1
|
Li Y, Chen YT, Liu JS, Liang KF, Song YK, Cao Y, Chen CY, Jian YP, Liu XJ, Xu YQ, Yuan HX, Ou ZJ, Ou JS. Oncoprotein-induced transcript 3 protein-enriched extracellular vesicles promotes NLRP3 ubiquitination to alleviate acute lung injury after cardiac surgery. J Mol Cell Cardiol 2024; 195:55-67. [PMID: 39089571 DOI: 10.1016/j.yjmcc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China.
| | - Zhi-Jun Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
2
|
Chu X, Hou M, Li Y, Zhang Q, Wang S, Ma J. Extracellular vesicles in endometriosis: role and potential. Front Endocrinol (Lausanne) 2024; 15:1365327. [PMID: 38737555 PMCID: PMC11082332 DOI: 10.3389/fendo.2024.1365327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Yuan HX, Chen YT, Li YQ, Wang YS, Ou ZJ, Li Y, Gao JJ, Deng MJ, Song YK, Fu L, Ci HB, Chang FJ, Cao Y, Jian YP, Kang BA, Mo ZW, Ning DS, Peng YM, Liu ZL, Liu XJ, Xu YQ, Xu J, Ou JS. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:475-487. [PMID: 37219765 PMCID: PMC10202752 DOI: 10.1007/s11427-022-2328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 05/24/2023]
Abstract
Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear. Plasma plasminogen-activated inhibitor-1 (PAI-1) and eEV levels were measured in patients with cardiopulmonary bypass. Endothelial cells and mice (C57BL/6, Toll-like receptor 4 knockout (TLR4-/-) and inducible nitric oxide synthase knockout (iNOS-/-)) were challenged with eEVs isolated from PAI-1-stimulated endothelial cells. Plasma PAI-1 and eEVs were remarkably enhanced after cardiopulmonary bypass. Plasma PAI-1 elevation was positively correlated with the increase in eEVs. The increase in plasma PAI-1 and eEV levels was associated with post-operative ARDS. The eEVs derived from PAI-1-stimulated endothelial cells could recognize TLR4 to stimulate a downstream signaling cascade identified as the Janus kinase 2/3 (JAK2/3)-signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 1 (IRF-1) pathway, along with iNOS induction, and cytokine/chemokine production in vascular endothelial cells and C57BL/6 mice, ultimately contributing to ALI. ALI could be attenuated by JAK2/3 or STAT3 inhibitors (AG490 or S3I-201, respectively), and was relieved in TLR4-/- and iNOS-/- mice. eEVs activate the TLR4/JAK3/STAT3/IRF-1 signaling pathway to induce ALI/ARDS by delivering follistatin-like protein 1 (FSTL1), and FSTL1 knockdown in eEVs alleviates eEV-induced ALI/ARDS. Our data thus demonstrate that cardiopulmonary bypass may increase plasma PAI-1 levels to induce FSTL1-enriched eEVs, which target the TLR4-mediated JAK2/3/STAT3/IRF-1 signaling cascade and form a positive feedback loop, leading to ALI/ARDS after cardiac surgery. Our findings provide new insight into the molecular mechanisms and therapeutic targets for ALI/ARDS after cardiac surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan-Sheng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Li Fu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hong-Bo Ci
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Feng-Jun Chang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jun Xu
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
5
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2023:S2090-1232(23)00402-2. [PMID: 38123019 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
8
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Liu C, Chen H, Liu Y, Huang H, Yu W, Du T, Long X, Chen X, Chen Z, Guo S, Li J, Jiang Z, Wang L, Lu C. Immunity: Psoriasis comorbid with atherosclerosis. Front Immunol 2022; 13:1070750. [PMID: 36591241 PMCID: PMC9798109 DOI: 10.3389/fimmu.2022.1070750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is an immune-mediated, persistent inflammatory disease with a genetic predisposition, and the involvement of multiple organs in psoriasis remains indicative of systemic disease. Atherosclerosis (AS) is a common complication of patients with severe or prolonged psoriasis. The specific pathogenesis of psoriasis is still unclear. Current studies suggest that psoriasis is a polygenic genetic disease with the interaction of multiple factors such as heredity and environment. Keratinocytes are proliferated through immune-mediated inflammatory pathway, which leads to cell activation, infiltration of dermis cells and release of inflammatory factors. Activation of inflammatory cells and pro-inflammatory factors play an important role in the progression of psoriasis and atherosclerosis. Studies have found that there is a close relationship between psoriasis and atherosclerosis, and systemic inflammation may be the common feature of psoriasis and AS. This paper attempts to explore the possibility of the relationship between psoriasis and atherosclerotic comorbidities from the aspects of potential epidemiology and immune mechanism, in order to provide some reference for the subsequent scientific research.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong- Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yanjiao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Haiding Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wanling Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xinming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jinxin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China,*Correspondence: Zebo Jiang, ; Lei Wang, ; Chuanjian Lu,
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China,*Correspondence: Zebo Jiang, ; Lei Wang, ; Chuanjian Lu,
