1
|
Chu MC, Wu HF, Lee CW, Wu CC, Chi H, Ko CY, Lee YC, Tang CW, Chen PS, Lin HC. Soluble epoxide hydrolase deletion rescues behavioral and synaptic deficits by AMPK-mTOR pathway in autism animals. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111190. [PMID: 39510156 DOI: 10.1016/j.pnpbp.2024.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social defects often accompanied with emotional comorbidities. Aberrations in synaptic function and plasticity are the core feature in the pathophysiology of ASD. Targeting soluble epoxide hydrolase (sEH) has been found to exert protection in a wide-range of pathological conditions. However, the regulation of sEH deficiency on the synaptic deficits of ASD and the underlying mechanisms remain unclear. The valproate (VPA)-treated ASD animal model with genetic sEH knockout was applied in the present study. The results showed that the sEH expression was significantly increased in the prefrontal cortex of VPA-treated animals. Although no effect was found on tail malformation and body weight loss, genetic sEH deletion alleviated social deficits, and fear learning and memory extinction in the VPA-treated mice. After a series of electrophysiological assessments, we found that the beneficial effects of sEH deletion focused on the long-term synaptic plasticity, rather than presynaptic efficiency, in the VPA-treated mice. Furthermore, we observed that the dysregulated AMPK-mTOR pathway was restored under genetic sEH deletion in VPA-treated mice. Taken together, these findings uncovered an important role of sEH deficiency in the synaptic dysfunctions of ASD mediated by AMPK-mTOR pathway, providing a novel therapeutic target for ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei City, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Chun Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang Chi
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiung-Yuan Ko
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environment Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Brain Research Center and Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hadrich I, Turki M, Chaari I, Abdelmoula B, Gargouri R, Khemakhem N, Elatoui D, Abid F, Kammoun S, Rekik M, Aloulou S, Sehli M, Mrad AB, Neji S, Feiguin FM, Aloulou J, Abdelmoula NB, Sellami H. Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential. Front Cell Neurosci 2025; 18:1495224. [PMID: 39845646 PMCID: PMC11750820 DOI: 10.3389/fncel.2024.1495224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders. Objective This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy. Methods We summarized recent findings from metagenomic analyses that characterize the diversity and composition of gut mycobiota and discuss how these communities interact with the host and other microorganisms via the gut-brain axis. Key methodologies for studying mycobiota, such as high-throughout sequencing and bioinformatics approaches, were also reviewed to highlight advances in the field. Results Emerging research links gut mycobiota dysbiosis to conditions such as schizophrenia, Alzheimer's disease, autism spectrum disorders, bipolar disorder, and depression. Studies indicate that specific fungal populations, such as Candida and Saccharomyces, may influence neuroinflammation, gut permeability and immune responses, thereby affecting mental health outcomes. Conclusion Understanding the gut mycobiome's role in neuropsychiatric disorders opens new avenues for therapeutic interventions, including antifungal treatments, probiotics, and dietary modifications. Future research should integrate multi-omics approaches to unravel the complex interkingdom interactions within the gut ecosystem, paving the way for personalized medicine in mental health care.
Collapse
Affiliation(s)
- Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mariem Turki
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Department of Pneumology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Abid
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Mohamed Ben Sassi University Hospital of Gabes, Faculty of Medicine, Sfax, Tunisia
| | - Mariem Sehli
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Aymen Ben Mrad
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Sourour Neji
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fabian M. Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jihene Aloulou
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Laboratory - Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
4
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Shao L, Cai G, Fu J, Zhang W, Ye Y, Ling Z, Ye S. Gut microbial 'TNFα-sphingolipids-steroid hormones' axis in children with autism spectrum disorder: an insight from meta-omics analysis. J Transl Med 2024; 22:1165. [PMID: 39741321 DOI: 10.1186/s12967-024-05973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a persistent neurodevelopmental disorder affecting brains of children. Mounting evidences support the associations between gut microbial dysbiosis and ASD, whereas detailed mechanisms are still obscure. METHODS Here we probed the potential roles of gut microbiome in ASD using fecal metagenomics and metabolomics. RESULTS Children with ASD were found to be associated with augmented serum cytokines milieu, especially TNFα. Metagenomic analysis generated 29 differential species and 18 dysregulated functional pathways such as Bifidobacterium bifidum, Segatella copri, and upregulated 'Sphingolipid metabolism' in children with ASD. Metabolomics revealed steroid hormone dysgenesis in children with ASD with lower abundances of metabolites such as estriol, estradiol and deoxycorticosterone. A three-way association analysis showed positive correlations between TNFα and microbial function potentials such as 'Bacterial toxins' and 'Lysosome', indicating the contribution of microbial dysbiosis to neuroinflammation. TNFα also correlated positively with 'Sphingolipid metabolism', which further showed negative correlations with metabolites estriol and deoxycorticosterone. Such results, in consistent with current findings, revealed the contribution of increased TNFα to upregulated sphingolipid metabolism, which further impaired steroid hormone biosynthesis. CONCLUSION Our study proposed the gut microbial 'TNFα-sphingolipids-steroid hormones' axis in children with ASD, which may provide new perspectives for developing gut microbiome-based treatments in the future.
Collapse
Affiliation(s)
- Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Guangyong Cai
- Department of Acupuncture and Chinese Tuina, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jinlong Fu
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Weishi Zhang
- Department of Otolaryngology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yuefang Ye
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Shiwei Ye
- Lishui Key Laboratory of mental Health and brain Disorders, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
6
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
7
|
Rajabi P, Noori AS, Sargolzaei J. Autism spectrum disorder and various mechanisms behind it. Pharmacol Biochem Behav 2024; 245:173887. [PMID: 39378931 DOI: 10.1016/j.pbb.2024.173887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental condition characterized by a range of social, communicative, and behavioral challenges. This comprehensive review delves into key aspects of ASD. Clinical Overview and genetic features provide a foundational understanding of ASD, highlighting the clinical presentation and genetic underpinnings that contribute to its complexity. We explore the intricate neurobiological mechanisms at play in ASD, including structural and functional differences that may underlie the condition's hallmark traits. Emerging research has shed light on the role of the immune system and neuroinflammation in ASD. This section investigates the potential links between immunological factors and ASD, offering insights into the condition's pathophysiology. We examine how atypical functional connectivity and alterations in neurotransmitter systems may contribute to the unique cognitive and behavioral features of ASD. In the pursuit of effective interventions, this section reviews current therapeutic strategies, ranging from behavioral and educational interventions to pharmacological approaches, providing a glimpse into the diverse and evolving landscape of ASD treatment. This holistic exploration of mechanisms in ASD aims to contribute to our evolving understanding of the condition and to guide the development of more targeted and personalized interventions for individuals living with ASD.
