1
|
Bose A, Agarwal SM, Nawani H, Shivakumar V, Sreeraj VS, Narayanaswamy JC, Kumar D, Venkatasubramanian G. Mismatch Negativity in Schizophrenia, Unaffected First-degree Relatives, and Healthy Controls. J Psychiatr Res 2024; 175:81-88. [PMID: 38718443 DOI: 10.1016/j.jpsychires.2024.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Mismatch negativity (MMN) amplitude is attenuated in schizophrenia patients (SZ). However, variability in illness course among SZ samples and types of deviant stimuli used in MMN paradigms have contributed to inconsistent findings across studies. Though MMN is suggested to be impaired in schizotypy, the potential link between the two is yet to be systematically examined in unaffected first-degree relatives of schizophrenia patients (FDR). METHODS The SZ sample had twenty-two drug-naïve or drug-free patients (dSZ) and thirty chronic/medicated patients (cSZ). dSZ and cSZ patients were compared with thirty-six unaffected FDR and thirty-two healthy controls (HC) using a two-tone passive auditory oddball MMN paradigm in an event-related potential experiment with two conditions (presented as separate blocks)-duration-deviant (duration-MMN) and frequency-deviant (frequency-MMN). Schizotypy scores and MMN indices were examined for correlation in FDR. RESULTS Duration-MMN amplitude was significantly attenuated in both dSZ and cSZ compared to other groups. dSZ and cSZ did not differ on MMN indices. Psychopathology scores and features of illness (illness duration, medication dosage, etc.) did not correlate with MMN indices. In FDR, Schizotypal trait measures did not correlate with MMN indices. CONCLUSIONS Duration-MMN emerged as a more robust indicator of prediction error signalling deficit in SZ. Frequency-MMN amplitude did not significantly differ among the groups, and MMN indices did not correlate with state and trait measures of schizophrenia-related psychopathology. These findings reiterates that auditory sensory processing captured by MMN is likely reflective of dynamic cognitive functions at the point of testing, and is unlikely to be an expression of enduring symptomatology.
Collapse
Affiliation(s)
- Anushree Bose
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
2
|
Wang J, Dong W, Li Y, Wydell TN, Quan W, Tian J, Song Y, Jiang L, Li F, Yi C, Zhang Y, Yao D, Xu P. Discrimination of auditory verbal hallucination in schizophrenia based on EEG brain networks. Psychiatry Res Neuroimaging 2023; 331:111632. [PMID: 36958075 DOI: 10.1016/j.pscychresns.2023.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Auditory verbal hallucinations (AVH) are a core positive symptom of schizophrenia and are regarded as a consequence of the functional breakdown in the related sensory process. Yet, the potential mechanism of AVH is still lacking. In the present study, we explored the difference between AVHs (n = 23) and non-AVHs (n = 19) in schizophrenia and healthy controls (n = 29) by using multidimensional electroencephalograms data during an auditory oddball task. Compared to healthy controls, both AVH and non-AVH groups showed reduced P300 amplitudes. Additionally, the results from brain networks analysis revealed that AVH patients showed reduced left frontal to posterior parietal/temporal connectivity compared to non-AVH patients. Moreover, using the fused network properties of both delta and theta bands as features for in-depth learning made it possible to identify the AVH from non-AVH patients at an accuracy of 80.95%. The left frontal-parietal/temporal networks seen in the auditory oddball paradigm might be underlying biomarkers of AVH in schizophrenia. This study demonstrated for the first time the functional breakdown of the auditory processing pathway in the AVH patients, leading to a better understanding of the atypical brain network of the AVH patients.
Collapse
Affiliation(s)
- Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Taeko N Wydell
- Centre for Cognitive Neuroscience, Brunel University London, Uxbridge, UK
| | - Wenxiang Quan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ju Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanping Song
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| |
Collapse
|
3
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
4
|
Jiang L, Wang J, Dai J, Li F, Chen B, He R, Liao Y, Yao D, Dong W, Xu P. Altered temporal variability in brain functional connectivity identified by fuzzy entropy underlines schizophrenia deficits. J Psychiatr Res 2022; 148:315-324. [PMID: 35193035 DOI: 10.1016/j.jpsychires.2022.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Investigation of the temporal variability of resting-state brain networks informs our understanding of how neural connectivity aggregates and disassociates over time, further shedding light on the aberrant neural interactions that underlie symptomatology and psychosis development. In the current work, an electroencephalogram-based sliding window analysis was utilized for the first time to measure the nonlinear complexity of dynamic resting-state brain networks of schizophrenia (SZ) patients by applying fuzzy entropy. The results of this study demonstrated the attenuated temporal variability among multiple electrodes that were distributed in the frontal and right parietal lobes for SZ patients when compared with healthy controls (HCs). Meanwhile, a concomitant strengthening of the posterior and peripheral flexible connections that may be attributed to the excessive alertness or sensitivity of SZ patients to the external environment was also revealed. These temporal fluctuation distortions combined reflect an abnormality in the coordination of functional network switching in SZ, which is further the source of worse task performance (i.e., P300 amplitude) and the negative relationship between individual complexity metrics and P300 amplitude. Notably, when using the network metrics as features, multiple linear regressions of P300 amplitudes were also exactly achieved for both the SZ and HC groups. These findings shed light on the pathophysiological mechanisms of SZ from a temporal variability perspective and provide potential biomarkers for quantifying SZ's progressive neurophysiological deterioration.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; Chengdu Mental Health Center, Chengdu, 610036, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China.
| | - Baodan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China.
| |
Collapse
|
5
|
Gustavson DE, Coleman PL, Iversen JR, Maes HH, Gordon RL, Lense MD. Mental health and music engagement: review, framework, and guidelines for future studies. Transl Psychiatry 2021; 11:370. [PMID: 34226495 PMCID: PMC8257764 DOI: 10.1038/s41398-021-01483-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
Is engaging with music good for your mental health? This question has long been the topic of empirical clinical and nonclinical investigations, with studies indicating positive associations between music engagement and quality of life, reduced depression or anxiety symptoms, and less frequent substance use. However, many earlier investigations were limited by small populations and methodological limitations, and it has also been suggested that aspects of music engagement may even be associated with worse mental health outcomes. The purpose of this scoping review is first to summarize the existing state of music engagement and mental health studies, identifying their strengths and weaknesses. We focus on broad domains of mental health diagnoses including internalizing psychopathology (e.g., depression and anxiety symptoms and diagnoses), externalizing psychopathology (e.g., substance use), and thought disorders (e.g., schizophrenia). Second, we propose a theoretical model to inform future work that describes the importance of simultaneously considering music-mental health associations at the levels of (1) correlated genetic and/or environmental influences vs. (bi)directional associations, (2) interactions with genetic risk factors, (3) treatment efficacy, and (4) mediation through brain structure and function. Finally, we describe how recent advances in large-scale data collection, including genetic, neuroimaging, and electronic health record studies, allow for a more rigorous examination of these associations that can also elucidate their neurobiological substrates.