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong- Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affilliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Academy of Chinese Medicine Sciences, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China,*Correspondence: Zebo Jiang, ; Lei Wang, ; Chuanjian Lu,
| |
Collapse
|
10
|
Yerrapragada SM, Sawant H, Chen S, Bihl T, Wang J, Bihl JC. The protective effects of miR-210 modified endothelial progenitor cells released exosomes in hypoxia/reoxygenation injured neurons. Exp Neurol 2022; 358:114211. [PMID: 36027941 DOI: 10.1016/j.expneurol.2022.114211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
We have previously demonstrated that endothelial progenitor cells (EPCs) provide beneficial effects on ischemic stroke by reducing oxidative stress, which could be through EPCs-released exosomes (EPC-EXs). EXs are emerging as a bioagent for mediating cell-cell communications via their carried microRNAs (miR). miR-210 is shown to provide a neuroprotection effect against ischemic stroke. Here, we aimed to determine whether the combination of EPC-EXs and miR-210 would provide an enhanced protective effect on neurons. The hypoxia and reoxygenation (H/R) model were applied to neurons to mimic the ischemic injury of neurons. EPCs were transfected with miR-210 mimic to elevate the level of miR-210 in cells and EPC-EXs (miR210-EPC-EXs). For functional studies, EPC-EXs were co-incubated with H/R-injured neurons, then the cell viability and reactive oxygen species (ROS) production were determined. The results showed 1) H/R induced apoptosis and ROS overproduction in neurons; 2) miR-210 mimic increased the level of miR-210 in both EPCs and EPC-EXs; 3) EPCs cultured in serum-free medium released more exosomes in comparison with cells grown in complete growth media, suggesting serum starving induce the release of EXs; 4) After transfection, EPCs grown in complete media had almost 50 times higher miR-210 level than EPCs had in serum-free media, while the EPCs-EXs isolated from the complete media has lower miR-210 expression than from the serum-free media in a time-dependent manner, suggesting the transfer of miR-210 through EXs; 5) After co-incubation, EPC-EXs and miR210-EPC-EXs were uptaken by neurons, and the miR-210 level in neurons was elevated by miR210-EPC-EXs; 6) miR210-EPC-EXs were more effective in promoting cell viability and decreasing apoptosis and ROS production than EPC-EXs. The present study demonstrated that EPCs-carried miR-210 could be released and transferred to neurons in a time-dependent manner and that miR-210 loading can enhance the protective effects of EPC-EXs on H/R-induced neuron apoptosis, oxidative stress, and decreased viability.
Collapse
Affiliation(s)
- Sri Meghana Yerrapragada
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Harshal Sawant
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Shuzhen Chen
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Trevor Bihl
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
11
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
12
|
Han X, Li T, Wang T, Wang B, Li Y, Wang L, Lu Z, Wu A, Liu L, Pan G, Zhao M. Circulating microparticles are associated with plaque burden and cause eNOS uncoupling in patients with carotid atherosclerosis. Front Pharmacol 2022; 13:976644. [DOI: 10.3389/fphar.2022.976644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aims: The study aimed to evaluate the correlation of different microparticle (MP) phenotypes with plaque burden and their diagnostic value and preliminarily explore the role of MPs in atherosclerosis (AS).Methods: Carotid intima-media thickness (CIMT) and maximal plaque area in 23 patients with carotid atherosclerosis (CAS) and 22 healthy subjects were measured by ultrasound. Transmission electron microscopy, nanoparticle tracking analysis and western blot were used to identify MPs. Flow cytometry assay measured absolute number of MPs, and receiver operating characteristic (ROC) analysis was used to assess the relationship between plaque burden and MPs. To study the preliminary mechanism of MPs in AS, MPs were administered to 32 male Kunming mice, which were randomly divided into control, CAS, healthy, and tetrahydrobiopterin (BH4) groups. Hematoxylin-eosin staining, immunohistochemistry staining, and Western blot were adopted to detect relevant indexes 24 h after the injection.Results: The plasma levels of CD45+ leukocyte-derived microparticle (LMP), CD11a+ LMP, CD11a+/CD45+ LMP, and CD31+/CD42b+ platelet-derived microparticle (PMP) in CAS patients were significantly higher than those in healthy subjects, and were positively correlated with the maximal plaque area. Moreover, the levels of CD11a+ LMP, CD11a+/CD45+ LMP were also positively correlated with CIMT. The area under the ROC curve of the four MPs was 0.689, 0.747, 0.741, and 0.701, respectively. Compared with healthy subjects, MPs from CAS patients resulted in a significantly lower expression of endothelial nitric oxide synthase (eNOS) dimer/monomer, and BH4 could improve eNOS uncoupling. Moreover, the level of VCAM-1 in intima in the CAS group was significantly higher than in the other three groups.Conclusion: CD11a+ LMP and CD11a+/CD45+ LMP might be potential biomarkers for CAS prediction. BH4-related eNOS uncoupling occurs in CAS patients, and circulating MPs from them lead to endothelial dysfunction through eNOS uncoupling.
