1
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM, Metallo CM. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab 2025; 37:274-290.e9. [PMID: 39547233 DOI: 10.1016/j.cmet.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr-/- mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.
Collapse
Affiliation(s)
- Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zoya Y Chih
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maureen L Ruchhoeft
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Secrest
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ethan L Ashley
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wan L, Li T, Yao M, Zhang B, Zhang W, Zhang J. Linoelaidic acid gavage has more severe consequences on triglycerides accumulation, inflammation and intestinal microbiota in mice than elaidic acid. Food Chem X 2024; 22:101328. [PMID: 38576778 PMCID: PMC10992693 DOI: 10.1016/j.fochx.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
This work aims to study the effects of oral gavage (0.2 mg/g body weight) of elaidic acid (C18:1-9 t, EA) and linoelaidic acid (C18:2-9 t,12 t, LEA) on lipid metabolism, inflammation and gut homeostasis of mice. Results showed that both EA and LEA gavage significantly increased LDL-c, TC and oxidative stress levels in the liver and serum and may stimulate liver inflammation via NF-κB and MAPK signaling pathway. Compared with EA, LEA gavage significantly promoted TAG accumulation and inflammatory signaling. Serum lipidomics revealed that LEA intake significantly increased the concentration of ∼50 TAGs, while EA gavage primarily caused significant decreases in several SMs. 16S rRNA demonstrated that LEA ingestion markedly changed fecal microbiota by enriching Lactobacillus (phylum Firmicutes), however, EA treatment did not affect it. Overall, LEA gavage has more severe consequences on TAG accumulation, inflammation and microbial structure than EA, highlighting that the number of trans double bonds affects these processes.
Collapse
Affiliation(s)
- Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Mengying Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
3
|
Moreno N, Sabater-Arcis M, Sevilla T, Alonso MP, Ohana J, Bargiela A, Artero R. Therapeutic potential of oleic acid supplementation in myotonic dystrophy muscle cell models. Biol Res 2024; 57:29. [PMID: 38760841 PMCID: PMC11100173 DOI: 10.1186/s40659-024-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.
Collapse
Affiliation(s)
- Nerea Moreno
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Maria Sabater-Arcis
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Teresa Sevilla
- CIBERER, IISCIII, Madrid, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Manuel Perez Alonso
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Jessica Ohana
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, F-75013, France
| | - Ariadna Bargiela
- CIBERER, IISCIII, Madrid, Spain.
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain.
| | - Ruben Artero
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| |
Collapse
|
4
|
Castillo HB, Shuster SO, Tarekegn LH, Davis CM. Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes. Chem Commun (Camb) 2024; 60:3138-3141. [PMID: 38329230 PMCID: PMC10939124 DOI: 10.1039/d3cc04829b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Lipogenesis is a vital but often dysregulated metabolic pathway. Here we use optical photothermal infrared imaging to quantify lipogenesis rates of isotopically labelled oleic acid and glucose concomitantly in live cells. In hepatocytes, but not adipocytes, we find that oleic acid feeding at 60 μM increases the number and size of lipid droplets (LDs) while simultaneously inhibiting storage of de novo synthesized lipids in LDs. Our results demonstrate alternate regulation of lipogenesis between cell types.
Collapse
Affiliation(s)
- Hannah B Castillo
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Sydney O Shuster
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Lydia H Tarekegn
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| |
Collapse
|
5
|
Castillo HB, Shuster SO, Tarekegn LH, Davis CM. Oleic acid differentially affects de novo lipogenesis in adipocytes and hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560581. [PMID: 37873279 PMCID: PMC10592964 DOI: 10.1101/2023.10.04.560581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lipogenesis is a vital but often dysregulated metabolic pathway. We report super-resolution multiplexed vibrational imaging of lipogenesis rates and pathways using isotopically labelled oleic acid and glucose as probes in live adipocytes and hepatocytes. These findings suggest oleic acid inhibits de novo lipogenesis (DNL), but not total lipogenesis, in hepatocytes. No significant effect is seen in adipocytes. These differential effects may be due to alternate regulation of DNL between cell types and could help explain the complicated role oleic acid plays in metabolism.
Collapse
Affiliation(s)
- Hannah B. Castillo
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
| | - Sydney O. Shuster
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
| | - Lydia H. Tarekegn
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
| | - Caitlin M. Davis
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
| |
Collapse
|
6
|
Liu J, Mandlaa, Wang J, Sun Z, Chen Z. A strategy to enhance and modify fatty acid synthesis in Corynebacterium glutamicum and Escherichia coli: overexpression of acyl-CoA thioesterases. Microb Cell Fact 2023; 22:191. [PMID: 37735384 PMCID: PMC10512533 DOI: 10.1186/s12934-023-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Fatty acid (FA) is an important platform compound for the further synthesis of high-value biofuels and oleochemicals, but chemical synthesis of FA has many limitations. One way to meet the future demand for FA could be to use microbial cell factories for FA biosynthesis. RESULTS Thioesterase (TE; TesA, TesB, and TE9) of Corynebacterium glutamicum (CG) can potentially improve FA biosynthesis, and tesA, tesB, and te9 were overexpressed in C. glutamicum and Escherichia coli (EC), respectively, in this study. The results showed that the total fatty acid (TFA) production of CGtesB and ECtesB significantly increased to 180.52 mg/g dry cell weight (DCW) and 123.52 mg/g DCW, respectively (P < 0.05). Overexpression strains CG and EC could increase the production of C16:0, C18:1(t), C18:2, C20:1, C16:1, C18:0, and C18:1(c) (P < 0.05), respectively, and the changes of long-chain FA resulted in the enhancement of TFA production. The enzymatic properties of TesA, TesB, and TE9 in vitro were determined: they were specific for long-, broad and short-chain substrates, respectively; the optimal temperature was 30.0 °C and the optimal acid-base (pH) were 8.0, 8.0, and 9.0, respectively; they were inhibited by Fe2+, Cu2+, Zn2+, Mg2+, and K+. CONCLUSION Overexpression TE enhances and modifies FA biosynthesis with multiple productive applications, and the enzyme properties provided useful clues for optimizing FA synthesis.
