1
|
Yabut KCB, Winnie Wen Y, Simon KT, Isoherranen N. CYP2C9, CYP3A and CYP2C19 metabolize Δ9-tetrahydrocannabinol to multiple metabolites but metabolism is affected by human liver fatty acid binding protein (FABP1). Biochem Pharmacol 2024; 228:116191. [PMID: 38583809 PMCID: PMC11410521 DOI: 10.1016/j.bcp.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Δ9-tetrahydrocannabinol (THC) is the psychoactive constituent of cannabis. It is cleared predominantly via metabolism. Metabolism to 11-OH-THC by cytochrome P450 (CYP) 2C9 has been proposed as the main clearance pathway of THC, with the estimated fraction metabolized (fm) about 70%. The remaining clearance pathways are not well established, and it is unknown how THC is eliminated in individuals with reduced CYP2C9 activity. The goal of this study was to systematically identify the CYP enzymes contributing to THC clearance and characterize the metabolites formed. Further, this study aimed to characterize the impact of liver fatty acid binding protein (FABP1) on THC metabolism by human CYPs. THC was metabolized to at least four different metabolites including 11-OH-THC in human liver microsomes (HLMs) and with recombinant CYPs. 11-OH-THC was formed by recombinant CYP2C9 (Km,u = 0.77 nM, kcat = 12 min-1) and by recombinant CYP2C19 (Km,u = 2.2 nM, kcat = 14 min-1). The other three major metabolites were likely hydroxylations in the cyclohexenyl ring and were formed mainly by recombinant CYP3A4/5 (Km,u > 10 nM). HLM experiments confirmed the contributions of CYP2C9, CYP2C19 and CYP3A to THC metabolism. The presence of FABP1 and THC binding to FABP1 altered THC metabolism by recombinant CYPs and HLMs in an enzyme and metabolite specific manner. This suggests that FABP1 may interact with CYP enzymes and alter the fm by CYPs towards THC metabolism. In conclusion, this study is the first to systematically establish the metabolic profile of THC by human CYPs and characterize how FABP1 binding alters CYP mediated THC metabolism.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Keiann T Simon
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States.
| |
Collapse
|
2
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
3
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein 1 (FABP1) and FABP1 Binding Alters Drug Metabolism. Mol Pharmacol 2024; 105:395-410. [PMID: 38580446 PMCID: PMC11114116 DOI: 10.1124/molpharm.124.000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 μM) and low (Kd,2 > 10 μM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 μM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Alice Martynova
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Benjamin P Zercher
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Matthew F Bush
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Jiang J, Li H, Tang M, Lei L, Li HY, Dong B, Li JR, Wang XK, Sun H, Li JY, Xu JC, Gong Y, Jiang JD, Peng ZG. Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1. Int J Mol Sci 2024; 25:5086. [PMID: 38791126 PMCID: PMC11120891 DOI: 10.3390/ijms25105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.
Collapse
Affiliation(s)
- Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jing-Chen Xu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Yue Gong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein (FABP1) and FABP1 Binding Alters Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576032. [PMID: 38293009 PMCID: PMC10827205 DOI: 10.1101/2024.01.17.576032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Liver fatty acid binding protein (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data is available for human FABP1 (hFABP1). FABP1 has a large binding pocket and multiple fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1 and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1=0.2 µM) and low affinity (Kd,2 >10 µM) binding sites. Nine drugs bound to hFABP1 with Kd values ranging from 1 to 20 µM. None of the tested drugs completely displaced DAUDA from hFABP1 and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-diclofenac-hFABP1 ternary complex was verified with native MS. Docking placed diclofenac in the portal region of FABP1 with DAUDA in the binding cavity. Presence of hFABP1 decreased the kcat and Km,u of diclofenac with CYP2C9 by ~50% suggesting that hFABP1 binding in the liver will alter drug metabolism and clearance. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 interacts with CYP2C9.
Collapse
Affiliation(s)
- King Clyde B. Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Alice Martynova
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Benjamin P. Zercher
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Blaauw MJ, Cristina dos Santos J, Vadaq N, Trypsteen W, van der Heijden W, Groenendijk A, Zhang Z, Li Y, de Mast Q, Netea MG, Joosten LA, Vandekerckhove L, van der Ven A, Matzaraki V. Targeted plasma proteomics identifies MICA and IL1R1 proteins associated with HIV-1 reservoir size. iScience 2023; 26:106486. [PMID: 37091231 PMCID: PMC10113782 DOI: 10.1016/j.isci.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
Collapse
|
8
|
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Vet Sci 2023; 158:185-195. [PMID: 37030094 DOI: 10.1016/j.rvsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and 12 family members have been documented in the literature. In recent years, new insights have been gained into the structure and function of FABPs, which are important regulators of lipid metabolic processes in the body and play a central role in coordinating lipid transport and metabolism in various tissues and organs across species. This paper provides a brief overview of the structure and biological functions of FABPs and reviews related studies on lipid metabolism in livestock and poultry to lay the foundation for research on the mechanism underlying the regulatory effect of FABPs on lipid metabolism in livestock and poultry and for the genetic improvement of livestock and poultry.
