1
|
Stochmal A, Czuwara J, Zaremba M, Rudnicka L. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications. Arch Dermatol Res 2021; 313:783-791. [PMID: 33433715 DOI: 10.1007/s00403-020-02172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Adiponectin, resistin and leptin belong to adipokines, a group of molecules secreted mainly by the adipose tissue, which impaired expression may be a missing link between various manifestations of systemic sclerosis. Adiponectin, which is also released in small amounts by the endothelium, possesses anti-inflammatory, anti-fibrotic and protective against endothelial injury properties. Both leptin and resistin exhibit features which are contradictory to adiponectin, as they trigger inflammation and the activation of skin fibroblasts. Epoprostenol is a prostaglandin analogue with powerful vasodilator activity and inhibitory effect on platelet aggregation. The aim of the study was to evaluate whether epoprostenol may have an effect on serum adipokine levels in patients with systemic sclerosis. METHODS A total of 27 patients were included in the study and received epoprostenol intravenously (25 µg of per day for 3 consecutive days). Serum concentrations of total adiponectin, resistin and leptin were assessed with enzyme-linked immunosorbent essay (R&D Systems, Minneapolis, MN, USA). RESULTS In all SSc patients, the basal level of adiponectin was significantly lower compared to healthy controls (mean 6.00 [Formula: see text] 2.81 μg/ml vs. 8.8 [Formula: see text] 4.3 μg/ml, p = 0.02) and basal level of resistin (mean 11.12 [Formula: see text] 3.36 ng/ml vs. 8.54 [Formula: see text] 3.07 ng/ml p = 0.02) was significantly higher than in the control group. The serum concentration of adiponectin increased significantly after treatment with epoprostenol (6.00 [Formula: see text] 2.81 μg/ml vs 9.29 [Formula: see text] 6.05 μg/ml; P = 0.002). The level of resistin and leptin remained unchanged. CONCLUSION Epoprostenol infusions up-regulate the serum concentration of adiponectin in patients with systemic sclerosis. In our opinion, future studies on treatments in systemic sclerosis should address the issue of their effect on adipokine metabolism.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Wnuk A, Stangret A, Wątroba M, Płatek AE, Skoda M, Cendrowski K, Sawicki W, Szukiewicz D. Can adipokine visfatin be a novel marker of pregnancy-related disorders in women with obesity? Obes Rev 2020; 21:e13022. [PMID: 32220005 DOI: 10.1111/obr.13022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Overweight and obesity have become a dangerous disease requiring multiple interventions, treatment and preventions. In women of reproductive age, obesity is one of the most common medical conditions. Among others, obese state is characterized by low-grade systemic inflammation and enhanced oxidative stress. Increased maternal body mass index might amplify inflammation and reactive oxygen species production, which is associated with unfavourable clinical outcomes that affect both mother and child. Intrauterine growth retardation, preeclampsia, or gestational diabetes mellitus are examples of the hampered maternal and foetoplacental unit interactions. Visfatin is the obesity-related adipokine produced mainly by the visceral adipose tissue. Visfatin affects glucose homeostasis, as well as the regulation of genes related to oxidative stress and inflammatory response. Here, we review visfatin interactions in pregnancy-related disorders linked to obesity. We highlight the possible predictive and prognostic value of visfatin in diagnostic strategies on gravidas with obesity.
Collapse
Affiliation(s)
- Anna Wnuk
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Stangret
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Wątroba
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna E Płatek
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.,1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skoda
- Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Cendrowski
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Abstract
Perivascular adipose tissue (PVAT) is no longer recognised as simply a structural support for the vasculature, and we now know that PVAT releases vasoactive factors which modulate vascular function. Since the discovery of this function in 1991, PVAT research is rapidly growing and the importance of PVAT function in disease is becoming increasingly clear. Obesity is associated with a plethora of vascular conditions; therefore, the study of adipocytes and their effects on the vasculature is vital. PVAT contains an adrenergic system including nerves, adrenoceptors and transporters. In obesity, the autonomic nervous system is dysfunctional; therefore, sympathetic innervation of PVAT may be the key mechanistic link between increased adiposity and vascular disease. In addition, not all obese people develop vascular disease, but a common feature amongst those that do appears to be the inflammatory cell population in PVAT. This review will discuss what is known about sympathetic innervation of PVAT, and the links between nerve activation and inflammation in obesity. In addition, we will examine the therapeutic potential of exercise in sympathetic stimulation of adipose tissue.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK.