Collapse
Affiliation(s)
- Daniel E. Gustavson
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Peyton L. Coleman
- grid.412807.80000 0004 1936 9916Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN USA
| | - John R. Iversen
- grid.266100.30000 0001 2107 4242Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA USA
| | - Hermine H. Maes
- grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Reyna L. Gordon
- grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217The Curb Center, Vanderbilt University, Nashville, TN USA
| | - Miriam D. Lense
- grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217The Curb Center, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
6
|
Masychev K, Ciprian C, Ravan M, Reilly JP, MacCrimmon D. Advanced Signal Processing Methods for Characterization of Schizophrenia. IEEE Trans Biomed Eng 2021; 68:1123-1130. [PMID: 33656984 DOI: 10.1109/tbme.2020.3011842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Schizophrenia is a severe mental disorder associated with nerobiological deficits. Auditory oddball P300 have been found to be one of the most consistent markers of schizophrenia. The goal of this study is to find quantitative features that can objectively distinguish patients with schizophrenia (SCZs) from healthy controls (HCs) based on their recorded auditory odd-ball P300 electroencephalogram (EEG) data. METHODS Using EEG dataset, we develop a machine learning (ML) algorithm to distinguish 57 SCZs from 66 HCs. The proposed ML algorithm has three steps. In the first step, a brain source localization (BSL) procedure using the linearly constrained minimum variance (LCMV) beamforming approach is employed on EEG signals to extract source waveforms from 30 specified brain regions. In the second step, a method for estimating effective connectivity, referred to as symbolic transfer entropy (STE), is applied to the source waveforms. In the third step the ML algorithm is applied to the STE connectivity matrix to determine whether a set of features can be found that successfully discriminate SCZ from HC. RESULTS The findings revealed that the SCZs have significantly higher effective connectivity compared to HCs and the selected STE features could achieve an accuracy of 92.68%, with a sensitivity of 92.98% and specificity of 92.42%. CONCLUSION The findings imply that the extracted features are from the regions that are mainly affected by SCZ and can be used to distinguish SCZs from HCs. SIGNIFICANCE The proposed ML algorithm may prove to be a promising tool for the clinical diagnosis of schizophrenia.
Collapse
|
7
|
Auditory mismatch detection, distraction, and attentional reorientation (MMN-P3a-RON) in neurological and psychiatric disorders: A review. Int J Psychophysiol 2019; 146:85-100. [PMID: 31654696 DOI: 10.1016/j.ijpsycho.2019.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Involuntary attention allows for the detection and processing of novel and potentially relevant stimuli that lie outside of cognitive focus. These processes comprise change detection in sensory contexts, automatic orientation toward this change, and the selection of adaptive responses, including reorientation to the original goal in cases when the detected change is not relevant for task demands. These processes have been studied using the Event-Related Potential (ERP) technique and have been associated to the Mismatch Negativity (MMN), the P3a, and the Reorienting Negativity (RON) electrophysiological components, respectively. This has allowed for the objective evaluation of the impact of different neuropsychiatric pathologies on involuntary attention. Additionally, these ERP have been proposed as alternative measures for the early detection of disease and the tracking of its progression. The objective of this review was to integrate the results reported to date about MMN, P3a, and RON in different neurological and psychiatric disorders. We included experimental studies with clinical populations that reported at least two of these three components in the same experimental paradigm. Overall, involuntary attention seems to reflect the state of cognitive integrity in different pathologies in adults. However, if the main goal for these ERP is to consider them as biomarkers, more research about their pathophysiological specificity in each disorder is needed, as well as improvement in the general experimental conditions under which these components are elicited. Nevertheless, these ERP represent a valuable neurophysiological tool for early detection and follow-up of diverse clinical populations.
Collapse
|
8
|
Kirino E, Hayakawa Y, Inami R, Inoue R, Aoki S. Simultaneous fMRI-EEG-DTI recording of MMN in patients with schizophrenia. PLoS One 2019; 14:e0215023. [PMID: 31071097 PMCID: PMC6508624 DOI: 10.1371/journal.pone.0215023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and diffusion tensor imaging (DTI) recording have complementary spatiotemporal resolution limitations but can be powerful methods when used together to enable both functional and anatomical modeling, with each neuroimaging procedure used to maximum advantage. We recorded EEGs during event-related fMRI followed by DTI in 15 healthy volunteers and 12 patients with schizophrenia using an omission mismatch negativity (MMN) paradigm. Blood oxygenation level-dependent (BOLD) signal changes were calculated in a region of interest (ROI) analysis, and fractional anisotropy (FA) in the white matter fibers related to each area was compared between groups using tract-specific analysis. Patients with schizophrenia had reduced BOLD activity in the left middle temporal gyrus, and BOLD activity in the right insula and right parahippocampal gyrus significantly correlated with positive symptoms on the Positive and Negative Syndrome Scale (PANSS) and hostility subscores. BOLD activation of Heschl’s gyri also correlated with the limbic system, including the insula. FA values in the left anterior cingulate cortex (ACC) significantly correlated with changes in the BOLD signal in the right superior temporal gyrus (STG), and FA values in the right ACC significantly correlated with PANSS scores. This is the first study to examine MMN using simultaneous fMRI, EEG, and DTI recording in patients with schizophrenia to investigate the potential implications of abnormalities in the ACC and limbic system, including the insula and parahippocampal gyrus, as well as the STG. Structural changes in the ACC during schizophrenia may represent part of the neural basis for the observed MMN deficits. The deficits seen in the feedback/feedforward connections between the prefrontal cortex and STG modulated by the ACC and insula may specifically contribute to impaired MMN generation and clinical manifestations.
Collapse
Affiliation(s)
- Eiji Kirino
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Izunokuni City, Shizuoka, Japan
- Department of Psychiatry, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Juntendo Institute of Mental Health, Fukuroyama, Koshigaya City, Saitama, Japan
- * E-mail:
| | - Yayoi Hayakawa
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, Fukuroyama, Koshigaya City, Saitama, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W, Xu P. Differentiation of Schizophrenia by Combining the Spatial EEG Brain Network Patterns of Rest and Task P300. IEEE Trans Neural Syst Rehabil Eng 2019; 27:594-602. [DOI: 10.1109/tnsre.2019.2900725] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Association between mismatch negativity and voxel-based brain volume in schizophrenia. Clin Neurophysiol 2018; 129:1899-1906. [DOI: 10.1016/j.clinph.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023]
|
11
|
Schuelert N, Dorner‐Ciossek C, Brendel M, Rosenbrock H. A comprehensive analysis of auditory event-related potentials and network oscillations in an NMDA receptor antagonist mouse model using a novel wireless recording technology. Physiol Rep 2018; 6:e13782. [PMID: 30155997 PMCID: PMC6113138 DOI: 10.14814/phy2.13782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that impaired sensory processing significantly contributes to cognitive deficits found in schizophrenia. Electroencephalography (EEG) has become an important preclinical and clinical technique to investigate the underlying mechanisms of neurophysiological dysfunctions in psychiatric disorders. Patients with schizophrenia show marked deficits in auditory event-related potentials (ERP), the detection of deviant auditory stimuli (mismatch negativity, MMN), the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation (ASSR) and reduced auditory-evoked oscillation in the gamma range. Due to a novel data-logging technology (Neurologger, TSE Systems), it is now possible to record wireless EEG data in awake, free-moving small rodents without any restrictions due to size of the device or attached cables. Recently, a new version of the Neurologger was released with improved performance to record time-locked event-related EEG signals. In this study, we were able to show in mice that pharmacological intervention with the NMDA receptor antagonists Ketamine and MK-801 can impair a comprehensive selection of EEG/ERP readouts (ERP N1 amplitude, 40 Hz ASSR, basal and evoked gamma oscillation, MMN) and therefore mimic the EEG deficits observed in patients with schizophrenia. Our data support the translational value of NMDA receptor antagonists as a model for preclinical evaluation of sensory processing deficits relevant to schizophrenia. Further, the new Neurologger system is a suitable device for wireless recording of clinically relevant EEG biomarkers in freely moving mice and a robust translational tool to investigate novel therapeutic approaches regarding sensory processing deficits related to psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Niklas Schuelert
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Cornelia Dorner‐Ciossek
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Michael Brendel
- Biostatistics and Data SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Holger Rosenbrock
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| |