Collapse
Affiliation(s)
- Chuanchuan Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tong Mu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
9
|
Cheng C, Liu XH, He J, Gao J, Zhou JT, Fan JN, Jin X, Zhang J, Chang L, Xiong Z, Yu J, Li S, Li X. Apolipoprotein A4 Restricts Diet-induced Hepatic Steatosis via SREBF1-mediated Lipogenesis and Enhances IRS-PI3K-Akt Signaling. Mol Nutr Food Res 2022; 66:e2101034. [PMID: 35909347 DOI: 10.1002/mnfr.202101034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Abstract
SCOPE Hepatic steatosis and insulin resistance (IR) are risk factors for many metabolic syndromes such as NAFLD and T2DM. ApoA4 improves glucose hemostasis by increasing glucose-stimulated insulin secretion and glucose uptake via PI3K-Akt activation in adipocytes. However, whether ApoA4 has an effect on hepatic steatosis or IR remains unclear. METHODS AND RESULTS ApoA4-knockout (KO) aggravates diet-induced obesity, hepatic steatosis and IR in mice promoted by increased hepatic lipogenesis gene expression based on RNA-seq data. Conversely, liver-specific overexpression of ApoA4 via AAV-ApoA4 transduction reverses the effect in ApoA4-KO mice, accompanied by suppressed hepatic lipogenesis, increased lipolysis, and fatty acid oxidation. Short-term treatment with recombinant ApoA4 protein improves glucose clearance and liver insulin sensitivity, and reduces hepatic lipogenesis gene expression in the absence of insulin. Moreover, in primary hepatocytes and a hepatic cell line, ApoA4 improves hepatic glucose uptake via IRS-PI3K-Akt signaling and decreases fat deposition and hepatic lipogenesis gene expression by inhibiting SREBF1 activity. CONCLUSION ApoA4 restricts hepatic steatosis by inhibiting SREBF1-mediated lipogenesis and improves insulin sensitivity and glucose uptake via IRS-PI3K-Akt signaling in the liver. These findings indicate that ApoA4 may serve as a therapeutic target for obesity-associated NAFLD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Cheng
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, Institute of Digestive Diseases. The Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jing He
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jin-Ting Zhou
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jing-Na Fan
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Xi Jin
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jianbo Zhang
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Liao Chang
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Zijun Xiong
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Jun Yu
- OneHealth Technology Company, Xi'an, 710000, China
| | - Shengbin Li
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China.,Key laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, Institute of Digestive Diseases. The Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, 710100, China
| |
Collapse
|
10
|
Wei F, Yang X, Zhang M, Xu C, Hu Y, Liu D. Akkermansia muciniphila Enhances Egg Quality and the Lipid Profile of Egg Yolk by Improving Lipid Metabolism. Front Microbiol 2022; 13:927245. [PMID: 35928144 PMCID: PMC9344071 DOI: 10.3389/fmicb.2022.927245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila (A. muciniphila) has shown potential as a probiotic for the prevention and treatment of non-alcoholic fatty liver disease in both humans and mice. However, relatively little is known about the effects of A. muciniphila on lipid metabolism, productivity, and product quality in laying hens. In this study, we explored whether A. muciniphila supplementation could improve lipid metabolism and egg quality in laying hens and sought to identify the underlying mechanism. In the first experiment, 80 Hy-Line Brown laying hens were divided into four groups, one of which was fed a normal diet (control group), while the other three groups were administered a high-energy, low-protein diet to induce fatty liver hemorrhagic syndrome (FLHS). Among the three FLHS groups, one was treated with phosphate-buffered saline, one with live A. muciniphila, and one with pasteurized A. muciniphila. In the second experiment, 140 Hy-Line Brown laying hens were divided into two groups and respectively fed a basal diet supplemented or not with A. muciniphila lyophilized powder. The results showed that, in laying hens with FLHS, treatment with either live or pasteurized A. muciniphila efficiently decreased body weight, abdominal fat deposition, and lipid content in both serum and the liver; downregulated the mRNA expression of lipid synthesis-related genes and upregulated that of lipid transport-related genes in the liver; promoted the growth of short-chain fatty acids (SCFAs)-producing microorganisms and increased the cecal SCFAs content; and improved the yolk lipid profile. Additionally, the supplementation of lyophilized powder of A. muciniphila to aged laying hens reduced abdominal fat deposition and total cholesterol (TC) levels in both serum and the liver, suppressed the mRNA expression of cholesterol synthesis-related genes in the liver, reduced TC content in the yolk, increased eggshell thickness, and reshaped the composition of the gut microbiota. Collectively, our findings demonstrated that A. muciniphila can modulate lipid metabolism, thereby, promoting laying hen health as well as egg quality and nutritive value. Live, pasteurized, and lyophilized A. muciniphila preparations all have the potential for use as additives for improving laying hen production.
Collapse
|
11
|
Integrated Single-Cell RNA-Sequencing Analysis of Gastric Cancer Identifies FABP1 as a Novel Prognostic Biomarker. JOURNAL OF ONCOLOGY 2022; 2022:4761403. [PMID: 35799608 PMCID: PMC9256400 DOI: 10.1155/2022/4761403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Gastric cancer (GC) is usually diagnosed in an advanced stage at the first visit due to the atypical clinical symptoms. The low surgical resection rate and chemotherapy sensitivity result in dismal survival. Therefore, it is urgent to develop novel biomarkers with high sensitivity and specificity to accurately assess the prognosis of GC patients. In the present study, 3385 differentially expressed genes (DEGs) were obtained from the single-cell RNA sequencing data of GC specimens. Using the unsupervised dimensionality reduction, we further found 3 subsets of cells including gastric cells, plasmacytoid dendritic cells, and memory T cells. Based on the cell clustering, we explored the key regulatory genes for GC progression by pseudo-time analysis and functional enrichment analysis. According to the results, the significant differentially expressed fatty acid-binding protein 1 (FABP1) verified by pseudo-time analysis was identified as the hub gene of GC progression. FABP1 was shown to be closely related to the long-term survival and the age at diagnosis of patients with GC in analysis based on the TCGA (The Cancer Genome Atlas) database. To further verify the role of FABP1 in GC, we performed immunohistochemical (IHC) analysis using the GC tissue microarray and found that the expression level of FABP1 was higher in GC tissues than in the adjacent tissues. Moreover, GC patients with higher expression of FABP1 had a worse clinical outcome. In summary, our study revealed that FABP1 is a potential effective biomarker for the prognosis of GC, and high expression of FABP1 predicts unsatisfactory survival.