Collapse
Affiliation(s)
- Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
8
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
9
|
Biagioli V, Sortino V, Falsaperla R, Striano P. Role of Human Milk Microbiota in Infant Neurodevelopment: Mechanisms and Clinical Implications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1476. [PMID: 39767905 PMCID: PMC11674883 DOI: 10.3390/children11121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Human milk (HM) is recognized as an ideal source of nutrition for newborns; as a result, its multiple bioactive molecules can support the growth of healthy newborns and reduce the risk of mortality and diseases such as asthma, respiratory infections, diabetes (type 1 and 2), and gastrointestinal disorders such as ulcerative colitis and Crohn's disease. Furthermore, it can reduce the severity of necrotizing enterocolitis (NEC) in preterm infants. Moreover, human milk oligosaccharides (HMOs) present in breast milk show an immunomodulatory, prebiotic, and neurodevelopmental effect that supports the microbiota-gut-brain axis. MATERIAL AND METHODS This study examined the state-of-the-art research, using keywords such as "breastfeeding", "human milk oligosaccharides", "microbiota-gut-brain axis", "infants", and "malnutrition". The literature review was conducted by selecting articles between 2013 and 2024, as the most recent ones. The databases used were Web Science, PubMed, and Scopus. RESULTS We found multiple studies examining the composition of HM and infant formula (IF). However, further longitudinal studies and randomized control trials (RCTs) are needed to better understand the clinical outcomes that bioactive components exert on healthy and hospitalized children and how, in conditions of malnutrition, it is necessary to support the growth of the newborn. CONCLUSIONS In this review, we affirm the importance of human milk and, through it, the modulation of the microbiota and the neuroprotective role in newborns, determining the health of the following years of life.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy;
| | - Raffaele Falsaperla
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy;
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Full Member of EPICARE, 16121-16167 Genoa, Italy
| |
Collapse
|
10
|
Cominelli G, Lonati C, Pinto D, Rinaldi F, Franco C, Favero G, Rezzani R. Melatonin Attenuates Ferritinophagy/Ferroptosis by Acting on Autophagy in the Liver of an Autistic Mouse Model BTBR T +Itpr3 tf/J. Int J Mol Sci 2024; 25:12598. [PMID: 39684310 DOI: 10.3390/ijms252312598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was to investigate the effects of melatonin (MLT) in treating ASDs using an autistic mouse model BTBR T+Itpr3tf/J (BTBR). We evaluated the hepatic cytoarchitecture and some markers of autophagy, ferritinophagy/ferroptosis, in BTBR mice treated and not-treated with MLT. The hepatic morphology and the autophagy and ferritinophagy/ferroptosis pathways were analyzed by histological, immunohistochemical, and Western blotting techniques. We studied p62 and microtubule-associated protein 1 light chain 3 B (LC3B) for evaluating the autophagy; nuclear receptor co-activator 4 (NCOA4) and long-chain-coenzyme synthase (ACSL4) for monitoring ferritinophagy/ferroptosis. The liver of BTBR mice revealed that the hepatocytes showed many cytoplasmic inclusions recognized as Mallory-Denk bodies (MDBs); the expression and levels of p62 and LC3B were downregulated, whereas ACSL4 and NCOA4 were upregulated, as compared to control animals. MLT administration to BTBR mice ameliorated liver damage and reduced the impairment of autophagy and ferritinophagy/ferroptosis. In conclusion, we observed that MLT alleviates liver damage in BTBR mice by improving the degradation of intracellular MDBs, promoting autophagy, and suppressing ferritinophagy/ferroptosis.
Collapse
Affiliation(s)
- Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudio Lonati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
11
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
12
|
Turkstani H, Alfaifi A, Ramachandran M, Bushra A, Stoopler E, France K. Severe manifestation of plasma cell mucositis in a patient with autism spectrum disorder: A unique overlap illustrating challenges with diagnosis and management. SPECIAL CARE IN DENTISTRY 2024; 44:1608-1614. [PMID: 39152628 DOI: 10.1111/scd.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Plasma cell mucositis (PCM) is a rare inflammatory condition affecting the oral tissues, often triggered by allergens or inflammation. Autism spectrum disorder (ASD), a neurodevelopmental condition, poses unique challenges in oral care and hygiene due to behavioral and sensory issues. These conditions have not previously been reported in concert but may share risk factors including through the development of inflammation. We present a case of severe PCM in a 23-year-old male with ASD, illustrating diagnostic complexities and management strategies. The patient presented with widespread and severe lesions, raising the possibility of underlying causes. After multiple interventions, including topical steroids and trigger avoidance, the patient achieved near-complete resolution of the oral lesions. Immunohistochemical and serological investigations suggested an underlying monoclonal gammopathy, warranting hematological evaluation. Our case shows how PCM and ASD can affect each other, highlighting the importance of understanding how these conditions interact, and the need for tailored approaches to oral health in this population. Further research is needed to elucidate any pathophysiological or risk-based link between ASD and inflammatory oral conditions and to refine management strategies for PCM in patients with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Heba Turkstani
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Afrah Alfaifi
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maya Ramachandran
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ahmedi Bushra
- Access Dental Associates, BrookHaven, Pennsylvania, USA
| | - Eric Stoopler
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine France
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Long J, Chen J, Huang H, Liang J, Pang L, Yang K, Wei H, Liao Q, Gu J, Zeng X, Huang D, Qiu X. The associations between gut microbiota and fecal metabolites with intelligence quotient in preschoolers. BMC Microbiol 2024; 24:431. [PMID: 39455934 PMCID: PMC11515365 DOI: 10.1186/s12866-024-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The awareness of the association between the gut microbiota and human intelligence levels is increasing, but the findings are inconsistent. Furthermore, few research have explored the potential role of gut microbial metabolites in this association. This study aimed to investigate the associations of the gut microbiota and fecal metabolome with intelligence quotient (IQ) in preschoolers. METHODS The 16 S rRNA sequencing and widely targeted metabolomics were applied to analyze the gut microbiota and fecal metabolites of 150 children aged 3-6 years. The Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to assess the cognitive competence. RESULTS The observed species index, gut microbiome health index, and microbial dysbiosis index presented significant differences between children with full-scale IQ (FSIQ) below the borderline (G1) and those with average or above-average (all P < 0.05). The abundance of Acinetobacter, Blautia, Faecalibacterium, Prevotella_9, Subdoligranulum, Collinsella, Dialister, Holdemanella, and Methanobrevibacter was significantly associated with preschooler's WPPSI-IV scores (P < 0.05). In all, 87 differential metabolites were identified, mainly including amino acid and its metabolites, fatty acyl, and benzene and substituted derivatives. The differential fecal metabolites carnitine C20:1-OH, 4-hydroxydebrisoquine, pantothenol, creatine, N,N-bis(2-hydroxyethyl) dodecanamide, FFA(20:5), zerumbone, (R)-(-)-2-phenylpropionic acid, M-toluene acetic acid, trans-cinnamaldehyde, isonicotinic acid, val-arg, traumatin, and 3-methyl-4-hydroxybenzaldehyde were significantly associated with the preschooler's WPPSI-IV scores (P < 0.05). The combination of Acinetobacter, Isonicotinic acid, and 3-methyl-4-hydroxybenzaldehydenine may demonstrate increased discriminatory power for preschoolers in G1. CONCLUSION This study reveals a potential association between gut microbiome and metabolites with IQ in preschoolers, providing new directions for future research and practical applications. However, due to limitations such as the small sample size, unclear causality, and the complexity of metabolites, more validation studies are still needed to further elucidate the mechanisms and stability of these associations.
