1
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
2
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
3
|
Lei H, Liu J, Wang W, Yang X, Feng Z, Zang P, Lu B, Shao J. Association between osteocalcin, a pivotal marker of bone metabolism, and secretory function of islet beta cells and alpha cells in Chinese patients with type 2 diabetes mellitus: an observational study. Diabetol Metab Syndr 2022; 14:160. [PMID: 36307866 PMCID: PMC9615358 DOI: 10.1186/s13098-022-00932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Several recent studies have found that Osteocalcin (OCN), a multifunctional protein secreted exclusively by osteoblasts, is beneficial to glucose metabolism and type 2 diabetes mellitus (T2DM). However, the effects of OCN on islets function especially islet ɑ cells function in patients with type 2 diabetes mellitus characterized by a bi-hormonal disease are still unclear. The purpose of this cross-sectional study was to investigate the relationship between serum OCN and the secretion of islet β cells and ɑ cells in Chinese patients with type 2 diabetes mellitus. METHODS 204 patients with T2DM were enrolled. Blood glucose (FBG, PBG0.5h, PBG1h, PBG2h, PBG3h), insulin (FINS, INS0.5h, INS1h, INS2h, INS3h), C-peptide (FCP, CP0.5h, CP1h, CP2h, CP3h), and glucagon (GLA0, GLA0.5 h, GLA1h, GLA2h, GLA3h) levels were measured on 0 h, 0.5 h, 1 h, 2 h, and 3 h after a 100 g standard bread meal load. Early postprandial secretion function of islet β cells was calculated as Δcp0.5h = CP0.5-FCP. The patients were divided into low, medium and high groups (T1, T2 and T3) according to tertiles of OCN. Comparison of parameters among three groups was studied. Correlation analysis confirmed the relationship between OCN and pancreatic secretion. Multiple regression analysis showed independent contributors to pancreatic secretion. MAIN RESULTS FBG, and PBG2h were the lowest while Δcp0.5h was the highest in the highest tertile group (respectively, p < 0.05). INS3h, area under the curve of insulin (AUCins3h) in T3 Group were significantly lower than T1 Group (respectively, p < 0.05). GLA1h in T3 group was lower than T1 group (p < 0.05), and GLA0.5 h in T3 group was lower than T2 and T1 groups (p < 0.05). Correlation analysis showed OCN was inversely correlated with Homeostatic model of insulin resistance (HOMA-IR), INS3h, AUCins3h (p < 0.05), and was still inversely correlated with FCP, GLA0.5 h, GLA1h, area under the curve of glucagon (AUCgla3h) (respectively, p < 0.05) after adjustment for body mass index (BMI) and alanine aminotransferase (ALT). The multiple regression analysis showed that OCN was independent contributor to Δcp0.5h, GLA0.5h and GLA1h (respectively, p < 0.05). CONCLUSIONS Higher serum OCN level is closely related to better blood glucose control, higher insulin sensitivity, increased early-phase insulin secretion of islet β cells and appropriate inhibition of postprandial glucagon secretion of islet ɑ cells in adult patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Haiyan Lei
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xinyi Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Zhouqin Feng
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Micó V, San-Cristobal R, Martín R, Martínez-González MÁ, Salas-Salvadó J, Corella D, Fitó M, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem JL, Bueno-Cavanillas A, Tur JA, Martín Sánchez V, Pintó X, Delgado-Rodríguez M, Matía-Martín P, Vidal J, Vázquez C, García-Arellano A, Pertusa-Martinez S, Chaplin A, Garcia-Rios A, Muñoz Bravo C, Schröder H, Babio N, Sorli JV, Gonzalez JI, Martinez-Urbistondo D, Toledo E, Bullón V, Ruiz-Canela M, Portillo MP, Macías-González M, Perez-Diaz-del-Campo N, García-Gavilán J, Daimiel L, Martínez JA. Morbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine-learning cluster analysis. Front Endocrinol (Lausanne) 2022; 13:936956. [PMID: 36147576 PMCID: PMC9487178 DOI: 10.3389/fendo.2022.936956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic syndrome (MetS) is one of the most important medical problems around the world. Identification of patient´s singular characteristic could help to reduce the clinical impact and facilitate individualized management. This study aimed to categorize MetS patients using phenotypical and clinical variables habitually collected during health check-ups of individuals considered to have high cardiovascular risk. The selected markers to categorize MetS participants included anthropometric variables as well as clinical data, biochemical parameters and prescribed pharmacological treatment. An exploratory factor analysis was carried out with a subsequent hierarchical cluster analysis using the z-scores from factor analysis. The first step identified three different factors. The first was determined by hypercholesterolemia and associated treatments, the second factor exhibited glycemic disorders and accompanying treatments and the third factor was characterized by hepatic enzymes. Subsequently four clusters of patients were identified, where cluster 1 was characterized by glucose disorders and treatments, cluster 2 presented mild MetS, cluster 3 presented exacerbated levels of hepatic enzymes and cluster 4 highlighted cholesterol and its associated treatments Interestingly, the liver status related cluster was characterized by higher protein consumption and cluster 4 with low polyunsaturated fatty acid intake. This research emphasized the potential clinical relevance of hepatic impairments in addition to MetS traditional characterization for precision and personalized management of MetS patients.