Collapse
|
13
|
Gardin C, Ferroni L, Leo S, Tremoli E, Zavan B. Platelet-Derived Exosomes in Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012546. [PMID: 36293399 PMCID: PMC9604238 DOI: 10.3390/ijms232012546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis (AS), the main cause of many cardiovascular diseases (CVDs), is a progressive inflammatory disease characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. The result is the thickening and clogging of these vessel walls. Several cell types are directly involved in the pathological progression of AS. Among them, platelets represent the link between AS, inflammation, and thrombosis. Indeed, besides their pivotal role in hemostasis and thrombosis, platelets are key mediators of inflammation at injury sites, where they act by regulating the function of other blood and vascular cell types, including endothelial cells (ECs), leukocytes, and vascular smooth muscle cells (VSMCs). In recent years, increasing evidence has pointed to a central role of platelet-derived extracellular vesicles (P-EVs) in the modulation of AS pathogenesis. However, while the role of platelet-derived microparticles (P-MPs) has been significantly investigated in recent years, the same cannot be said for platelet-derived exosomes (P-EXOs). For this reason, this reviews aims at summarizing the isolation methods and biological characteristics of P-EXOs, and at discussing their involvement in intercellular communication in the pathogenesis of AS. Evidence showing how P-EXOs and their cargo can be used as biomarkers for AS is also presented in this review.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Ferrara, Italy
- Correspondence:
| |
Collapse
|
14
|
Liu P, Wang S, Wang G, Zhao M, Du F, Li K, Wang L, Wu H, Chen J, Yang Y, Su G. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med 2022; 26:5165-5180. [PMID: 36071548 PMCID: PMC9575109 DOI: 10.1111/jcmm.17541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell‐to‐cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage‐derived exosomal miR‐4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF‐κB P65 activation. In turn, increased endothelin‐1 (ET‐1), intercellular cell adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR‐4532 to HUVECs. MiR‐4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR‐4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR‐4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.
Collapse
Affiliation(s)
- Peng Liu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuya Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangxin Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingming Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Fengli Du
- Shandong Provincial Public Health Clinical Center, Jinan, Shandong, China
| | - Kaiyuan Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lei Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huihui Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Jiamin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Yang Yang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Wang C, Li L, Yang C, Zhang Z, Li X, Wang Y, Lv X, Qi X, Song G. One night of sleep deprivation induces release of small extracellular vesicles into circulation and promotes platelet activation by small EVs. J Cell Mol Med 2022; 26:5033-5043. [PMID: 36043452 PMCID: PMC9549501 DOI: 10.1111/jcmm.17528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in intercellular communication. Few studies have focused on EV levels in subjects with sleep disorders. Here, we aimed to explore the role of acute sleep deprivation on the quantity and functionality of circulating EVs, and their tissue distribution. EVs were isolated by ultracentrifugation from the plasma of volunteers and animals undergoing one night of sleep deprivation. Arterio-venous shunt, FeCl3 thrombus test and thrombin-induced platelet aggregation assay were conducted to evaluate the in vivo and in vitro bioactivity of small EVs. Western blotting was performed to measure the expression of EV proteins. The fate and distribution of circulating small EVs were determined by intravital imaging. We found that one night of sleep deprivation triggers release of small EVs into the circulation in both healthy individuals and animals. Injection of sleep deprivation-liberated small EVs into animals increased thrombus formation and weight in thrombosis models. Also, sleep deprivation-liberated small EVs promoted platelet aggregation induced by thrombin. Mechanistically, sleep deprivation increased the levels of HMGB1 protein in small EVs, which play important roles in platelet activation. Furthermore, we found sleep deprivation-liberated small EVs are more readily localize in the liver. These data suggested that one night of sleep deprivation is a stress for small EV release, and small EVs released here may increase the risk of thrombosis. Further, small EVs may be implicated in long distance signalling during sleep deprivation-mediated adaptation processes.
Collapse
Affiliation(s)
- Chongyue Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China.,Taishan Vocational College of Nursing, Taian, China
| | - Lulu Li
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Chao Yang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Zhaoqiang Zhang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Xiao Li
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Yun Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Xiang Lv
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Guohua Song
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Taian, China
| |
Collapse
|
16
|
Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, Ng MH, Law JX. Scalable Production of Extracellular Vesicles and Its Therapeutic Values: A Review. Int J Mol Sci 2022; 23:7986. [PMID: 35887332 PMCID: PMC9315612 DOI: 10.3390/ijms23147986] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs. Here, we discussed the strategies utilized by researchers for the scalable production of EVs. Techniques such as bioreactors, mechanical stimulation, electrical stimulation, thermal stimulation, magnetic field stimulation, topographic clue, hypoxia, serum deprivation, pH modification, exposure to small molecules, exposure to nanoparticles, increasing the intracellular calcium concentration, and genetic modification have been used to improve the secretion of EVs by cultured cells. In addition, nitrogen cavitation, porous membrane extrusion, and sonication have been utilized to prepare EV-mimetic nanovesicles that share many characteristics with naturally secreted EVs. Apart from inducing EV production, these upscaling interventions have also been reported to modify the EVs' cargo and thus their functionality and therapeutic potential. In summary, it is imperative to identify a reliable upscaling technique that can produce large quantities of EVs consistently. Ideally, the produced EVs should also possess cargo with improved therapeutic potential.