Collapse
Affiliation(s)
- Jin Liu
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Mandlaa
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Jia Wang
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China
| | - Ziyu Sun
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| | - Zhongjun Chen
- Food Science and Engineering College, Inner Mongolia Agricultural University, 306 Zhaowood Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
7
|
Dhillon VS, Thomas P, Lee SL, Deo P, Fenech M. Red Blood Cell Fatty Acid Profiles Are Significantly Altered in South Australian Mild Cognitive Impairment and Alzheimer's Disease Cases Compared to Matched Controls. Int J Mol Sci 2023; 24:14164. [PMID: 37762467 PMCID: PMC10531649 DOI: 10.3390/ijms241814164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Nutritional imbalances have been associated with a higher risk for cognitive impairment. This study determined the red blood cell (RBC) fatty acid profile of newly diagnosed mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients compared to age and gender-matched controls. There was a significant increase in palmitic acid (p < 0.00001) for both MCI and AD groups. Saturated fatty acids were significantly elevated in the MCI group, including stearic acid (p = 0.0001), arachidic acid (p = 0.003), behenic acid (p = 0.0002), tricosanoic acid (p = 0.007) and lignoceric acid (p = 0.001). n-6 polyunsaturated fatty acids (PUFAs) were significantly reduced in MCI, including linoleic acid (p = 0.001), γ-linolenic acid (p = 0.03), eicosatrienoic acid (p = 0.009) and arachidonic acid (p < 0.00004). The n-3 PUFAs, α-linolenic acid and docosahexaenoic acid, were both significantly reduced in MCI and AD (p = 0.0005 and p = 0.00003). A positive correlation was evident between the Mini-Mental State Examination score and nervonic acid in MCI (r = 0.54, p = 0.01) and a negative correlation with γ-linolenic acid in AD (r = -0.43, p = 0.05). Differences in fatty acid profiles may prove useful as potential biomarkers reflecting increased risk for dementia.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia;
| | - Sau L. Lee
- College of Medical and Public Health, Flinders University, Bedford Park 5042, Australia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
- Genome Health Foundation, Adelaide 5048, Australia
| |
Collapse
|
8
|
Lai HT, Imamura F, Korat AVA, Murphy RA, Tintle N, Bassett JK, Chen J, Kröger J, Chien KL, Senn M, Wood AC, Forouhi NG, Schulze MB, Harris WS, Vasan RS, Hu F, Giles GG, Hodge A, Djousse L, Brouwer IA, Qian F, Sun Q, Wu JH, Marklund M, Lemaitre RN, Siscovick DS, Fretts AM, Shadyab AH, Manson JE, Howard BV, Robinson JG, Wallace RB, Wareham NJ, Chen YDI, Rotter JI, Tsai MY, Micha R, Mozaffarian D. Trans Fatty Acid Biomarkers and Incident Type 2 Diabetes: Pooled Analysis of 12 Prospective Cohort Studies in the Fatty Acids and Outcomes Research Consortium (FORCE). Diabetes Care 2022; 45:854-863. [PMID: 35142845 PMCID: PMC9114723 DOI: 10.2337/dc21-1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Trans fatty acids (TFAs) have harmful biologic effects that could increase the risk of type 2 diabetes (T2D), but evidence remains uncertain. We aimed to investigate the prospective associations of TFA biomarkers and T2D by conducting an individual participant-level pooled analysis. RESEARCH DESIGN AND METHODS We included data from an international consortium of 12 prospective cohorts and nested case-control studies from six nations. TFA biomarkers were measured in blood collected between 1990 and 2008 from 25,126 participants aged ≥18 years without prevalent diabetes. Each cohort conducted de novo harmonized analyses using a prespecified protocol, and findings were pooled using inverse-variance weighted meta-analysis. Heterogeneity was explored by prespecified between-study and within-study characteristics. RESULTS During a mean follow-up of 13.5 years, 2,843 cases of incident T2D were identified. In multivariable-adjusted pooled analyses, no significant associations with T2D were identified for trans/trans-18:2, relative risk (RR) 1.09 (95% CI 0.94-1.25); cis/trans-18:2, 0.89 (0.73-1.07); and trans/cis-18:2, 0.87 (0.73-1.03). Trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated with T2D (RR 0.81 [95% CI 0.67-0.99], 0.86 [0.75-0.99], and 0.84 [0.74-0.96], respectively). Findings were not significantly different according to prespecified sources of potential heterogeneity (each P ≥ 0.1). CONCLUSIONS Circulating individual trans-18:2 TFA biomarkers were not associated with risk of T2D, while trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated. Findings may reflect the influence of mixed TFA sources (industrial vs. natural ruminant), a general decline in TFA exposure due to policy changes during this period, or the relatively limited range of TFA levels.
