1
|
Zhang M, Yin YS, May KS, Wang S, Purcell H, Zhang XS, Blaser MJ, den Hartigh LJ. The role of intestinal microbiota in physiologic and body compositional changes that accompany CLA-mediated weight loss in obese mice. Mol Metab 2024; 89:102029. [PMID: 39293564 PMCID: PMC11447304 DOI: 10.1016/j.molmet.2024.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate. METHODS To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation. RESULTS While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production. CONCLUSIONS These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.
Collapse
Affiliation(s)
- Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue S Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Karolline S May
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Laura J den Hartigh
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Esmaeilnejad M, Rasaei N, Goudarzi K, Behrouz Dehkordi Z, Dolatshahi S, Salehi Omran H, Amirani N, Ashtary-Larky D, Shimi G, Asbaghi O. The effects of conjugated linoleic acid supplementation on cardiovascular risk factors in patients at risk of cardiovascular disease: A GRADE-assessed systematic review and dose-response meta-analysis. Br J Nutr 2024:1-16. [PMID: 39439191 DOI: 10.1017/s0007114524001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The present systematic review and meta-analysis sought to evaluate the effects of conjugated linoleic acid (CLA) supplementation on cardiovascular risk factors in patients at risk of CVD. Relevant studies were obtained by searching the PubMed, SCOPUS and Web of Science databases (from inception to January 2023). Weighted mean differences (WMD) and 95% CI were pooled using a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. A pooled analysis of 14 randomised controlled trials (RCT) with 17 effect sizes revealed that CLA supplementation led to significant reductions in body weight (WMD: -0·72 kg, 95% CI: -1·11, -0·33, P < 0·001), BMI (WMD: -0·22 kg/m2, 95% CI: -0·44, -0·00, P = 0·037) and body fat percentage (BFP) (WMD: -1·32 %, 95% CI: -2·24, -0·40, P = 0·005). However, there was no effect on lipid profile and blood pressure in comparison with the control group. In conclusion, CLA supplementation may yield a small but significant beneficial effect on anthropometric indices in patients at risk of CVD. Moreover, CLA seems not to have adverse effects on lipid profiles and blood pressure in patients at risk of CVD. It should be noted that the favourable effects of CLA supplementation on anthropometric variables were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Maryam Esmaeilnejad
- Faculty of Nutritional Sciences, Justus Liebig University, 35392Giessen, Germany
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kian Goudarzi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Behrouz Dehkordi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Dolatshahi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Akhgarjand C, Tavakoli A, Samavat S, Bagheri A, Anoushirvani A, Mirzababaei A, Amini MR, Ghorbi MD, Valisoltani N, Mansour A, Sajjadi-Jazi SM, Ansar H, Rezvani H. The effect of conjugated linoleic acid supplementation in comparison with omega-6 and omega-9 on lipid profile: a graded, dose-response systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1336889. [PMID: 38567248 PMCID: PMC10985181 DOI: 10.3389/fnut.2024.1336889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Conjugated linoleic acid (CLA) is a geometrical isomer of linoleic acid, which has anti-inflammatory, anti-diabetic, anti-cancer, and anti-obesity properties. However, the studies reported inconstant results about the CLA-related effects on lipid profiles. As a result, meta-analysis and systematic review were performed to survey the CLA supplementation-related effect on lipid profile including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG). To identify the relevant research, a systematic comprehensive search was initiated on the medical databases such as Scopus and PubMed/Medline until December 2022. The overall effect size was estimated by weighted mean difference (WMD) and 95% confidence interval (CI) in a random effect meta-analysis. In the final quantitative analysis, the meta-analysis considered 35 randomized controlled trials (RCTs) with 1,476 participants (707 controls and 769 cases). The pooled results demonstrated that CLA supplementation, compared with olive oil, significantly increased serum TG levels (WMD: 0.05 mmol/L; 95% CI: 0.01 to 0.1; p = 0.04; I2 = 0.0%, p = 0.91). With regard to TC level, CLA supplementation compared with placebo significantly reduced TC concentrations (WMD: -0.08 mmol/L; 95% CI: -0.14 to -0.02; p < 0.001; I2 = 82.4%). Moreover, the non-linear dose-response analysis indicated a decreasing trend of TC serum level from the 15th week of CLA supplementation compared with olive oil (Pnon-linearity = 0.01). The present meta-analysis and systematic review of 35 RCTs showed that the CLA intervention was able to raise the level of TG in comparison to olive oil; however, it can decrease TC level compared with placebo and olive oil.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Samavat
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliarash Anoushirvani
- Hemato-Oncology Ward, Firoozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Dehghani Ghorbi
- Hemato-Oncology Ward, Imam Hossein Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hastimansooreh Ansar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Hemato-Oncology Ward, Taleghani Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Rao Y, Li SL, Li MJ, Wang BZ, Wang YY, Liang LW, Yu S, Liu ZP, Cui S, Gou KM. Transgenic mice producing the trans 10, cis 12-conjugated linoleic acid present reduced adiposity and increased thermogenesis and fibroblast growth factor 21 (FGF21). J Nutr Biochem 2023; 120:109419. [PMID: 37487823 DOI: 10.1016/j.jnutbio.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) from ruminant-derived foodstuffs can induce body fat loss after oral administration. In the current study, a transgenic mouse that produced t10c12-CLA had been generated by inserting the Propionibacterium acnes isomerase (Pai) expression cassette into the Rosa26 locus, and its male offspring were used to elucidate the enduring influence of t10c12-CLA on overall health. Compared to their wild-type (wt) C57BL/6J littermates, both biallelic Pai/Pai and monoallelic Pai/wt mice exhibited reduced plasma triglycerides levels, and Pai/wt mice exclusively showed increased serum fibroblast growth factor 21. Further analysis of Pai/Pai mice found a decrease in white fat and an increase in brown fat, with more heat release and less physical activity. Analysis of Pai/Pai brown adipose tissues revealed that hyperthermia was associated with the over-expression of carnitine palmitoyltransferase 1B, uncoupling proteins 1 and 2. These findings suggest that the systemic and long-term impact of t10c12-CLA on obesity might be mediated through the pathway of fibroblast growth factor 21 when low doses are administered or through enhanced thermogenesis of brown adipose tissues when high doses are employed.
Collapse
Affiliation(s)
- Yu Rao
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi-Li Li
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mei-Juan Li
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Bao-Zhu Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yang-Yang Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lu-Wen Liang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zong-Ping Liu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Sheng Cui
- Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ke-Mian Gou
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
7
|
West S, Monteyne AJ, van der Heijden I, Stephens FB, Wall BT. Nutritional Considerations for the Vegan Athlete. Adv Nutr 2023; 14:774-795. [PMID: 37127187 PMCID: PMC10334161 DOI: 10.1016/j.advnut.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.
Collapse
Affiliation(s)
- Sam West
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
Multiple biological activities and biosynthesis mechanisms of specific conjugated linoleic acid isomers and analytical methods for prospective application. Food Chem 2023; 409:135257. [PMID: 36584529 DOI: 10.1016/j.foodchem.2022.135257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
Conjugated linoleic acid (CLA) is a collective term for the octadecadienoic acid isomers containing conjugated double bonds. This article reviewed CLA isomers from biological activities, biosynthesis mechanisms and analytical methods. The biological activities of CLA isomers in anti-obesity, cardiovascular protection, diabetes management and anti-cancer in vitro and in vivo were mainly reviewed. More attention has been paid to the production of the specific CLA isomer due to its biological activity. The biosynthesis methods of CLA isomers, such as dietary modification in ruminants and fermentation by microorganisms & enzymes, were systematically introduced. A rapid, accurate and economic analysis method will promote the research in both biological activities and biosynthesis mechanisms of CLA isomers. The merits of UV spectrometry, GC, HPLC, MS and CE used in the analysis of CLA isomers were also compared in detail. This paper aims to put into perspective the current status and future trends on CLA isomers.
