1
|
Okoli GN, Van Caeseele P, Askin N, Abou-Setta AM. A global systematic evidence review with meta-analysis of the epidemiological characteristics of the 2022 Mpox outbreaks. Infection 2024; 52:901-921. [PMID: 38051425 DOI: 10.1007/s15010-023-02133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND In 2022, there were outbreaks of Mpox where the disease is not endemic. We summarized published full-text epidemiological data from the outbreaks. METHODS A global evidence review (protocol: osf.io/j3kb7) with systematic literature search up to February 09, 2023. We focused on experimental/observational studies of laboratory confirmed Mpox, excluding case reports and case series of < 5 cases. Epidemiological data were pooled using an inverse variance, random-effects model, and pooled estimates presented with associated 95% confidence intervals. RESULTS We included 66 studies. Mean incubation period was 7.8 days (6.6-9.0 days, 8 studies: 560 cases), reproductive number 1.8 (1.7-1.9, 6 studies), mean duration from symptom onset to diagnosis 5.8 days (4.8-6.8 days, 4 studies: 982 cases), mean symptom duration 17.5 days (14.7-20.2 days, 3 studies: 292 cases), mean serial interval 8.5 days (7.3-9.9 days, 1 study), hospitalisation 6% (4-9%, 26 studies: 5339 cases), and vaccine effectiveness 78% (65-91%, 3 studies: 953 cases). Highly relevant clinical manifestations were pleomorphic skin lesions 82% (68-94%, 26 studies: 4093 cases), anogenital lesions 64% (51-77%, 9 studies: 10,398 cases), fever 54% (50-57%, 52 studies: 25,992 cases), and lymphadenopathy 51% (46-57%, 42 studies: 17,803 cases), with cases mostly men who have sex with men (MSM). Possibly relevant manifestations were perianal lesions, fatigue, asthenia, myalgia, and headache. CONCLUSIONS The 2022 Mpox outbreaks presented with sex-related clinical manifestations and were mostly reported among MSM.
Collapse
Affiliation(s)
- George N Okoli
- George & Fay Yee Centre for Healthcare Innovation, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Paul Van Caeseele
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Cadham Provincial Laboratory, Winnipeg, MB, Canada
| | - Nicole Askin
- Neil John Maclean Library, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed M Abou-Setta
- George & Fay Yee Centre for Healthcare Innovation, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada
- Department of Community Health Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Wang M, Yoon J, Reisert H, Das B, Orlinick B, Chiarella J, Halvas EK, Mellors J, Pang AP, Barakat LA, Fikrig M, Cyktor J, Kluger Y, Spudich S, Corley MJ, Farhadian SF. HIV-1-infected T cell clones are shared across cerebrospinal fluid and blood during ART. JCI Insight 2024; 9:e176208. [PMID: 38587074 PMCID: PMC11128194 DOI: 10.1172/jci.insight.176208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.
Collapse
Affiliation(s)
- Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | - Jennifer Chiarella
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | | | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Shelli F. Farhadian
- Section of Infectious Diseases, and
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Mitchell MM, Tseng TY, Rubin LH, Cruz-Oliver D, Catanzarite Z, Clair CA, Moore DJ, Knowlton AR. Social support network factors associated with verbal fluency among vulnerable persons living with HIV. AIDS Care 2024; 36:358-367. [PMID: 37345842 PMCID: PMC10739652 DOI: 10.1080/09540121.2023.2216925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Vulnerable persons living with HIV (PLWH) are at high risk of cognitive impairment and challenges accessing quality social support in later life. Impaired verbal fluency (VF), a cognitive domain linked to HIV, could impede social support associated with health and well-being for already vulnerable PLWH. We examined the structure of social support, using latent class analysis, and the associations among quantity, specific forms and quality of social support and VF among PLWH. Participants enrolled in the BEACON study (n = 383) completed the Controlled Oral Word Association test (COWAT) and a social support network inventory. Latent class analysis with count variables was used to determine the number of classes of PLWH based on their social network characteristics. The majority of PLWH were male (61.4%) and African American (85.9%). Two distinct latent classes, with a major distinction in the number of network members who were female, knew participants' HIV status and HIV medication usage. Fewer support network members (β = -.13, p < 0.01), greater negative interactions (β = -.16, p < 0.01), and less positive interactions with network members (β = .15, p < 0.05) were significantly associated with lower COWAT scores. Comprehensive screening of high-risk PLWH and early intervention with those with cognitive impairment are important for addressing social support needs.
Collapse
Affiliation(s)
- Mary M. Mitchell
- Johns Hopkins Bloomberg School of Public Health, Department of Health, Behavior and Society, Baltimore, MD, USA
| | - Tuo-Yen Tseng
- Johns Hopkins Bloomberg School of Public Health, Department of Health, Behavior and Society, Baltimore, MD, USA
| | - Leah H. Rubin
- Departments of Neurology and Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA
| | - Dulce Cruz-Oliver
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zachary Catanzarite
- Johns Hopkins Bloomberg School of Public Health, Department of Health, Behavior and Society, Baltimore, MD, USA
| | - Catherine A. Clair
- Johns Hopkins Bloomberg School of Public Health, Department of Health, Behavior and Society, Baltimore, MD, USA
| | - David J. Moore
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amy R. Knowlton
- Johns Hopkins Bloomberg School of Public Health, Department of Health, Behavior and Society, Baltimore, MD, USA
| |
Collapse
|
4
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Okoli GN, Van Caeseele P, Askin N, Abou-Setta AM. Comparative evaluation of the clinical presentation and epidemiology of the 2022 and previous Mpox outbreaks: a rapid review and meta-analysis. Infect Dis (Lond) 2023:1-19. [PMID: 37200216 DOI: 10.1080/23744235.2023.2214609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND In 2022, there were outbreaks of Mpox where the disease is not endemic. We summarised and compared the findings from published observational studies on the clinical presentation and epidemiology of the 2022 and previous outbreaks of Mpox. METHODS We registered a review protocol with the Open Science Framework (osf.io/j3kb7). We searched MEDLINE, Embase, CENTRAL, CINAHL and Scopus databases, and relevant websites up to August 30, 2022. Retrieved literature citations were screened for eligibility, and summary clinical presentation and epidemiological data from the included studies were pooled, when possible, using an inverse variance, random-effects model. RESULTS Seventy-nine studies met the eligibility. Irrespective of outbreak, fever, headache, myalgia, lymphadenopathy, pleomorphic skin lesions, oral lesions, and sore throat were potentially highly relevant Mpox manifestations, while conjunctivitis, cough, and possibly reactivation of varicella zoster virus may be part of the clinical presentation. The mean incubation period for the 2022 outbreaks was 7.4 d (6.4-8.4 d, I2 64.2%; 4 studies: 270 cases) and for previous outbreaks, 12.9 d (10.4-15.5 d; one study: 31 cases), p < .001. None of the male cases from previous outbreaks was reported to have sex with men (MSM) whereas almost all reported male cases from the 2022 outbreak were MSM. Concomitant sexually transmitted infections and perianal lesions were reported only among male cases from the 2022 outbreak, with the cases mostly presenting with genital lesions. CONCLUSIONS The 2022 Mpox outbreaks appear to be mostly among MSM and have a lower incubation period compared with previous outbreaks.Key messages79 studies met the review's inclusion criteria.The 2022 Mpox outbreaks appear to have shorter incubation period compared with previous outbreaks.Established clinical presentation of Mpox includes fever, headache, myalgia, lymphadenopathy, pleomorphic skin lesions, oral lesions, and sore throat.Almost all reported cases from the 2022 Mpox outbreaks were men who had sex with men (MSM).Concomitant sexually transmitted infections and perianal lesions were only reported among cases from the 2022 Mpox outbreaks.A significantly higher proportion of Mpox cases from the 2022 outbreaks had genital lesions compared with cases from previous outbreaks.The 2022 Mpox outbreaks appear to be mostly among MSM.