| | - Sarah B Withers
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
- School of Environment and Life Sciences, University of Salford, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
| |
Collapse
|
4
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
5
|
Schütten MTJ, Houben AJHM, de Leeuw PW, Stehouwer CDA. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology (Bethesda) 2017; 32:197-209. [PMID: 28404736 DOI: 10.1152/physiol.00037.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Obese individuals frequently develop hypertension, which is for an important part attributable to renin-angiotensin-aldosterone system (RAAS) overactivity. This review summarizes preclinical and clinical evidence on the involvement of dysfunctional adipose tissue in RAAS activation and on the renal, central, and vascular mechanisms linking RAAS components to obesity-associated hypertension.
Collapse
Affiliation(s)
- Monica T J Schütten
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter W de Leeuw
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Bitto A, Arcoraci V, Alibrandi A, D'Anna R, Corrado F, Atteritano M, Minutoli L, Altavilla D, Squadrito F. Visfatin correlates with hot flashes in postmenopausal women with metabolic syndrome: effects of genistein. Endocrine 2017; 55:899-906. [PMID: 27126198 DOI: 10.1007/s12020-016-0968-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 01/08/2023]
Abstract
During menopause, an increased prevalence of metabolic syndrome (MetS) and central obesity seems to increase hot flashes (HFs). Visfatin is an inflammatory adipokine secreted by visceral fat. We investigated visfatin levels and its relationship with hot flash number and BMI, in postmenopausal women with MetS. We also evaluated the effect of genistein, an isoflavone effective in reducing HFs, on visfatin levels and HFs after 1 year of treatment. This was a randomized, double-blind, placebo-controlled trial. Postmenopausal women with MetS were randomly assigned to receive placebo (n = 60) or 54 mg genistein (n = 60), daily for 1 year. As main outcome measures, hot flashes number and circulating visfatin levels were evaluated. Visfatin significantly correlated with BMI and HFs number in women with MetS at basal. After 6 and 12 months, our results indicate a strong correlation and a significant effect of genistein in reducing both HFs and visfatin in women with MetS. The present study suggests that visfatin plays a role in the vasomotor symptoms, at least in postmenopausal women with metabolic syndrome. Genistein may reduce HFs decreasing the circulating levels of this inflammatory adipokine.
Collapse
Affiliation(s)
- Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th Floor, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125, Messina, Italy.
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th Floor, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125, Messina, Italy
| | - Angela Alibrandi
- Department of Economical Business and Environmental Sciences and Quantitative Methods, University of Messina, Messina, Italy
| | - Rosario D'Anna
- Department of Paediatric Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Francesco Corrado
- Department of Paediatric Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Marco Atteritano
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th Floor, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th Floor, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125, Messina, Italy
| | - Domenica Altavilla
- Department of Paediatric Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th Floor, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125, Messina, Italy
| |
Collapse
|
7
|
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, and Experimental and Clinical Research Center, a joint cooperation of the Charité – University Medicine Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| |
Collapse
|
8
|
TÖRÖK J, ZEMANČÍKOVÁ A, KOCIANOVÁ Z. Interaction of Perivascular Adipose Tissue and Sympathetic Nerves in Arteries From Normotensive and Hypertensive Rats. Physiol Res 2016; 65:S391-S399. [DOI: 10.33549/physiolres.933434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.