Collapse
|
12
|
Fearby N, Penman S, Thanos P. Effects of Δ9-Tetrahydrocannibinol (THC) on Obesity at Different Stages of Life: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063174. [PMID: 35328862 PMCID: PMC8951828 DOI: 10.3390/ijerph19063174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
The Cannabis sativa plant has historically been used for both recreational and medical purposes. With the recent surge in recreational use of cannabis among adolescents and adults in particular, there is an increased obligation to determine the short- and long-term effects that consuming this plant may have on several aspects of the human psyche and body. The goal of this article was to examine the negative effects of obesity, and how the use of Δ9-tetrahydrocannibinol (THC) or cannabidiol (CBD) can impact rates of this global pandemic at different timepoints of life. Conflicting studies have been reported between adult and adolescents, as there are reports of THC use leading to increased weight due to elevated appetite and consumption of food, while others observed a decrease in overall body weight due to the regulation of omega-6/omega-3 endocannabinoid precursors and a decrease in energy expenditure. Studies supported a positive correlation between prenatal cannabis use and obesity rates in the children as they matured. The data did not indicate a direct connection between prenatal THC levels in cannabis and obesity rates, but that this development may occur due to prenatal THC consumption leading to low birthweight, and subsequent obesity. There are few studies using animal models that directly measure the effects that prenatal THC administration on obesity risks among offspring. Thus, this is a critical area for future studies using a developmental framework to examine potential changes in risk across development.
Collapse
Affiliation(s)
- Nathan Fearby
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
13
|
Gholaminejad A, Fathalipour M, Roointan A. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. BMC Nephrol 2021; 22:245. [PMID: 34215202 PMCID: PMC8252307 DOI: 10.1186/s12882-021-02447-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Background Diabetic nephropathy (DN) is the major complication of diabetes mellitus, and leading cause of end-stage renal disease. The underlying molecular mechanism of DN is not yet completely clear. The aim of this study was to analyze a DN microarray dataset using weighted gene co-expression network analysis (WGCNA) algorithm for better understanding of DN pathogenesis and exploring key genes in the disease progression. Methods The identified differentially expressed genes (DEGs) in DN dataset GSE47183 were introduced to WGCNA algorithm to construct co-expression modules. STRING database was used for construction of Protein-protein interaction (PPI) networks of the genes in all modules and the hub genes were identified considering both the degree centrality in the PPI networks and the ranked lists of weighted networks. Gene ontology and Reactome pathway enrichment analyses were performed on each module to understand their involvement in the biological processes and pathways. Following validation of the hub genes in another DN dataset (GSE96804), their up-stream regulators, including microRNAs and transcription factors were predicted and a regulatory network comprising of all these molecules was constructed. Results After normalization and analysis of the dataset, 2475 significant DEGs were identified and clustered into six different co-expression modules by WGCNA algorithm. Then, DEGs of each module were subjected to functional enrichment analyses and PPI network constructions. Metabolic processes, cell cycle control, and apoptosis were among the top enriched terms. In the next step, 23 hub genes were identified among the modules in genes and five of them, including FN1, SLC2A2, FABP1, EHHADH and PIPOX were validated in another DN dataset. In the regulatory network, FN1 was the most affected hub gene and mir-27a and REAL were recognized as two main upstream-regulators of the hub genes. Conclusions The identified hub genes from the hearts of co-expression modules could widen our understanding of the DN development and might be of targets of future investigations, exploring their therapeutic potentials for treatment of this complicated disease.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Zare-Feyzabadi R, Mozaffari M, Ghayour-Mobarhan M, Valizadeh M. FABP1 gene variant associated with risk of metabolic syndrome. Comb Chem High Throughput Screen 2021; 25:1355-1360. [PMID: 34082672 DOI: 10.2174/1386207324666210603114434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic Syndrome (MetS) is defined by a clustering of metabolic abnormalities associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. There has been an increasing interest in the associations of genetic variants involved in diabetes and obesity in the FABP1 pathway. The relationship between the rs2241883 polymorphism of FABP1 and risk of MetS remains unclear. OBJECTIVE We aimed to examine the association between this genetic polymorphism and the presence of MetS and its constituent factors. METHODS A total of 942 participants were recruited as part of the Mashhad Stroke and Heart Atherosclerosis Disorders (MASHAD study) Cohort. Patients with MetS were identified using the International Diabetes Federation (IDF) criteria (n=406) and those without MetS (n=536) were also recruited. DNA was extracted from peripheral blood samples and used for genotyping of the FABP1 rs2241883T/C polymorphism using Tetra-Amplification Refractory Mutation System Polymerase Chain Reaction (Tetra-ARMS PCR). Genetic analysis was confirmed by gel electrophoresis and DNA sequencing. RESULTS Using both univariate and multivariate analyses after adjusting for age, sex and physical activity, carriers of C allele (CT/CC genotypes) in FABP1 variant were related to an increased risk of MetS, compared to non-carriers (OR: 1.38, 95%CI: 1.04,1.82, p=0.026). CONCLUSION The present study shows that C allele in the FABP1 variant can be associated with an increased risk of MetS. The evaluation of these factors in a larger population may help further confirm these findings.
Collapse
Affiliation(s)
- Reza Zare-Feyzabadi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood. Iran
| | - Majid Mozaffari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood. Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohsen Valizadeh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
15
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
16
|
Lai MP, Katz FS, Bernard C, Storch J, Stark RE. Two fatty acid-binding proteins expressed in the intestine interact differently with endocannabinoids. Protein Sci 2020; 29:1606-1617. [PMID: 32298508 DOI: 10.1002/pro.3875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 11/07/2022]
Abstract
Two different members of the fatty acid-binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver-type and intestinal fatty acid-binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat-fed IFABP-null mice remained lean, whereas LFABP-null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two-dimensional 1 H-15 N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.