Collapse
|
9
|
Faraji Sarabmirza R, Joolaei Ahranjani P, Rashidi L, Mousavi M, Khodaiyan F, Rashidi Nodeh H. An investigation on conjugated linoleic acid content, fatty acid composition, and physicochemical characteristics of Iranian Kurdish butter oil. Food Sci Nutr 2023; 11:1051-1058. [PMID: 36789035 PMCID: PMC9922134 DOI: 10.1002/fsn3.3142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, physicochemical and quality properties, fatty acid composition, and triglyceride composition of Iranian Kurdish butter oil (IKBO) obtained from yogurt drink (doogh) butter were investigated. Local doogh butter, prepared from cow's (CIKBO) and ewe's milk (EIKBO), was utilized as the raw material for this purpose. The free fatty acids (FFA) and peroxide values of IKBOs of the cow (CIKBO) and ewe (EIKBO) were obtained at 0.41 ± 0.01 and 0.39 ± 0.01 (g Oleic acid 100/g oil), and 1.32 ± 0.00 and 1.35 ± 0.00 (meq O2 kg/oil), respectively. The amounts of saturated fatty acids (SFAs): 70.27 ± 0.62 and 72.13 ± 0.84 (g/100 g), monounsaturated fatty acids (MUFAs): 19.37 ± 0.74 and 20.56 ± 0.97 (g/100 g), and polyunsaturated fatty acids (PUFAs): 1.22 ± 0.12 and 2.75 ± 0.38 (g/100 g) were obtained in CIKBO and EIKBO, respectively. The significant majority of the fatty acids (FAs) in the examined CIKBO and EIKBO were myristic (CIKBO: 13.76 ± 0.02 (g/100 g) and EIKBO: 14.83 ± 0.07 (g/100 g)), palmitic (CIKBO: 33.14 ± 0.28 (g 100/g) and EIKBO: 31.86 ± 0.02 (g/100 g)), stearic (CIKBO: 8.27 ± 0.06 (g/100 g) and EIKBO: 7.95 ± 0.06 (g/100 g)), capric (CIKBO: 4.83 ± 0.03 (g/100 g) and EIKBO: 6.75 ± 0.01 (g/100 g)), and oleic acids (CIKBO: 15.37 ± 0.12 (g/100 g) and EIKBO: 17.83 ± 0.02 (g/100 g)). The average of conjugated linoleic acid (CLA) content in EIKBO (2.20 ± 0.22 (g/100 g)) was higher than that in CIKBO (0.92 ± 0.25 (g/100 g)) (p < .05). Therefore, EKIBO is considered the superior natural supply of CLA.
Collapse
Affiliation(s)
- Rezgar Faraji Sarabmirza
- Department of Food Science and Technology, Campus of Agricultural Engineering & Natural ResourcesUniversity of TehranKarajIran
| | - Parham Joolaei Ahranjani
- Department of Microbial and Molecular Systems, Faculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| | - Ladan Rashidi
- Food Technology and Agricultural products Research CenterStandard Research Institute (SRI)KarajIran
| | - Mohammad Mousavi
- Department of Food Science and Technology, Campus of Agricultural Engineering & Natural ResourcesUniversity of TehranKarajIran
| | - Faramarz Khodaiyan
- Department of Food Science and Technology, Campus of Agricultural Engineering & Natural ResourcesUniversity of TehranKarajIran
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural products Research CenterStandard Research Institute (SRI)KarajIran
| |
Collapse
|
10
|
Alagawany M, Elnesr SS, Farag MR, El-Sabrout K, Alqaisi O, Dawood MAO, Soomro H, Abdelnour SA. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim Biotechnol 2022; 33:1678-1690. [PMID: 33470155 DOI: 10.1080/10495398.2020.1869562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The balance between omega-3 (ω-3), omega-6 (ω-6) and omega-9 (ω-9) fatty acids (FAs) is very important because these types of oils constitute essential components for the formation of the cell membrane, also they are precursors for a large number of substances in the body. One of the most important strategies for improving the increment of polyunsaturated FAs in poultry and animal meat is the dietary administration of these FAs. Additionally, the different sources of ω-3 or 6 in the diet improve the performance, public health and physiological aspects including anti-oxidative properties and immunity. ω-3 FAs have anti-inflammatory characteristics due to their ability to reduce cytokines liberation. High-level of ω-6 FAs is always associated with an increased incidence of dangerous disorders like depression and heart disease. These FAs showed a tremendous series of beneficial impacts like improved cholesterol levels and a decreased occurrence of coronary heart diseases. This article includes some information on the use of ω-3, ω-6 and ω-9 FAs in animal and human diets. These oils are vital for the physiological and health aspects, and the information mentioned here will improve our understanding of the functions and roles of these FAs in the body.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Karim El-Sabrout
- Faculty of Agriculture (El-Shatby), Department of Poultry Production, Alexandria University, Alexandria, Egypt
| | - Othman Alqaisi
- College of Agricultural & Marine Sciences, Animal and Veterinary Sciences Department, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mahmoud A O Dawood
- Faculty of Agriculture, Department of Animal Production, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hidayatullah Soomro
- Faculty of Animal Production and Technology, Department of Poultry Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sakrand, Pakistan
| | - Sameh A Abdelnour
- Faculty of Agriculture, Animal Production Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Sun Y, Hou X, Li L, Tang Y, Zheng M, Zeng W, Lei X. Improving obesity and lipid metabolism using conjugated linoleic acid. Vet Med Sci 2022; 8:2538-2544. [PMID: 36104831 PMCID: PMC9677407 DOI: 10.1002/vms3.921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Conjugated linoleic acid (CLA) can prevent fatty acid accumulation induced by a high-fructose diet and improve lipid metabolism disorders in patients. OBJECTIVES We aimed to investigate the effect of CLA on obesity and lipid metabolism and its possible mechanism. METHODS Eight-month-old male BKS.Cg-Dock7m +/+ Leprdb /JNju (db/db) mice (n = 12) were fed a CLA mix composed of equivalent c9, t11-CLA and t10, c12-CLA for 1 month. The effect of CLA on body weight, water and food intake, and triglyceride (TG) and total cholesterol (TC) levels was investigated. PPARα, PPARγ and CD36 expression was determined by quantitative PCR and western blotting. Additionally, the expression of these three genes was studied in HepG2 cells treated with CLA and linoleic acid. RESULTS CLA treatment notably reduced the dietary and water intake of db/db mice, effectively reduced body weight, and decreased serum TG and TC levels (p < 0.05). Increased expression of PPARα (p < 0.05) and decreased expression of CD36 (p < 0.001) were observed in the liver of mice that were fed CLA. CLA increased PPARα expression (p < 0.001) and decreased PPARγ (p < 0.001) and CD36 expression (p < 0.01) in HepG2 cells. CONCLUSIONS Our results showed that CLA can improve lipid metabolism in obese mice through upregulation of PPARα expression and downregulation of CD36 expression.
Collapse
Affiliation(s)
- Ye Sun
- Department of General PracticeZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xufeng Hou
- Department of Cell BiologySchool of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingjie Li
- Department of Cell BiologySchool of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Yanqing Tang
- Department of Cell BiologySchool of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Mingyue Zheng
- Department of Cell BiologySchool of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Weisen Zeng
- Department of Cell BiologySchool of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - XiaoLong Lei
- Department of NutritionNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Safari Hasanabad M, Ghorbanlou M, Masoumi R, Shokri S, Rostami B, Mirzaei-Alamouti H, Catt S, Green MP, Nejatbakhsh R. Effects of dietary supplementation of different oils and conjugated linoleic acid on the reproductive and metabolic aspects of male mice. Andrologia 2022; 54:e14598. [PMID: 36161725 DOI: 10.1111/and.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The present study was carried out to examine first, if diets enriched with 320 g of the base diet with common dietary oils including fish oil, olive oil, hydrogenated sunflower seed (H-SFS) oil, flaxseed oil and sunflower seed oil (SFS) could induce weight gain and alter reproductive and metabolic characteristics of male mice. Second, whether the addition of conjugated linoleic acid (CLA, 10% of the diet) could ameliorate any negative effects. In this cross-sectional study, 90 four-week-old male NMRI mice were used in two consecutive experiments. A high level of dietary oils negatively affected some reproductive and metabolic characteristics of male mice (p < 0.05), specifically, sunflower seed oil enrichment resulted in higher HDL levels and apoptosis of germinal epithelial cells. An olive oil-enriched diet caused an increase in plasma triglyceride concentrations and germinal cell apoptosis, as well as a decrease in sperm concentration and perturbed spermatogenesis. When CLA was fed in conjunction with dietary oils it successfully mitigated some of the negative reproductive and metabolic characteristics. We conclude that male reproductive processes are affected by high dietary oils, even before signs of obesity are evident. Inclusion of dietary CLA may provide some benefit to offset negative effects, although further studies are required.