Collapse
Affiliation(s)
- J. TÖRÖK
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | |
Collapse
|
9
|
Ambati S, Yu P, McKinney EC, Kandasamy MK, Hartzell D, Baile CA, Meagher RB. Adipocyte nuclei captured from VAT and SAT. BMC OBESITY 2016; 3:35. [PMID: 27462403 PMCID: PMC4949929 DOI: 10.1186/s40608-016-0112-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Background Obesity-related comorbidities are thought to result from the reprogramming of the epigenome in numerous tissues and cell types, and in particular, mature adipocytes within visceral and subcutaneous adipose tissue, VAT and SAT. The cell-type specific chromatin remodeling of mature adipocytes within VAT and SAT is poorly understood, in part, because of the difficulties of isolating and manipulating large fragile mature adipocyte cells from adipose tissues. Methods We constructed MA-INTACT (Mature Adipocyte-Isolation of Nuclei TAgged in specific Cell Types) mice using the adiponectin (ADIPOQ) promoter (ADNp) to tag the surface of mature adipocyte nuclei with a reporter protein. The SUN1mRFP1Flag reporter is comprised of a fragment of the nuclear transmembrane protein SUN1, the fluorescent protein mRFP1, and three copies of the Flag epitope tag. Results Mature adipocyte nuclei were rapidly and efficiently immuno-captured from VAT and SAT (MVA and MSA nuclei, respectively), of MA-INTACT mice. MVA and MSA nuclei contained 1,000 to 10,000-fold higher levels of adipocyte-specific transcripts, ADIPOQ, PPARg2, EDNRB, and LEP, relative to uncaptured nuclei, while the latter expressed higher levels of leukocyte and endothelial cell markers IKZF1, RETN, SERPINF1, SERPINE1, ILF3, and TNFA. MVA and MSA nuclei differentially expressed several factors linked to adipogenesis or obesity-related health risks including CEBPA, KLF2, RETN, SERPINE1, and TNFA. The various nuclear populations dramatically differentially expressed transcripts encoding chromatin remodeler proteins regulating DNA cytosine methylation and hydroxymethylation (TETs, DNMTs, TDG, GADD45s) and nucleosomal histone modification (ARID1A, KAT2B, KDM4A, PRMT1, PRMT5, PAXIP1). Remarkably, MSA and MVA nuclei expressed 200 to 1000-fold higher levels of thermogenic marker transcripts PRDM16 and UCP1. Conclusions The MA-INTACT mouse enables a simple way to perform cell-type specific analysis of highly purified mature adipocyte nuclei from VAT and SAT and increases the statistical significance of data collected on adipocytes. Isolated VAT and SAT adipocyte nuclei expressed distinct patterns of transcripts encoding chromatin remodeling factors and proteins relevant to diabetes, cardiovascular disease, and thermogenesis. The MA-INTACT mouse is an useful model to test the impact of caloric intake, dietary nutrients, exercise, and pharmaceuticals on the epigenome-induced health risks of obesity. Electronic supplementary material The online version of this article (doi:10.1186/s40608-016-0112-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA USA
| | - Ping Yu
- Department of Genetics, University of Georgia, Athens, GA USA
| | | | | | - Diane Hartzell
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | - Clifton A Baile
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | | |
Collapse
|
10
|
Chen H, Wang S, Zhang H, Nice EC, Huang C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev Anticancer Ther 2016; 16:827-38. [PMID: 27186719 DOI: 10.1080/14737140.2016.1190649] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes the first step in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway. Aberrant NAD metabolism was associated with oncogenic signal transduction, suggesting the critical roles of Nampt in tumorigenesis and metastasis. Additionally, Nampt can be secreted out of the cell, and this extracellular form of Nampt (eNampt) was shown to induce inflammation and angiogenesis due to its cytokine activity, which may also be involved in carcinogenesis. AREAS COVERED This article reviews recent advances in the studies of Nampt in carcinogenesis, with a special highlight on Nampt inhibitors and future clinical application, including cancer diagnosis, prognosis and therapy. Expert commentary: Nampt not only maintains the balance of cellular metabolism, but also has a profound influence on multiple aspects of carcinogenesis. Therefore, elucidation of these mechanisms opens the door for future clinical applications targeting this protein. Additional studies are needed to address important questions including the relationship between extracellular Nampt and carcinogenesis.