Collapse
|
12
|
Li F, Wang J, Jiang Y, Si Y, Peng W, Song L, Jiang Y, Zhang Y, Dong W, Yao D, Xu P. Top-Down Disconnectivity in Schizophrenia During P300 Tasks. Front Comput Neurosci 2018; 12:33. [PMID: 29875646 PMCID: PMC5974256 DOI: 10.3389/fncom.2018.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/03/2018] [Indexed: 12/03/2022] Open
Abstract
Cognitive deficits in schizophrenia are correlated with the dysfunctions of distinct brain regions including anterior cingulate cortex (ACC) and prefrontal cortex (PFC). Apart from the dysfunctions of the intrinsic connectivity of related areas, how the coupled neural populations work is also crucial in related processes. Twenty-four patients with schizophrenia (SZs) and 24 matched healthy controls (HCs) were recruited in our study. Based on the electroencephalogram (EEG) datasets recorded, the Dynamic Causal Modeling (DCM) was then adopted to estimate how the brain architecture adapts among related areas in SZs and to investigate the mechanism that accounts for their cognitive deficits. The distinct winning models in SZs and HCs consistently emphasized the importance of ACC in regulating the elicitations of P300s. Specifically, comparing to that in HCs, the winning model in SZs uncovered a compensatory pathway from dorsolateral PFC to intraparietal sulcus that promised the SZs' accomplishing P300 tasks. The findings demonstrated that the “disconnectivity hypothesis” is helpful and useful in explaining the cognitive deficits in SZs, while the brain architecture adapted with related compensatory pathway promises the limited brain cognitions in SZs. This study provides a new viewpoint that deepens our understanding of the cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuju Wang
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yuanling Jiang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Si
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjing Peng
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Limeng Song
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Jiang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangsong Zhang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Wentian Dong
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Kim M, Kwak YB, Lee TY, Kwon JS. Modulation of Electrophysiology by Transcranial Direct Current Stimulation in Psychiatric Disorders: A Systematic Review. Psychiatry Investig 2018; 15:434-444. [PMID: 29695150 PMCID: PMC5976006 DOI: 10.30773/pi.2018.01.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique increasingly used to relieve symptoms of psychiatric disorders. Electrophysiologic markers, such as electroencephalography (EEG) and event-related potentials (ERP), have high temporal resolution sensitive to detect plastic changes of the brain associated with symptomatic improvement following tDCS application. METHODS We performed systematic review to identify electrophysiological markers that reflect tDCS effects on plastic brain changes in psychiatric disorders. A total of 638 studies were identified by searching PubMed, Embase, psychINFPO. Of these, 21 full-text articles were assessed eligible and included in the review. RESULTS Although the reviewed studies were heterogeneous in their choices of tDCS protocols, targeted electrophysiological markers, and disease entities, their results strongly support EEG/ERPs to sensitively reflect plastic brain changes and the associated symptomatic improvement following tDCS. CONCLUSION EEG/ERPs may serve a potent tool in revealing the mechanisms underlying psychiatric symptoms, as well as in localizing the brain area targeted for stimulation. Future studies in each disease entities employing consistent tDCS protocols and electrophysiological markers would be necessary in order to substantiate and further elaborate the findings of studies included in the present systematic review.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Sueyoshi K, Sumiyoshi T. Electrophysiological Evidence in Schizophrenia in Relation to Treatment Response. Front Psychiatry 2018; 9:259. [PMID: 29951008 PMCID: PMC6008315 DOI: 10.3389/fpsyt.2018.00259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/25/2018] [Indexed: 01/14/2023] Open
Abstract
Several domains of cognitive function, e.g., verbal memory, information processing, fluency, attention, and executive function are impaired in patients with schizophrenia. Cognitive impairments in schizophrenia have attracted interests as a treatment target, because they are considered to greatly affect functional outcome. Electrophysiological markers, including electroencephalogram (EEG), particularly, event-related potentials, have contributed to psychiatric research and clinical practice. In this review, we provide a summary of studies relating electrophysiological findings to cognitive performance in schizophrenia. Electrophysiological indices may provide an objective marker of cognitive processes, contributing to the development of effective interventions to improve cognitive and social outcomes. Further efforts to understand biological mechanisms of cognitive disturbances, and develop effective therapeutics are warranted.
Collapse
Affiliation(s)
- Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
15
|
Review paper. Neuropsychological dimension of schizophrenia - evaluation possibilities and therapeutic implications. CURRENT PROBLEMS OF PSYCHIATRY 2017. [DOI: 10.1515/cpp-2017-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Introduction: In the last decades, researchers' attention has been focused on cognitive dysfunction in schizophrenia. Numerous studies indicate the existence of neurodegenerative deficits in schizophrenia including, but not limited to, motor functions, learning and memory, executive functions, attention, language, spatial skills and general intelligence.
Method: A review of available literature on the topic of the past two decades, available in the Pubmed, EBSCO, SCOPUS databases has been made using the keywords: schizophrenia, cognition, early intervention.
Results: Cognitive dysfunction is an important feature of the prodromal phase and the first episode of schizophrenia. Researchers have thus proposed to initiate early therapeutic interventions for people with so-called risky mental conditions. The article includes the reference to research on neurocognitive disorders essence in schizophrenia, the definition and review of methods used to identify specific cognitive deficits and issues related to risk of developing psychosis and early therapeutic intervention in high-risk states.
Conclusions: Researchers report the importance of detecting cognitive disorders in the early stages of schizophrenia. This broadens the range of therapeutic interventions and enables early intervention in the increased risk of psychosis.
Collapse
|
16
|
Thomas ML, Green MF, Hellemann G, Sugar CA, Tarasenko M, Calkins ME, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Seidman LJ, Shiluk AL, Siever LJ, Silverman JM, Sprock J, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL, Light GA. Modeling Deficits From Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia. JAMA Psychiatry 2017; 74:37-46. [PMID: 27926742 PMCID: PMC5453308 DOI: 10.1001/jamapsychiatry.2016.2980] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Neurophysiologic measures of early auditory information processing (EAP) are used as endophenotypes in genomic studies and biomarkers in clinical intervention studies. Research in schizophrenia has established correlations among measures of EAP, cognition, clinical symptoms, and functional outcome. Clarifying these associations by determining the pathways through which deficits in EAP affect functioning would suggest when and where to therapeutically intervene. OBJECTIVES To characterize the pathways from EAP to outcome and to estimate the extent to which enhancement of basic information processing might improve cognition and psychosocial functioning in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional data were analyzed using structural equation modeling to examine the associations among EAP, cognition, negative symptoms, and functional outcome. Participants were recruited from the community at 5 geographically distributed laboratories as part of the Consortium on the Genetics of Schizophrenia 2 from July 1, 2010, through January 31, 2014. This well-characterized cohort of 1415 patients with schizophrenia underwent EAP, cognitive, and thorough clinical and functional assessment. MAIN OUTCOME AND MEASURES Mismatch negativity, P3a, and reorienting negativity were used to measure EAP. Cognition was measured by the Letter Number Span test and scales from the California Verbal Learning Test-Second Edition, the Wechsler Memory Scale-Third Edition, and the Penn Computerized Neurocognitive Battery. Negative symptoms were measured by the Scale for the Assessment of Negative Symptoms. Functional outcome was measured by the Role Functioning Scale. RESULTS Participants included 1415 unrelated outpatients diagnosed with schizophrenia or schizoaffective disorder (mean [SD] age, 46 [11] years; 979 males [69.2%] and 619 white [43.7%]). Early auditory information processing had a direct effect on cognition (β = 0.37, P < .001), cognition had a direct effect on negative symptoms (β = -0.16, P < .001), and both cognition (β = 0.26, P < .001) and experiential negative symptoms (β = -0.75, P < .001) had direct effects on functional outcome. The indirect effect of EAP on functional outcome was significant as well (β = 0.14, P < .001). Overall, EAP had a fully mediated effect on functional outcome, engaging general rather than modality-specific cognition, with separate pathways that involved or bypassed negative symptoms. CONCLUSIONS AND RELEVANCE The data support a model in which EAP deficits lead to poor functional outcome via impaired cognition and increased negative symptoms. Results can be used to help guide mechanistically informed, personalized treatments and support the strategy of using EAP measures as surrogate end points in early-stage procognitive intervention studies.