Collapse
Affiliation(s)
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Masoumi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Saeed Shokri
- School of Rural Health, Faculty of Medicine and Health, University of Sydney, Dubbo, New South Wales, Australia
| | - Behnam Rostami
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Sally Catt
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid supplementation on maternal reproductive parameters. ZYGOTE 2022; 30:863-871. [PMID: 36148787 DOI: 10.1017/s0967199422000405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional isomers of linoleic acid found in ruminant products and meat. The diet supplementing with CLA is an emerging area, requiring studies to elucidate its effects on animals and human reproduction, as well as its side effects. Therefore, the aim of this study was to evaluate the effects of CLA gastric administration, during the pregestational and gestational period in biometric and reproductive parameters, as well as in ovarian morphophysiology. Animals were distributed in three groups: (1) control (n = 10); (2) fish oil (n = 10); and (3) CLA (n = 10), that daily received, by gavage, phosphate-buffered saline, fish oil and CLA, respectively, carried out over 50 days (before mating, mating and pregnancy). There was an increment in the nasoanal distance and Lee index of the CLA and fish oil-treated groups during the first weeks (P > 0.05). CLA administration did not affect the ovarian follicle mobilization (P > 0.05), the number of follicles (P > 0.05) and the integrated density of lipid content of oocytes included in antral follicles (P > 0.05). There was no effect of CLA administration on the litter weight (P > 0.05; F2 and F3), however, an increment (P < 0.05) in the number of pups per litter (F2) was observed. Overall, this study demonstrated the absence of side effects of the CLA gastric administration on mice reproductive performance and suggests that this treatment would transgenerationally enhance fertility in this species.
Collapse
|
14
|
Behrouz S, Saadat S, Memarzia A, Sarir H, Folkerts G, Boskabady MH. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front Immunol 2022; 13:855342. [PMID: 35493477 PMCID: PMC9039309 DOI: 10.3389/fimmu.2022.855342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
Camel milk (CM) has been found to have several health benefits, including antiviral, antibacterial, anti-tumor, anti-fungal, antioxidant, hypoglycaemic and anti-cancer activities. In addition, CM can counter signs of aging and may be a useful naturopathic treatment for autoimmune diseases. The composition of CM varies with geographic origin, feeding conditions, seasonal and physiological changes, genetics and camel health status. In the present review, we collate the diverse scientific literature studying antioxidant, anti-inflammatory and immunomodulatory effects of CM and its bioactive compounds. The databases Scopus, PubMed, and Web of Science were searched until the end of September 2021 using the keywords: camel milk, antioxidant, anti-inflammatory, immunomodulatory. The anti-inflammatory mechanism of CM in various inflammatory disorders was consistently reported to be through modulating inflammatory cells and mediators. The common anti-inflammatory bioactive components of CM seem to be lactoferrin. The antioxidant effects of α-lactalbumin, β-caseins and vitamin C of CM work by reducing or inhibiting the production of reactive oxygen species (ROS), hydroxyl radicals, nitric oxide (NO), superoxide anions and peroxyl radicals, likely alleviating oxidative stress. Higher levels of protective proteins such as lysozyme, IgG and secretory IgA compared to cow's milk, and insulin-like protein activity of CM on ß cells appear to be responsible for the immunomodulatory properties of CM. The evidence indicates that CM and its bioactive components has the potential to be a therapeutic value for diseases that are caused by inflammation, oxidative stress and/or immune-dysregulation.
Collapse
Affiliation(s)
- Sepide Behrouz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Shi Y, Tang L, Bai X, Du K, Wang H, Jia X, Lai S. Heat Stress Altered the Vaginal Microbiome and Metabolome in Rabbits. Front Microbiol 2022; 13:813622. [PMID: 35495670 PMCID: PMC9048824 DOI: 10.3389/fmicb.2022.813622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit’s vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.
Collapse
|
16
|
Basak S, Banerjee A, Pathak S, Duttaroy AK. Dietary Fats and the Gut Microbiota: Their impacts on lipid-induced metabolic syndrome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Integrative analysis of OIP5-AS1/miR-129-5p/CREBBP axis as a potential therapeutic candidate in the pathogenesis of metal toxicity-induced Alzheimer's disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, Fuentes E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases-Cardioprotective Potential of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:186. [PMID: 35050073 PMCID: PMC8779353 DOI: 10.3390/plants11020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 05/07/2023]
Abstract
In terms of safe and healthy food, beans play a relevant role. This crop belongs to the species of Phaseolusvulgaris L., being the most consumed legume worldwide, both for poor and developed countries, the latter seek to direct their diet to healthy feeding, mainly low in fat. Phaseolus vulgaris L. stands out in this area-an important source of protein, vitamins, essential minerals, soluble fiber, starch, phytochemicals, and low in fat from foods. This species has been attributed many beneficial properties for health; it has effects on the circulatory system, immune system, digestive system, among others. It has been suggested that Phaseolus vulgaris L. has a relevant role in the prevention of cardiovascular events, the main cause of mortality and morbidity worldwide. Conversely, the decrease in the consumption of this legume has been related to an increase in the prevalence of cardiovascular diseases. This review will allow us to relate the nutritional level of this species with cardiovascular events, based on the correlation of the main bioactive compounds and their role as cardiovascular protectors, in addition to revealing the main mechanisms that explain the cardioprotective effects regulated by the bioactive components.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Diego Mendez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Hector Montecino
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| |
Collapse
|
19
|
Gu Y, Gan S, Bian S, Meng G, Zhang Q, Liu L, Wu H, Yao Z, Zhang S, Wang Y, Zhang T, Wang X, Cao X, Li H, Liu Y, Li X, Wang X, Wang X, Sun S, Zhou M, Jia Q, Song K, Wu Y, Wu XH, Niu K. The association between daily yogurt consumption and serum lipid profiles in the general adult population: the TCLSIH cohort study. Int J Food Sci Nutr 2021; 73:415-423. [PMID: 34749580 DOI: 10.1080/09637486.2021.1993155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this cross-sectional study is to determine the association between yogurt consumption and lipid profiles in the general Chinese population. In this cross-sectional study, a total of 26,824 participants were included from Tianjin, China. Lipid profiles were determined by automated biochemical analyser. Yogurt consumption frequency was assessed by a validated food frequency questionnaire. Analysis of covariance was used to determine the association between daily yogurt consumption and lipid profiles. In the final multivariate model, daily yogurt consumption was negatively associated with triglyceride (TG) (p for trend <0.001) and positively associated with high density lipoprotein cholesterol (HDL-C) (p for trend = 0.02). There were no significant differences (p for trend >0.05) between daily yogurt consumption and total cholesterol (TC) or low density lipoprotein cholesterol (LDL-C). Results suggested that higher daily yogurt consumption was negatively correlated with TG and positively correlated with HDL-C in the general Chinese population.
Collapse
Affiliation(s)
- Yeqing Gu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shinan Gan
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shanshan Bian
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xingqi Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yunyun Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoyue Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaohe Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Hui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
20
|
Nederveen JP, Manta K, Bujak AL, Simone AC, Fuda MR, Nilsson MI, Hettinga BP, Hughes MC, Perry CGR, Tarnopolsky MA. A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice. Nutrients 2021; 13:3726. [PMID: 34835983 PMCID: PMC8623014 DOI: 10.3390/nu13113726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where '+EX' animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD.
Collapse
Affiliation(s)
- Joshua P. Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Katherine Manta
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Alexander C. Simone
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Matthew R. Fuda
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Mats I. Nilsson
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Meghan C. Hughes
- Muscle Health Research Centre (MHRC), School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (M.C.H.); (C.G.R.P.)
| | - Christopher G. R. Perry
- Muscle Health Research Centre (MHRC), School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (M.C.H.); (C.G.R.P.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| |
Collapse
|
21
|
Alves SP, Vahmani P, Mapiye C, McAllister TA, Bessa RJB, Dugan MER. Trans-10 18:1 in ruminant meats: A review. Lipids 2021; 56:539-562. [PMID: 34608647 DOI: 10.1002/lipd.12324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/21/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022]
Abstract
Trans (t) fatty acids (TFA) from partially hydrogenated vegetable oils (i.e., industrial trans) have been phased out of foods in many countries due to their promotion of cardiovascular disease. This leaves ruminant-derived foods as the main source of TFA. Unlike industrial TFA where catalytic hydrogenation yields a broad distribution of isomers, ruminant TFA are enzymatically derived and can result in enrichment of specific isomers. Comparisons between industrial and ruminant TFA have often exonerated ruminant TFA due to their lack or at times positive effects on health. At extremes, however, ruminant-sourced foods can have either high levels of t10- or t11-18:1, and when considering enriched sources, t10-18:1 has properties similar to industrial TFA, whereas t11-18:1 can be converted to an isomer of conjugated linoleic acid (cis(c)9,t11-conjugated linoleic acid), both of which have potential positive health effects. Increased t10-18:1 in meat-producing ruminants has not been associated with negative effects on live animal production or meat quality. As such, reducing t10-18:1 has not been of immediate concern to ruminant meat producers, as there have been no economic consequences for its enrichment; nevertheless at high levels, it can compromise the nutritional quality of beef and lamb. In anticipation that regulations regarding TFA may focus more on t10-18:1 in beef and lamb, the present review will cover its production, analysis, biological effects, strategies for manipulation, and regulatory policy.
