplantation of mesenchymal stem cells in the treatment of type 1 and type 2 diabetes mellitus (T1DM and T2DM). METHODS We systematically searched PubMed, ScienceDirect, Google Scholar, CNKI, EMBASE, Web of Science, MEDLINE, and the Cochrane Library for studies published from the establishment of the databases to November 2020. Two researchers independently screened the identified studies, based on inclusion and exclusion criteria. The combined standard mean difference (SMD) and 95% confidence interval (CI) of data from the included studies were calculated using fixed- or random-effects models. RESULTS We included 10 studies in our meta-analysis (4 studies on T1DM and 6 on T2DM, with 239 participants) to examine the efficacy of mesenchymal stem cells (MSCs) therapy in the treatment of diabetes mellitus. According to the pooled estimates, the glycated hemoglobin (HbA1c) level of the MSC-treated group was significantly lower than it was at baseline (mean difference (MD) = -1.51, 95% CI -2.42 to -0.60, P = 0.001). The fasting C-peptide level of the MSC-treated group with T1DM was higher than that of the control group (SMD = 0.89, 95% CI 0.36 to 1.42, P = 0.001), and their insulin requirement was significantly lower than it was at baseline (SMD = -1.14, 95% CI -1.52 to -0.77, P < 0.00001). CONCLUSION Transplantation of mesenchymal stem cells has beneficial effects on diabetes mellitus, especially T1DM, and no obvious adverse reactions.
Collapse
Affiliation(s)
- Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.,National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Feiqing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Huiling Liang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Dongxin Tang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Mei Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Jianing Zhao
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Xu Yang
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Yanqing Liu
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China
| | - Liping Shu
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Zhixu He
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Yang Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,Department of Scientific Research, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou Province, China.
| |
Collapse
|
23
|
Ranjbaran H, Mohammadi Jobani B, Amirfakhrian E, Alizadeh‐Navaei R. Efficacy of mesenchymal stem cell therapy on glucose levels in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Investig 2021; 12:803-810. [PMID: 32926576 PMCID: PMC8089007 DOI: 10.1111/jdi.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/13/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION In recent years, mesenchymal cellular therapies have received much attention in the treatment of diabetes. In this meta-analysis, we aimed to evaluate the efficacy of mesenchymal stem cell therapy in type 2 diabetes mellitus patients. MATERIALS AND METHODS A comprehensive literature search was carried out using PubMed, Scopus, Web of Science and Central databases. A total of 1,721 articles were identified, from which nine full-text clinical trials were qualified to enter the current meta-analysis. The assessment groups included patients with type 2 diabetes, and levels of C-peptide, glycosylated hemoglobin and insulin dose were analyzed before and after mesenchymal stem cell infusion. Data analysis was carried out in Stata version 11, and the Jadad Score Scale was applied for quality assessment. RESULTS Changes in levels of C-peptide after mesenchymal stem cell therapy were: standardized mean difference 0.20, 95% confidence interval -0.61 to 1.00, glycosylated hemoglobin levels were: standardized mean difference -1.45, 95% confidence interval -2.10 to -0.79 and insulin dose were: standardized mean difference -1.40, 95% confidence interval -2.88 to 0.09. CONCLUSIONS This meta-analysis of prospective studies showed associations between mesenchymal stem cell therapy and control of glucose level in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hossein Ranjbaran
- Immunogenetics Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Bahareh Mohammadi Jobani
- Pediatric Urology Research CenterDepartment of Pediatric Urology, Children’s Hospital Medical CenterTehran University of Medical SciencesTehranIran
| | - Elham Amirfakhrian
- Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariMazandaranIran
| | - Reza Alizadeh‐Navaei
- Gastrointestinal Cancer Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
24
|
Lattanzi W, Ripoli C, Greco V, Barba M, Iavarone F, Minucci A, Urbani A, Grassi C, Parolini O. Basic and Preclinical Research for Personalized Medicine. J Pers Med 2021; 11:jpm11050354. [PMID: 33946634 PMCID: PMC8146055 DOI: 10.3390/jpm11050354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Basic and preclinical research founded the progress of personalized medicine by providing a prodigious amount of integrated profiling data and by enabling the development of biomedical applications to be implemented in patient-centered care and cures. If the rapid development of genomics research boosted the birth of personalized medicine, further development in omics technologies has more recently improved our understanding of the functional genome and its relevance in profiling patients’ phenotypes and disorders. Concurrently, the rapid biotechnological advancement in diverse research areas enabled uncovering disease mechanisms and prompted the design of innovative biological treatments tailored to individual patient genotypes and phenotypes. Research in stem cells enabled clarifying their role in tissue degeneration and disease pathogenesis while providing novel tools toward the development of personalized regenerative medicine strategies. Meanwhile, the evolving field of integrated omics technologies ensured translating structural genomics information into actionable knowledge to trace detailed patients’ molecular signatures. Finally, neuroscience research provided invaluable models to identify preclinical stages of brain diseases. This review aims at discussing relevant milestones in the scientific progress of basic and preclinical research areas that have considerably contributed to the personalized medicine revolution by bridging the bench-to-bed gap, focusing on stem cells, omics technologies, and neuroscience fields as paradigms.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cristian Ripoli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Viviana Greco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelo Minucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