Collapse
Affiliation(s)
- Michael L. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Catherine A. Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Melissa Tarasenko
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Center for Behavioral Genomics, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
17
|
Sui J, Pearlson GD, Du Y, Yu Q, Jones TR, Chen J, Jiang T, Bustillo J, Calhoun VD. In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia. Biol Psychiatry 2015; 78:794-804. [PMID: 25847180 PMCID: PMC4547923 DOI: 10.1016/j.biopsych.2015.02.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND The cognitive deficits of schizophrenia are largely resistant to current treatments and thus are a lifelong illness burden. The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) provides a reliable and valid assessment of cognition across major cognitive domains; however, the multimodal brain alterations specifically associated with MCCB in schizophrenia have not been examined. METHODS The interrelationships between MCCB and the abnormalities seen in three types of neuroimaging-derived maps-fractional amplitude of low-frequency fluctuations (fALFF) from resting-state functional magnetic resonance imaging (MRI), gray matter (GM) density from structural MRI, and fractional anisotropy from diffusion MRI-were investigated by using multiset canonical correlation analysis in data from 47 schizophrenia patients treated with antipsychotic medications and 50 age-matched healthy control subjects. RESULTS One multimodal component (canonical variant 8) was identified as both group differentiating and significantly correlated with the MCCB composite. It demonstrated 1) increased cognitive performance associated with higher fALFF (intensity of regional spontaneous brain activity) and higher GM volumes in thalamus, striatum, hippocampus, and the mid-occipital region, with co-occurring fractional anisotropy changes in superior longitudinal fascicules, anterior thalamic radiation, and forceps major; 2) higher fALFF but lower GM volume in dorsolateral prefrontal cortex related to worse cognition in schizophrenia; and 3) distinct domains of MCCB might exhibit dissociable multimodal signatures, e.g., increased fALFF in inferior parietal lobule particularly correlated with decreased social cognition. Medication dose did not relate to these findings in schizophrenia. CONCLUSIONS Our results suggest linked functional and structural deficits in distributed cortico-striato-thalamic circuits may be closely related to MCCB-measured cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Jing Sui
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico; Brainnetome Center and National Laboratory of Pattern Recognition (JS, TJ), Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT, USA, 06106,Dept. of Psychiatry, Yale University, New Haven, CT, USA, 06519,Dept. of Neurobiology, Yale University, New Haven, CT, USA, 06519
| | - Yuhui Du
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87106,School of Information and Communication Engineering, North University of China, Taiyuan, China, 030051
| | - Qingbao Yu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87106
| | - Thomas R. Jones
- Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA, 87131
| | - Jiayu Chen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87106
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190
| | - Juan Bustillo
- Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA, 87131
| | - Vince D. Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87106,Dept. of Psychiatry, Yale University, New Haven, CT, USA, 06519,Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA, 87131,Dept. of Electronic and Computer Engineering, University of New Mexico, Albuquerque, NM, USA, 87131
| |
Collapse
|
18
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders. Sci Rep 2015; 5:14964. [PMID: 26459883 PMCID: PMC4602219 DOI: 10.1038/srep14964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - António Pinto-Duarte
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015. [PMID: 25752648 DOI: 10.llll/nyas.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis.
Collapse
Affiliation(s)
- Gregory A Light
- VISN 22 Mental Illness, Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
20
|
Light GA, Swerdlow NR, Thomas ML, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Pela M, Radant AD, Seidman LJ, Sharp RF, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Braff DL, Turetsky BI. Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophr Res 2015; 163:63-72. [PMID: 25449710 PMCID: PMC4382452 DOI: 10.1016/j.schres.2014.09.042] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/30/2022]
Abstract
Mismatch negativity (MMN) and P3a are auditory event-related potential (ERP) components that show robust deficits in schizophrenia (SZ) patients and exhibit qualities of endophenotypes, including substantial heritability, test-retest reliability, and trait-like stability. These measures also fulfill criteria for use as cognition and function-linked biomarkers in outcome studies, but have not yet been validated for use in large-scale multi-site clinical studies. This study tested the feasibility of adding MMN and P3a to the ongoing Consortium on the Genetics of Schizophrenia (COGS) study. The extent to which demographic, clinical, cognitive, and functional characteristics contribute to variability in MMN and P3a amplitudes was also examined. Participants (HCS n=824, SZ n=966) underwent testing at 5 geographically distributed COGS laboratories. Valid ERP recordings were obtained from 91% of HCS and 91% of SZ patients. Highly significant MMN (d=0.96) and P3a (d=0.93) amplitude reductions were observed in SZ patients, comparable in magnitude to those observed in single-lab studies with no appreciable differences across laboratories. Demographic characteristics accounted for 26% and 18% of the variance in MMN and P3a amplitudes, respectively. Significant relationships were observed among demographically-adjusted MMN and P3a measures and medication status as well as several clinical, cognitive, and functional characteristics of the SZ patients. This study demonstrates that MMN and P3a ERP biomarkers can be feasibly used in multi-site clinical studies. As with many clinical tests of brain function, demographic factors contribute to MMN and P3a amplitudes and should be carefully considered in future biomarker-informed clinical studies.
Collapse
Affiliation(s)
- Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael L. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Marlena Pela
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Richard F. Sharp
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Catherine A. Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Center for Behavioral Genomics, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015; 1344:105-19. [PMID: 25752648 DOI: 10.1111/nyas.12730] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis.
Collapse
Affiliation(s)
- Gregory A Light
- VISN 22 Mental Illness, Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
22
|
Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int J Psychophysiol 2015; 95:338-44. [PMID: 25562834 DOI: 10.1016/j.ijpsycho.2014.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/26/2014] [Indexed: 11/24/2022]
Abstract
Currently, the mismatch negativity (MMN) deficit is one of the most robust and replicable findings in schizophrenia, reflecting cognitive and functional decline, psychosocial and socio-occupational impairment, and executive dysfunction in these patients. An important break-through has very recently taken place here in the prediction of conversion to psychosis when the MMN in particular to change in tone duration was recorded in clinically at risk-mental state (ARMS) individuals. Attenuations in the MMN in these patients may be very useful in helping clinicians determine who are most likely to develop a psychotic disorder, as we will review in the present article.
Collapse
|
23
|
van Tricht MJ, Bour LJ, Koelman JHTM, Derks EM, Braff DL, de Wilde OM, Boerée T, Linszen DH, de Haan L, Nieman DH. Qualitative and quantitative aspects of information processing in first psychosis: latent class analyses in patients, at-risk subjects, and controls. Psychophysiology 2014; 52:585-93. [PMID: 25376718 DOI: 10.1111/psyp.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
Abstract
We aimed to determine profiles of information processing deficits in the pathway to first psychosis. Sixty-one subjects at ultrahigh risk (UHR) for psychosis were assessed, of whom 18 converted to a first episode of psychosis (FEP) within the follow-up period. Additionally, 47 FEP and 30 control subjects were included. Using 10 neurophysiological parameters associated with information processing, latent class analyses yielded three classes at baseline. Class membership was related to group status. Within the UHR sample, two classes were found. Transition to psychosis was nominally associated with class membership. Neurophysiological profiles were unstable over time, but associations between specific neurophysiological components at baseline and follow-up were found. We conclude that certain constellations of neurophysiological variables aid in the differentiation between controls and patients in the prodrome and after first psychosis.
Collapse
Affiliation(s)
- Mirjam J van Tricht
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurology and Clinical Neurophysiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig S, Light GA. Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia. NEUROIMAGE-CLINICAL 2014; 6:424-37. [PMID: 25379456 PMCID: PMC4218942 DOI: 10.1016/j.nicl.2014.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022]
Abstract
Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. Six source clusters contributing to the triphasic auditory deviance response were identified. Source resolved responses are sensitive to SZ clinical, cognitive, and function characteristics. Source resolved responses accounted for up to half the variance in cognitive and symptom scales.