Collapse
Affiliation(s)
- Heidi T.M. Lai
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Department of Primary Care and Public Health, Imperial College London, London, U.K
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Andres V. Ardisson Korat
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rachel A. Murphy
- School of Population & Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt University, Sioux Center, IA
- Fatty Acid Research Institute, Sioux Falls, SD
| | - Julie K. Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Jiaying Chen
- Division of Aging, Brigham and Women's Hospital, Boston, MA
| | - Janine Kröger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Republic of China
| | - Mackenzie Senn
- U.S. Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Alexis C. Wood
- U.S. Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - William S. Harris
- Fatty Acid Research Institute, Sioux Falls, SD
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, MA
- The Framingham Heart Study, Framingham, MA
| | - Frank Hu
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Allison Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Luc Djousse
- Divisions of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ingeborg A. Brouwer
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jason H.Y. Wu
- The George Institute for Global Health, the Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Matti Marklund
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- The George Institute for Global Health, the Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | | | - Amanda M. Fretts
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Aladdin H. Shadyab
- Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Barbara V. Howard
- Georgetown University Medical Center, Georgetown University, Hyattsville, MD
| | | | | | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Renata Micha
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | |
Collapse
|
9
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|
10
|
Hirata Y. trans-Fatty Acids as an Enhancer of Inflammation and Cell Death: Molecular Basis for Their Pathological Actions. Biol Pharm Bull 2021; 44:1349-1356. [PMID: 34602541 DOI: 10.1248/bpb.b21-00449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
trans-Fatty acids (TFAs) are food-derived fatty acids that possess one or more trans double bonds between carbon atoms. Compelling epidemiological and clinical evidence has demonstrated the association of TFA consumption with various diseases, such as cardiovascular diseases, and neurodegenerative diseases. However, the underlying etiology is poorly understood since the mechanisms of action of TFAs remain to be clarified. Previous studies have shown that single treatment with TFAs induce inflammation and cell death, but to a much lesser extent than saturated fatty acids (SFAs) that are well established as a risk factor for diseases linked with inflammation and cell death, which cannot explain the particularly higher association of TFAs with atherosclerosis than SFAs. In our series of studies, we have established the role of TFAs as an enhancer of inflammation and cell death. We found that pretreatment with TFAs strongly promoted apoptosis induced by either extracellular ATP, one of the damage-associated molecular patterns (DAMPs) leaked from damaged cells, or DNA damaging-agents, including doxorubicin and cisplatin, thorough enhancing activation of the stress-responsive mitogen-activated protein (MAP) kinase p38/c-jun N-terminal kinase (JNK) pathways; pretreatment with SFAs or cis isomers of TFAs had only minor or no effect, suggesting the uniqueness of the pro-apoptotic role of TFAs among fatty acids. Our findings will provide an insight into understanding of the pathogenesis mechanisms, and open up a new avenue for developing prevention strategies and therapies for TFA-related diseases.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
11
|
Đurašević S, Ružičić A, Lakić I, Tosti T, Đurović S, Glumac S, Pavlović S, Borković-Mitić S, Grigorov I, Stanković S, Jasnić N, Đorđević J, Todorović Z. The Effects of a Meldonium Pre-Treatment on the Course of the Faecal-Induced Sepsis in Rats. Int J Mol Sci 2021; 22:ijms22189698. [PMID: 34575863 PMCID: PMC8464894 DOI: 10.3390/ijms22189698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening condition caused by the dysregulated and overwhelming response to infection, accompanied by an exaggerated pro-inflammatory state and lipid metabolism disturbance leading to sequential organ failure. Meldonium is an anti-ischemic and anti-inflammatory agent which negatively interferes with lipid metabolism by shifting energy production from fatty acid oxidation to glycolysis, as a less oxygen-demanding pathway. Thus, we investigated the effects of a four-week meldonium pre-treatment on faecal-induced sepsis in Sprague-Dawley male rats. Surprisingly, under septic conditions, meldonium increased animal mortality rate compared with the meldonium non-treated group. However, analysis of the tissue oxidative status did not provide support for the detrimental effects of meldonium, nor did the analysis of the tissue inflammatory status showing anti-inflammatory, anti-apoptotic, and anti-necrotic effects of meldonium. After performing tissue lipidomic analysis, we concluded that the potential cause of the meldonium harmful effect is to be found in the overall decreased lipid metabolism. The present study underlines the importance of uninterrupted energy production in sepsis, closely drawing attention to the possible harmful effects of lipid-mobilization impairment caused by certain therapeutics. This could lead to the much-needed revision of the existing guidelines in the clinical treatment of sepsis while paving the way for discovering new therapeutic approaches.
Collapse
Affiliation(s)
- Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (A.R.); (I.L.); (N.J.); (J.Đ.)
- Correspondence: ; Tel.: +381-63-367108
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (A.R.); (I.L.); (N.J.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (A.R.); (I.L.); (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Saša Đurović
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.)
| | - Sanja Stanković
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (A.R.); (I.L.); (N.J.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (A.R.); (I.L.); (N.J.); (J.Đ.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (Z.T.)
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Matta M, Huybrechts I, Biessy C, Casagrande C, Yammine S, Fournier A, Olsen KS, Lukic M, Gram IT, Ardanaz E, Sánchez MJ, Dossus L, Fortner RT, Srour B, Jannasch F, Schulze MB, Amiano P, Agudo A, Colorado-Yohar S, Quirós JR, Tumino R, Panico S, Masala G, Pala V, Sacerdote C, Tjønneland A, Olsen A, Dahm CC, Rosendahl AH, Borgquist S, Wennberg M, Heath AK, Aune D, Schmidt J, Weiderpass E, Chajes V, Gunter MJ, Murphy N. Dietary intake of trans fatty acids and breast cancer risk in 9 European countries. BMC Med 2021; 19:81. [PMID: 33781249 PMCID: PMC8008592 DOI: 10.1186/s12916-021-01952-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Trans fatty acids (TFAs) have been hypothesised to influence breast cancer risk. However, relatively few prospective studies have examined this relationship, and well-powered analyses according to hormone receptor-defined molecular subtypes, menopausal status, and body size have rarely been conducted. METHODS In the European Prospective Investigation into Cancer and Nutrition (EPIC), we investigated the associations between dietary intakes of TFAs (industrial trans fatty acids [ITFAs] and ruminant trans fatty acids [RTFAs]) and breast cancer risk among 318,607 women. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusted for other breast cancer risk factors. RESULTS After a median follow-up of 8.1 years, 13,241 breast cancer cases occurred. In the multivariable-adjusted model, higher total ITFA intake was associated with elevated breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06-1.23; P trend = 0.001). A similar positive association was found between intake of elaidic acid, the predominant ITFA, and breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06-1.23; P trend = 0.001). Intake of total RTFAs was also associated with higher breast cancer risk (HR for highest vs lowest quintile, 1.09, 95% CI 1.01-1.17; P trend = 0.015). For individual RTFAs, we found positive associations with breast cancer risk for dietary intakes of two strongly correlated fatty acids (Spearman correlation r = 0.77), conjugated linoleic acid (HR for highest vs lowest quintile, 1.11, 95% CI 1.03-1.20; P trend = 0.001) and palmitelaidic acid (HR for highest vs lowest quintile, 1.08, 95% CI 1.01-1.16; P trend = 0.028). Similar associations were found for total ITFAs and RTFAs with breast cancer risk according to menopausal status, body mass index, and breast cancer subtypes. CONCLUSIONS These results support the hypothesis that higher dietary intakes of ITFAs, in particular elaidic acid, are associated with elevated breast cancer risk. Due to the high correlation between conjugated linoleic acid and palmitelaidic acid, we were unable to disentangle the positive associations found for these fatty acids with breast cancer risk. Further mechanistic studies are needed to identify biological pathways that may underlie these associations.