Collapse
Affiliation(s)
- George N Okoli
- George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Canada
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Paul Van Caeseele
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Cadham Provincial Laboratory, Winnipeg, Canada
| | - Nicole Askin
- Neil John Maclean Library, University of Manitoba, Winnipeg, Canada
| | - Ahmed M Abou-Setta
- George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA 94110
| | - Annukka A. R. Antar
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
7
|
McGuire JL, Grinspan JB, Jordan-Sciutto KL. Update on Central Nervous System Effects of HIV in Adolescents and Young Adults. Curr HIV/AIDS Rep 2023; 20:19-28. [PMID: 36809477 PMCID: PMC10695667 DOI: 10.1007/s11904-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Judith B Grinspan
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
9
|
Olwenyi OA, Johnson SD, Bidokhti M, Thakur V, Pandey K, Thurman M, Acharya A, Uppada S, Callen S, Giavedoni L, Ranga U, Buch SJ, Byrareddy SN. Systems biology analyses reveal enhanced chronic morphine distortion of gut-brain interrelationships in simian human immunodeficiency virus infected rhesus macaques. Front Neurosci 2022; 16:1001544. [PMID: 36312033 PMCID: PMC9613112 DOI: 10.3389/fnins.2022.1001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Commonly used opioids, such as morphine have been implicated in augmented SIV/HIV persistence within the central nervous system (CNS). However, the extent of myeloid cell polarization and viral persistence in different brain regions remains unclear. Additionally, the additive effects of morphine on SIV/HIV dysregulation of gut-brain crosstalk remain underexplored. Therefore, studies focused on understanding how drugs of abuse such as morphine affect immune dynamics, viral persistence and gut-brain interrelationships are warranted. Materials and methods For a total of 9 weeks, rhesus macaques were ramped-up, and twice daily injections of either morphine (n = 4) or saline (n = 4) administered. This was later followed with infection with SHIVAD8EO variants. At necropsy, mononuclear cells were isolated from diverse brain [frontal lobe, cerebellum, medulla, putamen, hippocampus (HIP) and subventricular zone (SVZ)] and gut [lamina propria (LP) and muscularis (MUSC) of ascending colon, duodenum, and ileum] regions. Multiparametric flow cytometry was used to were profile for myeloid cell polarity/activation and results corroborated with indirect immunofluorescence assays. Simian human immunodeficiency virus (SHIV) DNA levels were measured with aid of the digital droplet polymerase chain reaction (PCR) assay. Luminex assays were then used to evaluate soluble plasma/CSF biomarker levels. Finally, changes in the fecal microbiome were evaluated using 16S rRNA on the Illumina NovaSeq platform. Results Flow Cytometry-based semi-supervised analysis revealed that morphine exposure led to exacerbated M1 (CD14/CD16)/M2 (CD163/CD206) polarization in activated microglia that spanned across diverse brain regions. This was accompanied by elevated SHIV DNA within the sites of neurogenesis-HIP and SVZ. HIP/SVZ CD16+ activated microglia positively correlated with SHIV DNA levels in the brain (r = 0.548, p = 0.042). Simultaneously, morphine dependence depleted butyrate-producing bacteria, including Ruminococcus (p = 0.05), Lachnospira (p = 0.068) genera and Roseburia_sp_831b (p = 0.068). Finally, morphine also altered the regulation of CNS inflammation by reducing the levels of IL1 Receptor antagonist (IL1Ra). Conclusion These findings are suggestive that morphine promotes CNS inflammation by altering receptor modulation, increasing myeloid brain activation, distorting gut-brain crosstalk, and causing selective enhancement of SHIV persistence in sites of neurogenesis.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mehdi Bidokhti
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vandana Thakur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Luis Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shilpa J. Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
11
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Zanella I, Zacchi E, Fornari C, Fumarola B, Antoni MD, Zizioli D, Quiros-Roldan E. An exploratory pilot study on the involvement of APOE, HFE, C9ORF72 variants and comorbidities in neurocognitive and physical performance in a group of HIV-infected people. Metab Brain Dis 2022; 37:1569-1583. [PMID: 35353274 PMCID: PMC8964929 DOI: 10.1007/s11011-022-00975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cognitive decline of aging is modulated by chronic inflammation and comorbidities. In people with HIV-infection (PWH) it may also be affected by HIV-induced inflammation, lifestyle and long-term effects of antiretroviral therapies (ART). The role of genetics in the susceptibility to HIV-associated neurocognitive disorders (HAND) is not fully understood. Here we explored the possible relations among variants in 3 genes involved in inflammation and neurodegenerative disorders (APOE: ε2/ε3/ε4; HFE: H63D; C9ORF72: hexanucleotide expansions ≥ 9 repeats), cognitive/functional impairment (MiniMental State Examination MMSE, Clock Drawing Test CDT, Short Physical Performance Battery SPPB), comorbidities and HIV-related variables in a cohort of > 50 years old PWH (n = 60) with at least 10 years efficient ART. Patients with diabetes or hypertension showed significantly lower MMSE (p = .031) or SPPB (p = .010) scores, respectively, while no relations between HIV-related variables and cognitive/functional scores were observed. Patients with at least one APOEε3 allele had higher CDT scores (p = .019), APOEε2/ε4 patients showing the lowest scores in all tests. Patients with HFE-H63D variant showed more frequently hypertriglyceridemia (p = .023) and those harboring C9ORF72 expansions > 9 repeats had higher CD4+-cell counts (p = .032) and CD4% (p = .041). Multiple linear regression analysis computed to verify possible associations among cognitive/functional scores and all variables further suggested positive association between higher CDT scores and the presence of at least one APOEε3 allele (2,2; 95% CI [0,03 0,8]; p = .037), independent of other variables, although the model did not reach the statistical significance (p = .14). These data suggest that in PWH on efficient ART cognitive abilities and physical performances may be partly associated with comorbidities and genetic background. However, further analyses are needed to establish whether they could be also dependent and influenced by comorbidities and genetic background.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy.