Collapse
Affiliation(s)
- Hang Chen
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Shiyu Wang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Haiyuan Zhang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Edouard C Nice
- b Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Canhua Huang
- c State Key Laboratory for Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center of Biotherapy , Chengdu , China
| |
Collapse
|
11
|
Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur J Pharmacol 2015; 766:16-24. [DOI: 10.1016/j.ejphar.2015.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
|
12
|
He L, Xu J, Chen L, Li L. Apelin/APJ signaling in hypoxia-related diseases. Clin Chim Acta 2015; 451:191-8. [PMID: 26436483 DOI: 10.1016/j.cca.2015.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 12/29/2022]
Abstract
The regulatory peptide apelin is the endogenous ligand for the orphan G protein-coupled receptor APJ. Apelin and APJ exist in a variety of tissues, with special status in the heart, lung and tumors. Consequently, the apelin/APJ system exerts a broad range of activities that affect multiple organ systems. Accumulating evidence indicates that the expressions of apelin and APJ are significantly augmented by hypoxia through the hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. Increased apelin promotes cellular proliferation, migration and survival, therefore regulating angiogenesis. In addition, the pre-administration of exogenous apelin is involved in the occurrence and development of hypoxia-induced pathological diseases. The purpose of this article is to review the properties of the apelin/APJ system, which is affected by hypoxic conditions, and the regulation of apelin/APJ signaling in hypoxia-associated disorders. Thus, the apelin/APJ system may be a potential therapeutic target in hypoxia-related diseases.
Collapse
Affiliation(s)
- Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, PR China
| | - Jin Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, PR China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, PR China.
| | - Lanfang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
13
|
Vascular reactivity and biomarkers of endothelial function in healthy subjects exposed to acute hypobaric hypoxia. Clin Biochem 2015; 48:1059-63. [PMID: 26074444 DOI: 10.1016/j.clinbiochem.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/29/2015] [Accepted: 06/07/2015] [Indexed: 11/21/2022]
Abstract
AIMS The aim of this study was to evaluate the effects of acute hypobaric hypoxia (HH) on vascular reactivity and biochemical markers associated with endothelial function (EF). MAIN METHODS Ten healthy subjects were exposed to a simulated altitude of 4,000 meters above sea level for 4 hours in a hypobaric chamber. Vascular reactivity was measured by the flow-mediated vasodilatation (FMVD) test. Endothelin-1, high sensitive-C reactive protein (hsCRP), vascular cell adhesion molecule 1, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), paraoxonase and adiponectin levels, and FMVD were evaluated before and after the exposure. KEY FINDINGS Subjects were young (age: 32±6 years), lean [body mass index: 23.9±2.0kg/m(2), waist circumference: 77(IQR: 72-80) cm], and presented normal clinical and biochemical parameters. No significant changes were evidenced in FMVD in response to HH (pre: 0.45 (0.20-0.70) vs. during: 0.50 (0.20-1.22) mm; p=0.594). On the other hand, endothelin-1 (+54%, p<0.05), hsCRP (+37%, p<0.001), IL-6 (+75%, p<0.05), TNF-α (+75%, p<0.05), and adiponectin (-39%, p<0.01) levels were significantly altered post-HH. FMVD was increased in 7 subjects, and it was decreased in 3 individuals during HH exposure. Interestingly, when EF biomarkers were compared between these two subgroups of subjects, only post exposure-adiponectin levels were significantly different (49±5 vs. 38±6μg/ml, respectively, p<0.05). SIGNIFICANCE HH exposure had an effect on endothelin-1, adiponectin, hsCRP, IL-6, and TNF-α concentration. However, adiponectin was the only biomarker associated with an altered vascular reactivity.