Collapse
Affiliation(s)
- Michèle Matta
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Sahar Yammine
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Agnès Fournier
- CESP "Health Across Generations", INSERM, Univ Paris-Sud, UVSQ, Univ Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Karina Standahl Olsen
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Marco Lukic
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Inger Torhild Gram
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-José Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Centre (DFKZ), Heidelberg, Germany
| | - Bernard Srour
- Division of Cancer Epidemiology, German Cancer Research Centre (DFKZ), Heidelberg, Germany
| | - Franziska Jannasch
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Sandra Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica e Chirurgia, Federici II University, Naples, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, di Milano Via Venezian, 1, 20133, Milan, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Copenhagen University, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Ann H Rosendahl
- Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Julie Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, Lyon, France
| | - Veronique Chajes
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France.
| |
Collapse
|
13
|
Oteng AB, Kersten S. Mechanisms of Action of trans Fatty Acids. Adv Nutr 2020; 11:697-708. [PMID: 31782488 PMCID: PMC7231579 DOI: 10.1093/advances/nmz125] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Human studies have established a positive association between the intake of industrial trans fatty acids and the development of cardiovascular diseases, leading several countries to enact laws that restrict the presence of industrial trans fatty acids in food products. However, trans fatty acids cannot be completely eliminated from the human diet since they are also naturally present in meat and dairy products of ruminant animals. Moreover, bans on industrial trans fatty acids have not yet been instituted in all countries. The epidemiological evidence against trans fatty acids by far overshadows mechanistic insights that may explain how trans fatty acids achieve their damaging effects. This review focuses on the mechanisms that underlie the deleterious effects of trans fatty acids by juxtaposing effects of trans fatty acids against those of cis-unsaturated fatty acids and saturated fatty acids (SFAs). This review also carefully explores the argument that ruminant trans fatty acids have differential effects from industrial trans fatty acids. Overall, in vivo and in vitro studies demonstrate that industrial trans fatty acids promote inflammation and endoplasmic reticulum (ER) stress, although to a lesser degree than SFAs, whereas cis-unsaturated fatty acids are protective against ER stress and inflammation. Additionally, industrial trans fatty acids promote fat storage in the liver at the expense of adipose tissue compared with cis-unsaturated fatty acids and SFAs. In cultured hepatocytes and adipocytes, industrial trans fatty acids, but not cis-unsaturated fatty acids or SFAs, stimulate the cholesterol synthesis pathway by activating sterol regulatory element binding protein (SREBP) 2-mediated gene regulation. Interestingly, although industrial and ruminant trans fatty acids show similar effects on human plasma lipoproteins, in preclinical models, only industrial trans fatty acids promote inflammation, ER stress, and cholesterol synthesis. Overall, clearer insight into the molecular mechanisms of action of trans fatty acids may create new therapeutic windows for the treatment of diseases characterized by disrupted lipid metabolism.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Lecoutre S, Montel V, Vallez E, Pourpe C, Delmont A, Eury E, Verbanck M, Dickes-Coopman A, Daubersies P, Lesage J, Laborie C, Tailleux A, Staels B, Froguel P, Breton C, Vieau D. Transcription profiling in the liver of undernourished male rat offspring reveals altered lipid metabolism pathways and predisposition to hepatic steatosis. Am J Physiol Endocrinol Metab 2019; 317:E1094-E1107. [PMID: 31638854 DOI: 10.1152/ajpendo.00291.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical and animal studies have reported an association between low birth weight and the development of nonalcoholic fatty liver disease (NAFLD) in offspring. Using a model of prenatal maternal 70% food restriction diet (FR30) in the rat, we previously showed that maternal undernutrition predisposes offspring to altered lipid metabolism in adipose tissue, especially on a high-fat (HF) diet. Here, using microarray-based expression profiling combined with metabolic, endocrine, biochemical, histological, and lipidomic approaches, we assessed whether FR30 procedure sensitizes adult male offspring to impaired lipid metabolism in the liver. No obvious differences were noted in the concentrations of triglycerides, cholesterol, and bile acids in the liver of 4-mo-old FR30 rats whichever postweaning diet was used. However, several clues suggest that offspring's lipid metabolism and steatosis are modified by maternal undernutrition. First, lipid composition was changed (i.e., higher total saturated fatty acids and lower elaidic acid) in the liver, whereas larger triglyceride droplets were observed in hepatocytes of undernourished rats. Second, FR30 offspring exhibited long-term impact on hepatic gene expression and lipid metabolism pathways on a chow diet. Although the transcriptome profile was globally modified by maternal undernutrition, cholesterol and bile acid biosynthesis pathways appear to be key targets, indicating that FR30 animals were predisposed to impaired hepatic cholesterol metabolism. Third, the FR30 protocol markedly modifies hepatic gene transcription profiles in undernourished offspring in response to postweaning HF. Overall, FR30 offspring may exhibit impaired metabolic flexibility, which does not enable them to properly cope with postweaning nutritional challenges influencing the development of nonalcoholic fatty liver.