| | - Andrea Urbani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
26
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
27
|
Li W, Jiao X, Song J, Sui B, Guo Z, Zhao Y, Li J, Shi S, Huang Q. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function. Stem Cells Transl Med 2021; 10:956-967. [PMID: 33660433 PMCID: PMC8235136 DOI: 10.1002/sctm.20-0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/02/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months. We observed a significant reduction of glycosylated serum albumin level (P < .05) and glycosylated hemoglobin level (P < .05) after SHED transplantation. The total effective rate was 86.36% and 68.18%, respectively, at the end of treatment and follow‐up periods. Three patients ceased insulin injections after SHED transplantation. A steamed bread meal test showed that the serum levels of postprandial C‐peptide at 2 hours were significantly higher than those at the baseline (P < .05). Further analysis showed that patients with a high level of blood cholesterol and a low baseline level of C‐peptide had poor response to SHED transplantation. Some patients experienced a transient fever (11.11%), fatigue (4.17%), or rash (1.39%) after SHED transplantation, which were easily resolved. In summary, SHED infusion is a safe and effective therapy to improve glucose metabolism and islet function in patients with T2DM. Blood lipid levels and baseline islet function may serve as key factors contributing to the therapeutic outcome of MSC transplantation in patients with T2DM.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xuan Jiao
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jingyun Song
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Research and Development Center for Tissue Engineering, School of Stomatology, Air Force Medical University, People's Republic of China
| | - Zhili Guo
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingji Zhao
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Li
- Easter Greenland Hospital, People's Republic of China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: A promising remedy in the therapy of type 2 diabetes mellitus. STEM CELLS (DAYTON, OHIO) 2021; 39:838-852. [PMID: 33621403 DOI: 10.1002/stem.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, People's Republic of China
| |
Collapse
|
29
|
Xue B, Xiao X, Yu T, Xiao X, Xie J, Ji Q, Wang L, Na T, Meng S, Qian L, Duan H. Mesenchymal stem cells modified by FGF21 and GLP1 ameliorate lipid metabolism while reducing blood glucose in type 2 diabetic mice. Stem Cell Res Ther 2021; 12:133. [PMID: 33588950 PMCID: PMC7885588 DOI: 10.1186/s13287-021-02205-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the therapeutic effects of genetically modified mesenchymal stem cells (MSCs) in the treatment of type 2 diabetes mellitus (T2DM) in order to identify a new method for treating diabetes that differs from traditional medicine and to provide a new means by which to fundamentally improve or treat diabetes. METHODS MSCs derived from adipose tissue were modified to overexpress FGF21 and GLP1, which was achieved through lentiviral particle transduction. The cells were transplanted into BKS.Cg-Dock7m+/+Leprdb/Nju mice (T2DM mouse model). Injections of physiological saline (0.1 mL) and liraglutide (0.5 mg/kg) were used as negative and positive controls, respectively. ELISA or Western blotting was used for protein analysis, and quantitative real-time PCR was used for gene expression analysis. RESULTS Genetic modification had no effects on the morphology, differentiation ability, or immunophenotype of MSCs. Moreover, MSC-FGF21+GLP1 cells exhibited significantly increased secretion of FGF21 and GLP1. In the T2DM mouse model, the transplantation of MSC-FGF21+GLP1 cells ameliorated the changes in blood glucose and weight, promoted the secretion of insulin, enhanced the recovery of liver structures, and improved the profiles of lipids. Moreover, FGF21 and GLP1 exerted synergistic effects in the regulation of glucolipid metabolism by controlling the expression of insulin, srebp1, and srebp2. CONCLUSION Stem cell treatment based on MSCs modified to overexpress the FGF21 and GLP1 genes is an effective approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Binghua Xue
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Xiuxiao Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, 100850, China
| | - Tingting Yu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, 100850, China
| | - Xinhua Xiao
- Department of Endocrinology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jing Xie
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, 100850, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism, Xijing Hospital of Airforce Medical University, Xi'an, 710032, Shanxi, China
| | - Li Wang
- Department of Endocrinology and Metabolism, Xijing Hospital of Airforce Medical University, Xi'an, 710032, Shanxi, China
| | - Tao Na
- The Cell Collection and Research Center, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Shufang Meng
- The Cell Collection and Research Center, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Lingjia Qian
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences, Academy of Military Sciences, Beijing, 100850, China.