Collapse
Affiliation(s)
- May Poh Lai
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Francine S Katz
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Cédric Bernard
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| |
Collapse
|
17
|
Effects and Mechanisms of Dendrobium officinalis Six Nostrum for Treatment of Hyperuricemia with Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2914019. [PMID: 32308702 PMCID: PMC7149358 DOI: 10.1155/2020/2914019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Objectives. Hyperuricemia (HUA) is a disease caused by increased production of uric acid (UA) or reduced excretion of UA in the body. Results of an epidemiological survey show that 60% of patients with HUA have hyperlipidemia (HPA). Dendrobium officinalis (DOF) six nostrum (DOS) is based on the theory of traditional Chinese medicine for the transformation of the traditional Chinese nostrum Si Miao Wan. In this article, we aim to discuss the efficacy and mechanism of DOS in reducing UA and regulating lipid metabolism. The rat model of HUA with HPA was induced by potassium oxonate (PO) combined with high-fat sorghum feed. We monitored the serum UA and blood lipids. Liver xanthine oxidase (XOD), adenosine deaminase (ADA), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP1) activities were measured by enzyme-linked immunosorbent assay (ELISA) after the last administration of DOS. We performed a histopathological examination of rat kidney and intestine. Immunohistochemistry (IHC) was used to detect the expression of renal inflammatory proteins NLRP3 / Caspase-1 and intestinal inflammatory proteins TLR4 / NLRP3. We used western blot for measurement of liver hypoxanthine-guanine phosphoribosyl transferase (HPRT1) protein expression and renal PDZ domain protein kidney 1 (PDZK1) protein expression. DOS administration significantly reduced serum UA, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) level, and improved liver steatosis in the model rat. At the same time, DOS treatment effectively inhibited liver XOD and ADA, increased the level of liver HPRT1, and reduced the production of UA. Additional studies had shown that DOS can restore normal UA excretion function in the intestine and kidney and regulated liver lipids metabolism. IHC and histopathological sections showed that DOS reduced the level of kidney, intestinal inflammatory body (NLRP3, Caspase-1, and TLR4), improved inflammation of the kidney and intestinal tract in rats. DOS is a promising drug that can effectively reduce serum UA and lipid level in the model rat. The mechanism of action may be related to inhibition of UA production, promotion of UA excretion, regulation of lipids metabolism, and anti-inflammatory response.
Collapse
|
18
|
Huang KT, Chen KD, Hsu LW, Kung CP, Li SR, Chen CC, Chiu KW, Goto S, Chen CL. Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD. Nutrients 2020; 12:nu12010270. [PMID: 31968655 PMCID: PMC7019565 DOI: 10.3390/nu12010270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.
Collapse
Affiliation(s)
- Kuang-Tzu Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (K.-D.C.); (C.-P.K.)
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8193)
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (K.-D.C.); (C.-P.K.)
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
| | - Chao-Pin Kung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (K.-D.C.); (C.-P.K.)
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
| | - Shu-Rong Li
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
| | - Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - King-Wah Chiu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shigeru Goto
- Fukuoka Institute of Occupational Health, Fukuoka 815-0081, Japan;
| | - Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (L.-W.H.); (S.-R.L.); (C.-L.C.)
| |
Collapse
|
19
|
Martin GG, Seeger DR, McIntosh AL, Milligan S, Chung S, Landrock D, Dangott LJ, Golovko MY, Murphy EJ, Kier AB, Schroeder F. Sterol Carrier Protein-2/Sterol Carrier Protein-x/Fatty Acid Binding Protein-1 Ablation Impacts Response of Brain Endocannabinoid to High-Fat Diet. Lipids 2019; 54:583-601. [PMID: 31487051 DOI: 10.1002/lipd.12192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Brain endocannabinoids (EC) such as arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) primarily originate from serum arachidonic acid (ARA), whose level is regulated in part by a cytosolic ARA-binding protein, that is, liver fatty acid binding protein-1 (FABP1), not expressed in the brain. Ablation of the Fabp1 gene (LKO) increases brain AEA and 2-AG by decreasing hepatic uptake of ARA to increase serum ARA, thereby increasing ARA availability for uptake by the brain. The brain also expresses sterol carrier protein-2 (SCP-2), which is also a cytosolic ARA-binding protein. To further resolve the role of SCP-2 independent of FABP1, mice ablated in the Scp-2/Scp-x gene (DKO) were crossed with mice ablated in the Fabp1 gene (LKO) mice to generate triple knock out (TKO) mice. TKO impaired the ability of LKO to increase brain AEA and 2-AG. While a high-fat diet (HFD) alone increased brain AEA, TKO impaired this effect. Overall, these TKO-induced blocks were not attributable to altered expression of brain proteins in ARA uptake, AEA/2-AG synthesis, or AEA/2-AG degrading enzymes. Instead, TKO reduced serum levels of free ARA and/or total ARA and thereby decreased ARA availability for uptake to the brain and downstream synthesis of AEA and 2-AG therein. In summary, Scp-2/Scp-x gene ablation in Fabp1 null (LKO) mice antagonized the impact of LKO and HFD on brain ARA and, subsequently, EC levels. Thus, both FABP1 and SCP-2 participate in regulating the EC system in the brain.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| |
Collapse
|
20
|
Elmes MW, Prentis LE, McGoldrick LL, Giuliano CJ, Sweeney JM, Joseph OM, Che J, Carbonetti GS, Studholme K, Deutsch DG, Rizzo RC, Glynn SE, Kaczocha M. FABP1 controls hepatic transport and biotransformation of Δ 9-THC. Sci Rep 2019; 9:7588. [PMID: 31110286 PMCID: PMC6527858 DOI: 10.1038/s41598-019-44108-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/09/2019] [Indexed: 12/04/2022] Open
Abstract
The increasing use of medical marijuana highlights the importance of developing a better understanding of cannabinoid metabolism. Phytocannabinoids, including ∆9-tetrahydrocannabinol (THC), are metabolized and inactivated by cytochrome P450 enzymes primarily within the liver. The lipophilic nature of cannabinoids necessitates mechanism(s) to facilitate their intracellular transport to metabolic enzymes. Here, we test the central hypothesis that liver-type fatty acid binding protein (FABP1) mediates phytocannabinoid transport and subsequent inactivation. Using X-ray crystallography, molecular modeling, and in vitro binding approaches we demonstrate that FABP1 accommodates one molecule of THC within its ligand binding pocket. Consistent with its role as a THC carrier, biotransformation of THC was reduced in primary hepatocytes obtained from FABP1-knockout (FABP1-KO) mice. Compared to their wild-type littermates, administration of THC to male and female FABP1-KO mice potentiated the physiological and behavioral effects of THC. The stark pharmacodynamic differences were confirmed upon pharmacokinetic analyses which revealed that FABP1-KO mice exhibit reduced rates of THC biotransformation. Collectively, these data position FABP1 as a hepatic THC transport protein and a critical mediator of cannabinoid inactivation. Since commonly used medications bind to FABP1 with comparable affinities to THC, our results further suggest that FABP1 could serve a previously unrecognized site of drug-drug interactions.