Collapse
Affiliation(s)
- Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Li Ting Kee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Qian Hui Lee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Thayaalini Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - David Kok
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
- Faculty of Applied Sciences, UCSI University, Jalan Menara Gading No. 1, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| |
Collapse
|
17
|
Yalameha B, Nejabati HR, Nouri M. Circulating microparticles as indicators of cardiometabolic risk in PCOS. Clin Chim Acta 2022; 533:63-70. [PMID: 35718107 DOI: 10.1016/j.cca.2022.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most prevalent endocrine disturbance of the female reproductive system, is associated with several pathologic conditions, such as metabolic syndrome, obesity, diabetes, dyslipidemia, and insulin resistance, all of which are tightly connected to its progression. These factors are associated with a type of extracellular vesicle, ie, microparticles (MPs), released by shedding due to cell activation and apoptosis. Circulating MPs (cMPs) are secreted by a variety of cells, such as platelets, endothelial, leukocytes, and erythrocytes, and contain cytoplasmic substances derived from parent cells that account for their biologic activity. Current evidence has clearly shown that increased cMPs contribute to endothelial dysfunction, diabetes, hypertriglyceridemia, metabolic syndrome, cardiovascular abnormalities as well as PCOS. It has also been reported that platelet and endothelial MPs are specifically increased in PCOS thus endangering vascular health and subsequent cardiovascular disease. Given the importance of cMPs in the pathophysiology of PCOS, we review the role of cMPs in PCOS with a special focus on cardiometabolic significance.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|
19
|
Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gąsecka A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells 2022; 11:cells11071124. [PMID: 35406687 PMCID: PMC8997598 DOI: 10.3390/cells11071124] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Several perioperative inflammatory markers are postulated to be significant factors for long-term survival after off-pump coronary artery bypass surgery (OPCAB). Hematological parameters, whether single or combined as indices, provide higher predictive values. Methods: The study group comprised 538 consecutive patients (125 (23%) females and 413 (77%) males) with a mean age of 65 ± 9 years, who underwent OPCAB with a mean follow-up time of 4.7 ± 1.7 years. This single-center retrospective analysis included perioperative inflammatory markers such as the neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory response index (SIRI), aggregate index of systemic inflammation (AISI), and systemic inflammatory index (SII). Results: Multivariable analysis identified levels of neutrophils above 4.3 × 109/L (HR 13.44, 95% CI 1.05−3.68, p = 0.037), values of SIRI above 5.4 (HR 0.29, 95% CI 0.09−0.92, p = 0.036) and values of NLR above 3.5 (HR 2.21, 95% CI 1.48−3.32, p < 0.001) as being significant predictors of long-term mortality. The multifactorial models revealed the possibility of strong prediction by combining preoperative factors (COPD, stroke, PAD, and preoperative PLR) and postoperative neutrophil counts (p = 0.0136) or NLR (p = 0.0136) or SIRI (p = 0.0136). Conclusions: Among the postoperative inflammatory indices, the levels of neutrophils, NLR, and SIRI are the most prominent markers for long-term survival after off-pump coronary artery bypass surgery, when combined with preoperative characteristics.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
- Correspondence: ; Tel.: +48-61-854-9210
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Piotr Buczkowski
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| |
Collapse
|
20
|
Lei H, Ma Y, Zhang H, Cao Z, Zhang H. Allosteric Probe Recognition Initiated Cascade Transcription Amplification for Sensitive Analysis of Exosomes. Chembiochem 2022; 23:e202200067. [PMID: 35315567 DOI: 10.1002/cbic.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Indexed: 11/06/2022]
Abstract
Sensitive and accurate analysis of exosome plays considerable roles in multifarious biological processes and being deemed to be important biomarkers for cerebral venous thrombosis (CVT) diagnosis and therapy. Herein, we established a sensitive and specific exosomes detection approach based on target recognition initiated cascade signal amplification. In this method, allosteric probe is designed with hairpin structure for specific recognition of exosome and inducing the following signal amplification. Eventually, generated spinach RNA sequences after the cascade signal amplification process bind to DFHBI ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one) to produce enhanced fluorescence signal (approximate 2000 fold than that of inactive DFHBI). Compared with former proposed exosomes detection methods, the method exhibited a comparable detection range, but with an easy-to-design toolbox. Therefore, we believe that the proposed approach holds great potential for exosome based early diagnosis and prognosis of disease.
Collapse
Affiliation(s)
- Huabin Lei
- Sun Simiao hospital, Department of Encephalopathy, CHINA
| | - Yaru Ma
- Sun Simiao hospital, Department of Encephalopathy, CHINA
| | - Hui Zhang
- Sun Simiao hospital, Department of Encephalopathy, CHINA
| | - Zenghui Cao
- Urumqi maternal and child health care hospital, Xinjiang human sperm bank, CHINA
| | - Heng Zhang
- sunsimiao hospital, department of clinical laboratory, Tongchuan, 727031, Tongchuan, CHINA
| |
Collapse
|
21
|
Ke X, Liao Z, Luo X, Chen JQ, Deng M, Huang Y, Wang Z, Wei M. Endothelial colony-forming cell-derived exosomal miR-21-5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun Signal 2022; 20:30. [PMID: 35279183 PMCID: PMC8917727 DOI: 10.1186/s12964-022-00828-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Percutaneous transluminal coronary angioplasty (PTCA) represents an efficient therapeutic method for atherosclerosis but conveys a risk of causing restenosis. Endothelial colony-forming cell-derived exosomes (ECFC-exosomes) are important mediators during vascular repair. This study aimed to investigate the therapeutic effects of ECFC-exosomes in a rat model of atherosclerosis and to explore the molecular mechanisms underlying the ECFC-exosome-mediated effects on ox-LDL-induced endothelial injury.