Collapse
Affiliation(s)
- Susana P Alves
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Payam Vahmani
- Department of Animal Science, University of California-Davis, Davis, California, USA
| | - Cletos Mapiye
- Department of Animal Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tim A McAllister
- Agricuture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Rui J B Bessa
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| |
Collapse
|
22
|
Li H, Zhuang P, Zhang Y, Shou Q, Lu Y, Wang G, Qiu J, Wang J, He L, Chen J, Jiao J. Mixed conjugated linoleic acid sex-dependently reverses high-fat diet-induced insulin resistance via the gut-adipose axis. FASEB J 2021; 35:e21466. [PMID: 33734496 DOI: 10.1096/fj.202002161rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Conjugated linoleic acid (CLA) may prevent the development of obesity and metabolic disorders. However, the effects of CLA on inflammation and glucose metabolism are controversial. The underlying mechanisms governing the gut microbiota and sexual dimorphisms have also not been elucidated. The present study assessed the effect of CLA on glucose and lipid metabolism in established obesity and examined the mechanism of action based on gut microbiota. Four-week-old C57BL/6J mice were fed a high-fat diet (HFD) for 10 weeks to induce obesity. The diet-induced obese (DIO) mice were fed an HFD supplemented with mixed CLA (50% cis-9, trans-11 isomer and 50% trans-10, cis-12 isomers, 0.2% wt/wt) for 15 weeks. CLA supplementation remarkably reversed body weight in both sexes. CLA favored anti-inflammatory microbiota in male mice, mediating increased short-chain fatty acids and decreased lipopolysaccharide (LPS) production, which alleviated global inflammation and improved insulin sensitivity via inhibition of the TLR4-NF-κB pathway in adipose tissue. CLA promoted the growth of hydrogen sulfide-producing Desulfovibrio and the release of LPS in female mice, which aggravated adipose inflammation and insulin resistance. Although CLA impaired glucose metabolism in females, brown adipose tissue was significantly activated with browning of white adipose tissue in both sexes, which led to enhanced energy expenditure. Fecal transplantation from CLA-treated mice to DIO mice mimicked the sex-dependent phenotype. In conclusion, CLA decreased body weight and increased energy expenditure but sex-dependently modulated insulin resistance via the gut-adipose axis.
Collapse
Affiliation(s)
- Haoyu Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiyang Shou
- Experimental Animal Research Center, Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Lu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Guangfa Wang
- Department of PET Center of Affiliated First Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieni Qiu
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes Rev 2021; 22 Suppl 2:e13197. [PMID: 33471425 DOI: 10.1111/obr.13197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Lee JS, Hyun IK, Seo HJ, Song D, Kim MY, Kang SS. Biotransformation of whey by Weissella cibaria suppresses 3T3-L1 adipocyte differentiation. J Dairy Sci 2021; 104:3876-3887. [PMID: 33612219 DOI: 10.3168/jds.2020-19677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Biotransformation, the structural modification of chemical compounds, has proved to be an indispensable tool in providing beneficial health effects. Although the health benefits of biotransformation using plant sources has been widely studied, the anti-adipogenic effect of biotransformed dairy products, such as whey, have not yet been demonstrated. Here, we investigated the anti-adipogenic effect of whey biotransformed by Weissella cibaria in 3T3-L1 adipocytes. Weissella cibaria-biotransformed whey considerably reduced the accumulation of lipid droplets and intracellular triglycerides in 3T3-L1 cells. In the presence of W. cibaria-biotransformed whey, the mRNA and protein expression of a key transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), for adipogenesis was markedly suppressed in 3T3-L1 cells. Additionally, W. cibaria-biotransformed whey also decreased the mRNA and protein expressions of lipoprotein lipase and adipocyte fatty acid-binding protein, which are regulated by PPARγ. Moreover, W. cibaria-biotransformed whey inhibited the expression of adipokines, resistin, and leptin. Collectively, these results suggest that whey biotransformed by W. cibaria has the potential to exert anti-adipogenic effects by inhibiting intracellular signaling events of adipogenic-related transcription factors and target genes.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - In Kyung Hyun
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hye-Jin Seo
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dahyun Song
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Min Young Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
25
|
Amer SA, Mohamed WAM, Gharib HSA, Al-Gabri NA, Gouda A, Elabbasy MT, Abd El-Rahman GI, Omar AE. Changes in the growth, ileal digestibility, intestinal histology, behavior, fatty acid composition of the breast muscles, and blood biochemical parameters of broiler chickens by dietary inclusion of safflower oil and vitamin C. BMC Vet Res 2021; 17:68. [PMID: 33541348 PMCID: PMC7863266 DOI: 10.1186/s12917-021-02773-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/21/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The effects of safflower oil and vitamin C (Vit. C) inclusion in broiler chicken diets on the growth performance, apparent ileal digestibility coefficient "AID%" of amino acids, intestinal histology, behavior, carcass traits, fatty acid composition of the breast muscle, antioxidant and immune status for a 35-day feeding period were evaluated. A total of 300 three-day-old Ross chicks (58.25 g ± 0.19) were randomly allotted in a 2 × 3 factorial design consisting of two levels of vitamin C (0 and 400 mg/kg diet) and three levels of safflower oil (0, 5, and 10 g/kg diet). RESULTS An increase in the final body weight, total body weight gain, total feed intake, and the relative growth rate (P < 0.05) were reported by safflower oil and vitamin C inclusion. Dietary supplementation of safflower oil and vitamin C had a positive effect (P < 0.05) on the ingestive, resting, and feather preening behavior. Vitamin C supplementation increased (P < 0.05) the AID% of lysine, threonine, tryptophan, arginine, and valine. Safflower inclusion (10 g/kg) increased (P < 0.05) the AID% of methionine and isoleucine. Safflower oil inclusion increased (P < 0.05) the levels of stearic acid, linoleic acid, saturated fatty acids, and omega-3 fatty acids (ω-3) in the breast muscle. In contrast, the supplementation of only 10 g of safflower oil/kg diet increased (P = 0.01) the omega-3/omega-6 (ω-3/ω-6) fatty acids ratio. Vit. C supplementation increased (P < 0.05) the CAT serum levels, SOD, and GSH enzymes. Dietary supplementation of safflower oil and vitamin C improved the intestinal histology. They increased the villous height and width, crypt depth, villous height/crypt depth ratio, mucosal thickness, goblet cell count, and intra-epithelium lymphocytic lick cell infiltrations. The serum levels of IgA and complement C3 were increased (P < 0.01) by Vit. C supplementation and prominent in the 400 vit. C + 10 safflower Oil group. CONCLUSION A dietary combination of safflower oil and vitamin C resulted in improved growth rate, amino acids AID%, intestinal histology, welfare, immune and antioxidant status of birds, and obtaining ω-3 and linoleic acid-enriched breast muscles. The best inclusion level was 400 vit. C + 10 safflower Oil.
Collapse
Affiliation(s)
- Shimaa A Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Wafaa A M Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Heba S A Gharib
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Naif A Al-Gabri
- Pathology Department, Faculty of Veterinary Medicine, Thamar University, Dahamar, Yemen
| | - Ahmed Gouda
- Department of Animal Production, National Research Centre, Dokki, 12622, Egypt
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT) Hail University, Hail, 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada I Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Anaam E Omar
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
26
|
Maher T, Deleuse M, Thondre S, Shafat A, Clegg ME. A comparison of the satiating properties of medium-chain triglycerides and conjugated linoleic acid in participants with healthy weight and overweight or obesity. Eur J Nutr 2021; 60:203-215. [PMID: 32248292 PMCID: PMC7867511 DOI: 10.1007/s00394-020-02235-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Inconsistent evidence exists for greater satiety after medium-chain triglycerides (MCT) or conjugated linoleic acid (CLA) compared to long-chain triglycerides (LCT). Furthermore, the mechanisms are poorly understood and effects in people with a healthy weight and those with overweight/obesity have not been compared. This study aimed to compare appetite responses in these groups and examine the mechanisms behind any differences. METHODS Fifteen participants with healthy weight (BMI: 22.7 ± 1.9 kg·m-2) and fourteen participants with overweight/obesity (BMI: 30.9 ± 3.9 kg·m-2) consumed a breakfast containing either 23.06 g vegetable oil (CON), 25.00 g MCT oil (MCT), or 6.25 g CLA and 16.80 g vegetable oil (CLA). Appetite, peptide YY (PYY), total ghrelin (TG), β-hydroxybutyrate, and gastric emptying (GE) were measured throughout. Energy intake was assessed at an ad libitum lunch and throughout the following ~ 36 h. RESULTS Neither MCT nor CLA decreased ad libitum intake; however MCT decreased day 1 energy intake (P = 0.031) and the 48-h period (P = 0.005) compared to CON. MCT delayed GE (P ≤ 0.01) compared to CON, whereas CLA did not. PYY and TG concentrations were not different (P = 0.743 and P = 0.188, respectively), but MCT increased β-hydroxybutyrate concentrations compared to CON (P = 0.005) and CLA (P < 0.001). β-hydroxybutyrate concentrations were higher in participants with overweight/obesity (P = 0.009). CONCLUSION Consumption of MCT reduces energy intake in the subsequent 48 h, whereas CLA does not. Delayed gastric emptying or increased β-hydroxybutyrate concentrations may mediate this.