Collapse
Affiliation(s)
- Jinghua Long
- Department of Prevention and Healthcare, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiehua Chen
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huanni Wei
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junwang Gu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
14
|
Chamtouri M, Merghni A, Miranda-Cadena K, Sakly N, Gaddour N, de Los Reyes-Gavilán CG, Mastouri M, Eraso E, Quindós G. Characterization of Yeast Isolated from the Gut Microbiota of Tunisian Children with Autism Spectrum Disorder. J Fungi (Basel) 2024; 10:730. [PMID: 39590651 PMCID: PMC11595294 DOI: 10.3390/jof10110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Research on the microbiota-gut-brain axis in autism has primarily focused on bacteria, with limited attention to fungi. There is a growing interest in understanding the involvement of fungi, particularly Candida, in patients with autism spectrum disorder. The aim of this study was to assess the prevalence, antifungal susceptibility profiles and virulence factors of Candida isolates from the guts of Tunisian children with autism. Twenty-eight children with autism and forty-six controls were enrolled. Candida isolates from the faecal samples were identified using biochemical and molecular methods; antifungal susceptibility testing was determined by the EUCAST broth microdilution method and virulence factors, including biofilm formation, cell surface hydrophobicity and phospholipase and proteinase activities, were assessed in vitro. As a result, Candida was detected in 13 children with autism (46.4%) and 14 control children (30.4%). Candida albicans was found to be the most common species isolate in the faeces of both groups of children. Antifungal susceptibility profiles showed that one Candida isolate was resistant to amphotericin B and anidulafungin (3.7%), six were resistant to micafungin (22.2%) and five were resistant to fluconazole (18.5%). All Candida isolates were biofilm producers. Of the twenty-seven isolates, only four showed phospholipase activity (14.8%), eight showed aspartyl-proteinase activity (29.6%) and nine were hydrophobic (33.3%). These results highlight the presence of Candida in the guts of children with autism, as well as the ability to express multiple virulence factors and the antifungal resistance, and they emphasize the need for further studies to confirm intestinal Candida colonization and its potential role in autism.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Katherine Miranda-Cadena
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Nabil Sakly
- Laboratory of Medical and Molecular Parasitology-Mycology (code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, Monastir 5000, Tunisia;
| | - Clara G. de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| |
Collapse
|
15
|
Carías Domínguez AM, de Jesús Rosa Salazar D, Stefanolo JP, Cruz Serrano MC, Casas IC, Zuluaga Peña JR. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding - a Scoping Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10353-w. [PMID: 39235661 DOI: 10.1007/s12602-024-10353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Dysbiosis is a clinical condition marked by altered gut microbiota resulting from external and internal host factors. It is strongly associated with gastrointestinal and extraintestinal alterations, so its symptomatology is broad and nonspecific. To date, gaps remain that limit professionals from making a timely diagnosis and prescribing the appropriate treatment. We aim to synthesize existing literature regarding clinical parameters for the early detection of patients with intestinal dysbiosis and the clinical events in which the use of probiotics as adjuvant therapy is most frequently reported. A scoping review of the literature was conducted in PubMed, Embase, Cochrane, and BVS (Biblioteca Virtual en Salud in Spanish) databases for articles published in the last 5 years. Primary studies and literature reviews related to clinical presentation, dysbiosis screening, and probiotics as adjuvant therapy for adult and pediatric patients were included. Twenty-three articles were retrieved in which the most frequently reported symptoms were abdominal distension, abdominal pain, and diarrhea. Chronic and metabolic diseases where the conditions most strongly associated with dysbiosis. Depending on symptomatology and etiology, dysbiosis is often treated with probiotics. Dysbiosis, often linked to diarrhea, should be considered with other symptoms like abdominal distension and pain, along with predisposing conditions and patient risk factors. Probiotics are commonly used as co-adjuvant treatments for antibiotic-associated diarrhea, irritable bowel syndrome, and childhood allergic diseases. The most commonly used probiotics were Weizmannia coagulans (formerly B. coagulans), Alkalihalobacillus clausii (formerly Bacillus clausii), Lacticaseibacillus rhamnosus, Limosilactobacillus reuteri, and Saccharomyces boulardii.
Collapse
Affiliation(s)
- Ailim Margarita Carías Domínguez
- Fundación Santa Fe de Bogotá (Santa Fe de Bogotá Foundation), Bogotá, Colombia.
- Universidad de los Andes (University of the Andes), Bogotá, Colombia.
- Colegio Colombiano de Gastroenterología, Hepatología y Nutrición Pediátrica (Colombian College of Gastroenterology, Hepatology and Pediatric Nutrition) (COLGAHNP), Bogotá, Colombia.
- LASPGHAN, Bogotá, Colombia.
- NASPGHAN, Bogotá, Colombia.
| | - Dimas de Jesús Rosa Salazar
- Grupo de Investigación del Caribe y Centroamérica Para La Microbiota, Probióticos y Prebióticos (Research Group of the Caribbean and Central America for Microbiota, Probiotics and Prebiotics) (GICCAMPP), Bogotá, Colombia
- Asociación Colombiana de Probióticos y Prebióticos (Colombian Association of Probiotics and Prebiotics) (ACoPyP), Bogotá, Colombia
- Sociedad Iberoamericana de Microbiota, Probióticos y Prebióticos (Ibero-American Society of Microbiota, Probiotics and Prebiotics) (SIAMPYP), Bogotá, Colombia
| | - Juan Pablo Stefanolo
- Hospital de Gastroenterología Carlos Bonorino Udaondo (Carlos Bonorino Udaondo Gastroenterology Hospital), CABA-Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Duan W, Liu F, Ren Y, Zhang X, Shi JS, Xue Y, Xu ZH, Geng Y. Differences in the Ability of Lactic Acid Bacteria To Prevent Acute Alcohol-Induced Liver Injury via the Gut Microbiota-Bile Acid-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15265-15275. [PMID: 38918075 DOI: 10.1021/acs.jafc.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.