Collapse
Affiliation(s)
- Anthony J Rissling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA ; Japan Society for the Promotion of Science, Japan
| | - Catherine A Sugar
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA ; Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, USA ; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| | - David L Braff
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, Los Angeles, CA, USA ; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, Los Angeles, CA, USA ; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Source-reconstruction of event-related fields reveals hyperfunction and hypofunction of cortical circuits in antipsychotic-naive, first-episode schizophrenia patients during Mooney face processing. J Neurosci 2014; 34:5909-17. [PMID: 24760850 DOI: 10.1523/jneurosci.3752-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia is characterized by dysfunctions in neural circuits that can be investigated with electrophysiological methods, such as EEG and MEG. In the present human study, we examined event-related fields (ERFs), in a sample of medication-naive, first-episode schizophrenia (FE-ScZ) patients (n = 14) and healthy control participants (n = 17) during perception of Mooney faces to investigate the integrity of neuromagnetic responses and their experience-dependent modification. ERF responses were analyzed for M100, M170, and M250 components at the sensor and source levels. In addition, we analyzed peak latency and adaptation effects due to stimulus repetition. FE-ScZ patients were characterized by significantly impaired sensory processing, as indicated by a reduced discrimination index (A'). At the sensor level, M100 and M170 responses in FE-ScZ were within the normal range, whereas the M250 response was impaired. However, source localization revealed widespread elevated activity for M100 and M170 in FE-ScZ and delayed peak latencies for the M100 and M250 responses. In addition, M170 source activity in FE-ScZ was not modulated by stimulus repetitions. The present findings suggest that neural circuits in FE-ScZ may be characterized by a disturbed balance between excitation and inhibition that could lead to a failure to gate information flow and abnormal spreading of activity, which is compatible with dysfunctional glutamatergic neurotransmission.
Collapse
|
26
|
Kim M, Kim SN, Lee S, Byun MS, Shin KS, Park HY, Jang JH, Kwon JS. Impaired mismatch negativity is associated with current functional status rather than genetic vulnerability to schizophrenia. Psychiatry Res 2014; 222:100-6. [PMID: 24650450 DOI: 10.1016/j.pscychresns.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/25/2013] [Accepted: 02/21/2014] [Indexed: 12/18/2022]
Abstract
The aim of this study is to investigate whether mismatch negativity (MMN) is associated with functional status or is a state-independent trait for schizophrenia. We assessed MMN in 26 patients with schizophrenia, 20 healthy subjects with high genetic loading, and 48 healthy controls. Repeated measures analysis of variance and Pearson׳s correlations were used to test the hypothesis that MMN is not state-independent. We found a significant main effect of group, indicating differences in the peak amplitudes of the MMN among the three groups. Post-hoc analyses revealed that schizophrenia patients showed a significant reduction in the peak amplitude of MMN, but subjects at high genetic risk and healthy controls did not. Additionally, significant correlations between Global Assessment of Functioning scores and MMN peak amplitude at Fz and Cz were found in patients with schizophrenia. These findings suggest that MMN may reflect current functional status rather than a genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Suji Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Kyung Soon Shin
- Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Hye Youn Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Galderisi S, Vignapiano A, Mucci A, Boutros NN. Physiological correlates of positive symptoms in schizophrenia. Curr Top Behav Neurosci 2014; 21:103-28. [PMID: 24920446 DOI: 10.1007/7854_2014_322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with schizophrenia have been hypothesized to have a functional impairment in filtering irrelevant sensory information, which may result in positive symptoms such as hallucinations or delusions. Many evidences suggest that abnormalities in the event-related brain potentials (ERPs), resting state electroencephalography (EEG) and synchronized oscillatory activity of neurons may reflect core pathophysiological mechanisms of schizophrenia. Abnormalities in amplitude and latency of the ERPs reflecting aberrations in gating and difficulties in the detection of changes in auditory stimuli, as well as defects in stimuli evaluation and integration of information are common in patients with schizophrenia. This chapter highlights the findings of electrophysiological studies in schizophrenia dealing with early sensory perception and attention, automatic sensory detection of stimuli changes and cognitive evaluation and integration of information, relevant to the pathophysiological mechanisms underpinning hallucinations and delusions. Results of electrophysiological studies investigating the neural correlates of positive symptoms suggest aberrant intrinsic organization of functional brain networks.
Collapse
Affiliation(s)
- Silvana Galderisi
- Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, 80138, Naples, NA, Italy,
| | | | | | | |
Collapse
|
28
|
Can P300 distinguish among schizophrenia, schizoaffective and bipolar I disorders? An ERP study of response inhibition. Schizophr Res 2013; 151:175-84. [PMID: 24210871 DOI: 10.1016/j.schres.2013.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/24/2022]
Abstract
Research utilizing visual event-related brain potentials (ERPs) has demonstrated that reduced P300 amplitude and prolonged latency may qualify as a biological marker (biomarker) for schizophrenia (SZ). We examined P300 characteristics in response inhibition among three putatively distinct psychopathology groups including schizophrenia (SZ), bipolar I disorder (BD) and schizoaffective disorder (SA) in comparison with healthy controls (CT) to determine their electrophysiological distinctiveness. In two separate studies, deficits in response inhibition indexed by the P300 component were investigated using a lateralized Go/NoGo task. We hypothesized that deficits in response inhibition would be present and distinctive among the groups. In both studies, SZ showed response inhibition deficits as measured by P300 when stimuli were presented to the right visual field. In Study 2, delayed cognitive stimulus evaluation was observed in BD as indexed by prolonged P300 latency for NoGo trials. Six selected NoGo P300 variables out of thirty six NoGo P300 variables (18 amplitude, 18 latency) correctly classified SZ (79%), SA (64%) in Study 1 and seven variables selected in Study 2 classified CT (80%), and SZ (61%), BD (67%) and CT (68%) with the accuracy higher than chance level (33%). The findings suggest that distinct P300 features in response inhibition may be biomarkers with the capacity to distinguish BD and SZ, although SA was not clearly distinguishable from SZ and CT.
Collapse
|
29
|
Nagai T, Tada M, Kirihara K, Araki T, Jinde S, Kasai K. Mismatch negativity as a "translatable" brain marker toward early intervention for psychosis: a review. Front Psychiatry 2013; 4:115. [PMID: 24069006 PMCID: PMC3779867 DOI: 10.3389/fpsyt.2013.00115] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/09/2013] [Indexed: 01/30/2023] Open
Abstract
Recent reviews and meta-analyses suggest that reducing the duration of untreated psychosis leads to better symptomatic and functional outcome in patients with psychotic disorder. Early intervention attenuates the symptoms of individuals at clinical high-risk (HR) for psychosis and may delay or prevent their transition to psychosis. Identifying biological markers in the early stages of psychotic disorder is an important step toward elucidating the pathophysiology, improving prediction of the transition to psychosis, and introducing targeted early intervention for help-seeking individuals aiming for better outcome. Mismatch negativity (MMN) is a component of event-related potentials that reflects preattentive auditory sensory memory and is a promising biomarker candidate for schizophrenia. Reduced MMN amplitude is a robust finding in patients with chronic schizophrenia. Recent reports have shown that people in the early stages of psychotic disorder exhibit attenuation of MMN amplitude. MMN in response to duration deviants and in response to frequency deviants reveals different patterns of deficits. These findings suggest that MMN may be useful for identifying clinical stages of psychosis and for predicting the risk of development. MMN may also be a "translatable" biomarker since it reflects N-methyl-d-aspartte receptor function, which plays a fundamental role in schizophrenia pathophysiology. Furthermore, MMN-like responses can be recorded in animals such as mice and rats. This article reviews MMN studies conducted on individuals with HR for psychosis, first-episode psychosis, recent-onset psychosis, and on animals. Based on the findings, the authors discuss the potential of MMN as a clinical biomarker for early intervention for help-seeking individuals in the early stages of psychotic disorder, and as a translatable neurophysiological marker for the preclinical assessment of pharmacological agents used in animal models that mimic early stages of the disorder.