Collapse
Affiliation(s)
- Tyler Maher
- Diet and Cardiometabolic Health Research Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Martina Deleuse
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Sangeetha Thondre
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Amir Shafat
- Physiology, School of Medicine, National University of Ireland, Galway, H91 W5P7, Ireland
| | - Miriam E Clegg
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
27
|
Ao X, Tran H, Kim I. Evaluation of feeding periods of dietary conjugated linoleic acid supplementation on growth performance, nutrient digestibility, blood profiles, and meat quality in finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was conducted to evaluate feeding periods of dietary conjugated linoleic acid (CLA) supplementation on growth performance, nutrient digestibility, blood profiles, and meat quality in finishing pigs. A total of 150 finishing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 83.13 ± 1.91 kg were randomly allocated into one of three treatments (10 pens per treatment, five pigs per pen) based on their BW. Dietary treatments consisted of supplementing the basal diet with 1.0% CLA during 2, 3, and 4 wk prior to finishing. Pigs fed CLA diets 2 wk before finishing had a higher overall average daily gain (ADG) and gain-to-feed ratio (G/F) than those fed CLA diets 4 wk before finishing (P < 0.05). In the whole experiment, pigs fed CLA diets 2 wk before finishing had a higher serum low-density lipoprotein (LDL) than those fed CLA diets 3 and 4 wk before finishing. However, pigs that received CLA diets 4 wk before finishing had higher triglyceride levels (P < 0.05). Feeding 1% CLA diets 4 wk before finishing improved meat color and firmness. Taken together, feeding 1% CLA diet 4 wk before finishing increased ADG, G/F, and serum LDL, but reduced serum triglyceride.
Collapse
Affiliation(s)
- X. Ao
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 330-714, South Korea
- Tie Qi Li Shi Group Co., Mianyang, Sichuan 621006, People’s Republic of China
| | - H.N. Tran
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 330-714, South Korea
| | - I.H. Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 330-714, South Korea
| |
Collapse
|
28
|
Wang J, Han L, Wang D, Li P, Shahidi F. Conjugated Fatty Acids in Muscle Food Products and Their Potential Health Benefits: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13530-13540. [PMID: 33175544 DOI: 10.1021/acs.jafc.0c05759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated fatty acids (CFAs) are a group of positional and geometric isomers of polyunsaturated fatty acids (PUFAs) with conjugated double bonds. There are several subgroups of CFAs including conjugated linoleic acids (CLAs), conjugated linolenic acids (CLNAs), conjugated eicosapentaenoic acids (CEPAs), and conjugated docosahexaenoic acids (CDHAs). CFAs, especially CLAs, have been studied in recent years both for their health benefits and factors that affect their level in muscle food products. CFAs have been reported in numerous studies as having antitumor, antiobesity, antidiabetes, anticardiovascular disease, and modulating immune system effects. These biological activies are involved in changes of lipid peroxidation and energy expenditure, as well as inhibitory effects on the hormone receptor, lipid metabolism, lipoprotein lipase activity, and adiponectin production. A large body of studies has revealed that the diet, processing, storage conditions, slaughter season, and age are common factors that affect CFA content in muscle food products, as detailed in this review. Recommendations are made regarding animal farming and meat product processing to obtain high CFA content meat products and to optimize the benefits of CFA for health promotion.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Linxiao Han
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Pengpeng Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fereidoon Shahidi
- Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
29
|
Haubold S, Kröger-Koch C, Tuchscherer A, Kanitz E, Weitzel JM, Hoeflich A, Starke A, Tröscher A, Sauerwein H, Hammon HM. Effects of a combined essential fatty acid and conjugated linoleic acid abomasal infusion on metabolic and endocrine traits, including the somatotropic axis, in dairy cows. J Dairy Sci 2020; 103:12069-12082. [PMID: 32981718 DOI: 10.3168/jds.2020-18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid (ALA), and conjugated linoleic acid (CLA) supplementation on metabolic and endocrine traits related to energy metabolism, including the somatotropic axis, in mid-lactation dairy cows. Four cows (126 ± 4 d in milk) were used in a dose-escalation study design and were abomasally infused with coconut oil (CTRL; 38.3 g/d; providing saturated fatty acids), linseed and safflower oils (EFA; 39.1 and 1.6 g/d; n-6:n-3 FA ratio = 1:3), Lutalin (CLA; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d of each), or EFA and CLA (EFA+CLA) for 6 wk. The initial dosage was doubled twice after 2 wk, resulting in 3 dosages (dosages 1, 2, and 3). Each cow received each fat treatment at different times. Cows were fed with a corn silage-based total mixed ration providing a low-fat content and a high n-6:n-3 fatty acid ratio. Plasma concentrations of metabolites and hormones (insulin-like growth factor-binding proteins only on wk 0 and 6) were analyzed at wk 0, 2, 4, and 6 of each treatment period. Liver biopsies were taken before starting the trial and at wk 6 of each treatment period to measure hepatic mRNA abundance of genes linked to glucose, cholesterol and lipid metabolism, and the somatotropic axis. The changes in the milk and blood fatty acid patterns and lactation performance of these cows have already been published in a companion paper. The plasma concentration of total cholesterol increased with dosage in all groups, except CLA, reaching the highest levels in EFA+CLA and CTRL compared with CLA. The high-density lipoprotein cholesterol plasma concentration increased in CTRL and was higher than that in EFA and CLA, whereas the concentration of low-density lipoprotein cholesterol increased in a dose-dependent manner in EFA and EFA+CLA, and was higher than that in CLA. Hepatic mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA synthase 1 was upregulated in all groups but was highest in EFA+CLA. Expression of sterol regulatory element-binding factor 1 tended to be lowest due to EFA treatment, whereas expression of long chain acyl-CoA-synthetase was lower in EFA than in CTRL. Hepatic mRNA expression of GHR1A tended to be higher in EFA+CLA than in CTRL. The plasma concentration of insulin-like growth factor I increased in CLA, and the plasma IGFBP-2 concentration was lower in EFA+CLA than in CTRL at wk 6. The plasma concentration of adiponectin decreased in EFA+CLA up to dosage 2. Plasma concentrations of albumin and urea were lower in CLA than in CTRL throughout the experimental period. Supplementation with EFA and CLA affected cholesterol and lipid metabolism and their regulation differently, indicating distinct stimulation after the combined EFA and CLA treatment. The decreased IGFBP-2 plasma concentration and upregulated hepatic mRNA abundance of GHR1A in EFA+CLA-supplemented cows indicated the beneficial effect of the combined EFA and CLA treatment on the somatotropic axis in mid-lactation dairy cows. Moreover, supplementation with CLA might affect protein metabolism in dairy cows.
Collapse
Affiliation(s)
- S Haubold
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
30
|
Maternal conjugated linoleic acid consumption prevented TAG alterations induced by a high-fat diet in male adult rat offspring. Br J Nutr 2020; 124:286-295. [PMID: 32234086 DOI: 10.1017/s0007114520001166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal nutritional programming by a high-fat (HF) diet is related to hepatic lipid accumulation and steatosis in offspring. Conjugated linoleic acid (CLA) might ameliorate impaired hepatic lipid homoeostasis; therefore, the aim was to investigate the potential preventive effect of maternal CLA consumption on TAG metabolism alterations induced by HF diets in adult male rat offspring receiving or not receiving CLA. Female Wistar rats were fed a control (C) diet, HF diet or HF diet supplemented with CLA (HF+CLA) for 4 weeks before mating and throughout pregnancy and lactation. After weaning, for 9 weeks, male offspring of C or HF rats continued with the same diets as their mothers (C/C or HF/HF groups, respectively) and male offspring of HF+CLA rats were fed HF or HF+CLA diets (HF+CLA/HF or HF+CLA/HF+CLA groups, respectively). Nutritional parameters, serum and liver TAG levels, the TAG secretion rate (TAG-SR) and the activities as well as gene expression of key hepatic enzymes involved in TAG regulation were assessed. The most interesting results were that maternal CLA decreased epididymal white adipose tissue weight and prevented serum and liver TAG accumulation induced by a HF diet in adult male offspring receiving or not receiving CLA. The prevention of liver steatosis in HF+CLA/HF+CLA and HF+CLA/HF offspring was associated with an increased hepatic TAG-SR. Overall, this study provides evidence that maternal CLA consumption programmes TAG regulation and in this way contributes to lowering lipid levels in tissues and preventing liver steatosis in particular.