Collapse
Affiliation(s)
- Wenhui Duan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fei Liu
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaojuan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Advanced Brewing Technology Innovation Center, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yan Geng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
17
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Ye J, Fan H, Shi R, Song G, Wu X, Wang D, Xia B, Zhao Z, Zhao B, Liu X, Wang Y, Dai X. Dietary lipoic acid alleviates autism-like behavior induced by acrylamide in adolescent mice: the potential involvement of the gut-brain axis. Food Funct 2024; 15:3395-3410. [PMID: 38465655 DOI: 10.1039/d3fo05078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ge Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
19
|
Hughes HK, Moreno RJ, Ashwood P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:229-241. [PMID: 38680981 PMCID: PMC11046725 DOI: 10.1176/appi.focus.24022004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by communication and social behavior deficits. The presence of restricted and repetitive behaviors often accompanies these deficits, and these characteristics can range from mild to severe. The past several decades have seen a significant rise in the prevalence of ASD. The etiology of ASD remains unknown; however, genetic and environmental risk factors play a role. Multiple hypotheses converge to suggest that neuroinflammation, or at least the interaction between immune and neural systems, may be involved in the etiology of some ASD cases or groups. Repeated evidence of innate immune dysfunction has been seen in ASD, often associated with worsening behaviors. This evidence includes data from circulating myeloid cells and brain resident macrophages/microglia in both human and animal models. This comprehensive review presents recent findings of innate immune dysfunction in ASD, including aberrant innate cellular function, evidence of neuroinflammation, and microglia activation. Appeared originally in Brain Behav Immun 2023; 108:245-254.
Collapse
Affiliation(s)
- H K Hughes
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| | - R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA (all authors);The M.I.N.D. Institute, University of California at Davis, CA, USA (all authors)
| |
Collapse
|
20
|
Skalny AV, Aschner M, Gritsenko VA, Martins AC, Tizabi Y, Korobeinikova TV, Paoliello MM, Tinkov AA. Modulation of gut microbiota with probiotics as a strategy to counteract endogenous and exogenous neurotoxicity. ADVANCES IN NEUROTOXICOLOGY 2024; 11:133-176. [PMID: 38741946 PMCID: PMC11090489 DOI: 10.1016/bs.ant.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The existing data demonstrate that probiotic supplementation affords protective effects against neurotoxicity of exogenous (e.g., metals, ethanol, propionic acid, aflatoxin B1, organic pollutants) and endogenous (e.g., LPS, glucose, Aβ, phospho-tau, α-synuclein) agents. Although the protective mechanisms of probiotic treatments differ between various neurotoxic agents, several key mechanisms at both the intestinal and brain levels seem inherent to all of them. Specifically, probiotic-induced improvement in gut microbiota diversity and taxonomic characteristics results in modulation of gut-derived metabolite production with increased secretion of SFCA. Moreover, modulation of gut microbiota results in inhibition of intestinal absorption of neurotoxic agents and their deposition in brain. Probiotics also maintain gut wall integrity and inhibit intestinal inflammation, thus reducing systemic levels of LPS. Centrally, probiotics ameliorate neurotoxin-induced neuroinflammation by decreasing LPS-induced TLR4/MyD88/NF-κB signaling and prevention of microglia activation. Neuroprotective mechanisms of probiotics also include inhibition of apoptosis and oxidative stress, at least partially by up-regulation of SIRT1 signaling. Moreover, probiotics reduce inhibitory effect of neurotoxic agents on BDNF expression, on neurogenesis, and on synaptic function. They can also reverse altered neurotransmitter metabolism and exert an antiamyloidogenic effect. The latter may be due to up-regulation of ADAM10 activity and down-regulation of presenilin 1 expression. Therefore, in view of the multiple mechanisms invoked for the neuroprotective effect of probiotics, as well as their high tolerance and safety, the use of probiotics should be considered as a therapeutic strategy for ameliorating adverse brain effects of various endogenous and exogenous agents.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Tatiana V. Korobeinikova
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Monica M.B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
21
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Feng P, Zhang Y, Zhao Y, Zhao P, Li E. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol 2024; 15:1341404. [PMID: 38455067 PMCID: PMC10918007 DOI: 10.3389/fimmu.2024.1341404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by enduring impairments in social communication and interaction together with restricted repetitive behaviors, interests, and activities. No targeted pharmacological or physical interventions are currently available for ASD. However, emerging evidence has indicated a potential association between the development of ASD and dysregulation of the gut-brain axis. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and therapeutic approach, has demonstrated positive outcomes in diverse psychiatric disorders; however, its efficacy in treating ASD and its accompanying gastrointestinal effects, particularly the effects on the gut-brain axis, remain unclear. Hence, this review aimed to thoroughly examine the existing research on the application of rTMS in the treatment of ASD. Additionally, the review explored the interplay between rTMS and the gut microbiota in children with ASD, focusing on the gut-brain axis. Furthermore, the review delved into the integration of rTMS and gut microbiota modulation as a targeted approach for ASD treatment based on recent literature. This review emphasizes the potential synergistic effects of rTMS and gut microbiota interventions, describes the underlying mechanisms, and proposes a potential therapeutic strategy for specific subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The American Psychiatric Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
24
|
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024; 16:553. [PMID: 38398876 PMCID: PMC10893388 DOI: 10.3390/nu16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (S.H.I.); (K.A.S.)
| |
Collapse
|
25
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A, Alshehabi Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore) 2024; 103:e37114. [PMID: 38306525 PMCID: PMC10843545 DOI: 10.1097/md.0000000000037114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
The gastrointestinal tract is embedded with microorganisms of numerous genera, referred to as gut microbiota. Gut microbiota has multiple effects on many body organs, including the brain. There is a bidirectional connection between the gut and brain called the gut-brain-axis, and these connections are formed through immunological, neuronal, and neuroendocrine pathways. In addition, gut microbiota modulates the synthesis and functioning of neurotransmitters. Therefore, the disruption of the gut microbiota in the composition or function, which is known as dysbiosis, is associated with the pathogenesis of many mental disorders, such as schizophrenia, depression, and other psychiatric disorders. This review aims to summarize the modulation role of the gut microbiota in 4 prominent neurotransmitters (tryptophan and serotonergic system, dopamine, gamma-aminobutyric acid, and glutamate), as well as its association with 4 psychiatric disorders (schizophrenia, depression, anxiety disorders, and autism spectrum disorder). More future research is required to develop efficient gut-microbiota-based therapies for these illnesses.
