1
|
Delezene LK, Scott JE, Irish JD, Villaseñor A, Skinner MM, Hawks J, Berger LR. Sex-biased sampling may influence Homo naledi tooth size variation. J Hum Evol 2024; 187:103490. [PMID: 38266614 DOI: 10.1016/j.jhevol.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa.
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison. Madison, WI, 53706, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; National Geographic Society, 1145 17th Street NW, Washington DC, 20036, USA
| |
Collapse
|
2
|
Selig KR. Hypoconulid loss in cercopithecins: Functional and developmental considerations. J Hum Evol 2024; 187:103479. [PMID: 38181576 DOI: 10.1016/j.jhevol.2023.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
Cercopithecins differ from papionins in lacking a M3 hypoconulid. Although this loss may be related to dietary differences, the functional and developmental ramifications of hypoconulid loss are currently unclear. The following makes use of dental topographic analysis to quantify shape variation in a sample of cercopithecin M3s, as well as in a sample of Macaca, which has a hypoconulid. To help understand the consequences of hypoconulid loss, Macaca M3s were virtually cropped to remove the hypoconulid and were also subjected to dental topographic analysis. The patterning cascade model and the inhibitory cascade model attempt to explain variation in cusp pattern and molar proportions, respectively. These models have both previously been used to explain patterns of variation in cercopithecines, but have not been examined in the context of hypoconulid loss. For example, previous work suggests that earlier developing cusps impact the development of later developing cusps (i.e., the hypoconulid) and that cercopithecines do not conform to the predictions of the inhibitory cascade model in that the size of the molars is not linear moving distally. Results of the current study suggest that the loss of the hypoconulid is associated with a reduction in dental topography among cercopithecins, which is potentially related to diet, although the connection to diet is not necessarily clear. Results also suggest that the loss of the hypoconulid can be explained by the patterning cascade model, and that hypoconulid loss explains the apparent lack of support for the inhibitory cascade model among cercopithecines. These findings highlight the importance of a holistic approach to studying variation in molar proportions and developmental models.
Collapse
Affiliation(s)
- Keegan R Selig
- Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Chapple SA, Skinner MM. A tooth crown morphology framework for interpreting the diversity of primate dentitions. Evol Anthropol 2023; 32:240-255. [PMID: 37486115 DOI: 10.1002/evan.21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel-dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics.
Collapse
Affiliation(s)
- Simon A Chapple
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Sadier A, Anthwal N, Krause AL, Dessalles R, Lake M, Bentolila LA, Haase R, Nieves NA, Santana SE, Sears KE. Bat teeth illuminate the diversification of mammalian tooth classes. Nat Commun 2023; 14:4687. [PMID: 37607943 PMCID: PMC10444822 DOI: 10.1038/s41467-023-40158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tooth classes are an innovation that has contributed to the evolutionary success of mammals. However, our understanding of the mechanisms by which tooth classes diversified remain limited. We use the evolutionary radiation of noctilionoid bats to show how the tooth developmental program evolved during the adaptation to new diet types. Combining morphological, developmental and mathematical modeling approaches, we demonstrate that tooth classes develop through independent developmental cascades that deviate from classical models. We show that the diversification of tooth number and size is driven by jaw growth rate modulation, explaining the rapid gain/loss of teeth in this clade. Finally, we mathematically model the successive appearance of tooth buds, supporting the hypothesis that growth acts as a key driver of the evolution of tooth number and size. Our work reveal how growth, by tinkering with reaction/diffusion processes, drives the diversification of tooth classes and other repeated structure during adaptive radiations.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | - Renaud Dessalles
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Greenshield, 46 rue Saint-Antoine, 75004, Paris, France
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Haase
- DFG Cluster of Excellence "Physics of Life", TU Dresden, Dresden, Germany
| | - Natalie A Nieves
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Monson TA, Brasil MF, Mahaney MC, Schmitt CA, Taylor CE, Hlusko LJ. Keeping 21st Century Paleontology Grounded: Quantitative Genetic Analyses and Ancestral State Reconstruction Re-Emphasize the Essentiality of Fossils. BIOLOGY 2022; 11:1218. [PMID: 36009845 PMCID: PMC9404954 DOI: 10.3390/biology11081218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
Advances in genetics and developmental biology are revealing the relationship between genotype and dental phenotype (G:P), providing new approaches for how paleontologists assess dental variation in the fossil record. Our aim was to understand how the method of trait definition influences the ability to reconstruct phylogenetic relationships and evolutionary history in the Cercopithecidae, the Linnaean Family of monkeys currently living in Africa and Asia. We compared the two-dimensional assessment of molar size (calculated as the mesiodistal length of the crown multiplied by the buccolingual breadth) to a trait that reflects developmental influences on molar development (the inhibitory cascade, IC) and two traits that reflect the genetic architecture of postcanine tooth size variation (defined through quantitative genetic analyses: MMC and PMM). All traits were significantly influenced by the additive effects of genes and had similarly high heritability estimates. The proportion of covariate effects was greater for two-dimensional size compared to the G:P-defined traits. IC and MMC both showed evidence of selection, suggesting that they result from the same genetic architecture. When compared to the fossil record, Ancestral State Reconstruction using extant taxa consistently underestimated MMC and PMM values, highlighting the necessity of fossil data for understanding evolutionary patterns in these traits. Given that G:P-defined dental traits may provide insight to biological mechanisms that reach far beyond the dentition, this new approach to fossil morphology has the potential to open an entirely new window onto extinct paleobiologies. Without the fossil record, we would not be able to grasp the full range of variation in those biological mechanisms that have existed throughout evolution.