Collapse
Affiliation(s)
- Simon Lecoutre
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | - Valérie Montel
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | - Emmanuelle Vallez
- Université Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, INSERM U1011-European Genomic Institute for Diabetes, Lille, France
| | - Charlène Pourpe
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | | | - Elodie Eury
- Université Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Marie Verbanck
- Université Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Anne Dickes-Coopman
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | | | - Jean Lesage
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | - Christine Laborie
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | - Anne Tailleux
- Université Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, INSERM U1011-European Genomic Institute for Diabetes, Lille, France
| | - Bart Staels
- Université Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, INSERM U1011-European Genomic Institute for Diabetes, Lille, France
| | - Philippe Froguel
- Université Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Christophe Breton
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| | - Didier Vieau
- Université Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Lille, France
| |
Collapse
|
15
|
Oteng A, Loregger A, van Weeghel M, Zelcer N, Kersten S. Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900385. [PMID: 31327168 PMCID: PMC6790681 DOI: 10.1002/mnfr.201900385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Abstract
SCOPE The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Collapse
Affiliation(s)
- Antwi‐Boasiako Oteng
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| | - Anke Loregger
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences1105 AZAmsterdamThe Netherlands
| | - Noam Zelcer
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| |
Collapse
|
16
|
Aguillín-Osma J, Loango-Chamorro N, Landazuri P. Modelos celulares hepáticos para el estudio del metabolismo de los lípidos. Revisión de literatura. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n1.64964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. El hígado juega un papel importante en la homeostasis lipídica, especialmente en la síntesis de ácidos grasos y triglicéridos. Una amplia variedad de modelos celulares ha sido utilizada para investigar el metabolismo lipídico hepático y para elucidar detalles específicos de los mecanismos bioquímicos del desarrollo y progresión de enfermedades relacionadas, brindando información para tratamientos que reduzcan su impacto. Los modelos celulares hepáticos poseen un alto potencial en la investigación del metabolismo de lípidos y de agentes farmacológicos o principios activos que permiten la reducción de la acumulación de lípidos.Objetivo. Comparar algunos modelos celulares hepáticos utilizados para el estudio del metabolismo lipídico, sus características y los resultados más relevantes de investigación en ellos.Materiales y métodos. Se realizó una búsqueda sistemática en bases de datos sobre los modelos celulares hepáticos de mayor uso para el estudio del metabolismo de lípidos.Resultados. Se exponen los cinco modelos celulares más utilizados para este tipo de investigaciones, destacando su origen, aplicación, ventajas y desventajas al momento de estimular el metabolismo lipídico.Conclusión. Para seleccionar el modelo celular, el investigador debe tener en cuenta cuáles son los requerimientos y el proceso que desea evidenciar, sin olvidar que los resultados obtenidos solo serán aproximaciones de lo que en realidad podría suceder a nivel del hígado como órgano.
Collapse
|
17
|
Li Z, Zhao J, Muhammad N, Wang D, Mao Q, Xia H. Establishment of a HEK293 cell line by CRISPR/Cas9-mediated luciferase knock-in to study transcriptional regulation of the human SREBP1 gene. Biotechnol Lett 2018; 40:1495-1506. [PMID: 30232659 DOI: 10.1007/s10529-018-2608-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To establish a HEK293 cell line with a luciferase knock-in reporter controlled by the endogenous SREBP1 promoter for investigating transcriptional regulation of the SREBP1 gene. RESULTS PCR confirmed the site-specific integration of a single copy of the exogenous luciferase gene into one allele of the genome and a 14 bp deletion of the targeted sequence in the other. Luciferase activity was directly correlated with the promoter activity of the endogenous SREBP1 gene in the HEK293-SREBP1-T2A-luciferase-KI cell line cell line. CONCLUSIONS We successfully generated a novel luciferase knock-in reporter system, which will be very useful for studying transcriptional regulation of the SREBP1 gene and for screening drugs or chemical molecules that regulate SREBP1 gene expression.
Collapse
Affiliation(s)
- Zihang Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Niaz Muhammad
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
He C, Weston TA, Jung RS, Heizer P, Larsson M, Hu X, Allan CM, Tontonoz P, Reue K, Beigneux AP, Ploug M, Holme A, Kilburn M, Guagliardo P, Ford DA, Fong LG, Young SG, Jiang H. NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metab 2018; 27:1055-1066.e3. [PMID: 29719224 PMCID: PMC5945212 DOI: 10.1016/j.cmet.2018.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The processing of triglyceride-rich lipoproteins (TRLs) in capillaries provides lipids for vital tissues, but our understanding of TRL metabolism is limited, in part because TRL processing and lipid movement have never been visualized. To investigate the movement of TRL-derived lipids in the heart, mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial spaces and in the lipid droplets and mitochondria of cardiomyocytes. Enrichment of 2H in capillary endothelial cells was not greater than in cardiomyocytes, implying that endothelial cells may not be a control point for lipid movement into cardiomyocytes. Remarkably, a deficiency of the putative fatty acid transport protein CD36, which is expressed highly in capillary endothelial cells, did not impede entry of TRL-derived lipids into cardiomyocytes.
Collapse
Affiliation(s)
- Cuiwen He
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel S Jung
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Heizer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xuchen Hu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Holme
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Matthew Kilburn
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Haibo Jiang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
19
|
Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, Lenoir GM, Baglietto L, His M, Boutron-Ruault MC, Trichopoulou A, Lagiou P, Katsoulis M, Kaaks R, Kühn T, Panico S, Pala V, Masala G, Bueno-de-Mesquita HB, Peeters PH, van Gils C, Hjartåker A, Standahl Olsen K, Borgund Barnung R, Barricarte A, Redondo-Sanchez D, Menéndez V, Amiano P, Wennberg M, Key T, Khaw KT, Merritt MA, Riboli E, Gunter MJ, Romieu I. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol 2017; 28:2836-2842. [PMID: 28950350 DOI: 10.1093/annonc/mdx482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological data based on dietary questionnaires remain conflicting. MATERIALS AND METHODS We assessed the association between plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition study. Sixty fatty acids were measured by gas chromatography in pre-diagnostic plasma phospholipids from 2982 incident breast cancer cases matched to 2982 controls. Conditional logistic regression models were used to estimate relative risk of breast cancer by fatty acid level. The false discovery rate (q values) was computed to control for multiple comparisons. Subgroup analyses were carried out by estrogen receptor (ER) and progesterone receptor expression in the tumours. RESULTS A high level of palmitoleic acid [odds ratio (OR) for the highest quartile compared with the lowest OR (Q4-Q1) 1.37; 95% confidence interval (CI), 1.14-1.64; P for trend = 0.0001, q value = 0.004] as well as a high desaturation index (DI16) (16:1n-7/16:0) [OR (Q4-Q1), 1.28; 95% C, 1.07-1.54; P for trend = 0.002, q value = 0.037], as biomarkers of de novo lipogenesis, were significantly associated with increased risk of breast cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumours [OR for the highest tertile compared with the lowest (T3-T1)=2.01; 95% CI, 1.03-3.90; P for trend = 0.047], whereas no association was found for ER-positive tumours (P-heterogeneity =0.01). No significant association was found between n-3 polyunsaturated fatty acids and breast cancer risk, overall or by hormonal receptor. CONCLUSION These findings suggest that increased de novo lipogenesis, acting through increased synthesis of palmitoleic acid, could be a relevant metabolic pathway for breast tumourigenesis. Dietary trans-fatty acids derived from industrial processes may specifically increase ER-negative breast cancer risk.