| | - Haifeng Duan
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, 100850, China.
| |
Collapse
|
30
|
Li G, Peng H, Qian S, Zou X, Du Y, Wang Z, Zou L, Feng Z, Zhang J, Zhu Y, Liang H, Li B. Bone Marrow-Derived Mesenchymal Stem Cells Restored High-Fat-Fed Induced Hyperinsulinemia in Rats at Early Stage of Type 2 Diabetes Mellitus. Cell Transplant 2021; 29:963689720904628. [PMID: 32228047 PMCID: PMC7502689 DOI: 10.1177/0963689720904628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have proposed the transplantation of mesenchymal stem cells
(MSCs) in the treatment of typical type 2 diabetes mellitus (T2DM). We aimed to
find a new strategy with MSC therapy at an early stage of T2DM to efficiently
prevent the progressive deterioration of organic dysfunction. Using the
high-fat-fed hyperinsulinemia rat model, we found that before the onset of
typical T2DM, bone marrow-derived MSCs (BM-MSCs) significantly attenuated rising
insulin with decline in glucose as well as restored lipometabolic disorder and
liver dysfunction. BM-MSCs also favored the histological structure recovery and
proliferative capacity of pancreatic islet cells. More importantly, BM-MSC
administration successfully reversed the abnormal expression of insulin
resistance-related proteins including GLUT4, phosphorylated insulin receptor
substrate 1, and protein kinase Akt and proinflammatory cytokines IL-6 and TNFα
in liver. These findings suggested that MSCs transplantation during
hyperinsulinemia could prevent most potential risks of T2DM for patients.
Collapse
Affiliation(s)
- Gongchi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shen Qian
- School of Foreign Studies of Zhongnan University of Economics and Law, Wuhan, China
| | - Xinhua Zou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Ye Du
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Zhi Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Lijun Zou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Zibo Feng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Jing Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Youpeng Zhu
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| | - Huamin Liang
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binghui Li
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Chronic Wound and Diabetic Foot Clinical Research Center, Wuhan, China
| |
Collapse
|
31
|
Wang Y, Shan SK, Guo B, Li F, Zheng MH, Lei LM, Xu QS, Ullah MHE, Xu F, Lin X, Yuan LQ. The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy. Front Endocrinol (Lausanne) 2021; 12:671566. [PMID: 34163437 PMCID: PMC8216044 DOI: 10.3389/fendo.2021.671566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common diabetes mellitus (DM) microvascular complications, which always ends with end-stage renal disease (ESRD). Up to now, as the treatment of DN in clinic is still complicated, ESRD has become the main cause of death in diabetic patients. Mesenchymal stem cells (MSCs), with multi-differentiation potential and paracrine function, have attracted considerable attention in cell therapy recently. Increasing studies concerning the mechanisms and therapeutic effect of MSCs in DN emerged. This review summarizes several mechanisms of MSCs, especially MSCs derived exosomes in DN therapy, including hyperglycemia regulation, anti-inflammatory, anti-fibrosis, pro-angiogenesis, and renal function protection. We also emphasize the limitation of MSCs application in the clinic and the enhanced therapeutic role of pre-treated MSCs in the DN therapy. This review provides balanced and impartial views for MSC therapy as a promising strategy in diabetic kidney disease amelioration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
32
|
Huang Q, Huang Y, Liu J. Mesenchymal Stem Cells: An Excellent Candidate for the Treatment of Diabetes Mellitus. Int J Endocrinol 2021; 2021:9938658. [PMID: 34135959 PMCID: PMC8178013 DOI: 10.1155/2021/9938658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells (ASCs) known for repairing damaged cells, exerting anti-inflammatory responses and producing immunoregulatory effects that can be significantly induced into insulin-producing cells (IPCs), providing an inexhaustible supply of functional β cells for cell replacement therapy and disease modeling for diabetes. MSC therapy may be the most promising strategy for diabetes mellitus because of these significant merits. In this paper, we focused on MSC therapy for diabetes.