Collapse
Affiliation(s)
- Víctor Micó
- Cardiometabolic Nutrition Group, Madrid Institute for Advanced Studies (IMDEA) Food, Excellence International Campus Autónoma Madrid University (CEI UAM) + CSIC, Madrid, Spain
- *Correspondence: Víctor Micó, ; Rodrigo San-Cristobal,
| | - Rodrigo San-Cristobal
- Cardiometabolic Nutrition Group, Madrid Institute for Advanced Studies (IMDEA) Food, Excellence International Campus Autónoma Madrid University (CEI UAM) + CSIC, Madrid, Spain
- *Correspondence: Víctor Micó, ; Rodrigo San-Cristobal,
| | - Roberto Martín
- Biostatistics and Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, Excellence International Campus Autónoma Madrid University (CEI UAM) + CSIC, Madrid, Spain
| | - Miguel Ángel Martínez-González
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA-Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Jordi Salas-Salvadó
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Biochemistry and Biotechnology Department, Nutrition Unit, Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Dolores Corella
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ángel M. Alonso-Gómez
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dora Romaguera
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR). Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain
| | - José López-Miranda
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Lipids and Atherosclerosis Hospital Reina Sofía, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ramon Estruch
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, Málaga, Spain
| | - José Lapetra
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - J. Luís Serra-Majem
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Aurora Bueno-Cavanillas
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A. Tur
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR). Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Xavier Pintó
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospitalet de Llobregat, Hospital Universitario de Bellvitge, Barcelona, Spain
| | | | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Josep Vidal
- Biomedical Research Centre for Diabetes and Metabolic Diseases Network CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas Jiménez Díaz Foundation Health Research Institute (IISFJD), University Autónoma, Madrid, Spain
| | - Ana García-Arellano
- Department of Emergency, Complejo Hospitalario de Navarra Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain
| | | | - Alice Chaplin
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR). Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain
| | - Antonio Garcia-Rios
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Lipids and Atherosclerosis Hospital Reina Sofía, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Carlos Muñoz Bravo
- Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Málaga, Málaga, Spain
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nancy Babio
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Biochemistry and Biotechnology Department, Nutrition Unit, Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Jose V. Sorli
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jose I. Gonzalez
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Diego Martinez-Urbistondo
- Department of Preventive Medicine and Public Health, IdiSNA-Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, IdiSNA-Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Vanessa Bullón
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IdiSNA-Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - María Puy- Portillo
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), Vitoria, Spain
- Bioaraba Health Research Institute, Alava, Spain
| | - Manuel Macías-González
- Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, Málaga, Spain
| | | | - Jesús García-Gavilán
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Biochemistry and Biotechnology Department, Nutrition Unit, Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, Madrid Institute for Advanced Studies (IMDEA) Food, Excellence International Campus Autónoma Madrid University (CEI UAM) + CSIC, Madrid, Spain
| | - J. Alfredo Martínez
- Cardiometabolic Nutrition Group, Madrid Institute for Advanced Studies (IMDEA) Food, Excellence International Campus Autónoma Madrid University (CEI UAM) + CSIC, Madrid, Spain
- Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Lee C, Choi H, Park E, Nguyen T, Maeng H, Mee Lee K, Jun H, Shin D. Synthesis and anti-diabetic activity of novel biphenylsulfonamides as glucagon receptor antagonists. Chem Biol Drug Des 2021; 98:733-750. [PMID: 34310065 PMCID: PMC9291748 DOI: 10.1111/cbdd.13928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes is characterized by chronic hyperglycemia. Insulin, a hormone secreted from pancreatic β-cells, decreases blood glucose levels, and glucagon, a hormone secreted from pancreatic α-cells, increases blood glucose levels by counterregulation of insulin through stimulation of hepatic glucose production. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, inhibition of the glucagon receptor is one strategy for the treatment of hyperglycemia in type 2 diabetes. In this paper, we report a series of biphenylsulfonamide derivatives that were designed, synthesized, and then evaluated by cAMP and hepatic glucose production assays as glucagon receptor antagonists. Of these, compound 7aB-3 decreased glucagon-induced cAMP production and glucagon-induced glucose production in the in vitro assays. Glucagon challenge tests and glucose tolerance tests showed that compound 7aB-3 significantly inhibited glucagon-induced glucose increases and improved glucose tolerance. These results suggest that compound 7aB-3 has therapeutic potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chang‐Yong Lee
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | - Hojung Choi
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheonKorea
| | - Eun‐Young Park
- College of PharmacyMokpo National UniversityMuan‐gunJeollanam‐doKorea
| | - Thi‐Thao‐Linh Nguyen
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | - Han‐Joo Maeng
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | | | - Hee‐Sook Jun
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheonKorea
- Gachon Medical Research InstituteGil HospitalIncheonKorea
| | - Dongyun Shin
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| |
Collapse
|
6
|
Human Physiology of Genetic Defects Causing Beta-cell Dysfunction. J Mol Biol 2020; 432:1579-1598. [PMID: 31953147 DOI: 10.1016/j.jmb.2019.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
The last decade has revealed hundreds of genetic variants associated with type 2 diabetes, many especially with insulin secretion. However, the evidence for their single or combined effect on beta-cell function relies mostly on genetic association of the variants or genetic risk scores with simple traits, and few have been functionally fully characterized even in cell or animal models. Translating the measured traits into human physiology is not straightforward: none of the various indices for beta-cell function or insulin sensitivity recapitulates the dynamic interplay between glucose sensing, endogenous glucose production, insulin production and secretion, insulin clearance, insulin resistance-to name just a few factors. Because insulin sensitivity is a major determinant of physiological need of insulin, insulin secretion should be evaluated in parallel with insulin sensitivity. On the other hand, multiple physiological or pathogenic processes can either mask or unmask subtle defects in beta-cell function. Even in monogenic diabetes, a clearly pathogenic genetic variant can result in different phenotypic characteristics-or no phenotype at all. In this review, we evaluate the methods available for studying beta-cell function in humans, critically examine the evidence linking some identified variants to a specific beta-cell phenotype, and highlight areas requiring further study.
Collapse
|
7
|
Lee M, Kim M, Park JS, Lee S, You J, Ahn CW, Kim KR, Kang S. Higher glucagon-to-insulin ratio is associated with elevated glycated hemoglobin levels in type 2 diabetes patients. Korean J Intern Med 2019; 34:1068-1077. [PMID: 28882024 PMCID: PMC6718759 DOI: 10.3904/kjim.2016.233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS The importance of α-cell dysfunction in the pathogenesis of type 2 diabetes has re-emerged recently. However, data on whether relative glucagon excess is present in clinical settings are scarce. We aimed to investigate associations between glucagon-to-insulin ratio and various metabolic parameters. METHODS A total of 451 patients with type 2 diabetes naïve to insulin treatment were recruited. Using glucagon-to-insulin ratio, we divided subjects into quartiles according to both fasting and postprandial glucagon-to-insulin ratios. RESULTS The mean age of the subjects was 58 years, with a mean body mass index of 25 kg/m2 . The patients in the highest quartile of glucagon-to-insulin ratio had higher glycated hemoglobin (HbA1c) levels. HbA1c levels were positively correlated with both fasting and postprandial glucagon-to-insulin ratios. Subjects in the highest quartile of postprandial glucagon-to-insulin ratio were more likely to exhibit uncontrolled hyperglycemia, even after adjusting for confounding factors (odds ratio, 2.730; 95% confidence interval, 1.236 to 6.028; p for trend < 0.01). CONCLUSION Hyperglucagonemia relative to insulin could contribute to uncontrolled hyperglycemia in type 2 diabetes patients.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyung Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Suk Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| | - Sangbae Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jihong You