Collapse
Affiliation(s)
- Amjad Mhanna
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Damascus University, Faculty of Medicine, Damascus, Syrian Arab Republic
| | - Ghefar Hmaydoosh
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - George Hamwi
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Mulham Jarjanazi
- Pediatric Surgery Resident, Pediatric Surgery Department, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Ghaith Zaifah
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Reem Kazzazo
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Aya Haji Mohamad
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Faculty of Medicine, Aleppo University, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
26
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Jones Severino Vasconcelos QD, Silva Frederico MJ, Sousa Alves RD, Jesus Pinheiro Gomes Bandeira TD, Amaral de Moraes ME, Aragão GF. Effects of whey protein supplementation on gut microbiota of Wistar rats with valproic acid-induced autism symptoms. Future Microbiol 2024; 19:213-226. [PMID: 37934065 DOI: 10.2217/fmb-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023] Open
Abstract
Aim: To evaluate the effects of whey protein (WP) supplementation (1.24 mg/g, 24 days) in rats with autism spectrum disorder (ASD) induced by valproic acid (400 mg/kg, single dose). Materials & methods: Wistar rats (14 days old) were divided into four groups: control, ASD, ASD plus WP and WP. Results: WP increased bacterial diversity and the number of colonies. Bacteria from the Firmicutes phylum were predominantly found in the supplemented groups (p < 0.05). WP also improved the animals' memory in the Y-maze test and decreased the time that male animals spent in the 'solitary chamber' (p < 0.05). Conclusion: WP supplementation positively influenced gut microbiota, along with memory.
Collapse
Affiliation(s)
| | | | - Renata de Sousa Alves
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, 60430-160, Fortaleza, Brazil
| | | | | | - Gislei Frota Aragão
- Health Science Center, State University of Ceara, 60430-275, Fortaleza, Brazil
| |
Collapse
|
28
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Dufault RJ, Adler KM, Carpenter DO, Gilbert SG, Crider RA. Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder. World J Psychiatry 2024; 14:159-178. [PMID: 38327893 PMCID: PMC10845225 DOI: 10.5498/wjp.v14.i1.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations, creating conditions for the neurodevelopmental disorders known as autism and attention deficit/hyperactivity disorder (ADHD). Children with these disorders have difficulty metabolizing and excreting heavy metals from their bloodstream, and the severity of their symptoms correlates with the heavy metal levels measured in their blood. Psychiatrists may play a key role in helping parents reduce their ultra-processed food and dietary heavy metal intake by providing access to effective nutritional epigenetics education. AIM To test the efficacy of nutritional epigenetics instruction in reducing parental ultra-processed food intake. METHODS The study utilized a semi-randomized test and control group pretest-posttest pilot study design with participants recruited from parents having a learning-disabled child with autism or ADHD. Twenty-two parents who met the inclusion criteria were randomly selected to serve in the test (n = 11) or control (n = 11) group. The test group participated in the six-week online nutritional epigenetics tutorial, while the control group did not. The efficacy of the nutritional epigenetics instruction was determined by measuring changes in parent diet and attitude using data derived from an online diet survey administered to the participants during the pre and post intervention periods. Diet intake scores were derived for both ultra-processed and whole/organic foods. Paired sample t-tests were conducted to determine any differences in mean diet scores within each group. RESULTS There was a significant difference in the diet scores of the test group between the pre- and post-intervention periods. The parents in the test group significantly reduced their intake of ultra-processed foods with a pre-intervention diet score of 70 (mean = 5.385, SD = 2.534) and a post-intervention diet score of 113 (mean = 8.692, SD = 1.750) and the paired t-test analysis showing a significance of P < 0.001. The test group also significantly increased their consumption of whole and/or organic foods with a pre-intervention diet score of 100 (mean = 5.882, SD = 2.472) and post-intervention diet score of 121 (mean = 7.118, SD = 2.390) and the paired t-test analysis showing a significance of P < 0.05. CONCLUSION Here we show nutritional epigenetics education can be used to reduce ultra-processed food intake and improve attitude among parents having learning-disabled children with autism or ADHD.
Collapse
Affiliation(s)
- Renee J Dufault
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Katherine M Adler
- Department of Health Sciences, University of New Haven, West Haven, CT 06516, United States
| | - David O Carpenter
- Institute for Health and the Environment, School of Public Health, State University of New York, Albany, NY 12222, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Raquel A Crider
- Department of Statistics, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
30
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
31
|
Peralta-Marzal LN, Rojas-Velazquez D, Rigters D, Prince N, Garssen J, Kraneveld AD, Perez-Pardo P, Lopez-Rincon A. A robust microbiome signature for autism spectrum disorder across different studies using machine learning. Sci Rep 2024; 14:814. [PMID: 38191575 PMCID: PMC10774349 DOI: 10.1038/s41598-023-50601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate whether there is a set of bacterial taxa relevant for ASD classification by using a sibling-controlled dataset. Additionally, we aim to validate these results across two independent cohorts as several confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of bacteria in the sibling-controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa in a tenfold cross-validation scheme using two independent cohorts (a total of 223 samples-125 ASD cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of children in three distinct cohorts with AUC over 80% for the best-performing classifiers. Our results indicate that the gut microbiome has a strong association with ASD and should not be disregarded as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing datasets.