| | - Eliana Zacchi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Chiara Fornari
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Benedetta Fumarola
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Melania Degli Antoni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| |
Collapse
|
13
|
Young JW, Barback CV, Stolz LA, Groman SM, Vera DR, Hoh C, Kotta KK, Minassian A, Powell SB, Brody AL. MicroPET evidence for a hypersensitive neuroinflammatory profile of gp120 mouse model of HIV. Psychiatry Res Neuroimaging 2022; 321:111445. [PMID: 35101828 DOI: 10.1016/j.pscychresns.2022.111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Despite increased survivability for people living with HIV (PLWH), HIV-related cognitive deficits persist. Determining biological mechanism(s) underlying abnormalities is critical to minimize the long-term impact of HIV. Positron emission tomography (PET) studies reveal that PLWH exhibit elevated neuroinflammation, potentially contributing to these problems. PLWH are hypersensitive to environmental insults that drive elevated inflammatory profiles. Gp120 is an envelope glycoprotein exposed on the surface of the HIV envelope which enables HIV entry into a cell contributing to HIV-related neurotoxicity. In vivo evidence for mice overexpressing gp120 (transgenic) mice exhibiting neuroinflammation remains unclear. Here, we conducted microPET imaging in gp120 transgenic and wildtype mice, using the radiotracer [(18)F]FEPPA (binds to the translocator protein expressed by activated microglial serving as a neuroinflammatory marker). Imaging was performed at baseline and 24 h after lipopolysaccharide (LPS; 5 mg/kg) treatment (endotoxin that triggers an immune response). Gp120 transgenic mice exhibited elevated [(18F)]FEPPA in response to LPS vs. wildtype mice throughout the brain including dorsal and ventral striata, hypothalamus, and hippocampus. Gp120 transgenic mice are hypersensitive to environmental inflammatory insults, consistent with PLWH, measurable in vivo. It remains to-be-determined whether this heightened sensitivity is connected to the behavioral abnormalities of these mice or sensitive to any treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Christopher V Barback
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Louise A Stolz
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Stephanie M Groman
- Department of Neuroscience, Medical Discovery Team on Addiction, University of Minnesota
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Carl Hoh
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Kishore K Kotta
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arthur L Brody
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
14
|
van der Post J, van Genderen JG, Heijst JA, Blokhuis C, Teunissen CE, Pajkrt D. Plasma Neurofilament Light Is Not Associated with Ongoing Neuroaxonal Injury or Cognitive Decline in Perinatally HIV Infected Adolescents: A Brief Report. Viruses 2022; 14:v14040671. [PMID: 35458401 PMCID: PMC9030750 DOI: 10.3390/v14040671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite combination antiretroviral therapy (cART), adolescents with perinatally acquired human immunodeficiency virus (PHIV) exhibit cerebral injury and cognitive impairment. Plasma neurofilament light (pNfL) is a biomarker identified as a promising marker associated with neuroaxonal injury and cognitive impairment. To investigate whether cerebral injury in cART-treated PHIV adolescents is persistent, we longitudinally measured pNfL. We included 21 PHIV adolescents and 23 controls, matched for age, sex, ethnic origin and socio-economic status. We measured pNfL in both groups and CSF NfL in PHIV adolescents using a highly sensitive Single Molecule Array (Simoa) immunoassay. We compared pNfL between groups over time with a mean follow-up time of 4.6 years and assessed its association with MRI outcomes, cognitive function and HIV-related characteristics using linear mixed models. The median age was 17.5 years (15.5–20.7) and 16.4 years (15.8–19.6) at the second assessment for PHIV adolescents and controls, respectively. We found comparable pNfL (PHIV vs. controls) at the first (2.9 pg/mL (IQR 2.0–3.8) and 3.0 pg/mL (IQR 2.3–3.5), p = 0.499) and second assessment (3.3 pg/mL (IQR 2.5–4.1) and 3.0 pg/mL (IQR 2.5–3.7), p = 0.658) and observed no longitudinal change (coefficient; −0.19, 95% −0.5 to 0.1, p = 0.244). No significant associations were found between pNfL and HIV- or cART-related variables, MRI outcomes or cognitive function. We observed low CSF NfL concentrations at the baseline in PHIV adolescents (100.8 pg/mL, SD = 47.5). Our results suggest that there is no ongoing neuroaxonal injury in cART-treated PHIV adolescents and that the neuroaxonal injury is acquired in the past, emphasizing the importance of early cART to mitigate HIV-related neuroaxonal damage.
Collapse
Affiliation(s)
- Julie van der Post
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
- Correspondence: ; Tel.: +31-630-595-488
| | - Jason G. van Genderen
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Johannes A. Heijst
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Charlotte Blokhuis
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Dasja Pajkrt
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| |
Collapse
|
15
|
Wei J, Hou J, Mu T, Sun J, Li S, Wu H, Su B, Zhang T. Evaluation of Computerized Cognitive Training and Cognitive and Daily Function in Patients Living With HIV: A Meta-analysis. JAMA Netw Open 2022; 5:e220970. [PMID: 35238931 PMCID: PMC8895263 DOI: 10.1001/jamanetworkopen.2022.0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IMPORTANCE In the era of antiretroviral therapy (ART), the incidence of HIV-associated neurocognitive disorder (HAND) has not yet been controlled. With the exception of ART, there is no beneficial pharmacologic treatment. However, some studies have reported that computerized cognitive training (CCT) programs may improve cognitive function among people living with HIV. OBJECTIVE To examine the association between CCT programs and 8 domains measuring cognitive function (7 domains) and daily function (1 domain) among people living with HIV. DATA SOURCES Records from the Cochrane Library, PsycINFO, PubMed, and Web of Science were searched from database inception to December 15, 2020. Supplementary searches to identify missing studies were conducted in Google Scholar using updated search terms from database inception to November 18, 2021. STUDY SELECTION Studies that compared changes before and after a CCT intervention among people living with HIV were included. Search terms were a combination of words associated with HIV (eg, people living with HIV, HIV, and/or AIDS) and cognitive training (eg, cognitive intervention, nonpharmacology intervention, computer game, video game, computerized training, cognitive exercise, cognitive stimulation, and/or cognitive enhancement). Studies were included if they (1) used CCT as the primary intervention or combined CCT with other types of interventions; (2) used placebo, passive control conditions, traditional cognitive training, or single training tasks as control conditions; (3) reported changes between baseline and posttraining; (4) included participants 18 years or older; and (5) were randomized clinical trials (RCTs). Studies were excluded if they (1) were not associated with HIV, (2) were research protocols or feedback reports, (3) were case reports, or (4) did not report findings for domains of interest. DATA EXTRACTION AND SYNTHESIS Two reviewers independently extracted data. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Random-effects models were used to quantitatively synthesize the existing data. MAIN OUTCOMES AND MEASURES Primary outcomes were the meta-synthesized changes in each domain after CCT. RESULTS Among 1245 records identified, 1043 were screened after removal of duplicates. Of those, 1019 records were excluded based on titles and abstracts, and 24 full-text articles were assessed for eligibility. After exclusions, 12 eligible RCTs were selected for inclusion in the meta-analysis. These RCTs involved 596 total participants, with 320 individuals in the CCT group (mean age, 47.5-59.7 years; 0%-94% female; 8.3-14.2 years of education) and 276 individuals in the control group (mean age, 44.2-60.0 years; 19%-90% female; 9.0-14.9 years of education). The average HIV inhibition ratio (the proportion of participants who achieved virological suppression) ranged from 30% to 100%, and the CD4+ T-cell count ranged from 471 to 833 cells/μL. The time since training ranged from 3 to 24 weeks. After receipt of CCT, function significantly improved in 6 of the 8 domains: abstraction and executive function (standardized mean difference [SMD], 0.58; 95% CI, 0.26-0.91; P < .001), attention and working memory (SMD, 0.62; 95% CI, 0.33-0.91; P < .001), memory (SMD, 0.59; 95% CI, 0.20-0.97; P = .003), motor skills (SMD, 0.50; 95% CI, 0.24-0.77; P < .001), speed of information processing (SMD, 0.65; 95% CI, 0.37-0.94; P < .001), and daily function (SMD, 0.44; 95% CI, 0.02-0.86; P = .04). Sensory and perceptual skills (SMD, 0.06; 95% CI, -0.36 to 0.48; P = .78) and verbal and language skills (SMD, 0.46; 95% CI, -0.07 to 0.99; P = .09) did not significantly improve after CCT. CONCLUSIONS AND RELEVANCE This meta-analysis of RCTs found that CCT programs were associated with improvements in cognitive and daily function among people living with HIV. Future studies are needed to design optimal specific training programs and use implementation science to enable the transformation of CCT from a scientific research tool to a real-world clinical intervention.
Collapse
Affiliation(s)
- Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jianhua Hou
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tingting Mu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Mbewe EG, Kabundula PP, Mwanza-Kabaghe S, Buda A, Adams HR, Schneider C, Potchen MJ, Mweemba M, Mathews M, Menon JA, Wang B, Baseler T, Paciorkowski A, Birbeck GL, Bearden DR. Socioeconomic Status and Cognitive Function in Children With HIV: Evidence From the HIV-Associated Neurocognitive Disorders in Zambia (HANDZ) Study. J Acquir Immune Defic Syndr 2022; 89:56-63. [PMID: 34878435 PMCID: PMC8794014 DOI: 10.1097/qai.0000000000002825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Multiple previous studies have identified a detrimental effect of pediatric HIV on cognitive function. Socioeconomic status (SES) is one of the strongest predictors of cognitive performance and may affect the relationship between HIV and cognition. METHODS As part of the ongoing HIV-Associated Neurocognitive Disorders in Zambia (HANDZ) study, a prospective cohort study, we recruited 208 participants with HIV and 208 HIV-exposed uninfected controls, all aged 8-17 years. A standardized questionnaire was administered to assess SES, and all participants had comprehensive neuropsychological testing. An NPZ8 score was derived as a summary measure of cognitive function. Logistic regression and linear regression were used to model the relationship between SES and cognitive function, and mediation analysis was used to identify specific pathways by which SES may affect cognition. RESULTS Children with HIV performed significantly worse on a composite measure of cognitive function (NPZ8 score -0.19 vs. 0.22, P < 0.001) and were more likely to have cognitive impairment (33% vs. 19%, P = 0.001). Higher SES was associated with reduced risk of cognitive impairment (odds ratio 0.8, 95% confidence interval: 0.75-0.92, P < 0.001) in both groups, with similar effects in children with HIV and HIV-exposed uninfected groups. SES was more strongly correlated with NPZ8 score in children with HIV than in uninfected controls (Pearson's R 0.39 vs. 0.28), but predicted NPZ8 in both groups. Mediation analysis suggested that the effect of SES on cognition was most strongly mediated through malnutrition. CONCLUSIONS Cognitive function is strongly correlated with SES in children with HIV, suggesting a synergistic effect of HIV and poverty on cognitive function.