Collapse
|
14
|
Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels. Arterioscler Thromb Vasc Biol 2015; 35:1393-400. [PMID: 25838427 DOI: 10.1161/atvbaha.115.305500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.
Collapse
Affiliation(s)
- Jillian N Noblet
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Meredith K Owen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Adam G Goodwill
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Daniel J Sassoon
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Johnathan D Tune
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.).
| |
Collapse
|
15
|
Mumtaz S, AlSaif S, Wray S, Noble K. Inhibitory effect of visfatin and leptin on human and rat myometrial contractility. Life Sci 2015; 125:57-62. [DOI: 10.1016/j.lfs.2015.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/01/2022]
|
16
|
Tano JY, Schleifenbaum J, Gollasch M. Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterioscler Thromb Vasc Biol 2014; 34:1827-30. [PMID: 25012133 DOI: 10.1161/atvbaha.114.303032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perivascular adipose tissue has been recognized unequivocally as a major player in the pathology of metabolic and cardiovascular diseases. Through its production of adipokines and the release of other thus far unidentified factors, this recently discovered adipose tissue modulates vascular regulation and the myogenic response. After the discovery of its ability to diminish the vessel's response to vasoconstrictors, a new paradigm established adipose-derived relaxing factor (ADRF) as a paracrine smooth muscle cells' potassium channel opener that could potentially help combat vascular dysfunction. This review will discuss the role of ADRF in vascular dysfunction in obesity and hypertension, the different potassium channels that can be activated by this factor, and describes new pharmacological tools that can mimic the ADRF effect and thus can be beneficial against vascular dysfunction in cardiovascular disease.
Collapse
Affiliation(s)
- Jean-Yves Tano
- From the Experimental and Clinical Research Center, Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany.
| | - Johanna Schleifenbaum
- From the Experimental and Clinical Research Center, Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| | - Maik Gollasch
- From the Experimental and Clinical Research Center, Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| |
Collapse
|
17
|
Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. BIOMED RESEARCH INTERNATIONAL 2014; 2014:401595. [PMID: 25045669 PMCID: PMC4090565 DOI: 10.1155/2014/401595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 02/01/2023]
Abstract
AIM OF THE STUDY To investigate the relationships between the adipocytokine levels, markers of inflammation, and vascular remodelling in pregnancies complicated by intrauterine growth restriction (IUGR). MATERIALS AND METHODS This was a retrospective study. One hundred and forty pregnant patients were enrolled. Adiponectin, leptin, tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and C reactive protein (CRP) were assessed in IUGR, small for gestational age (SGA), and appropriate for gestational age (AGA) mother-child couples at delivery. IUGR and SGA fetuses were defined as fetuses whose estimated fetal weight (EFW) was below 10th percentile for gestational age with and without umbilical artery (UA) Doppler abnormalities, respectively. Fetal aorta intima media thickness (aIMT) was evaluated by ultrasound in the same fetal groups. Data were analyzed by R (version 2.15.2). RESULTS There were 37 IUGR mother-child couples, 33 SGA, and 70 AGA. Leptin, TNFα, IL-6, and CRP serum levels were higher in IUGR pregnant patients (P < 0.05). Adiponectin levels were significantly reduced in IUGR fetuses compared to SGA and AGA, while leptin, TNFα, and IL-6 levels were higher in IUGR group (P ≤ 0.05). Fetal aIMT was significantly higher in IUGR (P < 0.05) and in this group there was a negative correlation between aIMT and adiponectin/leptin ratio (A/L ratio) (P < 0.05) and between adiponectin and IL-6 levels (P < 0.05). CONCLUSIONS In conclusion, compared to SGA and AGA, IUGR fetuses had reduced circulating levels of adiponectin and elevated measures of aIMT and several inflammatory markers. Moreover, adiponectin levels were negatively correlated with aIMT in IUGR fetuses suggesting a possible causal link between reduced adiponectin and vessel remodelling.