Collapse
Affiliation(s)
- Lucia N Peralta-Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - David Rojas-Velazquez
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douwe Rigters
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, VU University, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Vernocchi P, Marangelo C, Guerrera S, Del Chierico F, Guarrasi V, Gardini S, Conte F, Paci P, Ianiro G, Gasbarrini A, Vicari S, Putignani L. Gut microbiota functional profiling in autism spectrum disorders: bacterial VOCs and related metabolic pathways acting as disease biomarkers and predictors. Front Microbiol 2023; 14:1287350. [PMID: 38192296 PMCID: PMC10773764 DOI: 10.3389/fmicb.2023.1287350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder. Major interplays between the gastrointestinal (GI) tract and the central nervous system (CNS) seem to be driven by gut microbiota (GM). Herein, we provide a GM functional characterization, based on GM metabolomics, mapping of bacterial biochemical pathways, and anamnestic, clinical, and nutritional patient metadata. Methods Fecal samples collected from children with ASD and neurotypical children were analyzed by gas-chromatography mass spectrometry coupled with solid phase microextraction (GC-MS/SPME) to determine volatile organic compounds (VOCs) associated with the metataxonomic approach by 16S rRNA gene sequencing. Multivariate and univariate statistical analyses assessed differential VOC profiles and relationships with ASD anamnestic and clinical features for biomarker discovery. Multiple web-based and machine learning (ML) models identified metabolic predictors of disease and network analyses correlated GM ecological and metabolic patterns. Results The GM core volatilome for all ASD patients was characterized by a high concentration of 1-pentanol, 1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, octadecanal, tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole and skatole; and o-cymene. Patients were stratified based on age, GI symptoms, and ASD severity symptoms. Disease risk prediction allowed us to associate butanoic acid with subjects older than 5 years, indole with the absence of GI symptoms and low disease severity, propanoic acid with the ASD risk group, and p-cymene with ASD symptoms, all based on the predictive CBCL-EXT scale. The HistGradientBoostingClassifier model classified ASD patients vs. CTRLs by an accuracy of 89%, based on methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, ethanol, butanoic acid, octadecane, acetic acid, skatole, and tetradecanal features. LogisticRegression models corroborated methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, skatole, and acetic acid as ASD predictors. Conclusion Our results will aid the development of advanced clinical decision support systems (CDSSs), assisted by ML models, for advanced ASD-personalized medicine, based on omics data integrated into electronic health/medical records. Furthermore, new ASD screening strategies based on GM-related predictors could be used to improve ASD risk assessment by uncovering novel ASD onset and risk predictors.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Gianluca Ianiro
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Lagod PP, Naser SA. The Role of Short-Chain Fatty Acids and Altered Microbiota Composition in Autism Spectrum Disorder: A Comprehensive Literature Review. Int J Mol Sci 2023; 24:17432. [PMID: 38139261 PMCID: PMC10743890 DOI: 10.3390/ijms242417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA;
| |
Collapse
|
35
|
Guo R, Pang J, Zhao J, Xiao X, Li J, Li J, Wang W, Zhou S, Zhao Y, Zhang Z, Chen H, Yuan T, Wu S, Liu Z. Unveiling the neuroprotective potential of dietary polysaccharides: a systematic review. Front Nutr 2023; 10:1299117. [PMID: 38075226 PMCID: PMC10702503 DOI: 10.3389/fnut.2023.1299117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024] Open
Abstract
Central nervous system (CNS) disorders present a growing and costly global health challenge, accounting for over 11% of the diseases burden in high-income countries. Despite current treatments, patients often experience persistent symptoms that significantly affect their quality of life. Dietary polysaccharides have garnered attention for their potential as interventions for CNS disorders due to their diverse mechanisms of action, including antioxidant, anti-inflammatory, and neuroprotective effects. Through an analysis of research articles published between January 5, 2013 and August 30, 2023, encompassing the intervention effects of dietary polysaccharides on Alzheimer's disease, Parkinson's disease, depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, we have conducted a comprehensive review with the aim of elucidating the role and mechanisms of dietary polysaccharides in various CNS diseases, spanning neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological dysfunctions. At least four categories of mechanistic bases are included in the dietary polysaccharides' intervention against CNS disease, which involves oxidative stress reduction, neuronal production, metabolic regulation, and gut barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation and modulate gut microbiota not only helps to curb the development of these diseases at an early stage, but also holds promise for the development of novel therapeutic agents for CNS diseases. In conclusion, this comprehensive review strives to advance therapeutic strategies for CNS disorders by elucidating the potential of dietary polysaccharides and advocating interdisciplinary collaboration to propel further research in this realm.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhe Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingmeng Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenxiu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwang Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Shan Wu
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, China
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Boicean A, Birlutiu V, Ichim C, Brusnic O, Onișor DM. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023; 11:2930. [PMID: 38001930 PMCID: PMC10668969 DOI: 10.3390/biomedicines11112930] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The human gastrointestinal tract houses a diverse array of probiotic and pathogenic bacteria and any alterations in this microbial composition can exert a significant influence on an individual's well-being. It is well-established that imbalances in the gut microbiota play a pivotal role in the development of liver diseases. In light of this, a new adjuvant therapy for liver diseases could be regulating the intestinal microbiota. Through fecal microbiota transplantation, patients whose microbiomes are compromised are treated with stool from healthy donors in an attempt to restore a normal microbiome and alleviate their symptoms. A review of cross-sectional studies and case reports suggests that fecal microbiota transplants may offer effective treatment for chronic liver diseases. Adding to the potential of this emerging therapy, recent research has indicated that fecal microbiota transplantation holds promise as a therapeutic approach specifically for liver cirrhosis. By introducing a diverse range of beneficial microorganisms into the gut, this innovative treatment aims to address the microbial imbalances often observed in cirrhotic patients. While further validation is still required, these preliminary findings highlight the potential impact of fecal microbiota transplantation as a novel and targeted method for managing liver cirrhosis. We aimed to summarize the current state of understanding regarding this procedure, as a new therapeutic method for liver cirrhosis, as well as to explain its clinical application and future potential.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Victoria Birlutiu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (V.B.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Danusia Maria Onișor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
38
|
Olaguez-Gonzalez JM, Chairez I, Breton-Deval L, Alfaro-Ponce M. Machine Learning Algorithms Applied to Predict Autism Spectrum Disorder Based on Gut Microbiome Composition. Biomedicines 2023; 11:2633. [PMID: 37893007 PMCID: PMC10604849 DOI: 10.3390/biomedicines11102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The application of machine learning (ML) techniques stands as a reliable method for aiding in the diagnosis of complex diseases. Recent studies have related the composition of the gut microbiota to the presence of autism spectrum disorder (ASD), but until now, the results have been mostly contradictory. This work proposes using machine learning to study the gut microbiome composition and its role in the early diagnosis of ASD. We applied support vector machines (SVMs), artificial neural networks (ANNs), and random forest (RF) algorithms to classify subjects as neurotypical (NT) or having ASD, using published data on gut microbiome composition. Naive Bayes, k-nearest neighbors, ensemble learning, logistic regression, linear regression, and decision trees were also trained and validated; however, the ones presented showed the best performance and interpretability. All the ML methods were developed using the SAS Viya software platform. The microbiome's composition was determined using 16S rRNA sequencing technology. The application of ML yielded a classification accuracy as high as 90%, with a sensitivity of 96.97% and specificity reaching 85.29%. In the case of the ANN model, no errors occurred when classifying NT subjects from the first dataset, indicating a significant classification outcome compared to traditional tests and data-based approaches. This approach was repeated with two datasets, one from the USA and the other from China, resulting in similar findings. The main predictors in the obtained models differ between the analyzed datasets. The most important predictors identified from the analyzed datasets are Bacteroides, Lachnospira, Anaerobutyricum, and Ruminococcus torques. Notably, among the predictors in each model, there is the presence of bacteria that are usually considered insignificant in the microbiome's composition due to their low relative abundance. This outcome reinforces the conventional understanding of the microbiome's influence on ASD development, where an imbalance in the composition of the microbiota can lead to disrupted host-microbiota homeostasis. Considering that several previous studies focused on the most abundant genera and neglected smaller (and frequently not statistically significant) microbial communities, the impact of such communities has been poorly analyzed. The ML-based models suggest that more research should focus on these less abundant microbes. A novel hypothesis explains the contradictory results in this field and advocates for more in-depth research to be conducted on variables that may not exhibit statistical significance. The obtained results seem to contribute to an explanation of the contradictory findings regarding ASD and its relation with gut microbiota composition. While some research correlates higher ratios of Bacillota/Bacteroidota, others find the opposite. These discrepancies are closely linked to the minority organisms in the microbiome's composition, which may differ between populations but share similar metabolic functions. Therefore, the ratios of Bacillota/Bacteroidota regarding ASD may not be determinants in the manifestation of ASD.