Collapse
Affiliation(s)
- Esau G Mbewe
- Department of Educational Psychology, University of Zambia, Lusaka, Zambia
| | | | | | - Alexandra Buda
- University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Heather R Adams
- University of Rochester School of Medicine and Dentistry, Rochester, NY
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Colleen Schneider
- University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Lusaka Apex Medical University, Lusaka, Zambia
| | - Milimo Mweemba
- University Teaching Hospital, Neurology Research Office, Lusaka, Zambia
| | - Manoj Mathews
- University Teaching Hospital, Neurology Research Office, Lusaka, Zambia
- University Teaching Hospital Children's Hospital, Lusaka, Zambia
- Directorate of Clinical Care and Diagnostics Services, Ministry of Health, Lusaka, Zambia
| | - J Anitha Menon
- Department of Psychology, University of Zambia, Lusaka, Zambia
| | - Bo Wang
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Travis Baseler
- Department of Economics, University of Rochester, Rochester, NY
| | - Alex Paciorkowski
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Gretchen L Birbeck
- University Teaching Hospital, Neurology Research Office, Lusaka, Zambia
- University of Zambia School of Medicine, Lusaka, Zambia ; and
- Division of Epilepsy, Department of Neurology, Rochester, NY
| | - David R Bearden
- University of Rochester School of Medicine and Dentistry, Rochester, NY
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
17
|
Ultradeep HIV-1 Proviral Envelope Sequencing Reveals Complex Population Structure within and between Brain and Splenic Tissues. J Virol 2021; 95:e0120221. [PMID: 34495695 DOI: 10.1128/jvi.01202-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding tissue-based HIV-1 proviral population structure is important for improving treatment strategies for individuals with HIV-associated neurological disorders (HAND). Previous analyses have revealed HIV-1 envelope (env) population structure between brain and peripheral tissues as well as Env functional differences, especially in individuals with HAND. Furthermore, population structure has been detected among different anatomical locations in the brain itself, although such patterns are inconsistent across individuals and less strongly associated with the presence/absence of HAND. Here, we utilized the Pacific Biosciences single-molecule real-time (SMRT) high-throughput technology to generate thousands of sequences for each tissue, along with phylogenetic and distance-based analyses, to investigate env sequences from paired brain and spleen samples from eight individuals with/without HAND. To account for the high error rate associated with SMRT sequencing, we used a clustering approach to identify high-quality consensus sequences representative of ≥10 reads ("HQCS10"). In parallel, we characterized variable regions from nonclustered sequences to identify potential functional differences. We found evidence for significant population structure between brain and spleen tissues, as well as among brain tissues and within the same brain tissue, in individuals both with and without HAND. Variable region analysis showed differences in length and charge among brain and nonbrain tissues as well as within the brain, suggesting possible functional differences. Our results demonstrate the complexity of HIV-1 env structure/gene flow among tissues and support the concept that selective pressures in different tissue microenvironments drive viral evolution and adaptation. IMPORTANCE Understanding the evolution of HIV-1 in the brain compared to other tissues is important for improving treatment strategies for individuals with HIV-associated neurological disorders (HAND). We utilized high-throughput sequencing technology to generate thousands of full-length env sequences from paired brain and spleen samples from eight individuals with/without HAND. We found significant viral population structure for participants both with and without HAND, providing robust evidence for the brain as a compartmentalized tissue and potentially a viral reservoir. We also found striking genetic differences between virus populations, even from the same tissue, suggesting the potential for functional differences and the possibility for multiple evolutionary pathways that result in similar tropisms and/or other tissue-adapted characteristics. Our results demonstrate the complexity of viral population structure within the brain and suggest that analysis of peripheral blood samples alone may not be fully informative with respect to improving strategies to treat or eradicate HIV-1.
Collapse
|
18
|
Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021; 10:cells10102739. [PMID: 34685718 PMCID: PMC8534645 DOI: 10.3390/cells10102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The sirtuins (SIRTs) are a family of enzymes from the group of NAD+-dependent deacetylases. Through the reaction of splitting the acetyl group of various transcription factors and histones they regulate many processes in the organism. The activity of sirtuins is linked to metabolic control, oxidative stress, inflammation and apoptosis, and they also affect the course of viral infections. For this reason, they may participate in the pathogenesis and development of many diseases, but little is known about their role in the course of human immunodeficiency virus (HIV) infection, which is the subject of this review. In the course of HIV infection, comorbidities such as: neurodegenerative disorders, obesity, insulin resistance and diabetes, lipid disorders and cardiovascular diseases, renal and bone diseases developed more frequently and faster compared to the general population. The role of sirtuins in the development of accompanying diseases in the course of HIV infection may also be interesting. There is still a lack of detailed information on this subject. The role of sirtuins, especially SIRT1, SIRT3, SIRT6, are indicated to be of great importance in the course of HIV infection and the development of the abovementioned comorbidities.
Collapse
|
19
|
Zahid M, Kumar K, Patel H. Encephalitis Due to Co-Infection with Cytomegalovirus and Herpes Simplex Virus Type 2 in a Patient with Acquired Immunodeficiency Syndrome. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931821. [PMID: 34349095 PMCID: PMC8351248 DOI: 10.12659/ajcr.931821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/23/2021] [Accepted: 06/16/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Opportunistic infections are commonly seen in immunocompromised patients. Here, we present an interesting case of a patient with poorly controlled human immunodeficiency virus (HIV) infection who presented with multiple opportunistic infections. CASE REPORT A 44-year-old woman with medical history of HIV infection (CD4 <20 cells/µl, viral load 172 996 copies/ml), presented with symptoms of headache for 2 days and changes in mentation. She was recently treated for pulmonary mycobacterium avium complex infection. Her physical examination revealed normal breath sounds and her abdominal examination was unremarkable. She did not have any focal neurological deficits, nuchal rigidity, or papilledema on examination. Computed tomography (CT) head was negative for any acute lesions. She was empirically started on vancomycin and piperacillin-tazobactam. Due to persistent symptoms, a lumbar puncture was performed, which revealed elevated total proteins in CSF, and a viral polymerase chain reaction test was positive for herpes simplex virus type 2 (HSV-2) and cytomegalovirus (CMV). Magnetic resonance imaging of the brain showed mild enhancement of the ventricular lining. She was treated with acyclovir, which was later changed to ganciclovir, with resulting clinical improvement. The patient had clinical improvement and was discharged home. CONCLUSIONS Multiple opportunistic co-infections should be considered in patients with poorly controlled HIV infection.