Collapse
Affiliation(s)
- Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo , Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
30
|
Stephen JM, Coffman BA, Jung RE, Bustillo JR, Aine CJ, Calhoun VD. Using joint ICA to link function and structure using MEG and DTI in schizophrenia. Neuroimage 2013; 83:418-30. [PMID: 23777757 DOI: 10.1016/j.neuroimage.2013.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
In this study we employed joint independent component analysis (jICA) to perform a novel multivariate integration of magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data to investigate the link between function and structure. This model-free approach allows one to identify covariation across modalities with different temporal and spatial scales [temporal variation in MEG and spatial variation in fractional anisotropy (FA) maps]. Healthy controls (HC) and patients with schizophrenia (SP) participated in an auditory/visual multisensory integration paradigm to probe cortical connectivity in schizophrenia. To allow direct comparisons across participants and groups, the MEG data were registered to an average head position and regional waveforms were obtained by calculating the local field power of the planar gradiometers. Diffusion tensor images obtained in the same individuals were preprocessed to provide FA maps for each participant. The MEG/FA data were then integrated using the jICA software (http://mialab.mrn.org/software/fit). We identified MEG/FA components that demonstrated significantly different (p<0.05) covariation in MEG/FA data between diagnostic groups (SP vs. HC) and three components that captured the predominant sensory responses in the MEG data. Lower FA values in bilateral posterior parietal regions, which include anterior/posterior association tracts, were associated with reduced MEG amplitude (120-170 ms) of the visual response in occipital sensors in SP relative to HC. Additionally, increased FA in a right medial frontal region was linked with larger amplitude late MEG activity (300-400 ms) in bilateral central channels for SP relative to HC. Step-wise linear regression provided evidence that right temporal, occipital and late central components were significant predictors of reaction time and cognitive performance based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) cognitive assessment battery. These results point to dysfunction in a posterior visual processing network in schizophrenia, with reduced MEG amplitude, reduced FA and poorer overall performance on the MATRICS. Interestingly, the spatial location of the MEG activity and the associated FA regions are spatially consistent with white matter regions that subserve these brain areas. This novel approach provides evidence for significant pairing between function (neurophysiology) and structure (white matter integrity) and demonstrates that this multivariate, multimodal integration technique is sensitive to group differences in function and structure.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Rissling AJ, Park SH, Young JW, Rissling MB, Sugar CA, Sprock J, Mathias DJ, Pela M, Sharp RF, Braff DL, Light GA. Demand and modality of directed attention modulate "pre-attentive" sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophr Res 2013; 146:326-35. [PMID: 23490760 PMCID: PMC3622836 DOI: 10.1016/j.schres.2013.01.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mismatch negativity (MNN) and P3a are event related potential (ERP) measures of early sensory information processing. These components are usually conceptualized as being "pre-attentive" and therefore immune to changes with variations in attentional functioning. This study aimed to determine whether manipulations of attention influence the amplitudes and latencies of MMN and P3a and, if so, the extent to which these early sensory processes govern concurrent behavioral vigilance performance in schizophrenia patients and normal subjects. METHODS Schizophrenia patients (SZ; n = 20) and Nonpsychiatric Control Subjects (NCS; n = 20) underwent auditory ERP testing to assess MMN and P3a across 4 EEG recording sessions in which attentional demand (low vs. high) and sensory modality of directed attention (visual vs. auditory) were experimentally varied. RESULTS Across conditions, SZ patients exhibited deficits in MMN and P3a amplitudes. Significant amplitude and latency modulation were observed in both SZ and NCS but there were no group-by-condition interactions. The amount of MMN amplitude attenuation from low- to high-demand tasks was significantly associated with increased vigilance performance in both SZ and NCS groups (r = -0.67 and r = -0.60). Several other robust associations were also observed among neurophysiologic, clinical and cognitive variables. CONCLUSIONS Attentional demand and modality of directed attention significantly influence the amplitude and latencies of "pre-attentive" ERP components in both SZ and NCS. Deficits in MMN and P3a were not "normalized" when attention was directed to the auditory stimuli in schizophrenia patients. The adaptive modulation of early sensory information processing appears to govern concurrent attentional task performance. The temporal window reflecting automatic sensory discrimination as indexed as MMN and P3a may serve as a gateway to some higher order cognitive operations necessary for psychosocial functioning.
Collapse
Affiliation(s)
| | - Sung-Hyouk Park
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Department of Psychiatry, Chookryoung Evangelical Hospital, Namyangju, Gyeonggi, South Korea
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | | | - Catherine A. Sugar
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), Greater Los Angeles VA Healthcare System
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Daniel J. Mathias
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Marlena Pela
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Richard F. Sharp
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| |
Collapse
|
32
|
de Jong JJ, de Gelder B, Hodiamont PPPG. Sensory processing, neurocognition, and social cognition in schizophrenia: towards a cohesive cognitive model. Schizophr Res 2013; 146:209-16. [PMID: 23522906 DOI: 10.1016/j.schres.2013.02.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 11/26/2022]
Abstract
Schizophrenia research has identified deficits in neurocognition, social cognition, and sensory processing. Because a cohesive model of "disturbed cognitive machinery" is currently lacking, we built a conceptual model to integrate neurocognition, social cognition, and sensory processing. In a cross-sectional study, the cognitive performance of participants was measured. In accordance with the Schedules for Clinical Assessment in Neuropsychiatry, the participants were assigned to either the schizophrenia group or the non-schizophrenic psychosis group. Exclusion criteria included substance abuse, serious somatic/neurological illness, and perceptual handicap. The male/female ratio, educational level, and handedness did not differ significantly between the groups. The data were analyzed using structural equation modeling. Based upon the results of all possible pairwise models correlating neurocognition, social cognition, and sensory processing, three omnibus models were analyzed. A statistical analysis of a pairwise model-fit (χ(2), CFI, and RMSEA statistics) revealed poor interrelatedness between sensory processing and neurocognition in schizophrenia patients compared with healthy control participants. The omnibus model that predicted disintegration between sensory processing and neurocognition was statistically confirmed as superior for the schizophrenia group (χ(2)(53) of 56.62, p=0.341, RMSEA=0.04, CFI=0.95). In healthy participants, the model predicting maximal interrelatedness between sensory processing/neurocognition and neurocognition/social cognition gave the best fit (χ(2)(52) of 53.74, p=0.408, RMSEA=0.03, CFI=0.97). The performance of the patients with non-schizophrenic psychosis fell between the schizophrenia patients and control participants. These findings suggest increasing separation between sensory processing and neurocognition along the continuum from mental health to schizophrenia. Our results support a conceptual model that posits disintegration between sensory processing of social stimuli and neurocognitive processing.