Collapse
Affiliation(s)
- Juan M. Olaguez-Gonzalez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
| | - Isaac Chairez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
- Consejo Nacional de Ciencia y Tecnologia, Mexico City 03940, Mexico
| | - Mariel Alfaro-Ponce
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
39
|
Warner BB, Rosa BA, Ndao IM, Tarr PI, Miller JP, England SK, Luby JL, Rogers CE, Hall-Moore C, Bryant RE, Wang JD, Linneman LA, Smyser TA, Smyser CD, Barch DM, Miller GE, Chen E, Martin J, Mitreva M. Social and psychological adversity are associated with distinct mother and infant gut microbiome variations. Nat Commun 2023; 14:5824. [PMID: 37726348 PMCID: PMC10509221 DOI: 10.1038/s41467-023-41421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Health disparities are driven by underlying social disadvantage and psychosocial stressors. However, how social disadvantage and psychosocial stressors lead to adverse health outcomes is unclear, particularly when exposure begins prenatally. Variations in the gut microbiome and circulating proinflammatory cytokines offer potential mechanistic pathways. Here, we interrogate the gut microbiome of mother-child dyads to compare high-versus-low prenatal social disadvantage, psychosocial stressors and maternal circulating cytokine cohorts (prospective case-control study design using gut microbiomes from 121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun metagenomic sequencing). Gut microbiome characteristics significantly predictive of social disadvantage and psychosocial stressors in the mothers and children indicate that different discriminatory taxa and related pathways are involved, including many species of Bifidobacterium and related pathways across several comparisons. The lowest inter-individual gut microbiome similarity was observed among high-social disadvantage/high-psychosocial stressors mothers, suggesting distinct environmental exposures driving a diverging gut microbiome assembly compared to low-social disadvantage/low-psychosocial stressors controls (P = 3.5 × 10-5 for social disadvantage, P = 2.7 × 10-15 for psychosocial stressors). Children's gut metagenome profiles at 4 months also significantly predicted high/low maternal prenatal IL-6 (P = 0.029), with many bacterial species overlapping those identified by social disadvantage and psychosocial stressors. These differences, based on maternal social and psychological status during a critical developmental window early in life, offer potentially modifiable targets to mitigate health inequities.
Collapse
Affiliation(s)
- Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| | - Bruce A Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Renay E Bryant
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Jacqueline D Wang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Laura A Linneman
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Psychiatry, & Radiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Gregory E Miller
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Edith Chen
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - John Martin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Makedonka Mitreva
- Departments of Medicine and Genetics, and McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Alhawamdeh R. Role of gastrointestinal health in managing children with autism spectrum disorder. World J Clin Pediatr 2023; 12:171-196. [PMID: 37753490 PMCID: PMC10518744 DOI: 10.5409/wjcp.v12.i4.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Children with autism spectrum disorders (ASD) or autism are more prone to gastrointestinal (GI) disorders than the general population. These disorders can significantly affect their health, learning, and development due to various factors such as genetics, environment, and behavior. The causes of GI disorders in children with ASD can include gut dysbiosis, immune dysfunction, food sensitivities, digestive enzyme deficiencies, and sensory processing differences. Many studies suggest that numerous children with ASD experience GI problems, and effective management is crucial. Diagnosing autism is typically done through genetic, neurological, functional, and behavioral assessments and observations, while GI tests are not consistently reliable. Some GI tests may increase the risk of developing ASD or exacerbating symptoms. Addressing GI issues in individuals with ASD can improve their overall well-being, leading to better behavior, cognitive function, and educational abilities. Proper management can improve digestion, nutrient absorption, and appetite by relieving physical discomfort and pain. Alleviating GI symptoms can improve sleep patterns, increase energy levels, and contribute to a general sense of well-being, ultimately leading to a better quality of life for the individual and improved family dynamics. The primary goal of GI interventions is to improve nutritional status, reduce symptom severity, promote a balanced mood, and increase patient independence.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Pediatric Department, Faculty of Medicine, Tanta University, Algharbia, Tanta 31511, Egypt
- Pediatrics, Univeristy Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Manama, Manama 12, Bahrain
- Medical Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Bahrain, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Pulmonology Department, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
- Pulmonology Department, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| | - Rawan Alhawamdeh
- Pediatrics Research, and Development Department, Genomics Creativity and Play Center, Manama, Manama 0000, Bahrain
- Pediatrics Research, and Development Department, SENSORYME Dubai 999041, United Arab Emirates
| |
Collapse
|
41
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
42
|
Zhang F, Wang D. Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases. Front Microbiol 2023; 14:1191445. [PMID: 37440890 PMCID: PMC10333588 DOI: 10.3389/fmicb.2023.1191445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS).