Collapse
Affiliation(s)
- Tesla A. Monson
- Department of Anthropology, Western Washington University, 516 High Street, Bellingham, WA 98225, USA
| | - Marianne F. Brasil
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
- Human Evolution Research Center, Valley Life Sciences Building, University of California Berkeley, MC-3140, Berkeley, CA 94720, USA
| | - Michael C. Mahaney
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Christopher A. Schmitt
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA 02115, USA
| | - Catherine E. Taylor
- Human Evolution Research Center, Valley Life Sciences Building, University of California Berkeley, MC-3140, Berkeley, CA 94720, USA
| | - Leslea J. Hlusko
- Human Evolution Research Center, Valley Life Sciences Building, University of California Berkeley, MC-3140, Berkeley, CA 94720, USA
- National Center for Research on Human Evolution (CENIEH), Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
6
|
Bermúdez de Castro JM, Modesto‐Mata M, García‐Campos C, Sarmiento S, Martín‐Francés L, Martínez de Pinillos M, Martinón‐Torres M. Testing the inhibitory cascade model in a recent human sample. J Anat 2021; 239:1170-1181. [PMID: 34227109 PMCID: PMC8546523 DOI: 10.1111/joa.13500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Inhibitory Cascade Model was proposed by Kavanagh and colleagues (Nature, 449, 427-433 [2007]) after their experimental studies on the dental development of murine rodent species. These authors described an activator-inhibitor mechanism that has been employed to predict evolutionary size patterns of mammalian teeth, including hominins. In the present study, we measured the crown area of the three lower permanent molars (M1, M2, and M3) of a large recent modern human sample of male and female individuals from a collection preserved at the Institute of Anthropology of the University of Coimbra (Portugal). The main aim of the present study is to test if the size molar patterns observed in this human sample fits the Inhibitory Cascade Model. For this purpose, we first measured the crown area in those individuals preserving the complete molar series. Measurements were taken in photographs, using a planimeter and following well-tested techniques used in previous works. We then plot the M3 /M1 and M2 /M1 size ratios. Our results show that the premise of the Inhibitory Cascade Model, according to which the average of the crown area of M2 is approximately one-third of the sum of the crown area of the three molars, is fulfilled. However, our results also show that the individual values of a significant number of males and females are out of the 95% confidence interval predicted by the Inhibitory Cascade Model in rodents. As a result, the present analyses suggest that neither the sample of males, nor that of females, nor the pooled sample fits the Inhibitory Cascade Model. It is important to notice that, although this model has been successfully tested in a large number of current human populations, to the best of our knowledge this is the first study in which individual data have been obtained in a recent human population rather than using the average of the sample. Our results evince that, at the individual level, some factors not yet known could interfere with this model masking the modulation of the size on the molar series in modern humans. We suggest that the considerable delay in the onset of M3 formation in modern humans could be related to a weakening of the possible activation/inhibition process for this tooth. Finally, and in support of our conclusions, we have checked that the absolute and relative size of M1 and M2 is not related to the M3 agenesis in our sample. In line with other studies in primates, our results do not support the Inhibitory Cascade Model in a recent human sample. Further research is needed to better understand the genetic basis of this mechanism and its relationship to the phenotype. In this way, we may be able to find out which evolutionary changes may be responsible for the deviations observed in many species, including Homo sapiens.