Collapse
Affiliation(s)
- J J de Jong
- Cognitive Neuroscience Laboratory, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands.
| | | | | |
Collapse
|
33
|
Keefe RSE, Buchanan RW, Marder SR, Schooler NR, Dugar A, Zivkov M, Stewart M. Clinical trials of potential cognitive-enhancing drugs in schizophrenia: what have we learned so far? Schizophr Bull 2013; 39:417-35. [PMID: 22114098 PMCID: PMC3576170 DOI: 10.1093/schbul/sbr153] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In light of the number of studies conducted to examine the treatment of cognitive impairment associated with schizophrenia (CIAS), we critically reviewed recent CIAS trials. Trials were identified through searches of the website "www.clinicaltrials.gov" using the terms "schizophrenia AND cognition," "schizophrenia AND neurocognition," "schizophrenia AND neurocognitive tests," "schizophrenia AND MATRICS," "schizophrenia AND MCCB," "schizophrenia AND BACS," "schizophrenia AND COGSTATE," and "schizophrenia AND CANTAB" and "first-episode schizophrenia AND cognition." The cutoff date was 20 April 2011. Included trials were conducted in people with schizophrenia, the effects on cognition were either a primary or secondary outcome, and the effect of a pharmacologically active substance was examined. Drug challenge, pharmacokinetic, pharmacodynamic, or prodrome of psychosis studies were excluded. We identified 118 trials, with 62% using an add-on parallel group design. The large majority of completed trials were underpowered to detect moderate effect sizes, had ≤8 weeks duration, and were performed in samples of participants with chronic stable schizophrenia. The ongoing add-on trials are longer, have larger sample sizes (with a number of them being adequately powered to detect moderate effect sizes), and are more likely to use a widely accepted standardized cognitive battery (eg, the MATRICS Consensus Cognitive Battery) and MATRICS guidelines. Ongoing studies performed in subjects with recent onset schizophrenia may help elucidate which subjects are most likely to show an effect in cognition. New insights into the demands of CIAS trial design and methodology may help increase the probability of identifying treatments with beneficial effect on cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Richard S. E. Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,To whom correspondence should be addressed; tel: +1 (919) 684-4306, fax: +1 (919) 684-2632, e-mail:
| | - Robert W. Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Stephen R. Marder
- Desert Pacific Mental Illness Research, Education, and Clinical Center, Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA
| | - Nina R. Schooler
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| | | | | | | |
Collapse
|
34
|
Takahashi H, Rissling AJ, Pascual-Marqui R, Kirihara K, Pela M, Sprock J, Braff DL, Light GA. Neural substrates of normal and impaired preattentive sensory discrimination in large cohorts of nonpsychiatric subjects and schizophrenia patients as indexed by MMN and P3a change detection responses. Neuroimage 2012; 66:594-603. [PMID: 23085112 DOI: 10.1016/j.neuroimage.2012.09.074] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/25/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Schizophrenia (SZ) patients have information processing deficits, spanning from low level sensory processing to higher-order cognitive functions. Mismatch negativity (MMN) and P3a are event-related potential (ERP) components that are automatically elicited in response to unattended changes in ongoing, repetitive stimuli that provide a window into abnormal information processing in SZ. MMN and P3a are among the most robust and consistently identified deficits in SZ, yet the neural substrates of these responses and their associated deficits in SZ are not fully understood. This study examined the neural sources of MMN and P3a components in a large cohort of SZ and nonpsychiatric control subjects (NCS) using Exact Low Resolution Electromagnetic Tomography Analyses (eLORETA) in order to identify the neural sources of MMN and P3a as well as the brain regions associated with deficits commonly observed among SZ patients. METHODS 410 SZ and 247 NCS underwent EEG testing using a duration-deviant auditory oddball paradigm (1-kHz tones, 500ms SOA; standard p=0.90, 50-ms duration; deviant tones P=0.10, 100-ms duration) while passively watching a silent video. Voxel-by-voxel within- (MMN vs. P3a) and between-group (SZ vs. NCS) comparisons were performed using eLORETA. RESULTS SZ had robust deficits in MMN and P3a responses measured at scalp electrodes consistent with other studies. These components mapped onto neural sources broadly distributed across temporal, frontal, and parietal regions. MMN deficits in SZ were associated with reduced activations in discrete medial frontal brain regions, including the anterior-posterior cingulate and medial frontal gyri. These early sensory discriminatory MMN impairments were followed by P3a deficits associated with widespread reductions in the activation of attentional networks (frontal, temporal, parietal regions), reflecting impaired orienting or shifts of attention to the infrequent stimuli. CONCLUSIONS MMN and P3a are dissociable responses associated with broadly distributed patterns of neural activation. MMN deficits among SZ patients appear to be primarily accounted for by reductions in medial prefrontal brain regions that are followed by widespread dysfunction across cortical networks associated with P3a in a manner that is consistent with hierarchical information processing models of cognitive deficits in SZ patients. Impairments in automatic stimulus discrimination may contribute to higher-order cognitive and psychosocial deficits in SZ.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Anthony J Rissling
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Roberto Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Kenji Kirihara
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Marlena Pela
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Joyce Sprock
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; VISN-22 Mental Illness, Research, Education and Clinical Center, VA San Diego Healthcare System, USA
| | - David L Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; VISN-22 Mental Illness, Research, Education and Clinical Center, VA San Diego Healthcare System, USA
| | - Gregory A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center, VA San Diego Healthcare System, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Ford JM, Dierks T, Fisher DJ, Herrmann CS, Hubl D, Kindler J, Koenig T, Mathalon DH, Spencer KM, Strik W, van Lutterveld R. Neurophysiological studies of auditory verbal hallucinations. Schizophr Bull 2012; 38:715-23. [PMID: 22368236 PMCID: PMC3406526 DOI: 10.1093/schbul/sbs009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We discuss 3 neurophysiological approaches to study auditory verbal hallucinations (AVH). First, we describe "state" (or symptom capture) studies where periods with and without hallucinations are compared "within" a patient. These studies take 2 forms: passive studies, where brain activity during these states is compared, and probe studies, where brain responses to sounds during these states are compared. EEG (electroencephalography) and MEG (magnetoencephalography) data point to frontal and temporal lobe activity, the latter resulting in competition with external sounds for auditory resources. Second, we discuss "trait" studies where EEG and MEG responses to sounds are recorded from patients who hallucinate and those who do not. They suggest a tendency to hallucinate is associated with competition for auditory processing resources. Third, we discuss studies addressing possible mechanisms of AVH, including spontaneous neural activity, abnormal self-monitoring, and dysfunctional interregional communication. While most studies show differences in EEG and MEG responses between patients and controls, far fewer show symptom relationships. We conclude that efforts to understand the pathophysiology of AVH using EEG and MEG have been hindered by poor anatomical resolution of the EEG and MEG measures, poor assessment of symptoms, poor understanding of the phenomenon, poor models of the phenomenon, decoupling of the symptoms from the neurophysiology due to medications and comorbidites, and the possibility that the schizophrenia diagnosis breeds truer than the symptoms it comprises. These problems are common to studies of other psychiatric symptoms and should be considered when attempting to understand the basic neural mechanisms responsible for them.