Methods
The effect of ECFC-exosome-mediated autophagy on ox-LDL-induced human microvascular endothelial cell (HMEC) injury was examined by cell counting kit-8 assay, scratch wound assay, tube formation assay, western blot and the Ad-mCherry-GFP-LC3B system. RNA-sequencing assays, bioinformatic analysis and dual-luciferase reporter assays were performed to confirm the interaction between the miR-21-5p abundance of ECFC-exosomes and SIPA1L2 in HMECs. The role and underlying mechanism of ECFC-exosomes in endothelial repair were explored using a high-fat diet combined with balloon injury to establish an atherosclerotic rat model of vascular injury. Evans blue staining, haematoxylin and eosin staining and western blotting were used to evaluate vascular injury.
Results
ECFC-exosomes were incorporated into HMECs and promoted HMEC proliferation, migration and tube formation by repairing autophagic flux and enhancing autophagic activity. Subsequently, we demonstrated that miR-21-5p, which is abundant in ECFC-exosomes, binds to the 3’ untranslated region of SIPA1L2 to inhibit its expression, and knockout of miR-21-5p in ECFC-exosomes reversed ECFC-exosome-decreased SIPA1L2 expression in ox-LDL-induced HMEC injury. Knockdown of SIPA1L2 repaired autophagic flux and enhanced autophagic activity to promote cell proliferation in ox-LDL-treated HMECs. ECFC-exosome treatment attenuated vascular endothelial injury, regulated lipid balance and activated autophagy in an atherogenic rat model of vascular injury, whereas these effects were eliminated with ECFC-exosomes with knockdown of miR-21-5p.
Conclusions
Our study demonstrated that ECFC-exosomes protect against atherosclerosis- or PTCA-induced vascular injury by rescuing autophagic flux and inhibiting SIAP1L2 expression through delivery of miR-21-5p.
Collapse
|
22
|
EPC-EXs improve astrocyte survival and oxidative stress through different uptaking pathways in diabetic hypoxia condition. Stem Cell Res Ther 2022; 13:91. [PMID: 35241178 PMCID: PMC8896364 DOI: 10.1186/s13287-022-02766-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. We confirmed that high glucose (HG) induces endothelial dysfunction and cerebral ischemic injury is enlarged in diabetic mice. Stem cell-released exosomes have been shown to protect the brain from ischemic stroke. We have previously shown that endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) can protect endothelial cells from hypoxia/reoxygenation (H/R) and HG-induced injury. Here, we aim to investigate the effects of EPC-EXs on astrocytes under H/R and HG-induced injury and whether miR-126 enriched EPC-EXs (miR126-EPC-EXs) have enhanced efficacy. Methods EPC-EX uptake and co-localization were measured by fluorescent microscopy using PKH26 and DAPI staining. miR-126 enrichment was achieved by transfecting with miR-126 mimics and quantified with real-time PCR. After co-incubation, cell death or injury was measured by using LDH (Lactate Dehydrogenase) assay. Oxidative stress/ROS (reactive oxygen species) generation was measured by DHE (Dihydroethidium) staining and lipid peroxidation assay. Results The EPC-EXs were effectively taken up by the astrocytes in a concentration as well as time-dependent manners and were co-localized within the nucleus as well as the cytoplasm. Pathway uptake inhibitors revealed that the EPC-EXs are effectively taken up by the clathrin-mediated, caveolin-dependent, and micropinocytosis via PI3K/Akt pathway. H/R and HG-induced a cell injury which could be protected by EPC-EXs evidenced by decreased cell cytotoxicity, oxidative stress, and lipid peroxidation. Moreover, miR-126 overexpression could increase the level of miR-126 in astrocytes and enhance the protective effects of EPC-EXs. Conclusions These results collectively indicate that the EPC-EXs could protect astrocytes against the HG plus H/R-induced damage.
Collapse
|
23
|
Heo J, Kang H. Exosome-Based Treatment for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23021002. [PMID: 35055187 PMCID: PMC8778342 DOI: 10.3390/ijms23021002] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
24
|
Liu C, Bayado N, He D, Li J, Chen H, Li L, Li J, Long X, Du T, Tang J, Dang Y, Fan Z, Wang L, Yang PC. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front Cardiovasc Med 2021; 8:758050. [PMID: 34957249 PMCID: PMC8695616 DOI: 10.3389/fcvm.2021.758050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of human death worldwide. Drug thrombolysis, percutaneous coronary intervention, coronary artery bypass grafting and other methods are used to restore blood perfusion for coronary artery stenosis and blockage. The treatments listed prolong lifespan, however, rate of mortality ultimately remains the same. This is due to the irreversible damage sustained by myocardium, in which millions of heart cells are lost during myocardial infarction. The lack of pragmatic methods of myocardial restoration remains the greatest challenge for effective treatment. Exosomes are small extracellular vesicles (EVs) actively secreted by all cell types that act as effective transmitters of biological signals which contribute to both reparative and pathological processes within the heart. Exosomes have become the focus of many researchers as a novel drug delivery system due to the advantages of low toxicity, little immunogenicity and good permeability. In this review, we discuss the progress and challenges of EVs in myocardial repair, and review the recent development of extracellular vesicle-loading systems based on their unique nanostructures and physiological functions, as well as the application of engineering modifications in the diagnosis and treatment of myocardial repair.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nathan Bayado
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
25
|
Botts SR, Fish JE, Howe KL. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol 2021; 12:787541. [PMID: 35002720 PMCID: PMC8727904 DOI: 10.3389/fphar.2021.787541] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology - a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.