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Dali Wang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
43
|
Levkova M, Chervenkov T, Pancheva R. Genus-Level Analysis of Gut Microbiota in Children with Autism Spectrum Disorder: A Mini Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1103. [PMID: 37508600 PMCID: PMC10377934 DOI: 10.3390/children10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Autism is a global health problem, probably due to a combination of genetic and environmental factors. There is emerging data that the gut microbiome of autistic children differs from the one of typically developing children and it is important to know which bacterial genera may be related to autism. We searched different databases using specific keywords and inclusion criteria and identified the top ten bacterial genera from the selected articles that were significantly different between the studied patients and control subjects studied. A total of 34 studies that met the inclusion criteria were identified. The genera Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Lachnospira, Prevotella, Ruminococcus, Streptococcus, and Blautia exhibited the most substantial data indicating that their fluctuations in the gastrointestinal tract could be linked to the etiology of autism. It is probable that autism symptoms are influenced by both increased levels of harmful bacteria and decreased levels of beneficial bacteria. Interestingly, these genera demonstrated varying patterns of increased or decreased levels across different articles. To validate and eliminate the sources of this fluctuation, further research is needed. Consequently, future investigations on the causes of autism should prioritize the examination of the bacterial genera discussed in this publication.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Trifon Chervenkov
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
- Laboratory of Clinical Immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
| |
Collapse
|
44
|
Paudel R, Singh S. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr Psychol Behav Sci 2023; 57:697-712. [PMID: 33447895 DOI: 10.1007/s12124-020-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Autism is a complex neurodevelopmental broad-spectrum disorder characterized by social interaction, and aberrant restrictive and repetitive behavior. The complex pathophysiology and unexplored drug targets make it difficult to standardize and validate the animal models of autism. The review was purposed for determining the benefits of younger animal models over adult models of autism. Similarly, animal models with respect to age, sex, body weight, number of animals used, along with autism inducing agents have been reviewed in this article. The differentiation of behavioral parameters has shown the benefits in the selection of younger animal models. Thus, we conclude that young and adolescence animal models of autism will be supporting for early detection and interventions with significant results.
Collapse
Affiliation(s)
- Raju Paudel
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
45
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
46
|
Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1114424. [PMID: 37229456 PMCID: PMC10204722 DOI: 10.3389/fendo.2023.1114424] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia and insulin resistance. The incidence of T2DM is increasing globally, and a growing body of evidence suggests that gut microbiota dysbiosis may contribute to the development of this disease. Gut microbiota-derived metabolites, including bile acids, lipopolysaccharide, trimethylamine-N-oxide, tryptophan and indole derivatives, and short-chain fatty acids, have been shown to be involved in the pathogenesis of T2DM, playing a key role in the host-microbe crosstalk. This review aims to summarize the molecular links between gut microbiota-derived metabolites and the pathogenesis of T2DM. Additionally, we review the potential therapy and treatments for T2DM using probiotics, prebiotics, fecal microbiota transplantation and other methods to modulate gut microbiota and its metabolites. Clinical trials investigating the role of gut microbiota and its metabolites have been critically discussed. This review highlights that targeting the gut microbiota and its metabolites could be a potential therapeutic strategy for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| |
Collapse
|
47
|
Zahedi E, Sadr SS, Sanaeierad A, Roghani M. Chronic acetyl-L-carnitine treatment alleviates behavioral deficits and neuroinflammation through enhancing microbiota derived-SCFA in valproate model of autism. Biomed Pharmacother 2023; 163:114848. [PMID: 37163781 DOI: 10.1016/j.biopha.2023.114848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Autism spectrum disorder is characterized by a variety of cellular and molecular abnormalities which leads to autism-associated behaviors. Besides behavioral defects, these individuals also suffer from various associated disorders such as gastrointestinal deficit, altered gut microbiota composition and their metabolite. This study examined the effect of ALC on microbiota SCFA production and its effects on brain inflammation in VPA autism model. After prenatal exposure to valproate (600 mg/kg, i.p.) on embryonic day 12.5, followed by ALC treatment (100 mg/kg during postnatal days 23-51, p.o.), ASD-like behaviors, SCFAs amount in feces, intestine integrity (Occludin and ZO-1 tight junction proteins), systemic and brain inflammation (TNF-α and IL-1β) were assessed. Then, Golgi-Cox staining and Western blot for Iba1 protein were utilized to identify the changes in microglia profile in cerebral cortex. In the VPA model, we found that induction of autism was associated with demoted levels of SCFAs in feces and disintegration of intestine tissue which led to elevated level of TNF-α in the plasma. Further, we characterized an increased number of microglia in our histology evaluation and Iba1 protein in cerebral cortex. We also observed elevated level of TNF-α and IL-1β in the cerebral cortex of VPA rat. All these abnormalities were significantly alleviated by ALC treatment. Overall, our findings suggest that alleviation of behavioral abnormalities by ALC therapy in the VPA model of autism is associated with an improvement in the gut microbiota SCFAs, intestinal barrier and recovery of microglia and inflammation in the brain.
Collapse
Affiliation(s)
- Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
48
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
49
|
Sun Z, Lee-Sarwar K, Kelly RS, Lasky-Su JA, Litonjua AA, Weiss ST, Liu YY. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. EBioMedicine 2023; 90:104491. [PMID: 36868051 PMCID: PMC9996363 DOI: 10.1016/j.ebiom.2023.104491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND It has been widely recognized that a critical time window for neurodevelopment occurs in early life and the host's gut microbiome plays an important role in neurodevelopment. Following recent demonstrations that the maternal prenatal gut microbiome influences offspring brain development in murine models, we aim to explore whether the critical time window for the association between the gut microbiome and neurodevelopment is prenatal or postnatal for human. METHODS Here we leverage a large-scale human study and compare the associations between the gut microbiota and metabolites from mothers during pregnancy and their children with the children's neurodevelopment. Specifically, using multinomial regression integrated in Songbird, we assessed the discriminating power of the maternal prenatal and child gut microbiome for children's neurodevelopment at early life as measured by the Ages & Stages Questionnaires (ASQ). FINDINGS We show that the maternal prenatal gut microbiome is more relevant than the children's gut microbiome to the children's neurodevelopment in the first year of life (maximum Q2 = 0.212 and 0.096 separately using the taxa at the class level). Moreover, we found that Fusobacteriia is more associated with high fine motor skills in ASQ in the maternal prenatal gut microbiota but become more associated with low fine motor skills in the infant gut microbiota (rank = 0.084 and -0.047 separately), suggesting the roles of the same taxa with respect to neurodevelopment can be opposite at the two stages of fetal neurodevelopment. INTERPRETATION These findings shed light, especially in terms of timing, on potential therapeutic interventions to prevent neurodevelopmental disorders. FUNDING This work was supported by the National Institutes of Health (grant numbers: R01AI141529, R01HD093761, RF1AG067744, UH3OD023268, U19AI095219, U01HL089856, R01HL141826, K08HL148178, K01HL146980), and the Charles A. King Trust Postdoctoral Fellowship.
Collapse
Affiliation(s)
- Zheng Sun
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, 61801, USA.
| |
Collapse
|
50
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|