Collapse
|
20
|
Lam JO, Hou CE, Hojilla JC, Anderson AN, Gilsanz P, Alexeeff SE, Levine-Hall T, Hood N, Lee C, Satre DD, Silverberg MJ. Comparison of dementia risk after age 50 between individuals with and without HIV infection. AIDS 2021; 35:821-828. [PMID: 33394681 PMCID: PMC7969394 DOI: 10.1097/qad.0000000000002806] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To compare risk of dementia after age 50 by HIV status among individuals in a primary care setting. DESIGN Observational cohort study; participants were identified from 2013 to 2017 and followed through 2019. METHODS Participants were people with HIV (PWH) on antiretroviral therapy (ART) and demographically similar people without HIV (PWOH), all at least 50 years old and with no prior diagnosis of dementia. The study setting was Kaiser Permanente Northern California, an integrated healthcare delivery system in the United States. Incident dementia diagnoses and baseline data on sociodemographics, smoking, alcohol use, other substance use, and clinical factors were gathered from the electronic health record. Cumulative proportion of incident dementia by HIV status was assessed using Kaplan--Meier curves. Unadjusted and adjusted hazard ratios for incident dementia by HIV status were generated using Cox proportional hazards models with age as the time scale. RESULTS The study included 5381 PWH and 119 022 PWOH (average age at baseline: 57 and 58 years, respectively). Incident dementia was diagnosed in 117 PWH and 2427 PWOH. By age 80, 25.8% of PWH and 13.8% of PWOH had been diagnosed with dementia, corresponding with an unadjusted hazard ratio of 1.98 (95% CI 1.64-2.39). After adjustment for sociodemographic, substance use, and clinical factors, including frequency of outpatient visits, the risk of dementia among PWH remained elevated (vs. PWOH, adjusted hazard ratio = 1.58, 95% CI 1.31-1.92). CONCLUSION Compared with PWOH, PWH were at 58% higher risk for dementia despite HIV treatment with ART. Research is needed to investigate the potential benefits of targeted risk factor management or earlier cognitive screening in this population.
Collapse
Affiliation(s)
- Jennifer O Lam
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Craig E Hou
- South San Francisco Medical Center, Kaiser Permanente Northern California, South San Francisco
| | - J Carlo Hojilla
- Division of Research, Kaiser Permanente Northern California, Oakland
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Paola Gilsanz
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Tory Levine-Hall
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Nicole Hood
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Derek D Satre
- Division of Research, Kaiser Permanente Northern California, Oakland
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
21
|
Aung HL, Bloch M, Vincent T, Quan D, Jayewardene A, Liu Z, Gates TM, Brew B, Mao L, Cysique LA. Cognitive ageing is premature among a community sample of optimally treated people living with HIV. HIV Med 2021; 22:151-164. [PMID: 33085207 PMCID: PMC7984032 DOI: 10.1111/hiv.12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Evidence of premature cognitive ageing amongst people living with HIV (PLHIV) remains controversial due to previous research limitations including underpowered studies, samples with suboptimal antiretroviral access, varying rate of virological control, high rate of AIDS, over-representation of non-community samples, and inclusion of inappropriate controls. The current study addresses these limitations, while also considering mental health and non-HIV comorbidity burden to determine whether PLHIV showed premature cognitive ageing compared with closely comparable HIV-negative controls. METHODS This study enrolled 254 PLHIV [92% on antiretroviral therapy; 84% with HIV RNA < 50 copies/mL; 15% with AIDS) and 72 HIV-negative gay and bisexual men [mean (SD) age = 49 (10.2) years] from a single primary care clinic in Sydney, Australia. Neurocognitive function was evaluated with the Cogstate Computerized Battery (CCB) at baseline and 6 months after. Linear mixed-effects (LME) models examined main and interaction effects of HIV status and chronological age on the CCB demographically uncorrected global neurocognitive z-score (GZS), adjusting for repeated testing, and then adjusting sequentially for HIV disease markers, mental health and comorbidities. RESULTS HIV status and age interacted with a lower GZS (β = -0.43, P < 0.05). Higher level of anxiety symptoms (β = -0.11, P < 0.01), historical AIDS (β = -0.12, P < 0.05) and historical HIV brain involvement (β = -0.12, P < 0.05) were associated with lower GZS. CONCLUSIONS We found a robust medium-sized premature ageing effect on cognition in a community sample with optimal HIV care. Our study supports routine screening of cognitive and mental health among PLHIV aged ≥ 50 years.
Collapse
Affiliation(s)
- HL Aung
- Department of Neurology and HIV Medicine, St Vincent’s Hospital and Peter Duncan Neurosciences UnitSt Vincent’s Centre for Applied Medical ResearchSydneyNSWAustralia
- Neuroscience Research AustraliaSydneyNSWAustralia
- Faculty of MedicineUNSWSydneyNSWAustralia
| | - M Bloch
- Faculty of MedicineUNSWSydneyNSWAustralia
- Holdsworth House Medical PracticeSydneyNSWAustralia
| | - T Vincent
- Holdsworth House Medical PracticeSydneyNSWAustralia
| | - D Quan
- Holdsworth House Medical PracticeSydneyNSWAustralia
| | - A Jayewardene
- Holdsworth House Medical PracticeSydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Z Liu
- Stats CentralUNSWSydneyNSWAustralia
| | - TM Gates
- Department of Neurology and HIV Medicine, St Vincent’s Hospital and Peter Duncan Neurosciences UnitSt Vincent’s Centre for Applied Medical ResearchSydneyNSWAustralia
| | - B Brew
- Department of Neurology and HIV Medicine, St Vincent’s Hospital and Peter Duncan Neurosciences UnitSt Vincent’s Centre for Applied Medical ResearchSydneyNSWAustralia
- Faculty of MedicineUNSWSydneyNSWAustralia
- Faculty of MedicineUniversity of Notre DameSydneyNSWAustralia
| | - L Mao
- Centre for Social Research in HealthUNSWSydneyNSWAustralia
| | - LA Cysique
- Department of Neurology and HIV Medicine, St Vincent’s Hospital and Peter Duncan Neurosciences UnitSt Vincent’s Centre for Applied Medical ResearchSydneyNSWAustralia
- Neuroscience Research AustraliaSydneyNSWAustralia
- Faculty of MedicineUNSWSydneyNSWAustralia
| |
Collapse
|
22
|
Jaureguiberry-Bravo M, Kelschenbach J, Murphy A, Carvallo L, Hadas E, Tesfa L, Scott TM, Rivera-Mindt M, Cunningham CO, Arnsten JH, Volsky DJ, Berman JW. Treatment with buprenorphine prior to EcoHIV infection of mice prevents the development of neurocognitive impairment. J Leukoc Biol 2021; 109:675-681. [PMID: 32578908 PMCID: PMC8525325 DOI: 10.1002/jlb.5ab0420-531r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022] Open
Abstract
Approximately 15-40% of people living with HIV develop HIV-associated neurocognitive disorders, HAND, despite successful antiretroviral therapy. There are no therapies to treat these disorders. HIV enters the CNS early after infection, in part by transmigration of infected monocytes. Currently, there is a major opioid epidemic in the United States. Opioid use disorder in the context of HIV infection is important because studies show that opioids exacerbate HIV-mediated neuroinflammation that may contribute to more severe cognitive deficits. Buprenorphine is an opioid derivate commonly prescribed for opiate agonist treatment. We used the EcoHIV mouse model to study the effects of buprenorphine on cognitive impairment and to correlate these with monocyte migration into the CNS. We show that buprenorphine treatment prior to mouse EcoHIV infection prevents the development of cognitive impairment, in part, by decreased accumulation of monocytes in the brain. We propose that buprenorphine has a novel therapeutic benefit of limiting the development of neurocognitive impairment in HIV-infected opioid abusers as well as in nonabusers, in addition to decreasing the use of harmful opioids. Buprenorphine may also be used in combination with HIV prevention strategies such as pre-exposure prophylaxis because of its safety profile.