Collapse
Affiliation(s)
- Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Wang X, Liang Z, Xiang H, Li Y, Chen S, Lu H. LKB1 Regulates Vascular Macrophage Functions in Atherosclerosis. Front Pharmacol 2021; 12:810224. [PMID: 34975507 PMCID: PMC8714937 DOI: 10.3389/fphar.2021.810224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is known to shape the regulation of macrophage function by participating in multiple processes including cell metabolism, growth, and polarization. However, whether LKB1 also affects the functional plasticity of macrophages in atherosclerosis has not attracted much attention. Abnormal macrophage function is a pathophysiological hallmark of atherosclerosis, characterized by the formation of foam cells and the maintenance of vascular inflammation. Mounting evidence supports that LKB1 plays a vital role in the regulation of macrophage function in atherosclerosis, including affecting lipid metabolism reprogramming, inflammation, endoplasmic reticulum stress, and autophagy in macrophages. Thus, decreased expression of LKB1 in atherosclerosis aggravates vascular injury by inducing excessive lipid deposition in macrophages and the formation of foam cells. To systematically understand the role and potential mechanism of LKB1 in regulating macrophage functions in atherosclerosis, this review summarizes the relevant data in this regard, hoping to provide new ideas for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical Laboratory, Yueyang people’s Hospital, Yueyang, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanqiu Li
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| |
Collapse
|
27
|
Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021; 13:pharmaceutics13122056. [PMID: 34959338 PMCID: PMC8703910 DOI: 10.3390/pharmaceutics13122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite diagnostic and therapeutic advances, cardiometabolic disease remains the leading cause of death worldwide. Extracellular vesicles (EVs), which include exosomes and microvesicles, have gained particular interest because of their role in metabolic homeostasis and cardiovascular physiology. Indeed, EVs are recognized as critical mediators of intercellular communication in the cardiovascular system. Exosomes are naturally occurring nanocarriers that transfer biological information in the setting of metabolic abnormalities and cardiac dysfunction. The study of these EVs can increase our knowledge on the pathophysiological mechanisms of metabolic disorders and their cardiovascular complications. Because of their inherent properties and composition, exosomes have been proposed as diagnostic and prognostic biomarkers and therapeutics for specific targeting and drug delivery. Emerging fields of study explore the use exosomes as tools for gene therapy and as a cell-free alternative for regenerative medicine. Furthermore, innovative biomaterials can incorporate exosomes to enhance tissue regeneration and engineering. In this work, we summarize the most recent knowledge on the role of exosomes in cardiometabolic pathophysiology while highlighting their potential therapeutic applications.
Collapse
|
28
|
Chen W, Wang S, Xing D. New Horizons for the Roles and Association of APE1/Ref-1 and ABCA1 in Atherosclerosis. J Inflamm Res 2021; 14:5251-5271. [PMID: 34703267 PMCID: PMC8526300 DOI: 10.2147/jir.s330147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide. APE1/Ref-1 and ABCA1 play key roles in the progression of atherosclerosis. APE1/Ref-1 suppresses atherosclerosis via multiple mechanisms, including reducing the IL-6-, TNF-α-, and IL-1β-mediated proinflammatory responses, suppressing ROS-mediated oxidant activity and Bax/Bcl-2-mediated vascular calcification and apoptosis, and reducing LOX-1-mediated cholesterol uptake. However, APE1/Ref-1 also promotes atherosclerosis by increasing the activity of the NK-κB and S1PR1 pathways. APE1/Ref-1 localizes to the nucleus, cytoplasm, and mitochondria and can be secreted from the cell. APE1/Ref-1 localization is dynamically regulated by the disease state and may be responsible for its proatherogenic and antiatherogenic effects. ABCA1 promotes cholesterol efflux and anti-inflammatory responses by binding to apoA-I and regulates apoptotic cell clearance and HSPC proliferation to protect against inflammatory responses. Interestingly, in addition to mediating these functions, ABCA1 promotes the secretion of acetylated APE1/Ref-1 (AcAPE1/Ref-1), a therapeutic target, which protects against atherosclerosis development. The APE1/Ref-1 inhibitor APX3330 is being evaluated in a phase II clinical trial. The LXR agonist LXR-623 (WAY-252623) is an agonist of ABCA1 and the first LXR-targeting compound to be evaluated in clinical trials. In this article, we review the roles of ABCA1 and APE1/Ref-1 in atherosclerosis and focus on new insights into the ABCA1-APE1/Ref-1 axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
29
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Preeclampsia is a common complication of pregnancy and contributes significantly to maternal and fetal morbidity and mortality. A protective hypercoagulable state is often developed during late pregnancy and can evolve into a prothrombotic state in patients with preeclampsia. The underlying mechanism of this prothrombotic transition remains poorly understood. We discuss recent progress in understanding the pathophysiology of preeclampsia and associated prothrombotic state. RECENT FINDINGS The hypercoagulable state developed during pregnancy is initiated by placental factors and progresses into the prothrombotic state in preeclampsia when the placenta is subjected ischemic and oxidative injuries. The cause of the preeclampsia-induced prothrombotic state is multifactorial, involving not only placental factors but also maternal conditions, which include genetic predisposition, preexisting medical conditions, and conditions acquired during pregnancy. Endotheliopathy is the primary pathology of preeclampsia and contributes to the prothrombotic state by inducing the dysregulation of coagulation, platelets, and adhesive ligands. SUMMARY Patients with preeclampsia often develop a severe prothrombotic state that predisposes them to life-threatening thrombosis and thromboembolism during and after pregnancy. Early recognition and treatment of this prothrombotic state can improve maternal and infant outcomes of preeclampsia patients.