Collapse
Affiliation(s)
- Judith M. Ford
- Psychiatry Service, San Francisco Veterans Affairs Medical Center, Department of Psychiatry, University of California, San Francisco, CA,To whom correspondence should be addressed; San Francisco Veterans Affairs Medical Center, 116D, 4150 Clement Street, San Francisco, CA 94121, US; tel: 415-221-4810, ext 4187, fax: 415-750-6622, e-mail:
| | - Thomas Dierks
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Derek J. Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada,Neuroelectrophysiology Unit, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Christoph S. Herrmann
- Department of Experimental Psychology, Carl von Ossietzky University, Oldenburg, Germany
| | - Daniela Hubl
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Daniel H. Mathalon
- Psychiatry Service, San Francisco Veterans Affairs Medical Center, Department of Psychiatry, University of California, San Francisco, CA
| | - Kevin M. Spencer
- Research Service, Veterans Affairs Boston Healthcare System and Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Remko van Lutterveld
- Department of Psychiatry, University Medical Center, Utrecht, the Netherlands,Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands
| |
Collapse
|
36
|
Caballero A, Tseng KY. Association of Cannabis Use during Adolescence, Prefrontal CB1 Receptor Signaling, and Schizophrenia. Front Pharmacol 2012; 3:101. [PMID: 22654759 PMCID: PMC3361072 DOI: 10.3389/fphar.2012.00101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/05/2012] [Indexed: 01/09/2023] Open
Abstract
The cannabinoid receptor 1 (CB1R) is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that activate CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g., memory loss, cognitive deficits, etc). In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC), an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations in CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular and Molecular Pharmacology, RFUMS/The Chicago Medical School North Chicago, IL, USA
| | | |
Collapse
|
37
|
Rissling AJ, Braff DL, Swerdlow NR, Hellemann G, Rassovsky Y, Sprock J, Pela M, Light GA. Disentangling early sensory information processing deficits in schizophrenia. Clin Neurophysiol 2012; 123:1942-9. [PMID: 22608970 DOI: 10.1016/j.clinph.2012.02.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/02/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The disentangling of early sensory information processing deficits and examination of their relationships to demographic and clinical factors are important steps for the validation of potential biomarkers and/or endophenotypes of schizophrenia. The aims of the present study were to characterize commonly used sensory event-related potential deficits, to determine whether they are (1) distinct from one another and (2) independently associated with important clinical characteristics. METHODS MMN, P3a and RON event-related potentials (ERP) were recorded from schizophrenia patients (SZ; n=429) and nonpsychiatric comparison subjects (NCS; n=286). Subgroup analyses on demographic and clinical variables were performed. RESULTS Schizophrenia patients exhibited robust ERP deficits at frontocentral electrodes (MMN: d=1.10; P3a: d=0.87; RON: d=0.77), consistent with previous studies. Each ERP component uniquely accounted for variance in amplitude and schizophrenia deficits. Amplitude reductions occurred with increasing age in both NCS and SZ patients. A small subset of patients prescribed combinations of 1st and 2nd generation antipsychotics exhibited significantly reduced MMN amplitude relative to other medication-defined subgroups. CONCLUSIONS MMN, P3a, and RON are dissociable deficits with distinct relationships to age and medication status in schizophrenia patients, potentially reflecting divergent pathophysiological processes. Reduced MMN in patients taking multiple antipsychotic medications appear to be attributable to greater severity of symptoms and functional impairments, rather than a medication effect. SIGNIFICANCE Independent information processing deficits in schizophrenia patients may differentially contribute to the commonly observed deficits in neurocognitive and psychosocial functioning.
Collapse
Affiliation(s)
- Anthony J Rissling
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kirihara K, Rissling AJ, Swerdlow NR, Braff DL, Light GA. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatry 2012; 71:873-80. [PMID: 22361076 PMCID: PMC3434875 DOI: 10.1016/j.biopsych.2012.01.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/21/2011] [Accepted: 01/13/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. METHODS Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent electroencephalography testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. RESULTS Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. CONCLUSIONS Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations, but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40-Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia.
Collapse
Affiliation(s)
- Kenji Kirihara
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0804, USA
| | | | | | | | | |
Collapse
|
39
|
Jahshan C, Cadenhead KS, Rissling AJ, Kirihara K, Braff DL, Light GA. Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychol Med 2012; 42:85-97. [PMID: 21740622 PMCID: PMC3193558 DOI: 10.1017/s0033291711001061] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deficits in automatic sensory discrimination, as indexed by a reduction in the mismatch negativity (MMN) and P3a event-related potential amplitudes, are well documented in chronic schizophrenia. However, MMN and P3a have not been sufficiently studied early in the course of psychotic illness. The present study aimed to investigate MMN, P3a and reorienting negativity (RON) across the course of schizophrenia. METHOD MMN, P3a, and RON were assessed in 118 subjects across four groups: (1) individuals at risk for psychosis (n=26); (2) recent-onset patients (n=31); (3) chronic patients (n=33); and (4) normal controls (n=28) using a duration-deviant auditory oddball paradigm. RESULTS Frontocentral deficits in MMN and P3a were present in all patient groups. The at-risk group's MMN and P3a amplitudes were intermediate to those of the control and recent-onset groups. The recent-onset and chronic patients, but not the at-risk subjects, showed significant RON amplitude reductions, relative to the control group. Associations between MMN, P3a, RON and psychosocial functioning were present in the chronic patients. In the at-risk subjects, P3a and RON deficits were significantly associated with higher levels of negative symptoms. CONCLUSIONS Abnormalities in the automatic processes of sensory discrimination, orienting and reorienting of attention are evident in the early phases of schizophrenia and raise the possibility of progressive worsening across stages of the illness. The finding that MMN and P3a, but not RON, were reduced before psychosis onset supports the continued examination of these components as potential early biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Carol Jahshan
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Anthony J. Rissling
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Kenji Kirihara
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
40
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
41
|
MMN/P3a deficits in first episode psychosis: comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophr Res 2011; 130:203-9. [PMID: 21550211 DOI: 10.1016/j.schres.2011.03.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Reduced mismatch negativity (MMN) and P3a amplitudes are neurophysiological biomarkers for schizophrenia that index deviance detection and the orienting response, respectively. First-episode psychosis (FEP) patients show reduced amplitudes of the 'MMN/P3a complex', but it is unclear whether this occurs across the FEP spectrum. METHODS Fifty-three young people (17-36 years) were assessed: 17 FEP affective-spectrum (bipolar disorder with psychotic features and major depressive disorder with psychotic features), 18 FEP schizophrenia-spectrum (schizophrenia, schizoaffective disorder, and schizophreniform disorder), and 18 healthy controls. MMN/P3a was acquired during a two-tone, auditory paradigm with 8% duration deviants. Clinical, psychosocial and neuropsychological assessments were also undertaken. RESULTS FEP schizophrenia- and FEP affective-spectrum showed significantly reduced fronto-central MMN and central P3a amplitudes compared to controls. FEP subgroups also showed significantly poorer cognitive and psychosocial functioning. The combined FEP sample showed significant correlations between fronto-central MMN amplitudes and cognitive measures. DISCUSSION FEP schizophrenia-spectrum and FEP affective-spectrum were similarly impaired in two biomarkers for schizophrenia. FEP subgroups showed impairments in fronto-central MMN consistent with chronic patients. Similarly, both subgroups showed reductions in P3a; although the affective subgroup showed an 'intermediate' frontal response. These findings suggest that FEP patients with both affective and schizophrenia spectrum diagnoses share common neurobiological disturbances in deviance detection/orienting processes in the early phase of illness.
Collapse
|
42
|
Olivieri EB, Vecchiato C, Ignaccolo N, Mannu P, Castagna A, Aravagli L, Fontani V, Rinaldi S. Radioelectric brain stimulation in the treatment of generalized anxiety disorder with comorbid major depression in a psychiatric hospital: a pilot study. Neuropsychiatr Dis Treat 2011; 7:449-55. [PMID: 21857785 PMCID: PMC3157488 DOI: 10.2147/ndt.s23420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is often presented with major depression (MD). GAD-MD can be a chronic and disabling condition, and patients suffering from this disorder often respond poorly to psychopharmacological treatment and experience side effects with medication. Therefore, there is a high demand for effective nonpharmacological therapy for GAD-MD patients. The current study explores the use of a radioelectric asymmetric conveyer (REAC) device in the treatment of GAD-MD. METHODS Participants were 24 patients diagnosed with GAD-MD being treated at a public psychiatric center. All patients were dissatisfied with their current pharmacological treatment. Patients were evaluated using the 21-item Hamilton Depression (HAM-D) rating scale and the Symptom Check List-90-Revised (SCL-90R) before and after REAC brain stimulation treatment cycles. RESULTS After REAC brain stimulation treatment, all patients experienced a significant reduction in anxiety and depression. These results were confirmed by physician examination, HAM-D scores, and SCL-90R total scores. CONCLUSION These results indicate a role for REAC brain stimulation in the management of psychiatric conditions, specifically, GAD-MD comorbidity. REAC treatments are synergistic to drug therapy and appear to be helpful in reducing the side effects of medication. Future studies should evaluate the long-term effects of REAC treatment.
Collapse
|