Collapse
Affiliation(s)
- Matias Jaureguiberry-Bravo
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Jennifer Kelschenbach
- Department of Medicine/Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Aniella Murphy
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Loreto Carvallo
- Department of Medicine/Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Eran Hadas
- Department of Medicine/Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Lydia Tesfa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Travis M. Scott
- Department of Psychology, Fordham University, Bronx, NY 10458, USA
| | | | - Chinazo O. Cunningham
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Julia H. Arnsten
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - David J. Volsky
- Department of Medicine/Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
23
|
Bertrand L, Velichkovska M, Toborek M. Cerebral Vascular Toxicity of Antiretroviral Therapy. J Neuroimmune Pharmacol 2021; 16:74-89. [PMID: 31209776 PMCID: PMC7952282 DOI: 10.1007/s11481-019-09858-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
HIV infection is associated with comorbidities that are likely to be driven not only by HIV itself, but also by the toxicity of long-term use of antiretroviral therapy (ART). Indeed, increasing evidence demonstrates that the antiretroviral drugs used for HIV treatment have toxic effects resulting in various cellular and tissue pathologies. The blood-brain barrier (BBB) is a modulated anatomophysiological interface which separates and controls substance exchange between the blood and the brain parenchyma; therefore, it is particularly exposed to ART-induced toxicity. Balancing the health risks and gains of ART has to be considered in order to maximize the positive effects of therapy. The current review discusses the cerebrovascular toxicity of ART, with the focus on mitochondrial dysfunction. Graphical Abstract Graphical representation of the interactions between HIV, antiretroviral therapy (ART), and the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Dudás EF, Huynen MA, Lesk AM, Pastore A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J Biol Chem 2021; 296:100421. [PMID: 33609524 PMCID: PMC8005810 DOI: 10.1016/j.jbc.2021.100421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika F Dudás
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, GA Nijmegen, Netherlands
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK.
| |
Collapse
|
25
|
Dash BP, Naumann M, Sterneckert J, Hermann A. Genome Wide Analysis Points towards Subtype-Specific Diseases in Different Genetic Forms of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E6938. [PMID: 32967368 PMCID: PMC7555318 DOI: 10.3390/ijms21186938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason why the underlying pathophysiology remains elusive and has stalled the development of therapeutic strategies of this progressive motor neuron disease. To further unravel these pathological signaling pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS- and SOD1 ALS patients and healthy controls were systematically compared to independent published datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) that would identify altered molecular/functional signatures and their interactions at both transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and alterations in the neuroactive-ligand-receptor interactions. This suggests that different genetic ALS forms are singular diseases rather than part of a common spectrum. This is important for patient stratification clearly pointing towards the need for individualized medicine approaches in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
26
|
Tripathi A, Thangaraj A, Chivero ET, Periyasamy P, Burkovetskaya ME, Niu F, Guo ML, Buch S. N-Acetylcysteine Reverses Antiretroviral-Mediated Microglial Activation by Attenuating Autophagy-Lysosomal Dysfunction. Front Neurol 2020; 11:840. [PMID: 33013619 PMCID: PMC7498983 DOI: 10.3389/fneur.2020.00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Successful suppression of viral replication by combined antiretroviral therapy (cART) in HIV-1 infected individuals is paradoxically also accompanied by an increased prevalence of HIV-associated neurocognitive disorders (HAND) in these individuals. HAND is characterized by a state of chronic oxidative stress and inflammation. Microglia are extremely sensitive to a plethora of stimuli, including viral proteins and cART. The current study aimed to assess the effects of cART-mediated oxidative stress on the induction of inflammatory responses in microglia. In the present study, we chose a combination of three commonly used antiretroviral drugs—tenofovir disoproxil fumarate, emtricitabine, and dolutegravir. We demonstrated that exposure of microglia to the chosen cART cocktail induced generation of reactive oxygen species, subsequently leading to lysosomal dysfunction and dysregulated autophagy, ultimately resulting in the activation of microglia. Intriguingly, the potent antioxidant, N-acetylcysteine, reversed the damaging effects of cART. These in vitro findings were further corroborated in vivo wherein cART-treated HIV transgenic (Tg) rats demonstrated increased microglial activation, exaggerated lysosome impairment, and dysregulated autophagy in the prefrontal cortices compared with HIV Tg rats not exposed to cART. Similar to in vitro findings, the treatment of HIV Tg rats with N-acetylcysteine also mitigated the deleterious effects of cART. Taken together, our findings suggest that oxidative stress-mediated lysosomal dysfunction plays a critical role in the pathogenesis of HAND in drug-treated HIV-infected individuals and that antioxidant-mediated mitigation of oxidative stress could thus be considered as an adjunctive therapeutic strategy for ameliorating/dampening some of the neurological complications of HAND.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Maria E Burkovetskaya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
27
|
Combination of HIV-1 and Diabetes Enhances Blood Brain Barrier Injury via Effects on Brain Endothelium and Pericytes. Int J Mol Sci 2020; 21:ijms21134663. [PMID: 32630025 PMCID: PMC7370277 DOI: 10.3390/ijms21134663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022] Open
Abstract
Despite combined antiretroviral therapy (ART) achieving efficient HIV replication control, HIV-associated neurocognitive disorders (HAND) continue to be highly prevalent in HIV-infected patients. Diabetes mellitus (DM) is a well-known comorbidity of HAND in HIV-infected patients. Blood brain barrier (BBB) dysfunction has been linked recently to dementia development, specifically in DM patients. BBB injury exists both in HIV and DM, likely contributing to cognitive decline. However, its extent, exact cellular targets and mechanisms are largely unknown. In this report, we found a decrease in pericyte coverage and expression of tight junction proteins in human brain tissues from HIV patients with DM and evidence of HAND when compared to HIV-infected patients without DM or seronegative DM patients. Using our in vitro BBB models, we demonstrated diminution of barrier integrity, enhanced monocyte adhesion, changes in cytoskeleton and overexpression of adhesion molecules in primary human brain endothelial cells or human brain pericytes after exposure to HIV and DM-relevant stimuli. Our study demonstrates for the first-time evidence of impaired BBB function in HIV-DM patients and shows potential mechanisms leading to it in brain endothelium and pericytes that may result in poorer cognitive performance compared to individuals without HIV and DM.
Collapse
|
28
|
Ryder MI, Shiboski C, Yao TJ, Moscicki AB. Current trends and new developments in HIV research and periodontal diseases. Periodontol 2000 2020; 82:65-77. [PMID: 31850628 DOI: 10.1111/prd.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advent of combined antiretroviral therapies, the face of HIV infection has changed dramatically from a disease with almost certain mortality from serious comorbidities, to a manageable chronic condition with an extended lifespan. In this paper we present the more recent investigations into the epidemiology, microbiology, and pathogenesis of periodontal diseases in patients with HIV, and the effects of combined antiretroviral therapies on the incidence and progression of these diseases both in adults and perinatally infected children. In addition, comparisons and potential interactions between the HIV-associated microbiome, host responses, and pathogenesis in the oral cavity with the gastrointestinal tract and other areas of the body are presented. Also, the effects of HIV and combined antiretroviral therapies on comorbidities such as hyposalivation, dementia, and osteoporosis on periodontal disease progression are discussed.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, California, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge on the role of CD4+ T lymphocytes leading to HIV assault and persistence in the central nervous system (CNS) and the elimination of HIV-infected CNS resident cells by CD8+ T lymphocytes. RECENT FINDINGS HIV targets the CNS early in infection, and HIV-infected individuals suffer from mild forms of neurological impairments even under antiretroviral therapy (ART). CD4+ T cells and monocytes mediate HIV entry into the brain and constitute a source for HIV persistence and neuronal damage. HIV-specific CD8+ T cells are also massively recruited in the CNS in acute infection to control viral replication but cannot eliminate HIV-infected cells within the CNS. This review summarizes the involvement of CD4+ T cells in seeding and maintaining HIV infection in the brain and describes the involvement of CD8+ T cells in HIV neuropathogenesis, playing a role still to be deciphered, either beneficial in eliminating HIV-infected cells or deleterious in releasing inflammatory cytokines.
Collapse
|
30
|
Nitrosative Stress Is Associated with Dopaminergic Dysfunction in the HIV-1 Transgenic Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1375-1385. [PMID: 31230667 DOI: 10.1016/j.ajpath.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.
Collapse
|
31
|
Brain PET Imaging: Value for Understanding the Pathophysiology of HIV-associated Neurocognitive Disorder (HAND). Curr HIV/AIDS Rep 2020; 16:66-75. [PMID: 30778853 DOI: 10.1007/s11904-019-00419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies. RECENT FINDINGS In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND. The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.