Collapse
Affiliation(s)
- V Chajès
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon.
| | - N Assi
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | - C Biessy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | - P Ferrari
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | - S Rinaldi
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | - N Slimani
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | | | - L Baglietto
- Institut Gustave Roussy, Villejuif; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - M His
- Institut Gustave Roussy, Villejuif; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - M C Boutron-Ruault
- Institut Gustave Roussy, Villejuif; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - A Trichopoulou
- Hellenic Health Foundation, Athens; WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - P Lagiou
- Hellenic Health Foundation, Athens; WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece; Department of Epidemiology, Harvard School of Public Health, Boston, USA
| | | | - R Kaaks
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Kühn
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Panico
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples
| | - V Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - G Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - H B Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK; Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - P H Peeters
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - C van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A Hjartåker
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo
| | - K Standahl Olsen
- Department of Community Medicine, University of Tromsø-UiT-The Artic University of Norway, Tromsø, Norway
| | - R Borgund Barnung
- Department of Community Medicine, University of Tromsø-UiT-The Artic University of Norway, Tromsø, Norway
| | - A Barricarte
- Navarra Public Health Institute, Pamplona; Navarra Institute for Health Research (IdiSNA), Pamplona; CIBER Epidemiology and Public Health CIBERESP, Madrid
| | - D Redondo-Sanchez
- CIBER Epidemiology and Public Health CIBERESP, Madrid; Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.Granada, Hospitales Universitarios de Granada, Granada; Universidad de Granada, Granada
| | | | - P Amiano
- CIBER Epidemiology and Public Health CIBERESP, Madrid; Public Health Division of Gipuzkoa, Health Department, Basque Region, San Sebastian, Spain
| | - M Wennberg
- Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - T Key
- The Cancer Epidemiology Unit, University of Oxford, Oxford
| | - K T Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - M A Merritt
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - E Riboli
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - M J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| | - I Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon
| |
Collapse
|
20
|
Reynés B, Palou M, Palou A. Gene expression modulation of lipid and central energetic metabolism related genes by high-fat diet intake in the main homeostatic tissues. Food Funct 2017; 8:629-650. [DOI: 10.1039/c6fo01473a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HF diet feeding affects the energy balance by transcriptional metabolic adaptations, based in direct gene expression modulation, perinatal programing and transcriptional factor regulation, which could be affected by the animal model, gender or period of dietary treatment.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology
- Nutrition and Biotechnology
- Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)
- Palma de Mallorca
- Spain
| | - Mariona Palou
- Alimentómica SL (Spin off no. 001 from UIB)
- Palma Mallorca
- Spain
| | - Andreu Palou
- Laboratory of Molecular Biology
- Nutrition and Biotechnology
- Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)
- Palma de Mallorca
- Spain
| |
Collapse
|
21
|
Vahmani P, Meadus WJ, da Silva ML, Mitchell AD, Mapiye C, Duff P, Rolland DC, Dugan ME. A trans10-18:1 enriched fraction from beef fed a barley grain-based diet induces lipogenic gene expression and reduces viability of HepG2 cells. Biochem Biophys Rep 2016; 7:84-90. [PMID: 28955893 PMCID: PMC5613299 DOI: 10.1016/j.bbrep.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/26/2016] [Indexed: 12/05/2022] Open
Abstract
Beef fat is a natural source of trans (t) fatty acids, and is typically enriched with either t10-18:1 or t11-18:1. Little is known about the bioactivity of individual t-18:1 isomers, and the present study compared the effects of t9-18:1, cis (c)9-18:1 and trans (t)-18:1 fractions isolated from beef fat enriched with either t10-18:1 (HT10) or t11-18:1 (HT11). All 18:1 isomers resulted in reduced human liver (HepG2) cell viability relative to control. Both c9-18:1 and HT11were the least toxic, t9-18:1had dose response increased toxicity, and HT10 had the greatest toxicity (P<0.05). Incorporation of t18:1 isomers was 1.8-2.5 fold greater in triacylglycerol (TG) than phospholipids (PL), whereas Δ9 desaturation products were selectively incorporated into PL. Culturing HepG2 cells with t9-18:1 and HT10 increased (P<0.05) the Δ9 desaturation index (c9-16:1/16:0) compared to other fatty acid treatments. HT10 and t9-18:1 also increased expression of lipogenic genes (FAS, SCD1, HMGCR and SREBP2) compared to control (P<0.05), whereas c9-18:1 and HT11 did not affect the expression of these genes. Our results suggest effects of HT11 and c9-18:1 were similar to BSA control, whereas HT10 and t-9 18:1 (i.e. the predominant trans fatty acid isomer found in partially hydrogenated vegetable oils) were more cytotoxic and led to greater expression of lipogenic genes.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- Ag+-SPE, silver ion solid phase extraction
- BSA, bovine serum albumin
- Beef
- Cell culture
- Cytotoxicity
- FAS, fatty acid synthase
- Fatty acid metabolism
- HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA reductase
- HT10, high-t10 fraction
- HT11, high-t11 fraction
- Liver
- MUFA, monounsaturated fatty acids
- PHVO, partially hydrogenated vegetable oils
- PL, phospholipid
- PUFA, polyunsaturated fatty acids
- SCD1, stearoyl-CoA desaturase-1
- SFA, saturated fatty acid
- SREBP1c, sterol regulatory element-binding protein-1c
- SREBP2, sterol regulatory element-binding protein-2
- TG, triacylglycerol
- TLC, thin layer chromatography
- Trans fatty acids
- c,, cis
- t, trans