Collapse
|
18
|
Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol 2014; 23:131-8. [DOI: 10.1016/j.carpath.2014.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/19/2022] Open
|
19
|
Zalucky AA, Nicholl DDM, Mann MC, Hemmelgarn BR, Turin TC, Macrae JM, Sola DY, Ahmed SB. Sex influences the effect of body mass index on the vascular response to angiotensin II in humans. Obesity (Silver Spring) 2014; 22:739-46. [PMID: 23963791 DOI: 10.1002/oby.20608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Sex influences the cardiorenal risk associated with body mass index (BMI). The role of the renin-angiotensin-aldosterone system in adiposity-mediated cardiorenal risk profiles in healthy, non-obese men and women was investigated. METHODS Systemic and renal hemodynamic responses to angiotensin-II (AngII) as a function of BMI, waist and hip circumference, waist-hip ratio, as well as fat and lean mass were measured in 18 men and 25 women in high-salt balance, stratified by BMI (<25 kg/m2 (ideal body weight (IBW)) vs. ≥25 kg/m2 overweight)). RESULTS In men (n = 7, BMI 23 ± 1 kg/m2) and women (n = 14, BMI 22 ± 2 kg/m2) of IBW, BMI was not associated with the systolic blood pressure (SBP) response to AngII. In contrast, overweight men (n = 11, 29 ± 2 kg/m2) demonstrated a progressively more blunted vasoconstrictor SBP response to AngII challenge as BMI increased (P = 0.007), even after adjustment for covariates. Women maintained the same relationship between BMI and the SBP response to AngII irrespective of weight status (P = 0.2, IBW vs. overweight women). Compared to BMI, other adiposity measures showed similar associations to systemic AngII responsiveness in men but not in women. Increasing BMI was associated with a blunted renovasoconstrictor response to AngII in all subjects, but was more pronounced in men. CONCLUSION Sex influences the effect of adiposity on vascular angiotensin-responsiveness.
Collapse
Affiliation(s)
- A A Zalucky
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Santangelo C, Varì R, Scazzocchio B, Filesi C, Masella R. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols? Biofactors 2014; 40:79-102. [PMID: 23983164 DOI: 10.1002/biof.1126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023]
Abstract
Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account.
Collapse
Affiliation(s)
- Carmela Santangelo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
21
|
Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Lee KW, Nam MS, Park YS, Woo JT, Kim YS, Choi KM, Baik SH. Implication of circulating omentin-1 level on the arterial stiffening in type 2 diabetes mellitus. Endocrine 2013; 44:680-7. [PMID: 23532633 DOI: 10.1007/s12020-013-9930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/15/2013] [Indexed: 01/09/2023]
Abstract
Omentin-1 is an adipokine implicated in diabetes, inflammation, and cardiovascular disease. However, no prospective studies have examined the impact of circulating omentin-1 levels on arterial stiffening in patients with type 2 diabetes mellitus. For the purpose of this study, we recruited 120 patients with type 2 diabetes mellitus and measured serum omentin-1, adiponectin, and high-sensitivity C-reactive protein levels as well as other cardiovascular risk factors. Arterial stiffness was assessed by brachial ankle pulse wave velocity (baPWV). An increase in the level of circulating omentin-1 over a period of 1 year was positively correlated with changes in levels of HbA1c and serum adiponectin as well as baPWV. Subjects with higher baseline serum omentin-1 levels tended to have a reduced arterial stiffness after 1 year (P for linear trend = 0.03). In the group with increased baPWV after 1 year, the magnitude of increase of circulating omentin-1 levels was significantly higher than in the group with a lower baPWV after 1 year (134.3 [16.6, 277.1] ng/mL vs. 15.9 [-67.6, 145.7] ng/mL, P < 0.01). Multiple stepwise logistic regression analysis revealed that an increase in systolic blood pressure and an increase in serum omentin-1 level were independently correlated with arterial stiffening, even after adjusting for other cardiovascular risk factors and medication history. Baseline serum omentin-1 levels can predict arterial stiffness changes occurring within a year. Furthermore, changes in serum omentin-1 levels after a year can function as independent markers of arterial stiffening in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Van de Voorde J, Pauwels B, Boydens C, Decaluwé K. Adipocytokines in relation to cardiovascular disease. Metabolism 2013; 62:1513-21. [PMID: 23866981 DOI: 10.1016/j.metabol.2013.06.