Collapse
Affiliation(s)
- Qiulan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanting Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
de Klerk E, Hebrok M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:631463. [PMID: 33716982 PMCID: PMC7953062 DOI: 10.3389/fendo.2021.631463] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction more than twenty years ago, intraportal allogeneic cadaveric islet transplantation has been shown to be a promising therapy for patients with Type I Diabetes (T1D). Despite its positive outcome, the impact of islet transplantation has been limited due to a number of confounding issues, including the limited availability of cadaveric islets, the typically lifelong dependence of immunosuppressive drugs, and the lack of coverage of transplant costs by health insurance companies in some countries. Despite improvements in the immunosuppressive regimen, the number of required islets remains high, with two or more donors per patient often needed. Insulin independence is typically achieved upon islet transplantation, but on average just 25% of patients do not require exogenous insulin injections five years after. For these reasons, implementation of islet transplantation has been restricted almost exclusively to patients with brittle T1D who cannot avoid hypoglycemic events despite optimized insulin therapy. To improve C-peptide levels in patients with both T1 and T2 Diabetes, numerous clinical trials have explored the efficacy of mesenchymal stem cells (MSCs), both as supporting cells to protect existing β cells, and as source for newly generated β cells. Transplantation of MSCs is found to be effective for T2D patients, but its efficacy in T1D is controversial, as the ability of MSCs to differentiate into functional β cells in vitro is poor, and transdifferentiation in vivo does not seem to occur. Instead, to address limitations related to supply, human embryonic stem cell (hESC)-derived β cells are being explored as surrogates for cadaveric islets. Transplantation of allogeneic hESC-derived insulin-producing organoids has recently entered Phase I and Phase II clinical trials. Stem cell replacement therapies overcome the barrier of finite availability, but they still face immune rejection. Immune protective strategies, including coupling hESC-derived insulin-producing organoids with macroencapsulation devices and microencapsulation technologies, are being tested to balance the necessity of immune protection with the need for vascularization. Here, we compare the diverse human stem cell approaches and outcomes of recently completed and ongoing clinical trials, and discuss innovative strategies developed to overcome the most significant challenges remaining for transplanting stem cell-derived β cells.
Collapse
|
34
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
35
|
Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
|
36
|
Li X, Wei Z, Wu L, Lv H, Zhang Y, Li J, Yao H, Zhang H, Yang B, Xu X, Jiang J. Efficacy of Fe 3O 4@polydopamine nanoparticle-labeled human umbilical cord Wharton's jelly-derived mesenchymal stem cells in the treatment of streptozotocin-induced diabetes in rats. Biomater Sci 2020; 8:5362-5375. [PMID: 32869785 DOI: 10.1039/d0bm01076f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by the irreversible destruction of insulin-secreting pancreatic β-islet cells and requires life-long exogenous insulin therapy. Umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to improve islet function in animal models of diabetes. However, inadequate MSC homing to injured sites has limited their efficacy. Since efficient cell therapy heavily relies on appropriate homing to target tissues, increasing the specificity to the target organ and the extent of homing of the injected WJ-MSCs is paramount to successful clinical outcomes. Therefore, in this study, we synthesized Fe3O4@polydopamine nanoparticle (NP)-labeled MSCs and evaluated their therapeutic efficacy in a clinically relevant rat model of streptozotocin-induced diabetes using an external magnetic field. We found that NPs were successfully incorporated into WJ-MSCs and did not negatively affect stem cell properties. Magnetic targeting of WJ-MSCs contributed to long-term cell retention in pancreatic tissue and improved the islet function of diabetic rats, compared to injection of WJ-MSC alone. In addition, anti-inflammatory effects and the anti-apoptotic capacity of WJ-MSCs appeared to play a major role in the functional and structural recovery of the pancreas. Thus, therapy relying on the magnetic targeting of WJ-MSCs may serve as an effective approach for DM treatment.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol 2020; 8:665. [PMID: 32766255 PMCID: PMC7379234 DOI: 10.3389/fcell.2020.00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) have been used as a cellular therapy for a number of human diseases. Part of the mechanism of action of MSCs is the production of extracellular vesicles (EVs) that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that change their biologic behavior. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our present understanding of exosomes; how they exert their effects on target cells, and how they are differentiated from other EVs. The current treatment paradigm for acute radiation syndrome (ARS) is discussed, and how MSCs and MSC derived exosomes are emerging as treatment options for treating patients after radiation exposure. Other conditions such as graft-versus-host disease and cardiovascular disease/stroke are discussed as examples to highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally, a consideration is given to how these cell-based therapies could possibly be deployed in the event of a catastrophic radiation exposure event.