Collapse
Affiliation(s)
- José María Bermúdez de Castro
- CENIEH (National Research Center on Human Evolution)BurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
| | - Mario Modesto‐Mata
- Equipo Primeros Pobladores de ExtremaduraCasa de la Cultura Rodríguez MoñinoCáceresSpain
| | - Cecilia García‐Campos
- CENIEH (National Research Center on Human Evolution)BurgosSpain
- Fundación AtapuercaIbeas de JuarrosBurgosSpain
| | | | - Laura Martín‐Francés
- CENIEH (National Research Center on Human Evolution)BurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
- Fundación AtapuercaIbeas de JuarrosBurgosSpain
| | | | - María Martinón‐Torres
- CENIEH (National Research Center on Human Evolution)BurgosSpain
- Anthropology DepartmentUniversity College LondonLondonUK
| |
Collapse
|
7
|
Boughner JC, Marchiori DF, Packota GV. Unexpected variation of human molar size patterns. J Hum Evol 2021; 161:103072. [PMID: 34628299 DOI: 10.1016/j.jhevol.2021.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
A tenet of mammalian, including primate dental evolution, is the Inhibitory Cascade Model, where first molar (M1) size predicts in a linear cline the size and onset time of the second (M2) and third (M3) molars: a larger M1 portends a progressively smaller and later-developing M2 and M3. In contemporary modern Homo sapiens, later-developing M3s are less likely to erupt properly. The Inhibitory Cascade Model is also used to predict molar sizes of extinct taxa, including fossil Homo. The extent to which Inhibitory Cascade Model predictions hold in contemporary H. sapiens molars is unclear, including whether this tenet informs about molar initiation, development, and eruption. We tested these questions here. In our radiographic sample of 323 oral quadrants and molar rows from contemporary humans based on mesiodistal crown lengths, we observed the distribution of molar proportions with a central tendency around parity (M1 = M2 = M3) that parsed into 13 distinct molar size ratio patterns. These patterns presented at different frequencies (e.g., M1 > M2 > M3 in about one-third of cases) that reflected whether the molar row was located in the maxilla or mandible and included both linear (e.g., M1 < M2 < M3) and nonlinear molar size ratio progressions (e.g., M1 > M2 < M3). Up to four patterns were found in the same subject's mouth. Lastly, M1 size alone does not predict M3 size, developmental timing, or eruption; rather, M2 size is integral to predicting M3 size. Our study indicates that human molar size is genetically 'softwired' and sensitive to factors local to the human upper jaw vs. lower jaw. The lack of a single stereotypical molar size ratio for contemporary H. sapiens suggests that predictions of fossil H. sapiens molar sizes using the Inhibitory Cascade Model must be made with caution.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Denver F Marchiori
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Garnet V Packota
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Health Sciences Building, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
8
|
Billet G, Bardin J. Segmental series and size: clade-wide investigation of molar proportions reveals a major evolutionary allometry in the dentition of placental mammals. Syst Biol 2021; 70:1101-1109. [PMID: 33560370 DOI: 10.1093/sysbio/syab007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
Iterative segments such as teeth or limbs are a widespread characteristic of living organisms. While their proportions may be governed by similar developmental rules in vertebrates, there is no emerging pattern as regards their relation to size. Placental mammals span eight orders of magnitude in body size and show a wide spectrum of dietary habits associated with size and reflected in their dentitions, especially molars. Although variation in size constitutes an important determinant for variation in biological traits, few major allometric trends have been documented on placental molars so far. Molar proportions have been intensively explored in placentals in relation to developmental models, but often at a small phylogenetic scale. Here, we analyzed the diversity of upper molar proportions in relation to absolute size in a large sample of placental species (n = 286) encompassing most of the group's dental diversity. Our phylogenetically informed analyses revealed a twofold pattern of evolutionary integration among upper molars: while molars covary in size with each other, their proportions covary with the absolute size of the entire molar field. With increasing absolute size, posterior molars increase in size relative to anterior ones, meaning that large-sized species have relatively large rear molars while the opposite is true for small-sized species. The directionality of proportional increase in the molar row exhibits a previously unsuspected allometric patterning among placentals, showing how large-scale variations in size may have influenced variation in dental morphology. This finding provides new evidence that processes regulating the size of individual molars are integrated with overall patterns of growth and calls for further testing of allometric variation in the dentition and in other segmental series of the vertebrate body.
Collapse
Affiliation(s)
- Guillaume Billet
- Centre de Recherche en Paléontologie - Paris, CR2P, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, 8 rue Buffon 75005 Paris, France
| | - Jérémie Bardin
- Centre de Recherche en Paléontologie - Paris, CR2P, Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, T.46-56, E.5, case 104, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
9
|
Abstract
Identifying developmental explanations for the evolution of complex structures like mammalian molars is fundamental to studying phenotypic variation. Previous study showed that a "morphogenetic gradient" of molar proportions was explained by a balance between inhibiting/activating activity from earlier developing molars, termed the inhibitory cascade model (ICM). Although this model provides an explanation for variation in molar proportions, what remains poorly understood is if molar shape, or specifically complexity (i.e., the number of cusps, crests), can be explained by the same developmental model. Here, we show that molar complexity conforms to the ICM, following a linear, morphogenetic gradient along the molar row. Moreover, differing levels of inhibiting/activating activity produce contrasting patterns of molar complexity depending on diet. This study corroborates a model for the evolution of molar complexity that is developmentally simple, where only small-scale developmental changes need to occur to produce change across the entire molar row, with this process being mediated by an animal's ecology. The ICM therefore provides a developmental framework for explaining variation in molar complexity and a means for testing developmental hypotheses in the broader context of mammalian evolution.