Collapse
Affiliation(s)
- Chan Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Yuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
31
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
32
|
Patel N, Chin DD, Chung EJ. Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS JOURNAL 2021; 23:95. [PMID: 34312734 DOI: 10.1208/s12248-021-00621-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CAD) due to atherosclerosis is a major cause of death worldwide. The development of atherosclerosis involves intercellular communication facilitated by exosomes secreted from vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), immune cells, and platelets. In this review, we summarize the current understanding of exosome biogenesis and uptake, and discuss atherogenic and atheroprotective functions of exosomes secreted from these cell types. In addition, we examine the potential of enhancing the therapeutic and targeting ability of exosomes exhibiting atheroprotective function by drug loading and surface modification with targeting ligands. We conclude with current challenges associated with exosome engineering for therapeutic use.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA. .,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA. .,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, California, Los Angeles, 90089, USA. .,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA.
| |
Collapse
|
33
|
Xiao Q, Yin R, Wang Y, Yang S, Ma A, Pan X, Zhu X. Comprehensive Analysis of Peripheral Exosomal circRNAs in Large Artery Atherosclerotic Stroke. Front Cell Dev Biol 2021; 9:685741. [PMID: 34239876 PMCID: PMC8257506 DOI: 10.3389/fcell.2021.685741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are crucial vehicles in intercellular communication. Circular RNAs (circRNAs), novel endogenous noncoding RNAs, play diverse roles in ischemic stroke. Recently, the abundance and stability of circRNAs in exosomes have been identified. However, a comprehensive analysis of exosomal circRNAs in large artery atherosclerotic (LAA) stroke has not yet been reported. We performed RNA sequencing (RNA-Seq) to comprehensively identify differentially expressed (DE) exosomal circRNAs in five paired LAA and normal controls. Further, quantitative real-time PCR (qRT-PCR) was used to verify the RNA-Seq results in a cohort of stroke patients (32 versus 32). RNA-Seq identified a total of 462 circRNAs in peripheral exosomes; there were 25 DE circRNAs among them. Additionally, circRNA competing endogenous RNA (ceRNA) network and translatable analysis revealed the potential functions of the exosomal circRNAs in LAA progression. Two ceRNA pathways involving 5 circRNAs, 2 miRNAs, and 3 mRNAs were confirmed by qRT-PCR. In the validation cohort, receiver operating characteristic (ROC) curve analysis identified two circRNAs as possible novel biomarkers, and a logistic model combining two and four circRNAs increased the area under the curve compared with the individual circRNAs. Here, we show for the first time the comprehensive expression of exosomal circRNAs, which displayed the potential diagnostic and biological function in LAA stroke.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Georgescu A, Simionescu M. Extracellular Vesicles: Versatile Nanomediators, Potential Biomarkers and Therapeutic Agents in Atherosclerosis and COVID-19-Related Thrombosis. Int J Mol Sci 2021; 22:5967. [PMID: 34073119 PMCID: PMC8198837 DOI: 10.3390/ijms22115967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cells convey information among one another. One instrument employed to transmit data and constituents to specific (target) cells is extracellular vesicles (EVs). They originate from a variety of cells (endothelial, immune cells, platelets, mesenchymal stromal cells, etc.), and consequently, their surface characteristics and cargo vary according to the paternal cell. The cargo could be DNA, mRNA, microRNA, receptors, metabolites, cytoplasmic proteins, or pathological molecules, as a function of which EVs exert different effects upon endocytosis in recipient cells. Recently, EVs have become important participants in a variety of pathologies, including atherogenesis and coronavirus disease 2019 (COVID-19)-associated thrombosis. Herein, we summarize recent advances and some of our own results on the role of EVs in atherosclerotic cardiovascular diseases, and discuss their potential to function as signaling mediators, biomarkers and therapeutic agents. Since COVID-19 patients have a high rate of thrombotic events, a special section of the review is dedicated to the mechanism of thrombosis and the possible therapeutic potential of EVs in COVID-19-related thrombosis. Yet, EV mechanisms and their role in the transfer of information between cells in normal and pathological conditions remain to be explored.