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Huang Y, Gao J, Zhou Y, Wu S, Shao Y, Xue H, Shen B, Ding L, Wei Z. Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model. Stem Cell Res Ther 2020; 11:278. [PMID: 32650831 PMCID: PMC7350700 DOI: 10.1186/s13287-020-01795-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic cystopathy (DCP) is a chronic complication of diabetes mainly within the submucosal and muscular layers of the bladder due to the hyperglycemia-induced ischemia. As no effective therapies are currently available, the administration of optimized mesenchymal stem cells (MSCs) provides a potential treatment of DCP. Thus far, new strategy, such as genetic modification of MSCs, has been developed and has shown promising outcomes of various disorders. Methods This study was conducted using integrin-linked kinase (ILK) gene-modified bone marrow-derived stem cells (BMSCs) for streptozotocin (STZ)-induced diabetic cystopathy in a rat model. In total, 68 male Sprague-Dawley rats were randomized into five groups: sham control (control group, n = 10); DCP model alone (DM group, n = 10); DCP rats intravenously treated with BMSCs (BMSC group, n = 16); DCP rats accepted adenoviral vector-infected BMSCs (Ad-null-BMSC group, n = 16) and DCP rats accepted ILK adenoviral vector-infected BMSCs (Ad-ILK-BMSC group, n = 16). Diabetic rats accepted cell transplantation in the experimental group (2 rats per group) were sacrificed for the bladder tissue on the third day, 7th day, and 14th day of treatment respectively ahead of schedule. At 4 weeks after treatment, all rats in five groups accepted urodynamic studies to evaluate bladder function and were sacrificed for bladder tissue. Results Our data showed that the underactive bladder function was significantly improved in DCP rats intravenously treated with ILK gene-modified BMSCs compared to those in the DM, BMSCs, and Ad-null-BMSC group. Meanwhile, we found that gene-modified BMSC treatment significantly promoted the activation of the AKT/GSK-3β pathway by increasing phosphorylation and led to the enhancement of survival. In addition, the expression levels of angiogenesis-related protein vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal cell-derived factor-1 (SDF-1) were significantly higher in the Ad-ILK-BMSC group than that in the DM, BMSCs, and Ad-null-BMSC group as assessed by enzyme-linked immunosorbent assay and western blot. As two indicators of vascular endothelial cell markers, the expression of von Willebrand factor (vWF) and CD31 by western blot and immunofluorescent staining revealed that the percentage of the vascular area of the bladder tissue significantly increased in Ad-ILK-BMSC group compared with the BMSCs and Ad-null-BMSC group on the 14th day of treatment. Histological and immunohistochemical staining (hematoxylin and eosin (HE), vWF, Ki67, and TUNNEL) on the bladder tissue revealed statistically different results between groups. Conclusion ILK gene-modified BMSCs restored the bladder function and histological construction via promoting the process of angiogenesis and protecting cells from high glucose-associated apoptosis in STZ-induced DCP rat model, which provides a potential for the treatment of patients with DCP.
Collapse
Affiliation(s)
- Yi Huang
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.,Department of Urology, Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Jie Gao
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Yiduo Zhou
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Shuo Wu
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Yunpeng Shao
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Haoliang Xue
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.,Department of Urology, Jiangdu People's Hospital of Yangzhou, Yangzhou, China
| | - Baixin Shen
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Liucheng Ding
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.
| | - Zhongqing Wei
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.
| |
Collapse
|
39
|
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77:2771-2794. [PMID: 31965214 PMCID: PMC7223321 DOI: 10.1007/s00018-020-03454-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
40
|
Apolipoprotein A-I Supports MSCs Survival under Stress Conditions. Int J Mol Sci 2020; 21:ijms21114062. [PMID: 32517119 PMCID: PMC7312015 DOI: 10.3390/ijms21114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown. For the first time we have shown that apoA-I decreases intracellular ROS and supports proliferative rate of MSCs, thereby increasing cell count in oxidation conditions. ApoA-I did not influence cell cycle when MSCs were predominantly in the G0/G1 phases under conditions of SD/hypoxia, activated proliferation rapidly, and reduced apoptosis during MSCs transition to the oxygenation or oxidation conditions. Finally, it was found that the blood plasma of T2D individuals had a cytotoxic effect on MSCs in 39% of cases and had a wide variability of antioxidant properties. ApoA-I protects cells under all adverse conditions and can increase the efficiency of MSCs transplantation in T2D patients.