Collapse
Affiliation(s)
- Matthew W Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, 11794, USA.
| | - Lauren E Prentis
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Christopher J Giuliano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Joseph M Sweeney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Olivia M Joseph
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Joyce Che
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Gregory S Carbonetti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA.,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Keith Studholme
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794, USA. .,Department of Anesthesiology, Stony Brook University, Stony Brook, New York, 11794, USA.
| |
Collapse
|
21
|
Martin GG, Landrock D, Dangott LJ, McIntosh AL, Kier AB, Schroeder F. Human Liver Fatty Acid Binding Protein-1 T94A Variant, Nonalcohol Fatty Liver Disease, and Hepatic Endocannabinoid System. Lipids 2019; 53:27-40. [PMID: 29488637 DOI: 10.1002/lipd.12008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
Abstract
Hepatic endocannabinoids (EC) and their major binding/"chaperone" protein (i.e., liver fatty acid binding protein-1 [FABP1]) are associated with development of nonalcoholic fatty liver (NAFLD) in animal models and humans. Since expression of the highly prevalent human FABP1 T94A variant induces serum lipid accumulation, it is important to determine its impact on hepatic lipid accumulation and the EC system. This issue was addressed in livers from human subjects expressing only wild-type (WT) FABP1 T94T (TT genotype) or T94A variant (TC or CC genotype). WT FABP1 males had lower total lipids (both neutral cholesteryl esters, triacylglycerols) and phospholipids than females. WT FABP1 males' lower lipids correlated with lower levels of the N-acylethanolamide DHEA and 2-monoacylglycerols (2-MAG) (2-OG, 2-PG). T94A expression in males increased the hepatic total lipids (triacylglycerol, cholesteryl ester), which is consistent with their higher level of CB1-potentiating 2-OG and lower antagonistic EPEA. In contrast, in females, T94A expression did not alter the total lipids, neutral lipids, or phospholipids, which is attributable to the higher cannabinoid receptor-1 (CB1) agonist arachidonoylethanolamide (AEA) and its CB1-potentiator OEA being largely offset by reduced potentiating 2-OG and increased antagonistic EPEA. Taken together, these findings indicate that T94A-induced alterations in the hepatic EC system contribute at least in part to the hepatic accumulation of lipids associated with NAFLD, especially in males.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| |
Collapse
|
22
|
Huang H, McIntosh AL, Martin GG, Dangott LJ, Kier AB, Schroeder F. Structural and Functional Interaction of Δ 9-Tetrahydrocannabinol with Liver Fatty Acid Binding Protein (FABP1). Biochemistry 2018; 57:6027-6042. [PMID: 30232874 DOI: 10.1021/acs.biochem.8b00744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although serum Δ9-tetrahydrocannabinol (Δ9-THC) undergoes rapid hepatic clearance and metabolism, almost nothing is known regarding the mechanism(s) whereby this highly lipophilic phytocannabinoid is transported for metabolism/excretion. A novel NBD-arachidonoylethanolamide (NBD-AEA) fluorescence displacement assay showed that liver fatty acid binding protein (FABP1), the major hepatic endocannabinoid (EC) binding protein, binds the first major metabolite of Δ9-THC (Δ9-THC-OH) as well as Δ9-THC itself. Circular dichroism (CD) confirmed that not only Δ9-THC and Δ9-THC-OH but also downstream metabolites Δ9-THC-COOH and Δ9-THC-CO-glucuronide directly interact with FABP1. Δ9-THC and metabolite interaction differentially altered the FABP1 secondary structure, increasing total α-helix (all), decreasing total β-sheet (Δ9-THC-COOH, Δ9-THC-CO-glucuronide), increasing turns (Δ9-THC-OH, Δ9-THC-COOH, Δ9-THC-CO-glucuronide), and decreasing unordered structure (Δ9-THC, Δ9-THC-OH). Cultured primary hepatocytes from wild-type (WT) mice took up and converted Δ9-THC to the above metabolites. Fabp1 gene ablation (LKO) dramatically increased hepatocyte accumulation of Δ9-THC and even more so its primary metabolites Δ9-THC-OH and Δ9-THC-COOH. Concomitantly, rtPCR and Western blotting indicated that LKO significantly increased Δ9-THC's ability to regulate downstream nuclear receptor transcription of genes important in both EC ( Napepld > Daglb > Dagla, Naaa, Cnr1) and lipid ( Cpt1A > Fasn, FATP4) metabolism. Taken together, the data indicated that FABP1 may play important roles in Δ9-THC uptake and elimination as well as Δ9-THC induction of genes regulating hepatic EC levels and downstream targets in lipid metabolism.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Avery L McIntosh
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Gregory G Martin
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Lawrence J Dangott
- Protein Chemistry Laboratory , Texas A&M University , College Station , Texas 77843-2128 , United States
| | - Ann B Kier
- Department of Pathobiology , Texas A&M University , College Station , Texas 77843-4467 , United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| |
Collapse
|
23
|
McIntosh AL, Huang H, Landrock D, Martin GG, Li S, Kier AB, Schroeder F. Impact of Fabp1 Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes. Lipids 2018; 53:561-580. [PMID: 30203570 DOI: 10.1002/lipd.12071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
Abstract
Liver fatty-acid-binding protein (FABP1, L-FABP) is the major cytosolic binding/chaperone protein for both precursor arachidonic acid (ARA) and the endocannabinoid (EC) products N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Although FABP1 regulates hepatic uptake and metabolism of ARA, almost nothing is known regarding FABP1's impact on AEA and 2-AG uptake, intracellular distribution, and targeting of AEA and 2-AG to degradative hepatic enzymes. In vitro assays revealed that FABP1 considerably enhanced monoacylglycerol lipase hydrolysis of 2-AG but only modestly enhanced AEA hydrolysis by fatty-acid amide hydrolase. Conversely, liquid chromatography-mass spectrometry of lipids from Fabp1 gene-ablated (LKO) hepatocytes confirmed that loss of FABP1 markedly diminished hydrolysis of 2-AG. Furthermore, the real-time imaging of novel fluorescent NBD-labeled probes (NBD-AEA, NBD-2-AG, and NBD-ARA) resolved FABP1's impact on uptake vs intracellular targeting/hydrolysis. FABP1 bound NBD-ARA with 2:1 stoichiometry analogous to ARA, but bound NBD-2-AG and NBD-AEA with 1:1 stoichiometry-apparently at different sites in FABP1's binding cavity. All three probes were taken up, but NBD-2-AG and NBD-AEA were targeted to lipid droplets. LKO reduced the uptake of NBD-ARA as expected, significantly enhanced that of NBD-AEA, but had little effect on NBD-2-AG. These data indicated that FABP1 impacts hepatocyte EC levels by binding EC and differentially impacts their intracellular hydrolysis (2-AG) and uptake (AEA).