Collapse
|
32
|
Abstract
BACKGROUND Emerging evidence suggests retroviruses play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Specifically, activation of ancient viral genes embedded in the human genome is theorized to lead to motor neuron degeneration. We explore whether connections exist between ALS and retroviruses through protein interaction networks (PIN) and pathway analysis, and consider the potential roles in drug target discovery. Protein database and pathway/network analytical software including Ingenuity Pathway BioProfiler, STRING, and CytoScape were utilized to identify overlapping protein interaction networks and extract core cluster (s) of retroviruses and ALS. RESULTS Topological and statistical analysis of the ALS-PIN and retrovirus-PIN identified a shared, essential protein network and a core cluster with significant connections with both networks. The identified core cluster has three interleukin molecules IL10, Il-6 and IL-1B, a central apoptosis regulator TP53, and several major transcription regulators including MAPK1, ANXA5, SQSTM1, SREBF2, and FADD. Pathway enrichment analysis showed that this core cluster is associated with the glucocorticoid receptor singling and neuroinflammation signaling pathways. For confirmation purposes, we applied the same methodology to the West Nile and Polio virus, which demonstrated trivial connectivity with ALS, supporting the unique connection between ALS and retroviruses. CONCLUSIONS Bioinformatics analysis provides evidence to support pathological links between ALS and retroviral activation. The neuroinflammation and apoptotic regulation pathways are specifically implicated. The continuation and further analysis of large scale genome studies may prove useful in exploring genes important in retroviral activation and ALS, which may help discover new drug targets.
Collapse
|
33
|
Fantuzzi L, Tagliamonte M, Gauzzi MC, Lopalco L. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell Mol Life Sci 2019; 76:4869-4886. [PMID: 31377844 PMCID: PMC6892368 DOI: 10.1007/s00018-019-03255-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The chemokine system mediates acute inflammation by driving leukocyte migration to damaged or infected tissues. However, elevated expression of chemokines and their receptors can contribute to chronic inflammation and malignancy. Thus, great effort has been taken to target these molecules. The first hint of the druggability of the chemokine system was derived from the role of chemokine receptors in HIV infection. CCR5 and CXCR4 function as essential co-receptors for HIV entry, with the former accounting for most new HIV infections worldwide. Not by chance, an anti-CCR5 compound, maraviroc, was the first FDA-approved chemokine receptor-targeting drug. CCR5, by directing leukocytes to sites of inflammation and regulating their activation, also represents an important player in the inflammatory response. This function is shared with CCR2 and its selective ligand CCL2, which constitute the primary chemokine axis driving the recruitment of monocytes/macrophages to inflammatory sites. Both receptors are indeed involved in the pathogenesis of several immune-mediated diseases, and dual CCR5/CCR2 targeting is emerging as a more efficacious strategy than targeting either receptor alone in the treatment of complex human disorders. In this review, we focus on the distinctive and complementary contributions of CCR5 and CCR2/CCL2 in HIV infection, multiple sclerosis, liver fibrosis and associated hepatocellular carcinoma. The emerging therapeutic approaches based on the inhibition of these chemokine axes are highlighted.
Collapse
Affiliation(s)
- Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori- IRCCS-"Fond G. Pascale", Naples, Italy
| | | | - Lucia Lopalco
- Immunobiology of HIV Unit, Division Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
34
|
Tripathi A, Thangaraj A, Chivero ET, Periyasamy P, Callen S, Burkovetskaya ME, Guo ML, Buch S. Antiretroviral-Mediated Microglial Activation Involves Dysregulated Autophagy and Lysosomal Dysfunction. Cells 2019; 8:cells8101168. [PMID: 31569373 PMCID: PMC6829395 DOI: 10.3390/cells8101168] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023] Open
Abstract
In the era of combined antiretroviral therapy (cART), as infected individuals continue to have longer lifespans, there is also an increased prevalence of HIV-associated neurocognitive disorders (HAND). Inflammation is one of the underlying features of HAND, with the role of viral proteins and antiretroviral drugs implicated in this process. Microglia are extremely sensitive to a plethora of stimuli, including viral products and cART. The current study was undertaken to understand the molecular mechanism(s) underlying cART-mediated activation of microglia. Herein we chose a combination of three commonly used drugs, tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and dolutegravir (DTG). We demonstrated that exposure of microglia to this cART cocktail induced lysosomal membrane permeabilization (LMP), which subsequently resulted in impaired lysosomal functioning involving elevated pH and decreased cathepsin D (CTSD) activity. cART exposure of microglia resulted in increased formation of autophagosomes as demonstrated by a time-dependent increase of autophagy markers, with a concomitant defect in the fusion of the lysosomes with the autophagosome. Taken together, our findings suggest a novel mechanism by which cART impairs lysosomal functioning, resulting in dysregulated autophagy and increased neuroinflammation. Interventions aimed at lysosome protection could likely be envisioned as promising therapeutic targets for abrogating cART-mediated microglia activation, which in turn, could thus be considered as adjunctive therapeutics for the treatment of HAND pathogenesis.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Maria E Burkovetskaya
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
35
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
36
|
Bertrand L, Méroth F, Tournebize M, Leda AR, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun 2019; 10:2009. [PMID: 31043599 PMCID: PMC6494822 DOI: 10.1038/s41467-019-10046-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
HIV-associated cerebrovascular events remain highly prevalent even in the current era of antiretroviral therapy (ART). We hypothesize that low-level HIV replication and associated inflammation endure despite antiretroviral treatment and affect ischemic stroke severity and outcomes. Using the EcoHIV infection model and the middle cerebral artery occlusion as the ischemic stroke model in mice, we present in vivo analysis of the relationship between HIV and stroke outcome. EcoHIV infection increases infarct size and negatively impacts tissue and functional recovery. Ischemic stroke also results in an increase in EcoHIV presence in the affected regions, suggesting post-stroke reactivation that magnifies pro-inflammatory status. Importantly, ART with a high CNS penetration effectiveness (CPE) is more beneficial than low CPE treatment in limiting tissue injury and accelerating post-stroke recovery. These results provide potential insight for treatment of HIV-infected patients that are at risk of developing cerebrovascular disease, such as ischemic stroke.
Collapse
Affiliation(s)
- Luc Bertrand
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA.
| | - Fannie Méroth
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA
| | - Marie Tournebize
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA
| | - Ana Rachel Leda
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, 33136, USA.