Collapse
Affiliation(s)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy, 050568 Bucharest, Romania;
| |
Collapse
|
35
|
Ma J, Yuan HX, Chen YT, Ning DS, Liu XJ, Peng YM, Chen C, Song YK, Jian YP, Li Y, Liu Z, Ou ZJ, Ou JS. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:786. [PMID: 34268399 PMCID: PMC8246187 DOI: 10.21037/atm-20-7828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Background Current diagnostic strategies for acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB) are nonspecific and limited. Previously, we demonstrated that circulating microparticles (MPs) in patients with valve heart disease (VHD) and congenital heart diseases (CHD) induce endothelial dysfunction and neutrophil chemotaxis, which may result in kidney injury. We also found that circulating MPs increase after cardiac surgery with CPB and are related to cardiac function. However, the relationship between circulating MPs and AKI after CPB is unknown. Methods Eighty-five patients undergoing cardiac surgery with CPB were enrolled. Patients were divided into AKI and non-AKI groups based on the serum creatinine levels at 12 h and 3 d post-CPB. Circulating MPs were isolated from plasma, and their levels including its subtypes were detected by flow cytometer. Independent risk factors for the CPB-associated AKI (CPB-AKI) were determined by multivariate logistic regression analysis. Receiver operating characteristic (ROC) analysis was used to measure the prognostic potential of CPB-AKI. Results The morbidity of AKI at 12 h and 3 d after cardiac surgery with CPB was 40% and 31.76%, respectively. The concentrations of total MPs and platelet-derived MPs (PMP) remained unchanged at 12 h and then increased at 3 d post-CPB, while that of endothelial-derived MPs (EMP) increased at both time points. In patients with AKI, PMP and EMP were elevated compared with the patients without AKI. However, no significant change was detected on monocyte-derived MPs (MMP) at 12 h and 3 d post-CPB. The logistic regression analysis showed that EMP was the independent risk factor for AKI both at 12 h and 3 d post-CPB. The area under ROC for the concentrations of EMP at 12 h and 3 d post-CPB was 0.86 and 0.91, with the specificity up to 0.88 and 0.91, respectively. Conclusions Circulating EMP may serve as a potential biomarker of AKI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
36
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
37
|
Lin Y, Liu M, Chen E, Jiang W, Shi W, Wang Z. Bone marrow-derived mesenchymal stem cells microvesicles stabilize atherosclerotic plaques by inhibiting NLRP3-mediated macrophage pyroptosis. Cell Biol Int 2020; 45:820-830. [PMID: 33325118 DOI: 10.1002/cbin.11526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
Rupture of atherosclerotic plaques constitutes the major cause of thrombosis and acute ischemic coronary syndrome. Bone marrow-derived mesenchymal stem cells microvesicles (BMSCs-MVs) are reported to promote angiogenesis. This study investigated the role of BMSCs-MVs in stabilizing atherosclerotic plaques. BMSCs-MVs in mice were isolated and identified. The mouse model of atherosclerosis was established, and mice were injected with BMSCs-MVs via the tail vein. The macrophage model with high glucose and oxidative damage was established and then incubated with BMSCs-MVs. Nod-like receptor protein 3 (NLRP3) expression, pyroptosis-related proteins, and inflammatory factors were detected. Actinomycin D was used to inhibit the secretion of BMSCs-MVs to verify the source of microRNA-223 (miR-223). The binding relationship between miR-223 and NLRP3 was predicted and verified. BMSCs-MVs with knockdown of miR-223 were cocultured with bone marrow-derived macrophages with knockdown of NLRP3, and then levels of miR-223, NLRP3, pyroptosis-related proteins, and inflammatory factors were detected. BMSCs-MVs could reduce the vulnerability index of atherosclerotic plaques and intima-media thickness in mice, and inhibit pyroptosis and inflammation. BMSCs-MVs inhibited pyroptosis and inflammatory factors in macrophages. BMSCs-MVs carried miR-223 to inhibit NLRP3 expression and reduce macrophage pyroptosis, thereby stabilizing the atherosclerotic plaques.
Collapse
Affiliation(s)
- Yu Lin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meihan Liu
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Enqi Chen
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Jiang
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weidong Shi
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiyuan Wang
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
38
|
Wu WC, Song SJ, Zhang Y, Li X. Role of Extracellular Vesicles in Autoimmune Pathogenesis. Front Immunol 2020; 11:579043. [PMID: 33072123 PMCID: PMC7538611 DOI: 10.3389/fimmu.2020.579043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are conditions that emerge from abnormal immune responses to natural parts of the body. Extracellular vesicles (EVs) are membranous structures found in almost all types of cells. Because EVs often transport “cargo” between cells, their ability to crosstalk may be an important communication pathway within the body. The pathophysiological role of EVs is increasingly recognized in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Type 1 diabetes, and autoimmune thyroid disease. EVs are considered as biomarkers of these diseases. This article outlines existing knowledge on the biogenesis of EVs, their role as messegers in cellular communication and the function in T/B cell differentiation and maturation, and focusing on their potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|