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/22/2023]
Abstract
Adipose tissue can be considered as a huge gland producing paracrine and endocrine hormones, the adipo(cyto)kines. There is growing evidence that these adipo(cyto)kines may link obesity to cardiovascular diseases. The excessive adipocyte hypertrophy in obesity induces hypoxia in adipose tissue. This leads to adiposopathy, the process that converts "healthy" adipose tissue to "sick" adipose tissue. This is accompanied by a change in profile of adipo(cyto)kines released, with less production of the "healthy" adipo(cyto)kines such as adiponectin and omentin and more release of the "unhealthy" adipo(cyto)kines, ultimately leading to the development of cardiovascular diseases. The present review provides a concise and general overview of the actual concepts of the role of adipo(cyto)kines in endothelial dysfunction, hypertension, atherosclerosis and heart diseases. The knowledge of these concepts may lead to new tools to improve health in the next generations.
Collapse
Affiliation(s)
- Johan Van de Voorde
- Department of Pharmacology, Vascular Research Unit, Ghent University, Belgium.
| | | | | | | |
Collapse
|
23
|
Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 2013; 62:1543-52. [PMID: 23932846 PMCID: PMC3809332 DOI: 10.1016/j.metabol.2013.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/11/2023]
Abstract
Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance.
Collapse
Affiliation(s)
- Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | | | | | | | | |
Collapse
|
24
|
Balta S, Demirkol S, Celik T, Unlu M, Kucuk U, Arslan Z. Inflammatory markers should be assessed together with cardiovascular risk factors by clinicians in masked hypertension. J Clin Hypertens (Greenwich) 2013; 15:443-4. [PMID: 23730994 DOI: 10.1111/jch.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 2013; 128:9-18. [PMID: 23685742 DOI: 10.1161/circulationaha.112.001238] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine. METHODS AND RESULTS Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04) but not subcutaneous adipose tissue augmented coronary contractions to KCl (20 mmol/L). Inhibition of CaV1.2 channels with nifedipine (0.1 µmol/L) or diltiazem (10 µmol/L) abolished this effect. Coronary PVAT increased baseline tension and potentiated constriction of isolated arteries to prostaglandin F2α in proportion to the amount of PVAT present (0.1-1.0 g). These effects were elevated in tissues obtained from obese swine and were observed in intact and endothelium denuded arteries. Coronary PVAT also diminished H2O2-mediated vasodilation in lean and, to a lesser extent, in obese arteries. These effects were associated with alterations in the obese coronary PVAT proteome (detected 186 alterations) and elevated voltage-dependent increases in intracellular [Ca(2+)] in obese smooth muscle cells. Further studies revealed that the Rho-kinase inhibitor fasudil (1 µmol/L) significantly blunted artery contractions to KCl and PVAT in lean but not obese swine. Calpastatin (10 μmol/L) also augmented contractions to levels similar to that observed in the presence of PVAT. CONCLUSIONS Vascular effects of PVAT vary according to anatomic location and are influenced by an obese phenotype. Augmented contractile effects of obese coronary PVAT are related to alterations in the PVAT proteome (eg, calpastatin), Rho-dependent signaling, and the functional contribution of K(+) and CaV1.2 channels to smooth muscle tone.