Collapse
|
41
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
42
|
Kamaldinov T, Erndt-Marino J, Levin M, Kaplan DL, Hahn MS. Assessment of Enrichment of Human Mesenchymal Stem Cells Based on Plasma and Mitochondrial Membrane Potentials. Bioelectricity 2020; 2:21-32. [PMID: 32292894 DOI: 10.1089/bioe.2019.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Human mesenchymal stem cells (hMSCs) are utilized preclinically and clinically as a candidate cell therapy for a wide range of inflammatory and degenerative diseases. Despite promising results in early clinical trials, consistent outcomes with hMSC-based therapies have proven elusive in many of these applications. In this work, we attempt to address this limitation through the design of a stem cell therapy to enrich hMSCs for desired electrical and ionic properties with enhanced stemness and immunomodulatory/regenerative capacity. Materials and Methods: In this study, we sought to develop initial protocols to achieve electrically enriched hMSCs (EE-hMSCs) with distinct electrical states and assess the potential relationship with respect to hMSC state and function. We sorted hMSCs based on fluorescence intensity of tetramethylrhodamine ethyl ester (TMRE) and investigated phenotypic differences between the sorted populations. Results: Subpopulations of EE-hMSCs exhibit differential expression of genes associated with senescence, stemness, immunomodulation, and autophagy. EE-hMSCs with low levels of TMRE, indicative of depolarized membrane potential, have reduced mRNA expression of senescence-associated markers, and increased mRNA expression of autophagy and immunomodulatory markers relative to EE-hMSCs with high levels of TMRE (hyperpolarized). Conclusions : This work suggests that the utilization of EE-hMSCs may provide a novel strategy for cell therapies, enabling live cell enrichment for distinct phenotypes that can be exploited for different therapeutic outcomes.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.,Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.,Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
43
|
Wang W, Wu RD, Chen P, Xu XJ, Shi XZ, Huang LH, Shao ZL, Guo W. Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes. Diabetes Metab Res Rev 2020; 36:e3212. [PMID: 31411368 DOI: 10.1002/dmrr.3212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/15/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Accumulating evidence suggests an association between beta-cell apoptosis and the ASK1/JNK/BAX pathway. The aim of this study was to investigate the effects of a combined therapy of liraglutide and human umbilical cord mesenchymal stem cells (hUC-MSCs) on the glucose metabolism and islet beta-cell apoptosis, and further explore its relationship to the ASK1/JNK/BAX pathway. METHOD Type 2 diabetes mellitus (T2DM) rat model was induced by a high-sugar and high-fat diet and intraperitoneal injection of low-dose streptozotocin (STZ) (30 mg/kg). Three days after STZ injection, diabetic rats were randomly treated with subcutaneous injection of liraglutide (200 μg/kg/12 h) for 8 weeks and or hUC-MSCs (1 × 106 /rat) at the first and fifth weeks. Diabetes-related physical and biochemical parameters, pancreatic histopathological changes, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blot were used to measure the expression of apoptosis signal-regulating kinase 1 (ASK1), Jun N-terminal kinase (JNK), Bcl-2 associated X protein (BAX), and B-cell lymphoma-2 (Bcl-2). RESULTS Eight weeks after liraglutide or human umbilical cord mesenchymal stem cell administration, FPG, HbA1c , glucagon, body weight, and pancreatic ASK1, JNK, and BAX mRNA and proteins were significantly decreased, and the levels of serum C-p, INS and GLP-1, ratio of insulin positive area, and Bcl-2 expression were significantly increased in three treatment groups compared with T2DM group (P<.05). CONCLUSION Liraglutide combined with hUC-MSCs improve glucose metabolism and inhibit islet beta-cell apoptosis in a ASK1/JNK/BAX pathway-dependent manner.