Collapse
Affiliation(s)
- Avery L McIntosh
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Huan Huang
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Ann B Kier
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
24
|
Martin GG, Seeger DR, McIntosh AL, Chung S, Milligan S, Landrock D, Dangott LJ, Golovko MY, Murphy EJ, Kier AB, Schroeder F. Scp-2/Scp-x ablation in Fabp1 null mice differentially impacts hepatic endocannabinoid level depending on dietary fat. Arch Biochem Biophys 2018; 650:93-102. [PMID: 29763591 PMCID: PMC6033332 DOI: 10.1016/j.abb.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Dysregulation of the hepatic endocannabinoid (EC) system and high fat diet (HFD) are associated with non-alcoholic fatty liver disease. Liver cytosol contains high levels of two novel endocannabinoid binding proteins-liver fatty acid binding protein (FABP1) and sterol carrier protein-2 (SCP-2). While Fabp1 gene ablation significantly increases hepatic levels of arachidonic acid (ARA)-containing EC and sex-dependent response to pair-fed high fat diet (HFD), the presence of SCP-2 complicates interpretation. These issues were addressed by ablating Scp-2/Scp-x in Fabp1 null mice (TKO). In control-fed mice, TKO increased hepatic levels of arachidonoylethanolamide (AEA) in both sexes. HFD impacted hepatic EC levels by decreasing AEA in TKO females and decreasing 2-arachidonoyl glycerol (2-AG) in WT of both sexes. Only TKO males on HFD had increased hepatic 2-AG levels. Hepatic ARA levels were decreased in control-fed TKO of both sexes. Changes in hepatic AEA/2-AG levels were not associated with altered amounts of hepatic proteins involved in AEA/2-AG synthesis or degradation. These findings suggested that ablation of the Scp-2/Scp-x gene in Fabp1 null mice exacerbated hepatic EC accumulation and antagonized the impact of HFD on hepatic EC levels-suggesting both proteins play important roles in regulating the hepatic EC system.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843-2128, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
25
|
McIntosh AL, Martin GG, Huang H, Landrock D, Kier AB, Schroeder F. Δ 9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation. J Lipid Res 2018; 59:646-657. [PMID: 29414765 PMCID: PMC5880504 DOI: 10.1194/jlr.m082644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Indexed: 01/06/2023] Open
Abstract
Phytocannabinoids, such as Δ9-tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby "piggy-backing" on the same pathway's endogenous endocannabinoids (ECs). The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic "chaperone" protein with high affinity for both Δ9-THC and ECs suggests that Δ9-THC may alter hepatic EC levels. Therefore, the impact of Δ9-THC or EC treatment on the levels of endogenous ECs, such as N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and Fabp1 gene-ablated (LKO) mice. Δ9-THC alone or 2-AG alone significantly increased AEA and especially 2-AG levels in WT hepatocytes. LKO alone markedly increased AEA and 2-AG levels. However, LKO blocked/diminished the ability of Δ9-THC to further increase both AEA and 2-AG. In contrast, LKO potentiated the ability of exogenous 2-AG to increase the hepatocyte level of AEA and 2-AG. These and other data suggest that Δ9-THC increases hepatocyte EC levels, at least in part, by upregulating endogenous AEA and 2-AG levels. This may arise from Δ9-THC competing with AEA and 2-AG binding to FABP1, thereby decreasing targeting of bound AEA and 2-AG to the degradative enzymes, fatty acid amide hydrolase and monoacylglyceride lipase, to decrease hydrolysis within hepatocytes.
Collapse
Affiliation(s)
- Avery L McIntosh
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Gregory G Martin
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Huan Huang
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Danilo Landrock
- Departments of Pathobiology, Texas A&M University, College Station, TX 77843
| | - Ann B Kier
- Departments of Pathobiology, Texas A&M University, College Station, TX 77843
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843.