Collapse
|
31
|
Baspinar B, Güldaş M. Traditional plain yogurt: a therapeutic food for metabolic syndrome? Crit Rev Food Sci Nutr 2020; 61:3129-3143. [PMID: 32746616 DOI: 10.1080/10408398.2020.1799931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dairy products have an important role in a healthy diet due to their high-quality protein and rich micronutrients. Yogurt, a fermented milk product, has a similar composition to milk but is a more concentrated product in terms of group B vitamins, minerals, and proteins. It is known that bioactive metabolites and live enzymes that occur by fermentation and digestion, affect the health positively by improving gut microbiota. In recent years, the prevalence of metabolic syndrome, which threatens public health, is increasing rapidly. As with other noninfectious diseases, the diet has an important effect on the prevention and treatment of metabolic syndrome. It has been demonstrated that yogurt has a high-quality amino acid pattern, reduces energy intake by stimulating satiety, and regulates blood glucose level. In addition to the rich protein variety, yogurt also contains peptides that positively affect blood pressure. Unlike milk, increased acidity during the fermentation of yogurt positively affects calcium absorption. Calcium plays an important role in the control of blood glucose and energy metabolism through insulin-dependent and non-insulin-dependent routes. In addition to reducing inflammation, calcium has a positive effect on the regulation of the blood lipid profile by increasing fecal fat excretion. There are many lipid and lipoid nutrients such as saturated fatty acids, phospholipids, sphingolipids, and conjugated linoleic acid that may affect the blood lipid profile in yogurt positively or negatively. There are seen very few randomized controlled studies that are focused on the relationship between yogurt and metabolic syndrome, and these are based on contradictory results. In this review, based on the clinical studies conducted to date, and the nutrient content of yogurt, possible mechanisms of these contradictory results are investigated.
Collapse
Affiliation(s)
- Busra Baspinar
- Nutrition and Dietetics, Ankara Universitesi, Ankara, Turkey
| | - Metin Güldaş
- Nutrition and Dietetics, Uludag University, Görükle, Bursa, Turkey
| |
Collapse
|
32
|
Conjugated Linoleic Acid and Its Beneficial Effects in Obesity, Cardiovascular Disease, and Cancer. Nutrients 2020; 12:nu12071913. [PMID: 32605287 PMCID: PMC7401241 DOI: 10.3390/nu12071913] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
|
33
|
Mądry E, Malesza IJ, Subramaniapillai M, Czochralska-Duszyńska A, Walkowiak M, Miśkiewicz-Chotnicka A, Walkowiak J, Lisowska A. Body Fat Changes and Liver Safety in Obese and Overweight Women Supplemented with Conjugated Linoleic Acid: A 12-Week Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12061811. [PMID: 32560516 PMCID: PMC7353155 DOI: 10.3390/nu12061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Preliminary evidence suggests that conjugated linoleic acid (CLA) may reduce body weight and affect body composition. The present study assessed the effect of CLA supplementation on body fat composition in overweight and obese women, while also evaluating the liver safety of CLA use. Seventy-four obese or overweight women were randomly assigned to receive 3 g/day CLA or placebo for 12 weeks. Body composition (dual-energy X-ray absorptiometry) and liver function (13C-methacetin breath test and serum liver enzymes) were assessed before and after the trial. Patients receiving CLA experienced a significant reduction of total body fat expressed as mass (p = 0.0007) and percentage (p = 0.0006), android adipose tissue (p = 0.0002), gynoid adipose tissue (p = 0.0028), and visceral adipose tissue (p = 4.2 × 10−9) as well as a significant increase in lean body mass to height (p = 6.1 × 10−11) when compared to those receiving a placebo. The maximum momentary 13C recovery changes and end-point values were significantly higher in the CLA group when compared to the placebo group (p = 0.0385 and p = 0.0076, respectively). There were no significant changes in alanine aminotransferase, asparagine aminotransferase, and gamma-glutamyl transpeptidase activities between the groups. In conclusion, CLA supplementation was well tolerated and safe for the liver, which shows beneficial effects on fat composition in overweight and obese women.
Collapse
Affiliation(s)
- Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
- Correspondence: ; Tel.: +48-501-728-956
| | - Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Mehala Subramaniapillai
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
| | | | - Marek Walkowiak
- Division of Reproduction, Department of Gynecology and Obstetrics, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Aleksandra Lisowska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| |
Collapse
|
34
|
Coexistence of metabolic syndrome and osteopenia associated with social inequalities and unhealthy lifestyle among postmenopausal women in South Korea: the 2008 to 2011 Korea National Health and Nutritional Examination Survey (KNHANES). ACTA ACUST UNITED AC 2020; 27:668-678. [PMID: 32464045 DOI: 10.1097/gme.0000000000001518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The prevalence of metabolic syndrome (MetS) and osteoporosis (OP) among postmenopausal women has been rapidly increasing. We examined the associations between socioeconomic status-related factors, unhealthy lifestyle, and the coexistence of MetS and osteopenia or OP. METHODS One thousand nine hundred ninety-one postmenopausal women aged 45 to 65 years were used to select a representative sample of the civilian, noninstitutionalized South Korean population from the 2008 to 2011 Korea National Health and Nutrition Examination Survey data. Women were grouped as neither MetS nor OP (normal), MetS, OP, and both MetS and OP (MetS + OP). Socioeconomic status (education, household income, place of residence, employment status), health-related behaviors (physical activity, alcohol consumption, smoking), and diet-related factors (intake of nutrients and food groups, eating habits, food insecurity) were obtained. Logistic regression models were used to examine the odds ratio (OR) and 95% confidence interval (CI). RESULTS The prevalence of MetS + OP was 32.5%. The average number of MetS risk factors in MetS + OP was 3.5, higher than that of normal and OP groups (P < 0.001). Bone mineral density at all sites was significantly lower in MetS + OP than normal and MetS groups (P < 0.001). Also, calcium, phosphorus, vitamin A, riboflavin, and niacin levels were lowest in the MetS + OP group compared with the three other groups (P < 0.05). After controlling for covariates, low-income and low-education women were more likely to have MetS + OP (OR 1.97, 95% CI 1.04-3.72); high-income and high-education group was 70% less likely to have MetS + OP (OR 0.30, 95% CI 0.10-0.86) compared with the middle-income and middle-education group. CONCLUSIONS Social inequalities might be powerful contributors in Korean postmenopausal women with coexistence of MetS and OP. Therefore, social and political perspective approaches are required in this population for prevention and treatment of MetS and OP. Future studies should explore to find controllable factors and thereby improve health status in postmenopausal women.
Collapse
|
35
|
Trinchese G, Cavaliere G, Cimmino F, Catapano A, Carta G, Pirozzi C, Murru E, Lama A, Meli R, Bergamo P, Banni S, Mollica MP. Decreased Metabolic Flexibility in Skeletal Muscle of Rat Fed with a High-Fat Diet Is Recovered by Individual CLA Isomer Supplementation via Converging Protective Mechanisms. Cells 2020; 9:E823. [PMID: 32235294 PMCID: PMC7226748 DOI: 10.3390/cells9040823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Energy balance, mitochondrial dysfunction, obesity, and insulin resistance are disrupted by metabolic inflexibility while therapeutic interventions are associated with improved glucose/lipid metabolism in skeletal muscle. Conjugated linoleic acid mixture (CLA) exhibited anti-obesity and anti-diabetic effects; however, the modulatory ability of its isomers (cis9, trans11, C9; trans10, cis12, C10) on the metabolic flexibility in skeletal muscle remains to be demonstrated. Metabolic inflexibility was induced in rat by four weeks of feeding with a high-fat diet (HFD). At the end of this period, the beneficial effects of C9 or C10 on body lipid content, energy expenditure, pro-inflammatory cytokines, glucose metabolism, and mitochondrial efficiency were examined. Moreover, oxidative stress markers, fatty acids, palmitoyletanolamide (PEA), and oleyletanolamide (OEA) contents along with peroxisome proliferator-activated receptors-alpha (PPARα), AKT, and adenosine monophosphate-activated protein kinase (AMPK) expression were evaluated in skeletal muscle to investigate the underlying biochemical mechanisms. The presented results indicate that C9 intake reduced mitochondrial efficiency and oxidative stress and increased PEA and OEA levels more efficiently than C10 while the anti-inflammatory activity of C10, and its regulatory efficacy on glucose homeostasis are associated with modulation of the PPARα/AMPK/pAKT signaling pathway. Our results support the idea that the dissimilar efficacy of C9 and C10 against the HFD-induced metabolic inflexibility may be consequential to their ability to activate different molecular pathways.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (G.C.); (F.C.); (A.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (G.C.); (F.C.); (A.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (G.C.); (F.C.); (A.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (G.C.); (F.C.); (A.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (A.L.); (R.M.)