Collapse
Affiliation(s)
- Wei Wang
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Rong Dan Wu
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Pin Chen
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Xiang Jin Xu
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Xiao Zhi Shi
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Li Hong Huang
- Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Zhu Lin Shao
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| | - Wen Guo
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou, China
| |
Collapse
|
44
|
Zhang Y, Chen W, Feng B, Cao H. The Clinical Efficacy and Safety of Stem Cell Therapy for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Aging Dis 2020; 11:141-153. [PMID: 32010488 PMCID: PMC6961772 DOI: 10.14336/ad.2019.0421] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease with high morbidity and mortality. Recently, stem cell-based therapy for DM has shown considerable promise. Here, we undertook a systematic review and meta-analysis of published clinical studies to evaluate the efficacy and safety of stem cell therapy for both type 1 DM (T1DM) and type 2 DM (T2DM). The PubMed, Cochrane Central Register of Controlled Trials, EMBASE, and ClinicalTrials.gov databases were searched up to November 2018. We employed a fixed-effect model using 95% confidence intervals (CIs) when no statistically significant heterogeneity existed. Otherwise, a random-effects statistical model was used. Twenty-one studies met our inclusion criteria: ten T1DM studies including 226 patients and eleven T2DM studies including 386 patients. Stem cell therapy improved C-peptide levels (mean difference (MD), 0.41; 95% CI, 0.06 to 0.76) and glycosylated hemoglobin (HbA1c; MD, -3.46; 95% CI, -6.01 to -0.91) for T1DM patients. For T2DM patients, stem cell therapy improved C-peptide levels (MD, 0.33; 95% CI, 0.07 to 0.59), HbA1c (MD, -0.87; 95% CI, -1.37 to -0.37) and insulin requirements (MD, -35.76; 95% CI, -40.47 to -31.04). However, there was no significant change in fasting plasma glucose levels (MD, -0.52; 95% CI, -1.38 to 0.34). Subgroup analyses showed significant HbA1c and C-peptide improvements in patients with T1DM treated with bone marrow hematopoietic stem cells (BM-HSCs), while there was no significant change in the mesenchymal stem cell (MSC) group. In T2DM, HbA1c and insulin requirements decreased significantly after MSC transplantation, and insulin requirements and C-peptide levels were significantly improved after bone marrow mononuclear cell (BM-MNC) treatment. Stem cell therapy is a relatively safe and effective method for selected individuals with DM. The data showed that BM-HSCs are superior to MSCs in the treatment of T1DM. In T2DM, MSC and BM-MNC transplantation showed favorable therapeutic effects.
Collapse
Affiliation(s)
- Yazhen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bing Feng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
45
|
Tsujimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Sci Rep 2019; 9:18869. [PMID: 31827180 PMCID: PMC6906518 DOI: 10.1038/s41598-019-55269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023] Open
Abstract
An important safety concern on cell-based gene therapy is that few methods have been available to control the proliferation and functioning of therapeutic protein-expressing cells after transplantation. We previously reported that the proliferation and functioning of the cells transfected with herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, can be controlled by administration of ganciclovir. In this study, we tried to control the amount of murine interferon-γ (IFN-γ) secreted from transplanted murine mesenchymal stem cell line C3H10T1/2 cells to achieve safe cell-based IFN-γ gene therapy for cancer. C3H10T1/2 cells were transfected with HSVtk- and murine IFN-γ-expressing plasmid vectors to obtain C3H10T1/2/HSVtk/IFN-γ cells. C3H10T1/2/HSVtk/IFN-γ cells released IFN-γ and were sensitive to ganciclovir. C3H10T1/2/HSVtk/IFN-γ cells significantly suppressed the proliferation of murine adenocarcinoma cell line colon26 cells both in vitro and in vivo. Moreover, subcutaneous administration of ganciclovir to mice transplanted with NanoLuc luciferase-expressing C3H10T1/2/HSVtk cells for three consecutive days reduced the luminescence signals from the transplanted cells. These results indicate that the cell regulation system using HSVtk gene and ganciclovir can be useful for safe and efficient cell-based IFN-γ gene therapy for cancer.
Collapse
Affiliation(s)
- Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
46
|
Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 2019; 28:585-601. [PMID: 31741175 DOI: 10.1007/s10787-019-00661-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease destroying the insulin-producing beta cells. Recently, stem cell therapy has been tested to treat T1D. In the present study, we aim to investigate the effects of intraperitoneal and intravenous infusion of multipotent mesenchymal stem/stromal cells (MSCs) and MSC-conditioned medium (MSC-CM) in an experimental model of diabetes, induced by multiple injections of Streptozotocin (STZ). The adipose tissue-derived MSC and MSC-CM were isolated from C57Bl/6 male mice and characterized. Later, MSC and MSC-CM were injected intraperitoneally or intravenously into mice. The blood glucose, urinary glucose, and body weight were measured, and the percentages of CD4+ CD25+ FOXP3+ T cells as well as the levels of IFN-γ, TGF-β, IL-4, IL-17, and IL-10 were evaluated. Our results showed that both intraperitoneal and intravenous infusions of MSC and MSC-CM could decrease the blood glucose, recover pancreatic islets, and increase the levels of insulin-producing cells. Furthermore, the percentage of CD4+ CD25+ FOXP3+ T cells was increased after intraperitoneal injection of MSC or MSC-CM and intravenous injection of MSCs. After intraperitoneal injection of the MSC and MSC-CM, the levels of inflammatory cytokines reduced, while the levels of anti-inflammatory cytokines increased. Together current data showed that although both intraperitoneal and intravenous administration had beneficial effects on T1D animal model, but intraperitoneal injection of AD-MSC and AD-MSC-CM was more effective than systemic administration.