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Woo Ahn
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Rae Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Shinae Kang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Correspondence to Shinae Kang, M.D. Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea Tel: +82-2-2019-3335 Fax: +82-2-3463-3882 E-mail:
| |
Collapse
|
8
|
Yagi T, Kubota E, Koyama H, Tanaka T, Kataoka H, Imaeda K, Joh T. Glucagon promotes colon cancer cell growth via regulating AMPK and MAPK pathways. Oncotarget 2018. [PMID: 29535833 PMCID: PMC5828215 DOI: 10.18632/oncotarget.24367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the major causes of death in diabetic patients, and an association between antidiabetic drugs and cancer risk has been reported. Such evidence implies a strong connection between diabetes and cancer. Recently, glucagon has been recognized as a pivotal factor implicated in the pathophysiology of diabetes. Glucagon acts through binding to its receptor, glucagon receptor (GCGR), and cross-talk between GCGR-mediated signals and signaling pathways that regulate cancer cell fate has been unveiled. In the current study, expression of GCGR in colon cancer cell lines and colon cancer tissue obtained from patients was demonstrated. Glucagon significantly promoted colon cancer cell growth, and GCGR knockdown with small interfering RNA attenuated the proliferation-promoting effect of glucagon on colon cancer cells. Molecular assays showed that glucagon acted as an activator of cancer cell growth through deactivation of AMPK and activation of MAPK in a GCGR-dependent manner. Moreover, a stable GCGR knockdown mouse colon cancer cell line, CMT93, grew significantly slower than control in a syngeneic mouse model of type 2 diabetes with glycemia and hyperglucagonemia. The present observations provide experimental evidence that hyperglucagonemia in type 2 diabetes promotes colon cancer progression via GCGR-mediated regulation of AMPK and MAPK pathways.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kenro Imaeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
9
|
Lee YS, Jun HS. Glucagon-Like Peptide-1 Receptor Agonist and Glucagon Increase Glucose-Stimulated Insulin Secretion in Beta Cells via Distinct Adenylyl Cyclases. Int J Med Sci 2018; 15:603-609. [PMID: 29725251 PMCID: PMC5930462 DOI: 10.7150/ijms.24492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/02/2018] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus is a chronic disease in which the pancreas no longer produces enough insulin. Pancreatic alpha cell mass increases in response to insufficient insulin secretion. However, the reason for this increase is not clear. It is possible that the increased alpha-cells may stimulate compensatory insulin release in response to the insufficient insulin such as insulin resistance. In this study, we investigated whether glucagon and glucagon-like peptide-1 (GLP-1), hormones produced by alpha cells, contribute to insulin secretion in INS-1 cells, a beta cell line. We confirmed that alpha cell area in the pancreatic islets and glucagon secretion were increased in HFD-induced obese mice. Co-treatment with glucagon and exendin-4 (Ex-4), a GLP-1 receptor agonist, additively increased glucose-stimulated insulin secretion in INS-1 cells. In parallel, cAMP production was also additively increased by co-treatment with these hormones. The increase of insulin secretion by Ex-4 in the presence of high glucose was inhibited by 2'5'-dideoxyadenosine, a transmembrane adenylyl cyclase inhibitor, but not by KH-7, a soluble adenylyl cyclase inhibitor. The increase of insulin secretion by glucagon in INS-1 cells was inhibited by both 2'5'-dideoxyadenosine and KH-7. We suggest that glucagon and GLP-1 produced from alpha cells additively increase cAMP and insulin secretion in the presence of high glucose via distinct adenylyl cyclases in INS-1 cells, and this may contribute to the compensatory increase of insulin secretion by an increase of pancreatic alpha cell mass under conditions of insulin resistance.