| |
Collapse
|
26
|
Cifarelli V, Abumrad NA. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 2018; 8:493-507. [PMID: 29687890 PMCID: PMC6247794 DOI: 10.1002/cphy.c170026] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several proteins have been implicated in fatty acid (FA) transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1) a member of the CD36 family and the FA transport protein 4 (FATP4). Here, we review the regulation of enterocyte FA uptake and its function in lipid absorption including prechylomicron formation, assembly and transport. Emphasis is given to CD36, which is abundantly expressed along the digestive tract of rodents and humans and has been the most studied. We also address the pleiotropic functions of CD36 that go beyond lipid absorption and metabolism to include recent evidence of its impact on intestinal homeostasis and barrier maintenance. Areas of progress involving contribution of membrane phospholipid remodeling and of cytosolic FA-binding proteins, FABP1 and FABP2 to fat absorption will be covered. © 2018 American Physiological Society. Compr Physiol 8:493-507, 2018.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nada A. Abumrad
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
27
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Ablating both Fabp1 and Scp2/Scpx (TKO) induces hepatic phospholipid and cholesterol accumulation in high fat-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:323-338. [PMID: 29307784 DOI: 10.1016/j.bbalip.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 01/16/2023]
Abstract
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
28
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
29
|
Pénzes Á, Mahmud Abdelwahab EM, Rapp J, Péteri ZA, Bovári-Biri J, Fekete C, Miskei G, Kvell K, Pongrácz JE. Toxicology studies of primycin-sulphate using a three-dimensional (3D) in vitro human liver aggregate model. Toxicol Lett 2017; 281:44-52. [PMID: 28916286 DOI: 10.1016/j.toxlet.2017.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Primycin-sulphate is a highly effective compound against Gram (G) positive bacteria. It has a potentially synergistic effect with vancomycin and statins which makes primycin-sulphate a potentially very effective preparation. Primycin-sulphate is currently used exclusively in topical preparations. In vitro animal hepatocyte and neuromuscular junction studies (in mice, rats, snakes, frogs) as well as in in vitro human red blood cell experiments were used to test toxicity. During these studies, the use of primycin-sulphate resulted in reduced cellular membrane integrity and modified ion channel activity. Additionally, parenteral administration of primycin-sulphate to mice, dogs, cats, rabbits and guinea pigs indicated high level of acute toxicity. The objective of this study was to reveal the cytotoxic and gene expression modifying effects of primycin-sulphate in a human system using an in vitro, three dimensional (3D) human hepatic model system. Within the 3D model, primycin-sulphate presented no acute cytotoxicity at concentrations 1μg/ml and below. However, even at low concentrations, primycin-sulphate affected gene expressions by up-regulating inflammatory cytokines (e.g., IL6), chemokines (e.g., CXCL5) and by down-regulating molecules of the lipid metabolism (e.g., peroxisome proliferator receptor (PPAR) alpha, gamma, etc). Down-regulation of PPAR alpha cannot just disrupt lipid production but can also affect cytochrome P450 metabolic enzyme (CYP) 3A4 expression, highlighting the need for extensive drug-drug interaction (DDI) studies before human oral or parenteral preparations can be developed.
Collapse
Affiliation(s)
- Ágota Pénzes
- PannonPharma Ltd., Biological Control Laboratory, 1 Pannonpharma Str., H-7720, Pécsvárad, Hungary
| | - Elhusseiny Mohamed Mahmud Abdelwahab
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pécs, 2 Rókus Str., H-7624 Pécs, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary
| | - Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pécs, 2 Rókus Str., H-7624 Pécs, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary; Humeltis Ltd, 20 Ifjúság Str., Pécs, Hungary
| | - Zsanett A Péteri
- PannonPharma Ltd., Biological Control Laboratory, 1 Pannonpharma Str., H-7720, Pécsvárad, Hungary
| | - Judit Bovári-Biri
- PannonPharma Ltd., Biological Control Laboratory, 1 Pannonpharma Str., H-7720, Pécsvárad, Hungary
| | - Csaba Fekete
- Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary; Department of General and Environmental Microbiology, Faculty of Natural Sciences, University of Pécs, 6 Ifjúság Str., H-7624, Pécs, Hungary
| | - György Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pécs, 2 Rókus Str., H-7624 Pécs, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary
| | - Krisztián Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pécs, 2 Rókus Str., H-7624 Pécs, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary
| | - Judit E Pongrácz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pécs, 2 Rókus Str., H-7624 Pécs, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Str., H-7624 Pécs, Hungary; Humeltis Ltd, 20 Ifjúság Str., Pécs, Hungary.
| |
Collapse
|
30
|
McIntosh AL, Storey SM, Huang H, Kier AB, Schroeder F. Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism. Arch Biochem Biophys 2017; 635:17-26. [PMID: 29051070 DOI: 10.1016/j.abb.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
While prior studies focusing on male mice suggest a role for sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x; DKO) on hepatic phytol metabolism, its role in females is unresolved. This issue was addressed using female and male wild-type (WT) and DKO mice fed a phytoestrogen-free diet without or with 0.5% phytol. GC/MS showed that hepatic: i) phytol was absent and its branched-chain fatty acid (BCFA) metabolites were barely detectable in WT control-fed mice; ii) accumulation of phytol as well as its peroxisomal metabolite BCFAs (phytanic acid » pristanic and 2,3-pristenic acids) was increased by dietary phytol in WT females, but only slightly in WT males; iii) accumulation of phytol and BCFA was further increased by DKO in phytol-fed females, but much more markedly in males. Livers of phytol-fed WT female mice as well as phytol-fed DKO female and male mice also accumulated increased proportion of saturated straight-chain fatty acids (LCFA) at the expense of unsaturated LCFA. Liver phytol accumulation was not due to increased SCP-2 binding/transport of phytol since SCP-2 bound phytanic acid, but not its precursor phytol. Thus, the loss of Scp-2/Scp-x contributed to a sex-dependent hepatic accumulation of dietary phytol and BCFA.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States.
| |
Collapse
|
31
|
Martin GG, Landrock D, Chung S, Dangott LJ, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J Lipid Res 2017; 58:2114-2126. [PMID: 28972119 DOI: 10.1194/jlr.m077891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Upregulation of the hepatic endocannabinoid (EC) receptor [cannabinoid receptor-1 (CB1)] and arachidonoylethanolamide (AEA) is associated with nonalcoholic fatty liver disease (NAFLD). Male mice fed high-fat diet (HFD) ad libitum also exhibit NAFLD, increased hepatic AEA, and obesity. But, preference for HFD complicates interpretation and almost nothing is known about these effects in females. These issues were addressed by pair-feeding HFD. Similarly to ad libitum-fed HFD, pair-fed HFD also increased WT male and female mouse fat tissue mass (FTM), but preferentially at the expense of lean tissue mass. In contrast, pair-fed HFD did not elicit NAFLD in WT mice regardless of sex. Concomitantly, pair-fed HFD oppositely impacted hepatic AEA, 2-arachidonoyl glycerol, and/or CB1 in WT males versus females. In pair-fed HFD mice, liver FA binding protein-1 (Fabp1) gene ablation (LKO): i) exacerbated FTM in both sexes; ii) did not elicit liver neutral lipid accumulation in males and only slightly in females; iii) increased liver AEA in males, but decreased it in females; and iv) decreased CB1 only in males. Thus, pair-fed HFD selectively impacted hepatic ECs more in females, but did not elicit NAFLD in either sex. These effects were modified by LKO consistent with FABP1's ability to impact EC and FA metabolism.