Collapse
Affiliation(s)
- Payam Vahmani
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - William J. Meadus
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Maria L.P. da Silva
- Faculty of Veterinary and Agricultural Sciences, São Paulo State University, Jaboticabal, SP, Brazil
| | - Alec D. Mitchell
- Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, P. Bag X1, Matieland 7602, South Africa
| | - Pascale Duff
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - David C. Rolland
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Michael E.R. Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| |
Collapse
|
22
|
Vahmani P, Meadus WJ, Duff P, Rolland DC, Dugan MER. Comparing the lipogenic and cholesterolgenic effects of individualtrans-18:1 isomers in liver cells. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Payam Vahmani
- Lacombe Research and Development Centre; Agriculture and Agri-Food Canada; Lacombe Alberta Canada
| | - William J. Meadus
- Lacombe Research and Development Centre; Agriculture and Agri-Food Canada; Lacombe Alberta Canada
| | - Pascale Duff
- Lacombe Research and Development Centre; Agriculture and Agri-Food Canada; Lacombe Alberta Canada
| | - David C. Rolland
- Lacombe Research and Development Centre; Agriculture and Agri-Food Canada; Lacombe Alberta Canada
| | - Michael E. R. Dugan
- Lacombe Research and Development Centre; Agriculture and Agri-Food Canada; Lacombe Alberta Canada
| |
Collapse
|
23
|
Borgeraas H, Hertel JK, Seifert R, Berge RK, Bohov P, Ueland PM, Nygård O, Hjelmesæth J. Serum trans fatty acids, asymmetric dimethylarginine and risk of acute myocardial infarction and mortality in patients with suspected coronary heart disease: a prospective cohort study. Lipids Health Dis 2016; 15:38. [PMID: 26920731 PMCID: PMC4769542 DOI: 10.1186/s12944-016-0204-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background Trans fatty acids (TFAs) have been found to impair flow mediated vasodilation and nitric oxide (NO) production. We sought to examine if serum TFA levels are associated with plasma levels of the NO inhibitor asymmetric dimethylarginine (ADMA) and if possible relationships between serum TFA and cardiovascular morbidity or mortality are mediated or modified by plasma ADMA levels. Methods The cohort included patients who underwent coronary angiography for suspected coronary heart disease in 2000–2001. Serum trans 16:1n7 and trans 18:1 isomers were determined by gas liquid chromatography and the summation of these two TFAs is reported as TFA (percentage by weight (wt%) or concentration). Associations between TFAs and ADMA were estimated by calculating the Spearman’s rank correlation coefficient (ρ), and risk associations with AMI, cardiovascular death and all-cause mortality across quartiles of TFAs (wt% or concentration) were explored by Cox modeling. Results A total of 1364 patients (75 % men) with median (25th,75th percentile) age 61 (54, 69) years, serum TFA 0.46 (0.36, 0.56) wt% and plasma ADMA 0.59 (0.50, 0.70) μmol/L were studied. Serum TFA levels (ρ = 0.21, p < 0.001), trans 16:1n7 (ρ = 0.22, p < 0.001) and trans 18:1 (ρ = 0.20, p < 0.001) levels were significantly correlated with plasma ADMA levels. During the median (25th,75th percentile) follow-up time of 5.8 (4.5, 6.4) years, 129 (9.5 %) patients experienced an AMI, 124 (9.1 %) died, whereof 66 (53 %) due to cardiovascular causes. After multivariate adjustments no significant associations between serum TFA levels (wt% or concentration) and incident AMI, CV death and all-cause mortality were observed. Similar results were obtained when repeating the analyses with trans 16:1n7 and trans 18:1 individually. Plasma ADMA levels did not significantly modify the associations between TFA levels and outcomes. Conclusions Serum TFA levels were positively correlated with plasma ADMA levels. After multivariate adjustments, TFAs were not associated with incident AMI or mortality, and associations were not influenced by ADMA. Trial registration Clinicaltrials.gov Identifier: NCT00354081 Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0204-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Borgeraas
- Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.
| | | | - Reinhard Seifert
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Labotatory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,KG Jebsen Center for Diabetes Research, Haukeland University Hospital, Bergen, Norway
| | - Jøran Hjelmesæth
- Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Double Bond Position Plays an Important Role in Delta-9 Desaturation and Lipogenic Properties of Trans 18:1 Isomers in Mouse Adipocytes. Lipids 2015; 50:1253-8. [DOI: 10.1007/s11745-015-4080-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
|
25
|
Chung HK, Cho Y, Do HJ, Oh K, Seo WK, Shin MJ. Plasma phospholipid arachidonic acid and lignoceric acid are associated with the risk of cardioembolic stroke. Nutr Res 2015; 35:1001-8. [PMID: 26452419 DOI: 10.1016/j.nutres.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022]
Abstract
Cardioembolic (CE) stroke is the most severe subtype of ischemic stroke with high recurrence and mortality. However, there is still little information on the association of plasma fatty acid (FA) with CE stroke. The objective of this study was to test the hypothesis whether the composition of plasma phospholipid FA is associated with the risk of CE stroke. The study subjects were collected from the Korea University Stroke Registry. Twenty-one subjects were selected as CE stroke group, and 39 age- and sex-matched subjects with non-CE stroke were selected as controls. Sociodemographic factors, clinical measurements, and plasma phospholipid FA compositions were compared between the groups. Logistic regression was used to obtain estimates of the associations between the relevant FAs and CE stroke. The result showed that the CE stroke group had higher levels of free FA and lower levels of triglycerides before and after adjustment (all P < .05). In the regression analysis, elaidic acid (18:1Tn9) and arachidonic acid (20:4n6) were positively related, but lignoceric acid (24:0) was negatively related to CE stroke in all constructed models (all P < .05). In conclusion, plasma phospholipid FA composition was associated with CE stroke risk in Korean population, with higher proportions of elaidic acid and arachidonic acid and lower proportion of lignoceric acid in CE stroke.