Collapse
Affiliation(s)
- Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.,College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 406-840, Republic of Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, 405-760, Republic of Korea
| |
Collapse
|
10
|
Lazo-de-la-Vega-Monroy ML, Larrieta E, Tixi-Verdugo W, Ramírez-Mondragón R, Hernández-Araiza I, German MS, Fernandez-Mejia C. Effects of dietary biotin supplementation on glucagon production, secretion, and action. Nutrition 2017; 43-44:47-53. [PMID: 28935144 DOI: 10.1016/j.nut.2017.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Despite increasing evidence that pharmacologic concentrations of biotin modify glucose metabolism, to our knowledge there have not been any studies addressing the effects of biotin supplementation on glucagon production and secretion, considering glucagon is one of the major hormones in maintaining glucose homeostasis. The aim of this study was to investigate the effects of dietary biotin supplementation on glucagon expression, secretion, and action. METHODS Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for 8 wk postweaning. Glucagon gene mRNA expression was measured by the real-time polymerase chain reaction. Glucagon secretion was assessed in isolated islets and by glucagon concentration in plasma. Glucagon action was evaluated by glucagon tolerance tests, phosphoenolpyruvate carboxykinase (Pck1) mRNA expression, and glycogen degradation. RESULTS Compared with the control group, glucagon mRNA and secretion were increased from the islets of the biotin-supplemented group. Fasting plasma glucagon levels were higher, but no differences between the groups were observed in nonfasting glucagon levels. Despite the elevated fasting glucagon levels, no differences were found in fasting blood glucose concentrations, fasting/fasting-refeeding glucagon tolerance tests, glycogen content and degradation, or mRNA expression of the hepatic gluconeogenic rate-limiting enzyme, Pck1. CONCLUSIONS These results demonstrated that dietary biotin supplementation increased glucagon expression and secretion without affecting fasting blood glucose concentrations or glucagon tolerance and provided new insights into the effect of biotin supplementation on glucagon production and action.
Collapse
Affiliation(s)
- Maria-Luisa Lazo-de-la-Vega-Monroy
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico; Division of Health Sciences, Department of Medical Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Elena Larrieta
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico; Department of Gastroentrology, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City, Mexico
| | - Wilma Tixi-Verdugo
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Rafael Ramírez-Mondragón
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ileana Hernández-Araiza
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michael S German
- Diabetes Center/Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Cristina Fernandez-Mejia
- Unit of Genetics of Nutrition, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Mexico City, Mexico.
| |
Collapse
|
11
|
Bankir L, Bouby N, Blondeau B, Crambert G. Glucagon actions on the kidney revisited: possible role in potassium homeostasis. Am J Physiol Renal Physiol 2016; 311:F469-86. [DOI: 10.1152/ajprenal.00560.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
It is now recognized that the metabolic disorders observed in diabetes are not, or not only due to the lack of insulin or insulin resistance, but also to elevated glucagon secretion. Accordingly, selective glucagon receptor antagonists are now proposed as a novel strategy for the treatment of diabetes. However, besides its metabolic actions, glucagon also influences kidney function. The glucagon receptor is expressed in the thick ascending limb, distal tubule, and collecting duct, and glucagon regulates the transepithelial transport of several solutes in these nephron segments. Moreover, it also influences solute transport in the proximal tubule, possibly by an indirect mechanism. This review summarizes the knowledge accumulated over the last 30 years about the influence of glucagon on the renal handling of electrolytes and urea. It also describes a possible novel role of glucagon in the short-term regulation of potassium homeostasis. Several original findings suggest that pancreatic α-cells may express a “potassium sensor” sensitive to changes in plasma K concentration and could respond by adapting glucagon secretion that, in turn, would regulate urinary K excretion. By their combined actions, glucagon and insulin, working in a combinatory mode, could ensure an independent regulation of both plasma glucose and plasma K concentrations. The results and hypotheses reviewed here suggest that the use of glucagon receptor antagonists for the treatment of diabetes should take into account their potential consequences on electrolyte handling by the kidney.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Nadine Bouby
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
- Université Paris-Descartes, Paris, France
| | - Bertrand Blondeau
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Gilles Crambert
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| |
Collapse
|
12
|
Takagi Y, Kinoshita K, Ozaki N, Seino Y, Murata Y, Oshida Y, Hayashi Y. Mice Deficient in Proglucagon-Derived Peptides Exhibit Glucose Intolerance on a High-Fat Diet but Are Resistant to Obesity. PLoS One 2015; 10:e0138322. [PMID: 26378455 PMCID: PMC4574859 DOI: 10.1371/journal.pone.0138322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/28/2015] [Indexed: 01/26/2023] Open
Abstract
Homozygous glucagon-GFP knock-in mice (Gcggfp/gfp) lack proglucagon derived-peptides including glucagon and GLP-1, and are normoglycemic. We have previously shown that Gcggfp/gfp show improved glucose tolerance with enhanced insulin secretion. Here, we studied glucose and energy metabolism in Gcggfp/gfp mice fed a high-fat diet (HFD). Male Gcggfp/gfp and Gcggfp/+ mice were fed either a normal chow diet (NCD) or an HFD for 15–20 weeks. Regardless of the genotype, mice on an HFD showed glucose intolerance, and Gcggfp/gfp mice on HFD exhibited impaired insulin secretion whereas Gcggfp/+ mice on HFD exhibited increased insulin secretion. A compensatory increase in β-cell mass was observed in Gcggfp/+mice on HFD, but not in Gcggfp/gfp mice on the same diet. Weight gain was significantly lower in Gcggfp/gfp mice than in Gcggfp/+mice. Oxygen consumption was enhanced in Gcggfp/gfp mice compared to Gcggfp/+ mice on an HFD. HFD feeding significantly increased uncoupling protein 1 mRNA expression in brown adipose and inguinal white adipose tissues of Gcggfp/gfp mice, but not of Gcggfp/+mice. Treatment with the glucagon-like peptide-1 receptor agonist liraglutide (200 mg/kg) improved glucose tolerance in Gcggfp/gfp mice and insulin content in Gcggfp/gfp and Gcggfp/+ mice was similar after liraglutide treatment. Our findings demonstrate that Gcggfp/gfp mice develop diabetes upon HFD-feeding in the absence of proglucagon-derived peptides, although they are resistant to diet-induced obesity.