| |
Collapse
|
37
|
Pinto DO, Scott TA, DeMarino C, Pleet ML, Vo TT, Saifuddin M, Kovalskyy D, Erickson J, Cowen M, Barclay RA, Zeng C, Weinberg MS, Kashanchi F. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology 2019; 16:13. [PMID: 31036006 PMCID: PMC6489247 DOI: 10.1186/s12977-019-0475-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/20/2019] [Indexed: 01/03/2023] Open
Abstract
Background HIV-1 patients receiving combination antiretroviral therapy (cART) survive infection but require life-long adherence at high expense. In chronic cART-treated patients with undetectable viral titers, cell-associated viral RNA is still detectable, pointing to low-level viral transcriptional leakiness. To date, there are no FDA-approved drugs against HIV-1 transcription. We have previously shown that F07#13, a third generation Tat peptide mimetic with competitive activity against Cdk9/T1-Tat binding sites, inhibits HIV-1 transcription in vitro and in vivo. Results Here, we demonstrate that increasing concentrations of F07#13 (0.01, 0.1, 1 µM) cause a decrease in Tat levels in a dose-dependent manner by inhibiting the Cdk9/T1-Tat complex formation and subsequent ubiquitin-mediated Tat sequestration and degradation. Our data indicate that complexes I and IV contain distinct patterns of ubiquitinated Tat and that transcriptional inhibition induced by F07#13 causes an overall reduction in Tat levels. This reduction may be triggered by F07#13 but ultimately is mediated by TAR-gag viral RNAs that bind suppressive transcription factors (similar to 7SK, NRON, HOTAIR, and Xist lncRNAs) to enhance transcriptional gene silencing and latency. These RNAs complex with PRC2, Sin3A, and Cul4B, resulting in epigenetic modifications. Finally, we observed an F07#13-mediated decrease of viral burden by targeting the R region of the long terminal repeat (HIV-1 promoter region, LTR), promoting both paused polymerases and increased efficiency of CRISPR/Cas9 editing in infected cells. This implies that gene editing may be best performed under a repressed transcriptional state. Conclusions Collectively, our results indicate that F07#13, which can terminate RNA Polymerase II at distinct sites, can generate scaffold RNAs, which may assemble into specific sets of “RNA Machines” that contribute to gene regulation. It remains to be seen whether these effects can also be seen in various clades that have varying promoter strength, mutant LTRs, and in patient samples. Electronic supplementary material The online version of this article (10.1186/s12977-019-0475-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tristan A Scott
- Center for Gene Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thy T Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mohammed Saifuddin
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dmytro Kovalskyy
- Protein Engineering Department, Institute of Molecular Biology and Genetics, UAS, Kiev, Ukraine
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Wits/SA MRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA. .,Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| |
Collapse
|
38
|
Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy. AIDS 2019; 33:615-625. [PMID: 30557159 PMCID: PMC6399073 DOI: 10.1097/qad.0000000000002121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: The relationship of cerebrospinal fluid (CSF) extracellular vesicles to neurocognitive impairment (NCI) in HIV-infected individuals is unclear. Here, we characterize CSF extracellular vesicles and their association with central nervous system (CNS) injury related biomarkers [neurofilament light (NFL), S100B, neopterin] and NCI in HIV-positive individuals on combination antiretroviral therapy (cART). Design: A cross-sectional and longitudinal study of CSF samples from HIV-positive individuals on cART. Methods: NFL, S100B and neopterin were measured by ELISA in 190 CSF samples from 112 individuals (67 HIV-positive and 45 HIV-negative). CSF extracellular vesicles were isolated and characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting for exosome markers (CD9, CD63, CD81, FLOT-1) and ELISA for HLA-DR. Results: HIV-positive individuals had median age 52 years, 67% with suppressed plasma viral load (< 50 copies/ml), median CD4+ nadir 66 cells/μl and CD4+ cell count 313 cells/μl. CSF NFL, S100B and neopterin levels were higher in HIV-positive vs. HIV-negative individuals, and nonsuppressed vs. suppressed HIV-positive individuals. Although CSF NFL and S100B levels were higher in NCI vs. unimpaired HIV-positive individuals (P < 0.05), only NFL was associated with NCI in adjusted models (P < 0.05). CSF extracellular vesicles were increased in HIV-positive vs. HIV-negative individuals, and NCI vs. unimpaired HIV-positive individuals (P < 0.05), and correlated positively with NFL (P < 0.001). HLA-DR was enriched in CSF extracellular vesicles from HIV-positive individuals with NCI (P < 0.05), suggesting that myeloid cells are a potential source of CSF extracellular vesicles during HIV infection. Conclusion: Increased CSF extracellular vesicles correlate with neuronal injury biomarker NFL in cART-treated HIV-positive individuals with neurocognitive impairment, suggesting potential applications as novel biomarkers of CNS injury.
Collapse
|
39
|
Alvarez-Carbonell D, Ye F, Ramanath N, Dobrowolski C, Karn J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J Neuroimmune Pharmacol 2019; 14:94-109. [PMID: 29987742 PMCID: PMC6394485 DOI: 10.1007/s11481-018-9798-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
Abstract
We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys, a medium highly representative of the CNS extracellular environment, containing low glucose and 1% FBS, reduced, but did not prevent, HIV reactivation. We hypothesized that spontaneous HIV reactivation in culture was due to the expression of pro-inflammatory genes, such as TNF-α, taking place in the absence of the natural inhibitory signals from astrocytes and neurons. Indeed, expression and secretion of TNF-α is strongly reduced in HIV-latently infected microglia compared to the subset of cells that have undergone spontaneous HIV reactivation. Whereas inhibitors of NF-κB or of macrophage activation only had a short-term silencing effect, addition of dexamethasone (DEXA), a glucocorticoid receptor (GR) agonist and mediator of anti-inflammation, silenced the HIV provirus in a long-term, and shRNA-mediated knock-down of GR activated HIV. DEXA also decreased secretion of a number of cytokines, including TNF-α. Chromatin immunoprecipitation analysis revealed that DEXA strongly increased GR occupancy at the HIV promoter, and reduced histone 3 acetylated levels. Moreover, TNF-α expression inhibitors in combination with DEXA induced further HIV silencing and increased the histone 3 lysine 27 tri-methylated epigenetic mark of repression at the HIV promoter region. We conclude that GR is a critical repressor of HIV transcription in microglia, and a novel potential pharmacological target to restrict HIV expression in the CNS.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
40
|
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 2018; 67:802-824. [PMID: 30582668 DOI: 10.1002/glia.23568] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Despite the availability of antiretroviral therapy (ART) that fully suppresses human immunodeficiency virus type-1 (HIV), markers of inflammation and minor neurocognitive impairment are frequently identified in HIV-infected persons. Increasing data support that low-level replication defective viral RNA is made by infected cells despite the absence of infectious virus. Specific GU-rich single-stranded RNA from the HIV long terminal repeat region (ssRNA40) signaling through toll-like receptor (TLR)-7 and -8 has been shown to induce the secretion of interleukin-1β (IL-1β) in primary monocytes. Here, we examined the activation of microglial cells by HIV ssRNA40 and the potential subsequent neurotoxicity. Our findings show that exposure of human primary microglia to ssRNA40 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Following exposure to ssRNA40, pro-inflammatory cytokines IL-1β, IL-18, and neurotoxic cytokines TNF-α, IL-1α, and C1q expression and extracellular secretion are increased. The released cytokines are functional since culture supernatants from ssRNA40 exposed microglia-induced toxicity of human primary neurons. Moreover, inflammasome activation of microglia increased ROS generation with a loss of mitochondrial membrane potential and mitochondrial integrity. Treatment with ssRNA40 resulted in a blockade of autophagy/mitophagy mediated negative regulation of NLRP3 inflammasome activity with the release of inflammatory cytokines, caspase-1 activation, and pyroptotic microglial cell death. Thus, HIV ssRNA mediated activation of microglial cells can contribute to neurotoxicity and neurodegeneration via secretion of inflammatory and neurotoxic cytokines. These findings provide a potential mechanism that explains the frequent minor cognitive deficits and chronic inflammation that persist in HIV-infected persons despite treatment with suppressive ART.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|
41
|
Srinivas N, Rosen EP, Gilliland WM, Kovarova M, Remling-Mulder L, De La Cruz G, White N, Adamson L, Schauer AP, Sykes C, Luciw P, Garcia JV, Akkina R, Kashuba ADM. Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species. Xenobiotica 2018; 49:1192-1201. [PMID: 30346892 DOI: 10.1080/00498254.2018.1539278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were >10-fold lower (p < 0.02) in humanized mice than NHPs. NHP CSF concentrations were >13-fold lower (p <0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90>1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations.
Collapse
Affiliation(s)
- Nithya Srinivas
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Elias P Rosen
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - William M Gilliland
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Martina Kovarova
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | | | - Gabriela De La Cruz
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Nicole White
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Lourdes Adamson
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - Amanda P Schauer
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Craig Sykes
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Paul Luciw
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - J Victor Garcia
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Ramesh Akkina
- c School of Medicine , Colorado State University , Fort Collins , CO , USA
| | - Angela D M Kashuba
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
42
|
|
43
|
Hao Y, Wu B, Chen Y, Sun X, Sun Y, Liu J, Wang X. Study on Dual Inhibitors of HIV-1 IN/CCR5 Caffeoyl Derivatives as Neuroprotective Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201801313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yameng Hao
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Bolin Wu
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Ying Chen
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Xuefeng Sun
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Yixing Sun
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Junyi Liu
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 China
| | - Xiaowei Wang
- Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
44
|
ALSUntangled 45: Antiretrovirals. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:630-634. [PMID: 29693424 DOI: 10.1080/21678421.2018.1465248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|