Collapse
Affiliation(s)
- Hye-Kyung Chung
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 120-749, Republic of Korea
| | - Yoonsu Cho
- Department of Food and Nutrition, Korea University, Seoul 136-701, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Hyun Ju Do
- Department of Food and Nutrition, Korea University, Seoul 136-701, Republic of Korea
| | - Kyungmi Oh
- Department of Neurology, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea
| | - Woo-Keun Seo
- Department of Neurology, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea.
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-701, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
26
|
Kwon Y. Effect oftrans–fatty acids on lipid metabolism: Mechanisms for their adverse health effects. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Wang Q, Imamura F, Ma W, Wang M, Lemaitre RN, King IB, Song X, Biggs ML, Delaney JA, Mukamal KJ, Djousse L, Siscovick DS, Mozaffarian D. Circulating and dietary trans fatty acids and incident type 2 diabetes in older adults: the Cardiovascular Health Study. Diabetes Care 2015; 38:1099-107. [PMID: 25784660 PMCID: PMC4439533 DOI: 10.2337/dc14-2101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/01/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effects of trans fatty acids (TFAs) on type 2 diabetes mellitus (DM) by specific TFA subtype or method of assessment. RESEARCH DESIGN AND METHODS In the Cardiovascular Health Study, plasma phospholipid trans (t)-16:1n9, t-18:1, and cis (c)/t-, t/c-, and t/t-18:2 were measured in blood drawn from 2,919 adults aged 74 ± 5 years and free of prevalent DM in 1992. Dietary TFA was estimated among 4,207 adults free of prevalent DM when dietary questionnaires were initially administered in 1989 or 1996. Incident DM was defined through 2010 by medication use or blood glucose levels. Risks were assessed by Cox proportional hazards. RESULTS In biomarker analyses, 287 DM cases occurred during 30,825 person-years. Both t-16:1n9 (extreme quartile hazard ratio 1.59 [95% CI 1.04-2.42], P-trend = 0.04) and t-18:1 (1.91 [1.20-3.03], P-trend = 0.01) levels were associated with higher incident DM after adjustment for de novo lipogenesis fatty acids. In dietary analyses, 407 DM cases occurred during 50,105 person-years. Incident DM was positively associated with consumption of total TFAs (1.38 [1.03-1.86], P-trend = 0.02), t-18:1 (1.32 [1.00-1.76], P-trend = 0.04), and t-18:2 (1.41 [1.05-1.89], P-trend = 0.02). After further adjustment for other dietary habits, however, the associations of estimated dietary TFA with DM were attenuated, and only nonsignificant positive trends remained. CONCLUSIONS Among older adults, plasma phospholipid t-16:1n9 and t-18:1 levels were positively related to DM after adjustment for de novo lipogenesis fatty acids. Estimated dietary TFA was not significantly associated with DM. These findings highlight the need for further observational, interventional, and experimental studies of the effects TFA on DM.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Wenjie Ma
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Molin Wang
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mary L Biggs
- Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Seattle, WA
| | - Joseph A Delaney
- Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA
| | - Kenneth J Mukamal
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA
| | - Luc Djousse
- Division of Aging, Brigham and Women's Hospital, Boston, MA Boston Veterans Affairs Healthcare System, Boston, MA
| | | | - Dariush Mozaffarian
- Department of Epidemiology, Harvard School of Public Health, Boston, MA Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| |
Collapse
|
28
|
Vahmani P, Meadus WJ, Turner TD, Duff P, Rolland DC, Mapiye C, Dugan MER. Individual trans 18:1 Isomers are Metabolised Differently and Have Distinct Effects on Lipogenesis in 3T3-L1 Adipocytes. Lipids 2014; 50:195-204. [PMID: 25544125 DOI: 10.1007/s11745-014-3982-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
|
29
|
Wu T, Xie G, Ni Y, Liu T, Yang M, Wei H, Jia W, Ji G. Serum metabolite signatures of type 2 diabetes mellitus complications. J Proteome Res 2014; 14:447-56. [PMID: 25245142 DOI: 10.1021/pr500825y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of metabolic conditions, including hypoglycemia, high blood pressure (HBP), dyslipidemia, nerve damage and amputation, and vision problems, occur as a result of uncontrolled blood glucose levels over a prolonged period of time. The different components of diabetic complications are not independent but rather interdependent of each other, rendering the disease difficult to diagnose and control. The underlying pathogenesis of those components cannot be easily elucidated because of the heterogeneous, polygenic, and multifactorial nature of the disease. Metabonomics offers a snapshot of distinct biochemical variations that may reflect the unique metabolic phenotype under pathophysiological conditions. Here we report a mass-spectrometry-based metabonomic study designed to identify the distinct metabolic changes associated with several complications of type 2 diabetes mellitus (T2DM). The 292 patients recruited in the study were divided into five groups, including T2DM with HBP, T2DM with nonalcoholic fatty liver disease (NAFLD), T2DM with HBP and NAFLD, T2DM with HBP and coronary heart disease (CHD), and T2DM with HBP, NAFLD, and CHD. Serum differential metabolites were identified in each group of T2DM complication, mainly involving bile acid, fatty acid, amino acid, lipid, carbohydrate, steroids metabolism, and tricarboxylic acids cycle. These broad-spectrum metabolic changes emphasize the complex abnormalities present among these complications with elevated blood glucose levels, providing a novel strategy for stratifying patients with T2DM complications using blood-based metabolite markers.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|