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA 09042, Italy; (G.C.); (E.M.); (S.B.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (A.L.); (R.M.)
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA 09042, Italy; (G.C.); (E.M.); (S.B.)
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (A.L.); (R.M.)
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (A.L.); (R.M.)
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy;
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA 09042, Italy; (G.C.); (E.M.); (S.B.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (G.C.); (F.C.); (A.C.)
| |
Collapse
|
36
|
Ejtahed HS, Angoorani P, Soroush AR, Hasani-Ranjbar S, Siadat SD, Larijani B. Gut microbiota-derived metabolites in obesity: a systematic review. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:65-76. [PMID: 32775123 PMCID: PMC7392910 DOI: 10.12938/bmfh.2019-026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that gut microbiota-derived metabolites affect many biological processes of the host, including appetite control and weight management. Dysbiosis of the
gut microbiome in obesity influences the metabolism and excretion of gut microbiota byproducts and consequently affects the physiology of the host. Since identification of the gut
microbiota-host co-metabolites is essential for clarifying the interactions between the intestinal flora and the host, we conducted this systematic review to summarize all human
studies that characterized the gut microbiota-related metabolites in overweight and obese individuals. A comprehensive search of the PubMed, Web of Science, and Scopus databases
yielded 2,137 articles documented up to July 2018. After screening abstracts and full texts, 12 articles that used different biosamples and methodologies of metabolic profiling and
fecal microbiota analysis were included. Amino acids and byproducts of amino acids, lipids and lipid-like metabolites, bile acids derivatives, and other metabolites derived from
degradation of carnitine, choline, polyphenols, and purines are among the gut microbiota-derived metabolites which showed alterations in obesity. These metabolites play an
important role in metabolic complications of obesity, including insulin resistance, hyperglycemia, and dyslipidemia. The results of this study could be useful in development of
therapeutic strategies with the aim of modulating gut microbiota and consequently the metabolic profile in obesity.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Ahmad-Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Seyed-Davar Siadat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Yang Y, Sadri H, Prehn C, Adamski J, Rehage J, Dänicke S, von Soosten D, Metges CC, Ghaffari MH, Sauerwein H. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation. J Dairy Sci 2020; 103:2829-2846. [PMID: 31954574 DOI: 10.3168/jds.2019-17244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and β (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.
Collapse
Affiliation(s)
- Y Yang
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - C Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - J Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - J Rehage
- University for Veterinary Medicine, Foundation, Clinic for Cattle, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), 38116 Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), 38116 Braunschweig, Germany
| | - C C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
38
|
Freitas DS, Lopes GADG, Nascimento BR, Pereira LAAC, Batista RITP, Campos Junior PHA. Conjugated linoleic acid as a potential bioactive molecule to modulates gamete and embryo cryotolerance. CIÊNCIA ANIMAL BRASILEIRA 2020. [DOI: 10.1590/1809-6891v21e-63574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract Conjugated linoleic acid (CLA) is a mixture of positional isomers of linoleic acid found in meat and dairy products from ruminants. It is a trans fat widely used by athletes as a food supplement, due to a supposed effect of maximizing the use of body fat reserves. The interest in diet and culture media supplementation with CLA is an emerging area, demanding studies in order to elucidate its benefits in the reproductive parameters, as well as in cryopreservation. Therefore, the aim of this review was to discuss the effects of CLA on the oocytes, sperm and embryos cryotolerance. Some studies have already demonstrated its use in cryopreservation of germline. Among those, it was observed that CLA supplementation during oocyte in vitro maturation can increase their viability post-freezing and developmental capacity. Regarding the use of CLA on sperm, there are few studies and their results are still inconclusive. Finally, studies about CLA supplementation on embryo culture media have shown promising results, indicating that this bioactive molecule is able to modulate lipid uptake on blastomeres. Altogether, these findings demonstrate the potential use of CLA as a bioactive molecule to improve germline and embryo cryotolerance and open new perspectives on human and animal reproduction field.
Collapse
|
39
|
Ni Q, Gasperi F, Aprea E, Betta E, Bergamaschi M, Tagliapietra F, Schiavon S, Bittante G. The volatile organic compound profile of ripened cheese is influenced by crude protein shortage and conjugated linoleic acid supplementation in the cow's diet. J Dairy Sci 2019; 103:1377-1390. [PMID: 31785882 DOI: 10.3168/jds.2019-16495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Abstract
A shortage in crude protein (CP) and supplementation of conjugated linoleic acids (CLA) in the diets of dairy cows could improve the dairy industry's ecological footprint and the nutritional value of milk, but it is not known what effect such a strategy might have on the aroma profiles of dairy products. The aim of this work was to study the effects of reducing the dietary CP content (from 150 to 123 g/kg of dry matter), with or without a supply of rumen-protected CLA (7.9 g/d C18:2 cis-9,trans-11 and 7.7 g/d C18:2 trans-10,cis-12), on the volatile organic compound (VOC) profile of cheeses ripened for 3 mo. Twenty mid-lactation Holstein-Friesian cows were reared in 4 pens (5 to a pen), and fed 4 different experimental diets over 4 periods of 3 wk each, following a 4 × 4 Latin square design. Twice in each period, 10-L milk samples were taken from each group and used to produce 32 cheeses, which we then analyzed for VOC by solid-phase microextraction and gas chromatography-mass spectrometry. We detected 48 VOC belonging to 10 chemical classes (11 alcohols, 8 ketones, 8 esters, 7 acids, 4 aldehydes, 4 sulfurs, 2 lactones, 2 phenolic, 1 monoterpene, 1 hydrocarbon); these were expressed as concentrations in cheese (quantitative data) or as proportions of total VOC (qualitative data). The results of mixed model analysis showed that the majority of VOC families and individual VOC in ripened cheese were affected by the dietary treatments: CP shortage depressed the concentrations of volatile aldehydes and increased the proportions of some esters and limonene, whereas CLA increased the concentration of total VOC, particularly several acids and esters, and decreased the proportions of ketones and phenolic compounds. The interaction between dietary CP and CLA affected the proportions of alcohols and acids. We performed a factor analysis to extract 5 latent explanatory variables from the individual VOC, which represented 79% of total VOC variance for the quantitative data and 78% for the qualitative data. Addition of CLA decreased the first qualitative factor (the "base aroma" of cheese, explaining 44% of total variance), whereas CP reduction increased the second quantitative factor ("ethyl esters," 15% of total variance) and the third qualitative factor ("butan-," 9% of total variance). In summary, the VOC profile of ripened cheese was heavily influenced by CP content and CLA supplementation in the diets of dairy cows, but the effect on sensorial properties of cheese is also worth considering.
Collapse
Affiliation(s)
- Qianlin Ni
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy
| | - Emanuela Betta
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy
| | - Matteo Bergamaschi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
40
|
Fariña AC, Lavandera J, González MA, Bernal CA. Effect of Conjugated Linoleic Acids on Nutritional Status and Lipid Metabolism in Rats Fed Linoleic‐Acid‐Deprived Diets. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ana Clara Fariña
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
- Centro Científico Tecnológico CONICET Santa FePredio CONICET “Dr. Alberto Cassano”Colectora Ruta Nac. Nº 168, Km. 0Paraje El PozoSanta Fe 3000Argentina
| | - Marcela Aída González
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
| | - Claudio Adrián Bernal
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
- Centro Científico Tecnológico CONICET Santa FePredio CONICET “Dr. Alberto Cassano”Colectora Ruta Nac. Nº 168, Km. 0Paraje El PozoSanta Fe 3000Argentina
| |
Collapse
|
41
|
Suckler Bulls Slaughtered at 15 Months of Age: Effect of Different Production Systems on the Fatty Acid Profile and Selected Quality Characteristics of Longissimus Thoracis. Foods 2019; 8:foods8070264. [PMID: 31323755 PMCID: PMC6678816 DOI: 10.3390/foods8070264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
The objective was to compare the quality of beef from bulls reared in typical Irish indoor systems or in novel grass-based systems. Bulls were assigned to one of the following systems: (a) grass silage plus barley-based concentrate ad libitum (CON); (b) grass silage ad libitum plus 5 kg of concentrate (SC); (c) grazed grass without supplementation (G0); (d) grazed grass plus 0.5 kg of the dietary dry matter intake as concentrate (GC) for (100 days) until slaughter (14.99 months). Carcass characteristics and pH decline were recorded. Longissimus thoracis was collected for analytical and sensory analysis. Lower carcass weight, conformation and fatness scores were found for grazing compared to CON and SC groups. CON bulls had highest intramuscular fat and lighter meat colour compared with grazing bulls. The SC meat (14 days aged) was rated higher for tenderness, texture, flavour and acceptability compared with grazing groups. CON saturated and monounsaturated fatty acid (FA) concentration was highest, conversely, omega-3 FA concentration was higher for GC compared with CON, while no differences were found in polyunsaturated FA. In conclusion, while market fatness specification was not reached by grazed grass treatments, beef eating quality was not detrimentally affected and nutritional quality was improved.