Collapse
Affiliation(s)
- Gregory G Martin
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Danilo Landrock
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Sarah Chung
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843
| | - Avery L McIntosh
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - John T Mackie
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Ann B Kier
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| |
Collapse
|
32
|
Martin GG, Huang H, McIntosh AL, Kier AB, Schroeder F. Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry 2017; 56:5147-5159. [DOI: 10.1021/acs.biochem.7b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| |
Collapse
|
33
|
D'Onofrio M, Barracchia CG, Bortot A, Munari F, Zanzoni S, Assfalg M. Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1152-1159. [PMID: 28668637 DOI: 10.1016/j.bbapap.2017.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.
Collapse
Affiliation(s)
| | | | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
34
|
Rashid N, Nigam A, Saxena P, Jain SK, Wajid S. Association of IL-1β, IL-1Ra and FABP1 gene polymorphisms with the metabolic features of polycystic ovary syndrome. Inflamm Res 2017; 66:621-636. [PMID: 28405733 DOI: 10.1007/s00011-017-1045-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a highly prevalent endocrinopathy is currently being designated as chronic low grade inflammatory state. IL-1β, IL-1Ra and FABP1 are critical mediators of inflammatory processes and are speculated to play a role in the pathogenesis of PCOS. The aim of this study was to study the association of IL-β, IL-1Ra and FABP1 gene polymorphisms with PCOS and related metabolic features. SUBJECTS 95 PCOS and 45 age matched healthy control subjects were enrolled in this study. METHODS Polymorphism in genes IL-1β, IL-1Ra and FABP1 was studied by PCR, PCR-RFLP and sequencing methods, respectively. Hormonal and lipid profiles were evaluated for all the subjects. RESULTS Hormonal and lipid profiles showed significant differences between PCOS and control subjects. Allele and genotype frequencies of IL-1β, IL-1Ra and FABP1 gene polymorphisms did not vary between the control and PCOS group. However, T allele of C[-511]T variant of IL-1β, allele II in intron 2 of IL-1Ra and A allele of A/G variant of FABP1 (rs2197076) showed significant association with many metabolic features associated with PCOS. CONCLUSIONS Polymorphism in genes encoding cytokines and proteins involved in lipid metabolism can provide insights into the genetics of the disease and may contribute to assess the associated risk of cardiovascular diseases (CVD), dyslipidemia and metabolic syndrome (MetS) associated with PCOS.
Collapse
Affiliation(s)
- Nadia Rashid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Aruna Nigam
- Department of Gynaecology and Obstetrics, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Pikee Saxena
- Department of Obstetrics and Gynaecology, Lady Hardinge Medical College and SSK Hospital, New Delhi, 110001, India
| | - S K Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| |
Collapse
|
35
|
Martin GG, Landrock D, Chung S, Dangott LJ, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids. J Neurochem 2017; 140:294-306. [PMID: 27861894 PMCID: PMC5225076 DOI: 10.1111/jnc.13890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023]
Abstract
The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Lawrence J. Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843-2128
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
36
|
Deutsch DG. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs). Front Pharmacol 2016; 7:370. [PMID: 27790143 PMCID: PMC5062061 DOI: 10.3389/fphar.2016.00370] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to be expected, this discovery raised the issues of AEA's synthesis and breakdown.
Collapse
Affiliation(s)
- Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
37
|
Huang H, McIntosh AL, Martin GG, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kier AB, Schroeder F. FABP1: A Novel Hepatic Endocannabinoid and Cannabinoid Binding Protein. Biochemistry 2016; 55:5243-55. [PMID: 27552286 DOI: 10.1021/acs.biochem.6b00446] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endocannabinoids (ECs) and cannabinoids are very lipophilic molecules requiring the presence of cytosolic binding proteins that chaperone these molecules to intracellular targets. While three different fatty acid binding proteins (FABP3, -5, and -7) serve this function in brain, relatively little is known about how such hydrophobic ECs and cannabinoids are transported within the liver. The most prominent hepatic FABP, liver fatty acid binding protein (FABP1 or L-FABP), has high affinity for arachidonic acid (ARA) and ARA-CoA, suggesting that FABP1 may also bind ARA-derived ECs (AEA and 2-AG). Indeed, FABP1 bound ECs with high affinity as shown by displacement of FABP1-bound fluorescent ligands and by quenching of FABP1 intrinsic tyrosine fluorescence. FABP1 also had high affinity for most non-ARA-containing ECs, FABP1 inhibitors, EC uptake/hydrolysis inhibitors, and phytocannabinoids and less so for synthetic cannabinoid receptor (CBR) agonists and antagonists. The physiological impact was examined with liver from wild-type (WT) versus FABP1 gene-ablated (LKO) male mice. As shown by liquid chromatography and mass spectrometry, FABP1 gene ablation significantly increased hepatic levels of AEA, 2-AG, and 2-OG. These increases were not due to increased protein levels of EC synthetic enzymes (NAPEPLD and DAGL) or a decreased level of EC degradative enzyme (FAAH) but correlated with complete loss of FABP1, a decreased level of SCP2 (8-fold less prevalent than FABP1, but also binds ECs), and a decreased level of degradative enzymes (NAAA and MAGL). These data indicated that FABP1 not only is the most prominent endocannabinoid and cannabinoid binding protein but also impacts hepatic endocannabinoid levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengrong Li
- Avanti Polar Lipids , 700 Industrial Park Drive, Alabaster, Alabama 35007-9105, United States
| | | | | |
Collapse
|
38
|
Martin GG, Chung S, Landrock D, Landrock KK, Dangott LJ, Peng X, Kaczocha M, Murphy EJ, Kier AB, Schroeder F. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 2016; 51:1007-20. [PMID: 27450559 PMCID: PMC5418128 DOI: 10.1007/s11745-016-4175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|