Collapse
|
47
|
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10:274. [PMID: 31455405 PMCID: PMC6712852 DOI: 10.1186/s13287-019-1362-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) and impaired insulin secretion. The chronic inflammatory process contributed to IR and could also hamper pancreatic β cell function. However, currently applied treatment cannot reverse β cell damage or alleviate inflammation. Mesenchymal stem cells (MSCs), the cell-based therapy for their self-renewable, differentiation potential, and immunosuppressive properties, have been demonstrated in displaying therapeutic effects in T2DM. Adipose-derived MSCs (AD-MSCs) attracted more attention due to less harvested inconvenience and ethical issues commonly accompany with bone marrow-derived MSCs (BM-MSCs) and fetal annex-derived MSCs. Both AD-MSC therapy studies and mechanism explorations in T2DM animals presented that AD-MSCs could translate to clinical application. However, hyperglycemia, hyperinsulinemia, and metabolic disturbance in T2DM are crucial for impairment of AD-MSC function, which may limit the therapeutical effects of MSCs. This review focuses on the outcomes and the molecular mechanisms of MSC therapies in T2DM which light up the hope of AD-MSCs as an innovative strategy to cure T2DM.
Collapse
Affiliation(s)
- Yicheng Qi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
48
|
Kokorev OV, Khodorenko VN, Serebrov VY, Dambaev GT, Gunter VE. Co-Transplantation of Pancreatic Islet Cells and Mesenchymal Bone Marrow Precursors on Titanium Nickelide Scaffolds in Alloxan-Induced Diabetes Mellitus. Bull Exp Biol Med 2019; 167:140-144. [PMID: 31183647 DOI: 10.1007/s10517-019-04478-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 01/04/2023]
Abstract
We studied therapeutic activity of co-transplantation of allogeneic pancreatic islet cells and mesenchymal bone marrow progenitors on TiNi scaffolds in Wistar rats with experimental alloxan-induced diabetes mellitus. In preliminary experiments with co-culturing of cells in different proportions followed by their transplantation on tissue-engineered constructs, the optimum ratio of these cells was determined - 3:1. Regeneration was assessed by biochemical methods by the blood levels of glucose and glycosylated hemoglobin on days 15, 30, and 5. In the group with combined cell transplantation on TiNi scaffold, normalization of the studied biochemical parameters occurred earlier than after monotherapy with allogenic islet cells and was associated with an increase in animal lifespan. Normalization of the parameters of bone marrow hemopoiesis, in particular, the number of myelokaryocytes and erythroblasts was also noted.
Collapse
Affiliation(s)
- O V Kokorev
- Research Institute of Medical Materials and Shape Memory Implants, National Research Tomsk State University, Tomsk, Russia. .,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - V N Khodorenko
- Research Institute of Medical Materials and Shape Memory Implants, National Research Tomsk State University, Tomsk, Russia
| | - V Yu Serebrov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - G Ts Dambaev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - V E Gunter
- Research Institute of Medical Materials and Shape Memory Implants, National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
49
|
Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B. Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Front Immunol 2019; 10:1151. [PMID: 31231366 PMCID: PMC6558400 DOI: 10.3389/fimmu.2019.01151] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases. To date, the safety and feasibility of autologous MSC-based therapy has been established; however, their indiscriminate use has resulted in mixed outcomes in preclinical and clinical studies. While MSCs derived from diverse tissues share common properties depending on the type of clinical application, they markedly differ within clinical trials in terms of efficacy, resulting in many unanswered questions regarding the application of MSCs. Additionally, our experience in clinical trials related to critical limb ischemia pathology (CLI) shows that the therapeutic efficacy of these cells in different animal models has only been partially reproduced in humans through clinical trials. Therefore, it is crucial to develop new research to identify pitfalls, to optimize procedures and to clarify the repair mechanisms used by these cells, as well as to be able to offer a next generation of stem cell that can be routinely used in a cost-effective and safe manner in stem cell-based therapies targeting CLI.
Collapse
Affiliation(s)
| | - Natalia Escacena
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yolanda Aguilera
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucía Llanos
- Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
| | - Juan R Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Francisco J Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Antonio De la Cuesta
- Unidad de Isquemia Crónica de Miembros Inferiores, Hospital Victoria Eugenia de la Cruz Roja, Sevilla, Spain
| | | | | | | | | | | | | | - Manuel Miralles
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | - Gregorio Castellanos
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José M Moraleda
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Robert Sackstein
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | | | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Bernat Soria
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
50
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|