Collapse
|
42
|
Schiavon S, Cecchinato A, Pegolo S, Dannenberger D, Tagliapietra F, Bittante G. Dose response of rumen-protected conjugated linoleic acid supplementation to fattening bulls and heifers on growth, and carcass and meat quality. J Anim Physiol Anim Nutr (Berl) 2019; 103:997-1005. [PMID: 31025776 DOI: 10.1111/jpn.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/01/2022]
Abstract
We investigated the influence of rumen-protected conjugated linoleic acid (rpCLA) on growth performances, and carcass and meat quality traits in beef. Twenty-four young bulls and 30 heifers obtained from double-muscled beef sires and dairy cows were fed a low-protein ration (110 g/kg DM of crude protein) supplemented with 0, 8 or 80 g/d of a commercial rpCLA product. The animals were monthly weighed and scored for body muscularity and fatness. Blood samples were collected after 140 days on feed. Animals were slaughtered when they reached average in vivo fatness scores of around 2.5 (heifers) and 2.0 (bulls) points respectively. At slaughter, carcasses, various organs and parts of the gastrointestinal tract were weighed; the 5th rib was dissected and its tissue and muscle chemical composition was determined. The rpCLA had little influence on growth performance but decreased the blood urea content by 28% (p < 0.01). The rpCLA × sex interactions for daily gain (p < 0.05), conformation scores (p < 0.01), and blood creatinine content (p < 0.05) suggest that males were more responsive to rpCLA than females when fed a low-protein ration, probably because of the metabolic protein-sparing effect of CLA. Only slight differences were observed in carcass weight and quality at slaughter. The results indicate that the response of beef cattle to rpCLA is dependent on sex or on their propensity for lean and fat accretion. It is also possible that counteracting feedback mechanisms compensate for the influence of rpCLA administration over the course of growth.
Collapse
Affiliation(s)
- Stefano Schiavon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Dirk Dannenberger
- Lipid Metabolism and Muscular Adaptation Workgroup, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
43
|
Interaction effect of ruminal undegradable protein level and rumen-protected conjugated linoleic acid (CLA) inclusion in the diet of growing goat kids on meat CLA content and quality traits. Br J Nutr 2019; 122:745-754. [PMID: 31006392 DOI: 10.1017/s0007114519000904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present study was to determine the effects of dietary rumen undegradable protein (RUP) level and rumen-protected conjugated linoleic acid (rpCLA) on meat fatty acid (FA) profile, chemical compositions and colour parameters of growing kids. Thirty-two Kurdish goat kids (13·06 ± 1·08 kg body weight) were fed diets differing in RUP level (low = 250 v. high = 350 g/kg of dietary crude protein) supplemented either with 15 g/kg of rpCLA or 12 g/kg of hydrogenated soyabean oil (HSO) for 80 d. Interaction of dietary rpCLA and RUP level had no effect on hot carcass weight, dressing and cut percentage, and meat chemical composition and colour parameters. Meat total SFA, MUFA and PUFA concentrations were not influenced by experimental diets, whereas kids fed diets supplemented with rpCLA had lower meat total SFA and higher PUFA concentrations compared with those fed diets supplemented with HSO. The concentration of meat trans-11-8 : 1 was not influenced by rpCLA supplementation, RUP level and their interaction. Kids fed diets containing rpCLA supplementation had higher meat total CLA and cis-9, trans-11-CLA and trans-10, cis-12-CLA isomers compared with those fed diets containing HSO supplementation. Desaturase indexes of C14, C16 and C18 were not influenced by rpCLA supplementation, RUP level and their interaction. It is concluded that supplementing growing kids' diets with RUP and 15 g/kg of rpCLA not only decreased meat fat content but also increased some FA considered to be of potential benefit to human health.
Collapse
|
44
|
Verruck S, Balthazar CF, Rocha RS, Silva R, Esmerino EA, Pimentel TC, Freitas MQ, Silva MC, da Cruz AG, Prudencio ES. Dairy foods and positive impact on the consumer's health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:95-164. [PMID: 31351531 DOI: 10.1016/bs.afnr.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the present chapter was to demonstrate the state of the art in the recent advances in nutritional and functional components of dairy products research. In this chapter, the main mechanisms responsible and essential for a better understanding of nutritional and functional values of the components of milk and dairy products are highlighted. It also includes a discussion about the positive impacts of fermented milk, cheese, butter, ice cream, and dairy desserts components on the consumer's health.
Collapse
Affiliation(s)
- Silvani Verruck
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | | | - Ramon Silva Rocha
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Ramon Silva
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | | | | | | | - Marcia Cristina Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Adriano Gomes da Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil.
| | - Elane Schwinden Prudencio
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| |
Collapse
|
45
|
Berwal R, Vasudeva N, Sharma S, Das S. Investigation on Biomolecules in Ethanol Extract of Fruits of Prosopis Juliflora (Sw.) DC. Using GC-MS. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/10496475.2019.1579148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ravi Berwal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Sneha Das
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| |
Collapse
|
46
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
47
|
Risks associated with fat burners: A toxicological perspective. Food Chem Toxicol 2019; 123:205-224. [DOI: 10.1016/j.fct.2018.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
|
48
|
Fernandez MA, Marette A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr Rev 2018; 76:16-28. [PMID: 30452697 PMCID: PMC6280950 DOI: 10.1093/nutrit/nuy060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will explore the observational and mechanistic evidence supporting the hypothesis that fermented milk consumption has beneficial effects on metabolism. Live cultures in fermented dairy are thought to contribute to gut microbial balance, which is likely an instrumental mechanism that protects the host against gut dysbiosis and systemic inflammation associated with cardiometabolic diseases. Lactic acid bacteria (LAB) release bioactive metabolites, such as exopolysaccharides and peptides, that have the potential to exert a wide range of metabolic and regulatory functions. In particular, peptides derived from fermented dairy products are likely to exert greater cardiometabolic and anti-inflammatory effects than nonfermented dairy. It is hypothesized that LAB-derived bioactive peptides have the potential to protect the host against cardiometabolic diseases through antimicrobial actions and to effect changes in gene expression of glucose regulatory and anti-inflammatory signaling pathways. The peptides released through fermentation may explain some of the health effects of fermented dairy products on cardiometabolic disease risk observed in epidemiological studies, particularly type 2 diabetes; however, mechanisms have yet to be explored in detail.
Collapse
Affiliation(s)
- Melissa Anne Fernandez
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- School of Nutrition, Faculty of Agricultural and Food Sciences, Laval University, Quebec, Canada
| | - André Marette
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- Department of Medicine Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
49
|
Chen PB, Kim JH, Kim D, Clark JM, Park Y. Conjugated Linoleic Acid Regulates Body Composition and Locomotor Activity in a Sex-Dependent Manner in Drosophila melanogaster. Lipids 2018; 53:825-834. [PMID: 30334268 DOI: 10.1002/lipd.12091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Conjugated linoleic acid (CLA) has been reported to be a bioactive food component. However, there is limited knowledge on the sex-dependent effects of CLA on energy metabolism. In the present study, Drosophila melanogaster was used to investigate the sex-dependent effects of CLA with respect to body fat, muscle, locomotion, and a key metabolic regulator, AMP-activated protein kinase α (AMPKα). Adult flies were fed a cornmeal-based fly food with 0.5% of CLA oil (50:50 of cis-9,trans-11 and trans-10,cis-12 CLA isomers in triacylglycerol (TAG) form), 0.5% safflower oil (high in linoleic acid [LNA] as control), or 0.5% water (as blank) for 5 days. Accumulation of CLA in tissue was verified using gas chromatography-mass spectrometry. CLA-fed flies had reduced TAG and increased locomotor activity when compared to LNA-fed control flies. In addition, CLA increased the muscle content when compared to the blank. Moreover, following CLA supplementation, increased AMPKα activity was observed in females, but not in males. These sex-dependent metabolic effects of CLA may be due to physiological differences in lipid metabolism and nutrient requirements. In conclusion, CLA promoted the body composition and locomotion behavior in D. melanogaster and regulated the sex-specific metabolism in part via AMPKα. As key physiological processes are conserved between fly and human, information obtained from this research could provide valuable insights into sex-dependent responses to CLA in humans.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Ju Hyeon Kim
- Department of Veterinary and Animal Sciences, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| |
Collapse
|
50
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|