Collapse
Affiliation(s)
- Yusuke Takagi
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Keita Kinoshita
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuaki Ozaki
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Yusuke Seino
- Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshiharu Oshida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM, Croce KJ, Esquejo RM, Clish CB, Vicent D, Biddinger SB. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6:6498. [PMID: 25849138 PMCID: PMC4391288 DOI: 10.1038/ncomms7498] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
Despite the well-documented association between insulin resistance and cardiovascular disease, the key targets of insulin relevant to the development of cardiovascular disease are not known. Here, using non-biased profiling methods, we identify the enzyme flavin-containing monooxygenase 3 (Fmo3) to be a target of insulin. FMO3 produces trimethylamine N-oxide (TMAO), which has recently been suggested to promote atherosclerosis in mice and humans. We show that FMO3 is suppressed by insulin in vitro, increased in obese/insulin resistant male mice and increased in obese/insulin-resistant humans. Knockdown of FMO3 in insulin-resistant mice suppresses FoxO1, a central node for metabolic control, and entirely prevents the development of hyperglycaemia, hyperlipidemia and atherosclerosis. Taken together, these data indicate that FMO3 is required for FoxO1 expression and the development of metabolic dysfunction.
Collapse
Affiliation(s)
- Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alisha V. Ling
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Praveen V. Manthena
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary E. Gearing
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Kevin J. Croce
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan M. Esquejo
- Metabolic Disease Program and Diabetes and Obesity Center, Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | | | - David Vicent
- Department of Endocrinology and Nutrition, Hospital Carlos III, Madrid 28029, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid 28046, Spain
| | - Sudha B. Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Mann KV, Raskin P. Exenatide extended-release: a once weekly treatment for patients with type 2 diabetes. Diabetes Metab Syndr Obes 2014; 7:229-39. [PMID: 25018644 PMCID: PMC4075952 DOI: 10.2147/dmso.s35331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This article reviews the clinical efficacy, safety, and patient outcomes literature on the first once weekly treatment for type 2 diabetes mellitus (T2DM), exenatide extended-release (ER). METHODS Relevant literature on exenatide ER and T2DM was identified through PubMed database searches from inception until April 2014. RESULTS Exenatide ER is the first medication for the treatment of T2DM dosed on a weekly schedule. Exenatide ER is a glucagon-like peptide-1 (GLP-1) receptor agonist, the third to be approved in the US, and is associated with a low risk of hypoglycemia, may result in weight loss, and has proven to be a safe and effective treatment for T2DM. Exenatide ER reduces A1c levels by decreasing fasting and postprandial hyperglycemia. The most common adverse events are gastrointestinal in nature, which are lesser in frequency than those observed with short-acting exenatide. Exenatide ER has been shown to be more effective than exenatide twice daily and slightly less efficacious than liraglutide. Exenatide ER is useful as monotherapy and in combination with other oral antidiabetic drugs. CONCLUSION Once weekly treatment options for diabetes such as exenatide ER have the potential to offer substantial convenience for patients who have high medication burden and poor medication adherence.
Collapse
Affiliation(s)
| | - Philip Raskin
- Department of Internal Medicine, Division of Endocrinology, the University of Texas Southwestern Medical Center, Dallas, TX, USA
- Correspondence: Philip Raskin, Department of Internal Medicine, Division of Endocrinology, the University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA, Tel +1 214 648 2017, Fax +1 214 648 4854, Email
| |
Collapse
|