Collapse
Affiliation(s)
- Meredith Kohr Owen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vaidya A, Underwood PC, Annes JP, Sun B, Williams GH, Forman JP, Williams JS. The influence of sodium- and calcium-regulatory hormone interventions on adipocytokines in obesity and diabetes. Metabolism 2013; 62:539-47. [PMID: 23142162 PMCID: PMC3572332 DOI: 10.1016/j.metabol.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The renin-angiotensin-aldosterone system (RAAS), vitamin D, and parathyroid hormone have all been implicated as regulators of adipocytokines and inflammation. We evaluated human interventional study protocols to investigate whether controlled modulations of these calcium- and sodium-regulatory hormones could influence adipocytokines and inflammation in obesity and diabetes. METHODS Post-hoc analyses of two separate human protocols (Protocol 1, n=14; Protocol 2, n=24) conducted in a clinical research setting after rigorous control of diet, posture, medications, and diurnal rhythm, were performed. Protocol 1 evaluated obese hypertensives with vitamin D deficiency who received an infusion of angiotensin II (AngII) before and after 1month of vitamin D3 therapy. Protocol 2 evaluated obese subjects with type 2 diabetes who also received AngII. Adipocytokines and inflammatory markers were measured before and after vitamin D3 therapy, and also before and after infusions of AngII. RESULTS Vitamin D3 therapy significantly raised 25(OH)D and 1,25(OH)2D concentrations, and lowered parathyroid hormone, but had no effect on concentrations of adiponectin, resistin, leptin, IL-6, PAI-1, urinary TGFβ1, or HOMA-IR. AngII infusions, despite significant elevations in blood pressure and serum aldosterone, did not influence adipocytokine concentrations in either protocol. CONCLUSION In contrast to prior studies conducted in healthy populations, or those that could not control major regulators of the RAAS or adipocytokines, we observed that robust modulations in calcium- and sodium-regulatory hormones did not influence adipocytokines or inflammation in obesity or diabetes. Adipose-tissue physiology in these conditions may alter the hormonal regulation of inflammatory parameters.
Collapse
Affiliation(s)
- Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Beilfuss J, Berg V, Sneve M, Jorde R, Kamycheva E. Effects of a 1-year supplementation with cholecalciferol on interleukin-6, tumor necrosis factor-alpha and insulin resistance in overweight and obese subjects. Cytokine 2012; 60:870-4. [PMID: 22925537 DOI: 10.1016/j.cyto.2012.07.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/27/2022]
Abstract
Insufficient vitamin D status has been linked to autoimmune diseases, cancer and metabolic disorders, like obesity and insulin resistance. In vitro and animal studies suggest that vitamin D may play a crucial role in immune activation and inflammation. The relation between vitamin D and pro-inflammatory cytokines is not completely established. Furthermore, it is not known if the effect of vitamin D on entities of metabolic syndrome is mediated through its effect on cytokines or other biomarkers. The objectives of this study were to investigate if there is a relationship between vitamin D status and such pro-inflammatory cytokines as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and high sensitive C-reactive protein (hs-CRP) in patients with overweigh and obesity. We also proposed that the intervention with high dose of cholecalciferol may have effect on the cytokine levels and result in corresponding changes in the measures of insulin resistance (HOMA-IR and QUICKI). Serum levels of IL-6, TNF-α and hs-CRP were measured in 332 overweight and obese subjects who completed a 1-year randomised intervention with either 40,000 IU vitamin D (cholecalciferol) per week or 20,000 IU vitamin D per week, or placebo. We found significant associations between IL-6, TNF-α, vitamin D and insulin resistance indices at baseline. One year intervention with vitamin D decreased serum IL-6 levels; however hs-CRP levels were significantly increased. Neither measures of insulin resistance, nor TNF-α were influenced by a 1-year vitamin D supplementation.
Collapse
Affiliation(s)
- Julia Beilfuss
- Department of Gastroenterology, Medical Clinic, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | | | | | | | |
Collapse
|