Collapse
|
10
|
Hardin AM. Genetic correlations in the rhesus macaque dentition. J Hum Evol 2020; 148:102873. [PMID: 33059308 DOI: 10.1016/j.jhevol.2020.102873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022]
Abstract
Quantitative genetic analyses can indicate how complex traits respond to natural selection by demonstrating the genetic relationships between features that constrain their evolution. Genetic correlations between dental measurements have been estimated previously in baboons, humans, and tamarins and indicate variable patterns of modularity by tooth type across these taxa. Here, heritabilities of, and genetic correlations between, linear dental measurements were estimated from the Cayo Santiago rhesus macaques (Macaca mulatta). Relationships between the genetic correlation matrix and matrices designed to test hypotheses of modularity by tooth type, region, function, and development were assessed using a random skewers approach. Dental measurements were found to be moderately to highly heritable, with 24 of 28 heritability estimates differing significantly (p < 0.05) from zero. Almost all genetic correlations between dental dimensions were positive. The genetic correlation matrix was most similar to a regionally modular matrix, with distinct anterior and postcanine tooth modules. This pattern is consistent with previous quantitative genetic analyses of baboons and previous phenotypic analyses of cercopithecoid primates. The existence of a genetic module for the canines and honing premolar was not supported. Ongoing selection pressures, rather than strong genetic constraints, are likely necessary to preserve functional relationships between the canines and honing premolar based on these findings. The genetic correlation matrix of the Cayo Santiago rhesus macaques mirrors patterns of phenotypic correlations observed for cercopithecoid primates broadly and demonstrates that genetic contributions to these patterns may be fairly stable over the course of cercopithecoid evolution. The quantitative genetic study of additional taxa will be necessary to determine whether the regional modularity of baboons and macaques, or the integrated pattern of humans and tamarins, is shared more broadly across primates.
Collapse
Affiliation(s)
- Anna M Hardin
- Department of Anthropology, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
11
|
A genotype:phenotype approach to testing taxonomic hypotheses in hominids. Naturwissenschaften 2020; 107:40. [PMID: 32870408 DOI: 10.1007/s00114-020-01696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.
Collapse
|
12
|
Vitek NS, Roseman CC, Bloch JI. Mammal Molar Size Ratios and the Inhibitory Cascade at the Intraspecific Scale. Integr Org Biol 2020; 2:obaa020. [PMID: 33791561 PMCID: PMC7750983 DOI: 10.1093/iob/obaa020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian molar crowns form a module in which measurements of size for individual teeth within a tooth row covary with one another. Molar crown size covariation is proposed to fit the inhibitory cascade model (ICM) or its variant the molar module component (MMC) model, but the inability of the former model to fit across biological scales is a concern in the few cases where it has been tested in Primates. The ICM has thus far failed to explain patterns of intraspecific variation, an intermediate biological scale, even though it explains patterns at both smaller organ-level and larger between-species biological scales. Studies of this topic in a much broader range of taxa are needed, but the properties of a sample appropriate for testing the ICM at the intraspecific level are unclear. Here, we assess intraspecific variation in relative molar sizes of the cotton mouse, Peromyscus gossypinus, to further test the ICM and to develop recommendations for appropriate sampling protocols in future intraspecific studies of molar size variation across Mammalia. To develop these recommendations, we model the sensitivity of estimates of molar ratios to sample size and simulate the use of composite molar rows when complete ones are unavailable. Similar to past studies on primates, our results show that intraspecific variance structure of molar ratios within the rodent P. gossypinus does not meet predictions of the ICM or MMC. When we extend these analyses to include the MMC, one model does not fit observed patterns of variation better than the other. Standing variation in molar size ratios is relatively constant across mammalian samples containing all three molars. In future studies, analyzing average ratio values will require relatively small minimum sample sizes of two or more complete molar rows. Even composite-based estimates from four or more specimens per tooth position can accurately estimate mean molar ratios. Analyzing variance structure will require relatively large sample sizes of at least 40-50 complete specimens, and composite molar rows cannot accurately reconstruct variance structure of ratios in a sample. Based on these results, we propose guidelines for intraspecific studies of molar size covariation. In particular, we note that the suitability of composite specimens for averaging mean molar ratios is promising for the inclusion of isolated molars and incomplete molar rows from the fossil record in future studies of the evolution of molar modules, as long as variance structure is not a key component of such studies.
Collapse
Affiliation(s)
- N S Vitek
- Department of Ecology & Evolution, Stony Brook University, 632 Life Sciences Building, Stony Brook, NY 11794-5245, USA.,Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - C C Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois, Champaign, IL 61820, USA
| | - J I Bloch
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|